Refereed Journal Articles (
Google Scholar)

In Press

  1. Rajanna MR, Jaiswal M, Johnson EL, Liu N, Korobenko A, Bazilevs Y, Lua J, Phan N, Hsu M-CFluid–structure interaction modeling with nonmatching interface discretizations for compressible flow problems: simulating aircraft tail buffeting. Computational Mechanics, accepted, 2024. https://doi.org/10.1007/s00466-023-02436-2. [SharedIt]

2024

  1. Ross CJ, Laurence DW, Aggarwal A, Hsu M-C, Mir A, Burkhart HM, Lee C-H. Bayesian optimization-based inverse finite element analysis for atrioventricular heart valvesAnnals of Biomedical Engineering, 52:611–626, 2024. [SharedIt]
  2. Codoni D, Bayram A, Rajanna MR, Johansen C, Hsu M-C, Bazilevs Y, Korobenko A. Heat flux prediction for hypersonic flows using a stabilized formulationComputational Mechanics, 73:419–426, 2024. [SharedIt]
  3. Tan K, Gao B, Yang C-H, Johnson EL, Hsu M-C, Passalacqua A, Krishnamurthy A, Ganapathysubramanian B. A computational framework for transmission risk assessment of aerosolized particles in classroomsEngineering with Computers, 40:235–256, 2024. [SharedIt]

2023

  1. Wang X, Jaiswal M, Corpuz AM, Paudel S, Balu A, Krishnamurthy A, Yan J, Hsu M-CPhotogrammetry-based computational fluid dynamicsComputer Methods in Applied Mechanics and Engineering, 417:116311, 2023. 
  2. Neighbor GE, Zhao H, Saraeian M, Hsu M-C, Kamensky D. Leveraging code generation for transparent immersogeometric fluid–structure interaction analysis on deforming domainsEngineering with Computers, 39:1019–1040, 2023. [SharedIt]
  3. Balu A, Rajanna MR, Khristy J, Xu F, Krishnamurthy A, Hsu M-CDirect immersogeometric fluid flow and heat transfer analysis of objects represented by point cloudsComputer Methods in Applied Mechanics and Engineering, 404:115742, 2023.

2022

  1. Rajanna MR, Johnson EL, Liu N, Korobenko A, Bazilevs Y, Hsu M-CFluid–structure interaction modeling with nonmatching interface discretizations for compressible flow problems: computational framework and validation studyMathematical Models and Methods in Applied Sciences, 32:2497–2528, 2022.
  2. You H, Zhang Q, Ross CJ, Lee C-H, Hsu M-C, Yu Y. A physics-guided neural operator learning approach to model biological tissues from digital image correlation measurementsJournal of Biomechanical Engineering, 144:121012, 2022.
  3. Laurence DW, Ross CJ, Hsu M-C, Mir A, Burkhart HM, Holzapfel GA, Lee C-H. Benchtop characterization of the tricuspid valve leaflet pre-strainsActa Biomaterialia, 152:321–334, 2022.
  4. Liu N, Rajanna MR, Johnson EL, Lua J, Phan N, Hsu M-CIsogeometric blended shells for dynamic analysis: simulating aircraft takeoff and the resulting fatigue damage on the horizontal stabilizerComputational Mechanics, 70:1013–1024, 2022. [SharedIt]
  5. Liu N, Hsu M-C, Lua J, Phan N. A large deformation isogeometric continuum shell formulation incorporating finite strain elastoplasticityComputational Mechanics, 70:965–976, 2022. [SharedIt]
  6. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Terahara T. Computational cardiovascular medicine with isogeometric analysisJournal of Advanced Engineering and Computation, 6:167–199, 2022.
  7. Rajanna MR, Johnson EL, Codoni D, Korobenko A, Bazilevs Y, Liu N, Lua J, Phan N, Hsu M-CFinite element methodology for modeling aircraft aerodynamics: development, simulation, and validationComputational Mechanics, 70:549–563, 2022. [SharedIt]
  8. Johnson EL, Rajanna MR, Yang C-H, Hsu M-CEffects of membrane and flexural stiffnesses on aortic valve dynamics: identifying the mechanics of leaflet flutter in thinner biological tissuesForces in Mechanics, 6:100053, 2022.

2021

  1. Laurence DW, Lee C-H, Johnson EL, Hsu M-CAn in-silico benchmark for the tricuspid heart valve – Geometry, finite element mesh, Abaqus simulation, and result data setData in Brief, 39:107664, 2021.
  2. Hossain SS, Starosolski Z, Sanders T, Johnson MJ, Wu MCH, Hsu M-C, Milewicz DM, Annapragada A. Image-based patient-specific flow simulations are consistent with stroke in pediatric cerebrovascular diseaseBiomechanics and Modeling in Mechanobiology, 20:2071–2084, 2021. [SharedIt]
  3. Zhang W, Motiwale S, Hsu M-C, Sacks MS. Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loadingJournal of the Mechanical Behavior of Biomedical Materials, 123:104745, 2021.
  4. Liu N, Johnson EL, Rajanna MR, Lua J, Phan N, Hsu M-CBlended isogeometric Kirchhoff–Love and continuum shellsComputer Methods in Applied Mechanics and Engineering, 385:114005, 2021.
  5. Johnson EL, Laurence DW, Xu F, Crisp CE, Mir A, Burkhart HM, Lee C-H, Hsu M-CParameterization, geometric modeling, and isogeometric analysis of tricuspid valvesComputer Methods in Applied Mechanics and Engineering, 384:113960, 2021.
  6. Xu F, Johnson EL, Wang C, Jafari A, Yang C-H, Sacks MS, Krishnamurthy A, Hsu M-CComputational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacementMechanics Research Communications, 112:103604, 2021.
  7. Saurabh K, Gao B, Fernando M, Xu S, Khanwale MA, Khara B, Hsu M-C, Krishnamurthy A, Sundar H, Ganapathysubramanian B. Industrial scale Large Eddy Simulations with adaptive octree meshes using immersogeometric analysisComputers & Mathematics with Applications, 97:28–44, 2021.
  8. Codoni D, Moutsanidis G, Hsu M-C, Bazilevs Y, Johansen C, Korobenko A. Stabilized methods for high-speed compressible flows: toward hypersonic simulationsComputational Mechanics, 67:785–809, 2021. [SharedIt]
  9. Ross CJ, Hsu M-C, Baumwart R, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee C-H. Quantification of load-dependent changes in the collagen fiber architecture for the strut chordae tendineae-leaflet insertion of porcine atrioventricular heart valvesBiomechanics and Modeling in Mechanobiology, 20:223–241, 2021. [SharedIt]
  10. Xu S, Gao B, Lofquist A, Fernando M, Hsu M-C, Sundar H, Ganapathysubramanian B. An octree-based immersogeometric approach for modeling inertial migration of particles in channelsComputers & Fluids, 214:104764, 2021.

2020

  1. Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR, Sacks MS, Hsu M-CThinner biological tissues induce leaflet flutter in aortic heart valve replacementsProceedings of the National Academy of Sciences, 117:19007–19016, 2020.
  2. Kozak N, Rajanna MR, Wu MCH, Murugan M, Bravo L, Ghoshal A, Hsu M-CBazilevs Y. Optimizing gas turbine performance using the surrogate management framework and high-fidelity flow modelingEnergies, 13:4283, 2020.
  3. Johnson EL, Hsu M-CIsogeometric analysis of ice accretion on wind turbine bladesComputational Mechanics, 66:311–322, 2020. [SharedIt]
  4. Laurence DW, Johnson EL, Hsu M-C, Baumwart R, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee C-H. A pilot in silico modeling-based study of the pathological effects on the biomechanical function of tricuspid valvesInternational Journal for Numerical Methods in Biomedical Engineering, 36:e3346, 2020.
  5. Kozak N, Xu F, Rajanna MR, Bravo L, Murugan M, Ghoshal A, Bazilevs Y, Hsu M-CHigh-fidelity finite element modeling and analysis of adaptive gas turbine stator–rotor flow interaction at off-design conditionsJournal of Mechanics, 36:595–606, 2020.
  6. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Otoguro Y, Mochizuki H, Wu MCH. Wind turbine and turbomachinery computational analysis with the ALE and Space–Time variational multiscale methods and isogeometric discretizationJournal of Advanced Engineering and Computation, 4:1–32, 2020.
  7. Ross CJ, Laurence DW, Hsu M-C, Baumwart R, Zhao YD, Mir A, Burkhart HM, Holzapfel GA, Wu Y, 
    Lee C-H. Mechanics of porcine heart valves’ strut chordae tendineae investigated as a leafletchordae–papillary muscle entity
    Annals of Biomedical Engineering, 48:1463–1474, 2020. [SharedIt]
  8. Terahara T, Takizawa K, Tezduyar TE, Bazilevs Y, Hsu M-CHeart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method. Computational Mechanics, 65:1167–1187, 2020. [SharedIt]
  9. Zhu Q, Xu F, Xu S, Hsu M-C, Yan J. An immersogeometric formulation for free-surface flows with application to marine engineering problemsComputer Methods in Applied Mechanics and Engineering, 361:112748, 2020.

2019

  1. Balu A, Nallagonda S, Xu F, Krishnamurthy A, Hsu M-C, Sarkar S. A deep learning framework for design and analysis of surgical bioprosthetic heart valvesScientific Reports, 9:18560, 2019.
  2. Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu M-CImmersogeometric fluidstructure interaction modeling and simulation of transcatheter aortic valve replacementComputer Methods in Applied Mechanics and Engineering, 357:112556, 2019.
  3. Xu F, Bazilevs Y, Hsu M-CImmersogeometric analysis of compressible flows with application to aerodynamic simulation of rotorcraftMathematical Models and Methods in Applied Sciences, 29:905–938, 2019.
  4. Xu S, Xu F, Kommajosula A, Hsu M-C, Ganapathysubramanian B. Immersogeometric analysis of moving objects in incompressible flowsComputers & Fluids, 89:24–33, 2019.
  5. Xu S, Gao B, Hsu M-C, Ganapathysubramanian B. A residual-based variational multiscale method with weak imposition of boundary conditions for buoyancy-driven flowsComputer Methods in Applied Mechanics and Engineering, 352:345368, 2019.
  6. Herrema AJ, Kiendl J, Hsu M-CA framework for isogeometric-analysis-based design and optimization of wind turbine blade structuresWind Energy, 22:153–170, 2019.
  7. Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu M-CPenalty coupling of non-matching isogeometric Kirchhoff–Love shell patches with application to composite wind turbine bladesComputer Methods in Applied Mechanics and Engineering, 346:810–840, 2019.
  8. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-CComputational cardiovascular flow analysis with the variational multiscale methodsJournal of Advanced Engineering and Computation, 3:366–405, 2019.
  9. Lee C-H, Laurence DW, Ross CJ, Kramer KE, Babu AR, Johnson EL, Hsu M-C, Aggarwal A, Mir A, Burkhart HM, Towner RA, Baumwart R, Wu Y. Mechanics of the tricuspid valve—from clinical diagnosis/treatment, in vivo and in vitro investigations, to patient-specific biomechanical modelingBioengineering, 6:47, 2019.

2018

  1. Yu Y, Kamensky D, Hsu M-C, Lu XY, Bazilevs Y, Hughes TJRError estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid–structure interactionMathematical Models and Methods in Applied Sciences, 28:2457–2509, 2018.
  2. Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu M-CAn anisotropic constitutive model for immersogeometric fluid–structure interaction analysis of bioprosthetic heart valvesJournal of Biomechanics, 74:23–31, 2018.
  3. Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-CA framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysisInternational Journal for Numerical Methods in Biomedical Engineering, 34:e2938, 2018.
  4. Kamensky D, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-CA contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valvesComputer Methods in Applied Mechanics and Engineering, 330:522–546, 2018.

2017

  1. Zakerzadeh R, Hsu M-C, Sacks MSComputational methods for the aortic heart valve and its replacementsExpert Review of Medical Devices, 14:849–866, 2017.
  2. Kamensky D, Evans JA, Hsu M-C, Bazilevs Y. Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid–thin structure interaction analysis, with application to heart valve modelingComputers & Mathematics with Applications, 74:2068–2088, 2017.
  3. Xu F, Moutsanidis G, Kamensky D, Hsu M-C, Murugan M, Ghoshal A, Bazilevs Y. Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modelingComputers & Fluids, 158:201220, 2017.
  4. Murugan M, Ghoshal A, Xu F, Hsu M-C, Bazilevs Y, Bravo L, Kerner K. Analytical study of articulating turbine rotor blade concept for improved off-design performance of gas turbine enginesJournal of Engineering for Gas Turbines and Power, 139:102601–102601-6, 2017.
  5. Wang C, Xu F, Hsu M-C, Krishnamurthy A. Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfacesComputer Aided Geometric Design, 52–53:190–204, 2017.
  6. Benzaken J, Herrema AJ, Hsu M-C, Evans JA. A rapid and efficient isogeometric design space exploration framework with application to structural mechanicsComputer Methods in Applied Mechanics and Engineering, 316:1215–1256, 2017.
  7. Herrema AJ, Wiese NM, Darling CN, Ganapathysubramanian B, Krishnamurthy A, Hsu M-CA framework for parametric design optimization using isogeometric analysisComputer Methods in Applied Mechanics and Engineering, 316:944–965, 2017.
  8. Wu MCH, Kamensky D, Wang C, Herrema AJ, Xu F, Pigazzini MS, Verma A, Marsden AL, Bazilevs Y, Hsu M-COptimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gearComputer Methods in Applied Mechanics and Engineering, 316:668–693, 2017.
  9. Kamensky D, Hsu M-C, Yu Y, Evans JA, Sacks MS, Hughes TJR. Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splinesComputer Methods in Applied Mechanics and Engineering, 314:408–472, 2017.
  10. Wang C, Wu MCH, Xu F, Hsu M-C, Bazilevs Y. Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysisComputers & Fluids, 142:3–14, 2017.

2016

  1. Schillinger D, Harari I, Hsu M-C, Kamensky D, Stoter SKF, Yu Y, Zhao Y. The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elementsComputer Methods in Applied Mechanics and Engineering, 309:625–652, 2016.
  2. Hsu M-C, Wang C, Xu F, Herrema AJ, Krishnamurthy A. Direct immersogeometric fluid flow analysis using B-rep CAD modelsComputer Aided Geometric Design, 43:143–158, 2016.
  3. Xu F, Schillinger D, Kamensky D, Varduhn V, Wang C, Hsu M-CThe tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries. Computers & Fluids, 141:135–154, 2016.
  4. Varduhn V, Hsu M-C, Ruess M, Schillinger D. The tetrahedral finite cell method: Higher-order immersogeometric analysis on adaptive non-boundary-fitted meshesInternational Journal for Numerical Methods in Engineering, 107:1054–1079, 2016.

2015

  1. Kamensky D, Evans JA, Hsu M-CStability and conservation properties of collocated constraints in immersogeometric fluid–thin structure interaction analysisCommunications in Computational Physics, 18:1147–1180, 2015.
  2. Hsu M-C, Wang C, Herrema AJ, Schillinger D, Ghoshal A, Bazilevs Y. An interactive geometry modeling and parametric design platform for isogeometric analysisComputers & Mathematics with Applications, 70:1481–1500, 2015.
  3. Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material modelsComputational Mechanics, 55:1211–1225, 2015. [SharedIt]
  4. Kiendl J, Hsu M-C, Wu MCH, Reali A. Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materialsComputer Methods in Applied Mechanics and Engineering, 291:280–303, 2015.
  5. Schillinger D, Evans JA, Frischmann F, Hiemstra RR, Hsu M-C, Hughes TJR. A Collocated C0 Finite Element Method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamicsInternational Journal for Numerical Methods in Engineering, 102:576–631, 2015.
  6. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR. An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valvesComputer Methods in Applied Mechanics and Engineering, 284:1005–1053, 2015.

2014

  1. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR. Fluid–structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformationComputational Mechanics, 54:1055–1071, 2014. [SharedIt]
  2. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S. Engineering analysis and design with ALE-VMS and Space–Time methodsArchives of Computational Methods in Engineering, 21:481–508, 2014. [SharedIt]
  3. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S. Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS MethodsArchives of Computational Methods in Engineering, 21:359–398, 2014. [SharedIt]
  4. Hsu M-C, Akkerman I, Bazilevs Y. Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experimentWind Energy, 17:461–481, 2014.

2013

  1. Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y. Aerodynamic simulation of vertical-axis wind turbinesJournal of Applied Mechanics, 81:021011, 2013.
  2. Bazilevs Y, Hsu M-C, Bement MT. Adjoint-based control of fluid–structure interaction for computational steering applicationsProcedia Computer Science, 18:1989–1998, 2013.
  3. Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y. Structural mechanics modeling and FSI simulation of wind turbinesMathematical Models and Methods in Applied Sciences, 23:249–272, 2013.
  4. Benson DJ, Hartmann S, Bazilevs Y, Hsu M-C, Hughes TJR. Blended isogeometric shellsComputer Methods in Applied Mechanics and Engineering, 255:133–146, 2013.

2012

  1. Hsu M-C, Bazilevs Y. Fluid–structure interaction modeling of wind turbines: simulating the full machineComputational Mechanics, 50:821–833, 2012. [SharedIt]
  2. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE. ALE–VMS and ST–VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interactionMathematical Models and Methods in Applied Sciences, 22:1230002, 2012.
  3. Bazilevs Y, Hsu M-C, Scott MA. Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbinesComputer Methods in Applied Mechanics and Engineering, 249-252:28–41, 2012.
  4. Hsu M-C, Akkerman I, Bazilevs Y. Wind turbine aerodynamics using ALE–VMS: Validation and the role of weakly enforced boundary conditionsComputational Mechanics, 50:499–511, 2012. [SharedIt]
  5. Long CC, Hsu M-C, Bazilevs Y, Feinstein JA, Marsden AL. Fluid–structure interaction simulations of the Fontan procedure using variable wall propertiesInternational Journal for Numerical Methods in Biomedical Engineering, 28:512–527, 2012.
  6. Stein P, Hsu M-C, Bazilevs Y, Beucke K. Operator- and template-based modeling of solid geometry for isogeometric analysis with application to vertical axis wind turbine simulationComputer Methods in Applied Mechanics and Engineering, 213-216:71–83, 2012.
  7. Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ. A computational procedure for prebending of wind turbine bladesInternational Journal for Numerical Methods in Engineering, 89:323–336, 2012.

2011

  1. Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y. Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamicsComputational Mechanics, 48:647–657, 2011. [SharedIt]
  2. Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y. Stabilized space-time computation of wind-turbine rotor aerodynamicsComputational Mechanics, 48:333–344, 2011. [SharedIt]
  3. De Luycker E, Benson DJ, Belytschko T, Bazilevs Y, Hsu M-CX-FEM in isogeometric analysis for linear fracture mechanicsInternational Journal for Numerical Methods in Engineering, 87:541–565, 2011.
  4. Hsu M-C, Akkerman I, Bazilevs Y. High-performance computing of wind turbine aerodynamics using isogeometric analysisComputers & Fluids, 49:93–100, 2011.
  5. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U. 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite bladesInternational Journal for Numerical Methods in Fluids, 65:236–253, 2011.
  6. Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE. 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamicsInternational Journal for Numerical Methods in Fluids, 65:207–235, 2011.
  7. Hsu M-C, Bazilevs Y. Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulationFinite Elements in Analysis and Design, 47:593–599, 2011.
  8. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR. A large deformation, rotation-free, isogeometric shellComputer Methods in Applied Mechanics and Engineering, 200:1367–1378, 2011.

2010

  1. Kiendl J, Bazilevs Y, Hsu M-C, Bletzinger K-U, Wüchner R. The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patchesComputer Methods in Applied Mechanics and Engineering, 199:2403–2416, 2010.
  2. Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott MA, Hughes TJR, Belytschko T. A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEMInternational Journal for Numerical Methods in Engineering, 83:765–785, 2010.
  3. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen JG. Computational vascular fluid–structure interaction: Methodology and application to cerebral aneurysmsBiomechanics and Modeling in Mechanobiology, 9:481–498, 2010. [SharedIt]
  4. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen JG. A fully-coupled fluidstructure interaction simulation of cerebral aneurysmsComputational Mechanics, 46:3–16, 2010. [SharedIt]
  5. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR. Isogeometric shell analysis: The Reissner–Mindlin shellComputer Methods in Applied Mechanics and Engineering, 199:276–289, 2010.
  6. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR. Improving stability of multiscale formulations in flow simulations at small time stepsComputer Methods in Applied Mechanics and Engineering, 199:828–840, 2010.

2009

  1. Bazilevs Y, Hsu M-C, Benson DJ, Sankaran S, Marsden AL. Computational fluid–structure interaction: Methods and application to a total cavopulmonary connectionComputational Mechanics, 45:77–89, 2009. [SharedIt]
  2. Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen JG. High-fidelity tetrahedral mesh generation from medical imaging data for fluid–structure interaction analysis of cerebral aneurysmsComputer Modeling in Engineering & Sciences, 42:131–150, 2009.
  3. Sheu TWH, Hsu M-CFinite-element simulation of incompressible viscous flows in moving meshesNumerical Heat Transfer, Part B: Fundamentals, 56:38–57, 2009.


Book Chapters

  1. Hsu M-C, Balu A. Direct flow simulation of objects represented by point cloudsIn: Tezduyar TE (eds) Frontiers in Computational Fluid-Structure Interaction and Flow Simulation, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham, 2023.
  2. Hughes TJR, Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-CComputational cardiovascular analysis with the variational multiscale methods and isogeometric discretizationIn: Grama A, Sameh A (eds) Parallel Algorithms in Computational Science and Engineering. Birkhäuser, Cham, 2020.
  3. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Otoguro Y, Mochizuki H, Wu MCH. ALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachineryIn: Grama A, Sameh A (eds) Parallel Algorithms in Computational Science and Engineering. Birkhäuser, Cham, 2020.
  4. Zakerzadeh R, Wu MCH, Zhang W, Hsu M-C, Sacks MS. Fluid–structure interaction analysis of bioprosthetic heart valves: the application of a computationally-efficient tissue constitutive modelIn: Sacks M, Liao J (eds) Advances in Heart Valve Biomechanics. Springer, Cham, 2019.
  5. Hsu M-C, Kamensky D. Immersogeometric analysis of bioprosthetic heart valves, using the dynamic augmented Lagrangian methodIn: Tezduyar TE (eds) Frontiers in Computational Fluid-Structure Interaction and Flow Simulation, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham, 2018.
  6. Korobenko A, Hsu M-C, Bazilevs Y. A computational steering framework for large-scale composite structuresIn: Blasch E, Ravela S, Aved A (eds) Handbook of Dynamic Data Driven Applications SystemsSpringer, Cham, 2018.
  7. Hsu M-C, Wang C, Wu MCH, Xu F, Bazilevs Y. Fluid–structure interaction modeling and isogeometric analysis of a hydraulic arresting gear at full scaleIn: Takizawa K and Bazilevs Y (eds) Advances in Computational Fluid–Structure Interaction and Flow Simulation. Birkhäuser, Cham, 2016.
  8. Xu F, Kamensky D, Varduhn V, Wang C, Wasion SA, Sotomayor-Rinaldi B, Darling CN, Schillinger D, Hsu M-CAn immersogeometric method for the simulation of turbulent flow around complex geometriesIn: Takizawa K and Bazilevs Y (eds) Advances in Computational Fluid–Structure Interaction and Flow Simulation. Birkhäuser, Cham, 2016.
  9. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S. Computational engineering analysis and design with ALE-VMS and ST methodsIn: Idelsohn SR (eds) Numerical Simulations of Coupled Problems in Engineering. Springer, Cham, 2014.
  10. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S. Computational wind-turbine analysis with the ALE-VMS and ST-VMS methodsIn: Idelsohn SR (eds) Numerical Simulations of Coupled Problems in Engineering. Springer, Cham, 2014.
  11. Bazilevs Y, Hsu M-C, Akkerman I, Benson DJ. Enabling computational methods for offshore wind turbinesIn: Eça L, Oñate E, García-Espinosa J, Kvamsdal T, Bergan P (eds) MARINE 2011, IV International Conference on Computational Methods in Marine Engineering. Springer, Dordrecht, 2013.


Others

  1. Saurabh K, Ishii M, Fernando M, Gao B, Tan K, Hsu M-C, Krishnamurthy A, Sundar H, Ganapathysubramanian B. Scalable adaptive PDE solvers in arbitrary domains. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), Article No. 20, 1–15, Nov 2021.
© Ming-Chen Hsu 2023