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Abstract. Isogeometric analysis (IGA) brought
superior accuracy to computations in both fluid
and solid mechanics. The increased accuracy
has been in representing both the problem geom-
etry and the variables computed. Beyond using
IGA basis functions in space, with IGA basis
functions in time in a space–time (ST) context,
we can have increased accuracy also in repre-
senting the motion of solid surfaces. Around
the core methods such as the residual-based
variational multiscale (VMS), ST-VMS and
arbitrary Lagrangian–Eulerian VMS methods,
with complex-geometry IGA mesh generation
methods and immersogeometric analysis, and
with special methods targeting specific classes of
computations, the IGA has been very effective
in computational cardiovascular medicine.
We provide an overview of these IGA-based
computational-cardiovascular-medicine methods
and present examples of the computations
performed.
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1. Introduction

The challenges involved in computational car-
diovascular medicine (see, for example, [1–21])
include complex geometries, fluid–structure in-
teraction (FSI) between the blood and the car-
diovascular tissues, and topology changes in
the computational domain, such as the con-
tact between the heart valve leaflets. Be-
cause validation by comparing to experimen-
tal or test data is exceedingly difficult in many
cases, striving for the best accuracy in all as-
pects of the computation is even more impor-
tant. For example, as early as in 2004, with
some of the earliest patient-specific arterial FSI
computations [22, 23], which were performed
with the Deforming-Spatial-Domain/Stabilized
Space–Time (DSD/SST) method [24–26], it was
shown that taking the FSI into account was es-
sential for accurate prediction of the wall shear
stress (WSS). The patient-specific arterial ge-
ometries used in [22, 23] were for the middle
cerebral artery and internal carotid artery, and
assuming rigid arteries was overpredicting the
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WSS by large margins. The WSS overprediction
trend was also reported in [27], with patient-
specific arterial FSI computation for 10 differ-
ent cases of cerebral aneurysm, with reasonably
good boundary layer resolution near the arterial
walls. As another example, the WSS significance
of having a good boundary layer resolution near
the arterial wall in finite element FSI computa-
tions was pointed out [28] and quantified [29] as
early as in 2008.

Isogeometric analysis (IGA) [30–33] brought
superior accuracy to computations in both fluid
and solid mechanics. The increased accuracy has
been in representing both the problem geometry
and the variables computed. Beyond using IGA
basis functions in space, with IGA basis func-
tions in time in an ST context [34–37], we can
have increased accuracy also in representing the
motion of solid surfaces. The IGA has been used
around core methods such as the residual-based
variational multiscale (RBVMS) [38–41], arbi-
trary Lagrangian–Eulerian VMS (ALE-VMS) [1,
4,32,42–45], DSD/SST [24–26], which gained the
alternate name “ST-SUPS” in [4], and ST-VMS
[34, 35, 46]. It is known that IGA mesh genera-
tion for complex geometries is significantly more
challenging than finite element mesh generation.
This challenge has mostly been overcome or
circumvented with the Complex-Geometry IGA
Mesh Generation (CGIMG)1 method [47, 48],
NURBS Surface-to-Volume Guided Mesh Gen-
eration (NSVGMG) method [49], and immer-
sogeometric analysis (IMGA) [11, 50]. With
the core methods, with the methods that over-
come or circumvent the complex-geometry IGA
mesh generation challenge, and with special
methods targeting specific classes of computa-
tions, the IGA has been very effective in com-
putational cardiovascular medicine. We provide
an overview of these IGA-based computational-
cardiovascular-medicine methods and present
examples of the computations performed. The
overview of the methods is in Sections 2–12, and
the examples are in Sections 13–15. The con-
cluding remarks are given in Section 16.

1The method name and abbreviation are being coined
here.

2. Moving-mesh and
nonmoving-mesh
methods

Flows with moving boundaries and interfaces
(MBI) [4,51–53] is a wider class of flow problems
that includes FSI problems. It also includes
flows with moving mechanical components, free-
surface and two fluid-flows, and fluid–particle
interactions. For a given moving boundary
or interface, if the method is relying on a
mesh that moves to follow that boundary or
interface, it is a moving-mesh method, if not,
it is a nonmoving-mesh method2. Moving the
mesh to follow a fluid–solid interface gives us
mesh resolution control near the moving solid
surfaces and higher accuracy in representing the
boundary layers. The moving-mesh methods
have also been referred to as “interface-tracking
methods” [4, 51–54], meaning that the mesh
is moving for the purpose of “tracking” the
interface, rather than just “capturing” it within
the mesh resolution where the interface is in
the nonmoving mesh. More on the moving-
mesh and nonmoving-mesh (i.e. interface-
tracking and interface-capturing) methods
and their mixtures, the Mixed Interface-
Tracking/Interface-Capturing Technique [55]
and Fluid–Solid Interface-Tracking/Interface-
Capturing Technique (FSITICT) [56], can be
found in [4, 51–53].

3. ST-SUPS, ALE-SUPS,
RBVMS, ALE-VMS,
ST-VMS, and the
classes of problems
computed

The ST-SUPS, introduced in 1990 with the
name DSD/SST, is the oldest one of the

2We note that, in a flow computation in general, a
method might be relying on a mesh that moves to follow
a moving boundary or interface but does not move to
follow a second moving boundary or interface. Then the
method is a moving-mesh method for the first moving
boundary or interface and a nonmoving-mesh method
for the second.
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moving-mesh methods we include in this arti-
cle. The alternate name “ST-SUPS” brought
clarity to the stabilization components, which
are the SUPG and PSPG, with widespread
awareness that these two acronyms imply sta-
bilization methods Streamline-Upwind/Petrov-
Galerkin [57] and Pressure-Stabilizing/Petrov-
Galerkin [24]. The ram-air parachute FSI analy-
sis in 1999 [58] was one of the earliest computa-
tions with the ALE-SUPS moving-mesh method.
The root moving-mesh method ALE is of course
much older, with the finite element version dat-
ing back to 1981 [59]. The ALE-VMS and ST-
VMS are the VMS versions of the ALE and
DSD/SST. In both, the stabilization compo-
nents are from the RBVMS.

The ST-SUPS, ALE-SUPS, ALE-VMS, and
ST-VMS, like all moving-mesh methods, need
to be complemented with mesh update meth-
ods in FSI and MBI computations. The mesh
update most of the time consists of moving
the mesh to accommodate the motion of the
boundaries and interfaces and to control the
mesh resolution near solid surfaces that are mov-
ing, and remeshing if the element distortion
exceeds an acceptable level. We expect two
things from a good mesh moving method: to re-
duce the need for remeshing and to give high
priority to maintaining element quality near
solid surfaces where accurate representation of
the boundary layers matters. Since the incep-
tion of the ST-SUPS in 1990, a large num-
ber of special- and general-purpose mesh mov-
ing methods have been developed for compu-
tations with the ST-SUPS and ST-VMS. Some
of them have also been used in computations
with the ALE-SUPS and ALE-VMS. A recent
article [60] on mesh moving methods provides
an overview. The general-purpose methods in-
clude, as the first one, the linear-elasticity mesh
moving method with mesh-Jacobian-based stiff-
ening [61, 62] introduced in 1992, and, as the
most recent ones, element-based mesh relax-
ation method [63], mesh relaxation and mesh
moving based on fiber-reinforced hyperelasticity
[53], and back-cycle-based mesh moving method
[20,64].

With some of the most diverse and challeng-
ing classes of flow problems computed over the
time period since their inception, the ST-SUPS,

ALE-SUPS, RBVMS, ALE-VMS, and ST-VMS
built a track record for being a powerful set of
methods with wide scope. The classes of prob-
lems computed include those itemized below.

ALE-SUPS, RBVMS, and ALE-VMS:

• wind turbines [65–86],

• cardiovascular medicine [5,8,9,11,12,17,18,
31,32,87–92],

• mixed ALE-VMS/IMGA computations [9,
11, 12, 93–101] in the framework of the
FSITICT,

• turbomachinery [102–108],

• two-phase flows [109–115],

• bridges [116–120],

• free-surface flows [121–125],

• IMGA FSI and flow analysis [50,126–129],

• marine applications [130–132],

• stratified flows [133,134],

• aircraft applications [135,136],

• parachutes [58],

• hypersonic flows [137],

• additive manufacturing [138].

ST-SUPS and ST-VMS:

• classes of problems summarized in [139] (all
computed during the 25-year period 1993–
2018),

• cardiovascular medicine [2, 3, 6, 7, 10, 13–21,
140–146],

• wind turbines [4,65,72,79–82,141,142,147–
154],

• parachutes [4, 63,83,84,155–164],

• ground vehicles and tires [10, 46, 49, 83, 84,
165–170],

• flapping-wing aerodynamics [4, 36, 37, 60,
140–142,171–174],
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• turbomachinery [47,48,81,82,175–180],

• fluid films [168,170,181],

• spacecraft [157,182],

• Taylor–Couette flow [62,183],

• disk brakes [184],

• U-ducts [185].

4. Slip (sliding) interface
methods

The sliding interface method was introduced in
[33, 186] in the context of the ALE-VMS. The
ST version of that is the ST Slip Interface (ST-
SI) method, introduced in [150]. In this ar-
ticle, the acronym “SI” will imply both “slid-
ing” and “slip.” Both the ALE-SI and ST-SI
were introduced in the context of incompressible
flows. The objective was to retain the favorable
moving-mesh features of the ST-SUPS, ALE-
SUPS, ALE-VMS, and ST-VMS in flow compu-
tations that have a rotating solid surface, such
as a turbine rotor. The mesh around the rotat-
ing solid and inside the SI, which would typi-
cally have higher refinement near the solid sur-
face, rotates with it and thus preserves the high-
resolution boundary layer representation. The
mesh outside the SI is not affected by the rota-
tion of the solid. Connecting the two sides of the
solution accurately is accomplished by adding to
the ST-SUPS, ALE-SUPS, ALE-VMS, or ST-
VMS formulation some integrations over the SI.
The integrations, inherently residual-based, ac-
count for the velocity and stress compatibility at
the SI. A number of versions of the ST-SI were
introduced to serve purposes that are different
than the original one but just as important.

In addition to the ST-SI version with a stan-
dard “fluid–fluid SI,” a version with “fluid–solid
SI” was introduced in [150]. The SI between
the fluid and solid domains helps enforce the
fluid mechanics Dirichlet boundary conditions
weakly. The version for coupled incompressible-
flow and thermal-transport equations was intro-
duced in [184]. With that, thermo-fluid bound-
ary layers near rotating solid surfaces can also

have high-resolution representation. The ver-
sion introduced in [150] has the SI between a
thin porous structure and the fluid on its two
sides. With that, how the porosity is dealt with
is consistent with how the fluid–fluid and fluid–
solid SIs are dealt with. The ST-SI versions in-
troduced in [163] are the compressible-flow coun-
terparts of the three versions we discussed so far.
They work with the compressible-flow porosity
models introduced in [163] and compressible-
flow ST SUPG method [187].

The classes of problems computed with the
ST-SI include turbomachinery [47,48,81,82,175–
180], cardiovascular medicine [13–15,17–21,146],
ground vehicles and tires [10, 49, 165–170], wind
turbines [79–82,150,151], parachutes [83,84,162–
164], fluid films [168,170,181], disk brakes [184],
Taylor–Couette flow [183], and U-ducts [185].

5. ST Topology Change
(ST-TC) method

In FSI and MBI problems, contact between mov-
ing solid surfaces can be of two types: “near
contact” and actual contact. In a near con-
tact, there is still a narrow gap between the
solid surfaces, and therefore there is no topology
change in the fluid mechanics domain. In such
cases, the nearness is close enough for obtaining
physically meaningful results from the flow com-
putation, basically good enough for solving the
problem. With a robust mesh moving method,
no element needs to collapse and good bound-
ary layer resolutions can be retained. Several
classes of flow problems were computed with the
ST-SUPS and ST-VMS under near-contact con-
ditions with sufficient accuracy. Examples of
such computations can be found in the refer-
ences mentioned in [140].

In some classes of flow problems, it is essential
to represent the contact as an actual contact.
For example, in heart valve flow analysis, for
obvious reasons, the contact between the valve
leaflets needs to be represented as an actual con-
tact, without leaving a narrow gap. As another
example, in wing clapping aerodynamics of in-
sects, the contact between the upper and lower
wings needs to be an actual contact. The ST-
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TC method [7, 140] was introduced to make ST
moving-mesh computations possible even in flow
problems that involve an actual contact. With
that, we can both represent an actual contact
and retain the good boundary layer resolution.
Elements collapse as needed, which is doable in
the ST context. The connectivity of the “par-
ent” mesh, however, does not change during the
process of an element collapse or rebirth, and
therefore the computational efficiency does not
degrade.

The ST-TC has been used without giving up
neither the actual contact representation nor
the high-resolution boundary layer representa-
tion in heart valve flow analysis [7, 10, 13–15,
17–19, 140, 142], ventricle-valve-aorta flow anal-
ysis [20, 21, 146], tire aerodynamics with road
contact and deformation [10, 49, 165–170], fluid
films [168, 170, 181], and wing clapping aerody-
namics of insects [140,174].

6. ST-SI-TC

Effective usage of the ST-TC requires its integra-
tion with the ST-SI, and the ST-SI-TC [14,165]
was introduced as that integration. We briefly
summarize the need for and benefits from the
ST-SI-TC. The ST-SI needs elements on both
sides of a fluid–fluid SI. We need to take mea-
sures to meet that requirement in flow compu-
tations where part of the SI coincides with a
solid surface. We face that, for example, when
the SI is between two solid surfaces coming into
contact, and in a more general context, when
it merges with a fluid–solid interface. In such
cases, the elements between the solid surface
and the part of the SI coinciding with it col-
lapse in the ST-TC contact mechanism. With
that, the part of the SI coinciding with the solid
surface switches from fluid–fluid SI to fluid–solid
SI. That could create an SI that is a mixture of
fluid–fluid and fluid–solid SIs. The ST-SI-TC
makes the process of element collapse and re-
birth independent from the nodes that represent
the solid surface. The ST-SI-TC makes is possi-
ble to have high-resolution boundary layer rep-
resentation near the fluid–solid interfaces even
when part of the SI coincides with a solid sur-
face. With the ST-SI-TC, we can manage con-

tact location change and contact sliding in an
effective fashion.

The ST-SI-TC has been used in heart valve
flow analysis [13–15, 17–19], ventricle-valve-
aorta flow analysis [20,21,146], tire aerodynam-
ics with road contact and deformation [10, 49,
165–170], and fluid films [168,170,181].

7. ST-IGA

The ST-IGA is a broadly-defined term for the
integration of the ST methods with isogeomet-
ric discretization. The method was introduced
in [34]. The test computations reported in [34]
were with the ST-VMS and ST-IGA and in 2D.
The computations were for flow past an airfoil,
with IGA basis functions in space, and for the
advection equation, with IGA basis functions in
both space and time. The test computations
for the advection equation showed that using
higher-order basis functions in time increases the
accuracy return from using higher-order basis
functions in space.

In early ST-IGA computations, the focus was
on IGA basis function in time [34–37, 171], to
have i) increased accuracy in representing the
motion of solid surfaces, ii) a mesh motion
consistent with that, iii) increased efficiency in
representing the motion of the volume meshes,
and iv) increased efficiency in remeshing. The
ST/NURBS Mesh Update Method (STNMUM)
[36,37,149,171] was introduced possessing these
desirable features. The STNMUM is suitable
for, among a wider class of problems, rotating
solid surfaces, and that is good context for ex-
plaining its good performance. The represen-
tation of the circular trajectory in the STN-
MUM is exact with the use of quadratic NURBS
basis functions in time and an adequate patch
count. In addition, it is possible to specify a
constant angular velocity for speeds invariant
along the circular trajectory. That requires a
secondary mapping, given in [4,34–36]. The “ST-
C” method [188] is another positive outcome of
combining the ST context with the IGA basis
functions in time. It is a way of extracting a
continuous representation in time from the com-
puted data. It is also an efficient way of data
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compression [10,46,81–84,152–154,175,178,179,
184,188].

The ST-IGA with IGA basis functions in time
has been used in flapping-wing aerodynamics [4,
36, 37, 60, 140–142, 171–174], wind turbines [72,
79–82,141,142,149–151], turbomachinery [47,48,
81,82,175–180], and spacecraft cover separation
aerodynamics [157].

Because ST-IGA with IGA basis functions
in space brings increased accuracy with fewer
control points and therefore larger effective el-
ement sizes, larger time-step sizes can be used
while keeping the Courant number at a desir-
able level for good accuracy. The ST-IGA with
IGA basis functions in space has been used
in cardiovascular medicine [13–21, 146] turbo-
machinery [47, 48, 81, 82, 176–180], ground ve-
hicles and tires [49, 166–170], wind turbines
[81, 82, 151–154], parachutes [83, 84, 162, 164],
fluid films [168, 170, 181], Taylor–Couette flow
[183], and U-ducts [183].

The IGA basis functions in space play a key
role also in the newest zero-stress-state (ZSS) es-
timation methods [17, 189–192] and related hy-
perelastic shell analysis [193]. The ZSS esti-
mation is needed in patient-specific arterial FSI
computations, because the image-based arterial
geometries used in the computations do not cor-
respond to the ZSS of the artery. The IGA ba-
sis functions in space have been used numerous
advanced computational technologies in struc-
tural analysis and design, such as those reported
in [194–203], including those for wind turbine
blades and heart valves.

8. ST-SI-IGA and
ST-SI-TC-IGA

The ST-SI-IGA [176] and ST-SI-TC-IGA [13,
14, 167] are essentially the IGA expansions of
the ST-SI and ST-SI-TC discussed in Sections 4
and 6. We get ST-SI-IGA and ST-SI-TC-IGA by
building an integrated combination of the ST-SI
and ST-SI-TC with the ST-IGA.

The ST-SI-IGA retains the favorable moving-
mesh features of the ST-SUPS, ALE-SUPS,
ALE-VMS, and ST-VMS in IGA-based flow

computations that have a rotating solid surface,
such as a turbine rotor. The ST-SI-IGA mech-
anism and desirable features include those that
are basically the same as what we described in
Section 4. for the ST-SI. Beyond that, the ST-
SI-IGA addresses the mesh generation challenge
in IGA discretization. This is accomplished with
an SI that does not have a slip between the
two sides. The SI just connects the parts of
the solution obtained over two IGA mesh zones
with nonmatching meshes at the SI between the
zones. Because we are no longer constrained
by a matching requirement, in computation of
flow problems with complex geometries, the IGA
discretization becomes more practical. In IGA-
based computations with a thin porous struc-
ture embedded in the flow field, the ST-SI-IGA
mechanism is essentially the same as what we
described in Section 4. for the ST-SI. In some
cases, the rotating solid surface has grooves or
creates narrow spaces or the thin porous struc-
ture has gaps and slits. In computation of such
flow problems, the ST-SI-IGA makes it possible
to keep the element density, and consequently
the computational cost, at an acceptable level.
That makes computations even with such geo-
metric complexities practical.

The ST-SI-TC-IGA, in flow computations
with contact between moving solid surfaces,
makes it possible to keep the element density
in the narrow spaces close to the contact re-
gion at an acceptable level. While the solid sur-
faces come into contact, prior to the elements be-
tween a solid surface and SI collapsing, we may
have curved and complex boundaries and narrow
spaces. These would need high-aspect-ratio ele-
ments. The ST-SI-TC-IGA makes it possible to
compute under such adverse conditions with an
acceptable level of computational cost. With the
enhancements introduced in [181], the ST-SI-
TC-IGA acquired a built-in Reynolds-equation
limit. With that, when the solid surfaces com-
ing into contact have fluid films between them,
we do not need to use separately a Reynolds-
equation model in those regions. The ST-SI-TC-
IGA can handle that with comparable solution
quality and computational cost and also work
in the other parts of the flow domain where the
Reynolds-equation model would not work.
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The ST-SI-IGA and ST-SI-TC-IGA have been
used in cardiovascular medicine [13–15, 17–
21, 146], turbomachinery [47, 48, 81, 82, 176–
180], ground vehicles and tires [49, 166–170],
parachutes [83, 84, 162, 164], wind turbines [81,
82,151], and fluid films [168,170,181].

9. Complex-geometry IGA
mesh generation

While the IGA offers superior accuracy, IGA
mesh generation for complex geometries is sig-
nificantly more challenging than finite element
mesh generation. Widely available mesh gener-
ation software packages for finite element and
finite difference methods encourage the usage of
these methods. To make IGA-based flow compu-
tations more applicable to problems with com-
plex geometries, and consequently more prac-
tical in computational analysis of real-world
problems, the IGA mesh generation will have
to be less challenging and more encouraging.
The Complex-Geometry IGA Mesh Genera-
tion (CGIMG) [47, 48] and NURBS Surface-to-
Volume Guided Mesh Generation (NSVGMG)
[49] methods were introduced to that end. We
will provide a brief overview of the CGIMG here,
and for the NSVGMG, we refer the interested
reader to [49].

The CGIMG consists of three steps. In the
first step, a block-structured mesh is generated
using existing techniques for such meshes. In the
second step, that mesh is projected to a NURBS
mesh that is built from patches corresponding
to the blocks of the block-structured mesh. In
the third step, the original model surfaces are
recovered, to the extent the nature of the re-
covered surfaces does not impede the robust-
ness or accuracy of the flow computations. The
CGIMG should normally preserve the element
quality and refinement distribution of the block-
structured mesh. Mesh generation and mesh
quality tests were included in [47,48]. The tests
showed that the CGIMG is a practical IGA mesh
generation method with good performance.

The CGIMG has been used in cardiovascular
medicine [15–18,20,21,48,146], turbomachinery

[47, 48, 81, 82, 107, 177, 179, 180], wind turbines
[82,151], and parachutes [48].

10. IMGA

The IMGA was first introduced in [12] as an im-
mersed, geometrically flexible approach for solv-
ing computational FSI problems involving large,
complex structural deformation and change of
fluid domain topology (e.g., structural contact).
The method directly analyzes a spline repre-
sentation of a thin structure by immersing it
into a non-body-fitted discretization of the back-
ground fluid domain and focuses on accurately
capturing the immersed design geometry within
a non-body-fitted analysis meshe. A new semi-
implicit dynamic augmented Lagrangian (DAL)
approach [204] was introduced in [12] for weakly
enforcing the constraints at the fluid–structure
interface in time-dependent immersogeometric
FSI problems. In [12], the method was first ap-
plied to the FSI simulation of bioprosthetic heart
valves (BHVs).

A mixed ALE-VMS/IMGA methodology was
developed in [9] in the framework of the
FSITICT [56], where a single computation com-
bines a body-fitted, deforming-mesh treatment
of some fluid–structure interfaces with a non-
body-fitted treatment of others. This approach
enabled us to simulate the FSI of a heart valve in
a deforming artery over the entire cardiac cycle
under physiological conditions and to study the
effect of arterial-wall elasticity on the valve dy-
namics [9]. The DAL-based ALE-VMS/IMGA
approach was integrated with CAD for heart
valve analysis in [11] with a comparison between
dynamic and FSI computations to demonstrate
the importance of including FSI in heart-valve
simulations. An anisotropic constitutive model-
ing of the BHV leaflets, based on the isogeomet-
ric Kirchhoff–Love shell formulation for general
hyperelastic materials [196], was proposed in [98]
and employed in the IMGA of heart-valve FSI.
The framework was extended to include the cou-
pling between the heart valve leaflets and the ar-
terial wall in [96] to study patient-specific valve
designs that do not employ stents. The results
were compared with phase-contrast MRI data,
in which a qualitative similarity of the flow pat-
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terns in the ascending aorta was found. More
recently, the framework was applied to study
leaflet flutter and its potentially damaging im-
pact on the cardiac system due to the use of
thinner, more flexible biological tissues in BHVs
[100, 205]. A model of a moving left ventricle
was added to the heart-valve FSI framework in
[101] to study the changes in the left ventricular
hemodynamics following the BHV replacement
of both aortic and mitral valves. In order to sim-
ulate the next generation of BHVs employed in
a minimally-invasive transcatheter aortic valve
replacement (TAVR) procedure, the IGA-based
Bernoulli beam formulation was added to the
ALE-VMS/IMGA framework in [99]. This en-
abled the modeling of a complex TAVR device,
which includes a frame, skirt, and three leaflets,
and simulation of the interaction between the
blood flow, arterial wall, and TAVR in order to
study the anchoring ability of the device.

Other noteworthy work on IMGA includes a
divergence-conforming formulation of fluid me-
chanics that delivers a divergence-free velocity
field everywhere in the domain and addresses
the mass loss error across the valve interface [95].
In addition, clever stable coupling strategies and
the appropriate definition of the Lagrange multi-
pliers in the DAL method were proposed and an-
alyzed in [93,94,97]. The DAL-based IMGA was
also combined with surrogate modeling in [136]
for the effective use of FSI to optimize the de-
sign of a hydraulic arresting gear. Parts of the
IMGA methodology were recently implemented
in the FEniCS-based tIGAr software [206] as a
new open-source library CouDALFISh in [207].
A rigid-wall, idealized, 3D heart valve FSI ex-
ample was included as part of that implementa-
tion.

11. Stabilization
parameters and
element lengths
targeting IGA
discretization

The ST-SUPS, ALE-SUPS, RBVMS, ALE-
VMS, ST-VMS, like most stabilized methods,

have “stabilization parameters” [4]. These pa-
rameters, which play an important role, are
called “τSUPG,” “τPSPG,” and “νLSIC” [208]. Typ-
ically a single parameter, called “τSUPS” [4, 34],
is used instead of separate τSUPG and τPSPG.
A local length scale, quite often called “element
length,” appears in the expressions for the sta-
bilization parameters. The element length also
appears in the integrations over the SIs, with
the length measured in the interface-normal di-
rection. The expressions for the element lengths
and stabilization parameters used with the ST-
SUPS, ALE-SUPS, RBVMS, ALE-VMS, ST-
VMS go way back to 1979–1982 [57, 209–212].
Many different expressions were introduced af-
ter that (see for example, [25, 26, 36, 46, 51, 148,
149,213–217]), all intended, until 2018, for finite
element discretization. For the first few decades,
the element length was an advection length
scale, measured in the flow direction, and then
a second element length, which is a diffusion
length scale, was added. Some of the expressions
were in the ST context [25,216], some were spe-
cific to the VMS stabilization [46], some were in
the context of the coupled incompressible-flow
and thermal-transport equations [46], and some
made sure that element lengths, including the
direction-dependent ones, had node-numbering
invariance also for simplex elements [217]. All
these element lengths and stabilization param-
eters intended for finite element discretization
have also been used in computations with IGA
discretization.

Element lengths and stabilization parameters
targeting IGA discretization were introduced in
[218]. They can also be used in computations
with finite element discretization. There were
three key steps in conceptually simple deriva-
tion of the direction-dependent element length
expression. i) Map the direction vector from the
physical ST element to the parent ST element.
ii) Account for the discretization spacing along
each of the parametric coordinates. iii) Map
what has been obtained in the parent element
back to the physical element. The latest sta-
bilization parameters designed for the ST-VMS
are those given in [167], and they are mostly
from [218]. The direction-dependent element
length expressions introduced in [219], which
target complex-geometry B-spline meshes, are
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based on a preferred parametric space instead
of the standard integration parametric space.
They involve a transformation tensor that rep-
resents the relationship between the two para-
metric spaces. These new expressions yield local
length scales that are invariant with respect to
element splitting (see [220] for the proof). Meet-
ing this invariance requirement in the element
length definition is essential because otherwise
the solution is influenced by the element split-
ting, which, of course, we do not want.

The local-length-scale expressions introduced
in [218, 219] have been used in ground vehicles
and tires [49,167–170], wind turbines [151–154],
cardiovascular medicine [19–21, 146], fluid films
[168,181], turbomachinery [177,180], parachutes
[164], Taylor–Couette flow [183], and U-ducts
[185]. They have also been used in calculating
the Courant number based on the NURBS mesh
local length scale in the flow direction [107].
That was in connection with an IGA-based gas
turbine flow computation.

12. Constrained-Flow-
Profile
Traction

The Constrained-Flow-Profile (CFP) Traction
[20] is an example of the special methods tar-
geting specific classes of computations. The
CFP Traction gives us flow stability at an in-
flow boundary where we specify not the flow ve-
locity, as it is typically done, but the traction.
The method was introduced to meet a need in
computational cardiovascular medicine but can
also be used in other classes of computations
where we need to specify the traction at an in-
flow boundary.

Figure 1 shows a 2D quadratic NURBS mesh
for a channel flow, which we are using as a con-
text to describe the the CFP Traction method.
We are specifying the traction at both the inflow
and outflow boundaries. A large, single element
placed at the inflow is the special-purpose ele-
ment that serves as the core of the CFP Trac-
tion method. It has nine basis functions in
2D, and would have 27 basis functions in 3D.

Fig. 1: CFP Traction method. The 2D quadratic
NURBS mesh. The inflow boundary is on the
left. The dots and thin lines are the control
points and element boundaries. The large, sin-
gle element on the left is the special-purpose el-
ement that serves as the core of the CFP Trac-
tion method. The two thicker lines represent the
SI that connects the solutions obtained over the
large element and the rest of the mesh.

An SI connect the solutions obtained over the
large element and the rest of the mesh. The
special-purpose element has only one unspecified
control-point velocity component at the inflow
boundary, and that is in the normal direction.
With that configuration, a constrained flow pro-
file is produced at the inflow boundary. It is
of course a quadratic velocity profile because of
the NURBS basis functions used. The combina-
tion of the quadratic velocity profile at the inflow
boundary and the solution obtained for the un-
specified velocity component results in the flow
rate associated with the specified inflow and out-
flow traction values.

13. Computational
example: channel flow
with CFP Traction

This is a summary of the 2D test computations
presented in [20]. The objective in the compu-
tations was to evaluate the performance of the
CFP Traction in inflow stabilization. For this
type of a test problem, computing in 2D is suf-
ficient. We compare what we get to the ana-
lytical solution and to the solution obtained by
using the outflow stabilization of [221] also at
the inflow, which we will identify with the ab-
breviation “OS.” The parameter “β” embedded
in the formulation of the OS is selected from the
range β ≥ 1

2 [4]. We perform three test compu-
tations. In all three, at the outflow, we use the
OS with β = 0.5. Two of the test computations

c© 2022 Journal of Advanced Engineering and Computation (JAEC) 175



VOLUME: 6 | ISSUE: 3 | 2022 | September

are with the OS also at the inflow, and we try
β = 0.5 and β = 1.0.

p = pin p = pout

x2

x1

L

H
2

−H
2

Fig. 2: Channel flow with CFP Traction. Problem
setup. The parameters appearing in the figure
are set as L = 1.365×10−1 m, H = 1.3×10−2 m,
pin = 1.313 Pa, and pout = 0.

Figure 2 shows the problem setup. The den-
sity and viscosity are set as ρ = 1,050 kg/m3

and µ = 4.2×10−3 Pa·s. The channel walls have
no-slip conditions. The traction conditions at
the inflow and outflow are based on pin and pout
given in Figure 2. Quadratic NURBS meshes
are used in the computations. Figure 3 shows
the meshes used with the OS and CFP at the in-
flow. The two meshes are identical everywhere
in the domain other than the part covered by
the special-purpose element in the CFP mesh.
The number of control points and elements are
9,472 and 8,820 for the OS mesh, and 9,033 and
8,401 for the CFP mesh. The computations were
performed with the ST-VMS. The time-step size
was 8.6×10−3 s.

Fig. 3: Channel flow with CFP Traction. Meshes used
with the OS and CFP at the inflow. The
thin lines are the element boundaries. The
two meshes are identical everywhere in the do-
main other than the part covered by the special-
purpose element in the CFP mesh.

The maximum value in the parabolic ve-
locity profile of the analytical solution is
4.84×10−2 m/s. The Reynolds number, defined
based on that, is 157. Figure 4 shows the ve-
locity from all three test computations. Fig-
ure 5 shows, also from all three computations,
the pressure profile obtained by averaging over
the channel cross-section. It is clear that the
CFP Traction performs very well.

0.00 0.0486

Velocity magnitude (m/s)

Fig. 4: Channel flow with CFP Traction. Velocity mag-
nitude (m/s) from computations with OS (β =
0.5), OS (β = 1.0), and CFP.

0.0 0.5 1.0
0.0

0.7

1.3

x1/L

p
(P

a)

OS (β = 0.5) OS (β = 1.0)
CFP

Fig. 5: Channel flow with CFP Traction. Pressure pro-
file obtained by averaging over the channel cross-
section. The analytical solution is the red line.

14. Computational
example: flow analysis
of a bioprosthetic
heart valve

This flow computation of a bioprosthetic heart
valve (BHV) is from [19]. It is an ST-SI-TC-
IGA computation where the BHV and arterial-
surface motion come from the FSI solution ob-
tained with a mixed ALE-VMS/IMGA compu-
tation [11] in the framework of the FSITICT.
In that mixed framework, the arterial surface
is tracked (i.e. followed by the mesh) with the
ALE-VMS, and the BHV surfaces are captured
with the IMGA. The cardiac cycle is T = 0.86 s.
The BHV model is shown in Figure 6. It has
three leaflets and a metal frame. In the ALE-
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VMS/IMGA computation, the BHV was repre-
sented by cubic T-splines, and the arterial sur-
face by quadratic NURBS. Even when the valve
should be closed with no gaps between the model
surfaces, there were some small gaps. However,
due to the nature of the IMGA computations
with zero-thickness structures and limited mesh
refinement, those gaps were seen as closed.

Fig. 6: Flow analysis of a BHV. Model. Leaflets, metal
frame, and sinuses.

The objective in the ST-SI-TC-IGA compu-
tation was to see the model surfaces accurately,
with the gaps closed, and have a high-resolution
representation of the flow near those surfaces.
An elaborate method was introduced in [19] to
close the gaps for the ST-SI-TC-IGA computa-
tion and to have a better representation of the
flow patterns near the free edges of the valve
leaflets. In the ST-SI-TC-IGA computation,
both the valve and arterial surfaces were rep-
resented by quadratic NURBS. Figure 7 shows
the valve NURBS surfaces. Figure 8 shows the
artery quadratic NURBS surfaces.

A template mesh with three SIs and three
parts (“Part 1,” “Part2,” and “Part 3”) was cre-
ated in [19]. Figure 9 shows the SIs and the
parts. The mesh has 429,780 control points
and and 289,452 elements. Part 1 faces the
SIs. It contains the elements that collapse and
are reborn as the leaflets move. Its motion

Fig. 7: Flow analysis of a BHV. Valve quadratic
NURBS surfaces at t = 0.175, 0.275, 0.315,
0.495, 0.585, 0.590, 0.595, 0.605, 0.635, 0.785 s.
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Fig. 8: Flow analysis of a BHV. Artery quadratic
NURBS surfaces at t = 0.175, 0.275, 0.315,
0.495, 0.585, 0.590, 0.595, 0.605, 0.635, 0.785 s.

is created with a special-purpose mesh mov-
ing method that takes into account the con-
tact. Part 2 does not change during the leaflet
motion. Part 3 is the rest of the mesh, be-
tween Part 1, Part 2, and the artery surface.
It changes during the computation. Its motion
is determined with the nonlinear-elasticity mesh
moving method [46, 140, 142, 143] based on the
neo-Hookean constitutive model and the mesh-
Jacobian-based stiffening [4,61,62,222,223]. The
motion is driven by the motion of Part 1, the
valve motion, and the motion of the artery sur-
face. Figure 10 shows the mesh motion.

The valve and the artery surface have no-
slip boundary conditions, the outflow bound-
ary is traction-free, and the inflow boundary

Fig. 9: Flow analysis of a BHV. Template mesh. The
three SIs (left) and three parts (right): Part 1
(red), Part 2 (blue), and half of Part 3 (green).

has uniform velocity. The flow rate at the in-
flow is a modified version of the one in the
ALE-VMS/IMGA computation. The modifi-
cation makes sure that during the closed-valve
part of the cardiac cycle, the inflow-boundary
flow rate and the closed-space volume-change
rate match. The inflow velocity corresponding
to the modified flow rate, which was the veloc-
ity used in the ST-SI-TC-IGA computation, is
shown in Figure 11. The computation was per-
formed with the ST-SUPS, and the time-step
size was 5.00×10−3 s. Figures 12 and 13 show
the flow patterns during the second cardiac cy-
cle, and Figure 14 shows the corresponding valve
wall shear stress (WSS).
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Fig. 10: Flow analysis of a BHV. Cross-section of the
mesh at t = 0.175, 0.275, 0.315, 0.495, 0.585,
0.590, 0.595, 0.605, 0.635, 0.785 s. The col-
ors are for differentiating between the NURBS
patches. The checkerboard pattern is for dif-
ferentiating between the elements.
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Fig. 11: Flow analysis of a BHV. Inflow velocity corre-
sponding to the modified flow rate, which was
the velocity used in the ST-SI-TC-IGA com-
putation.

15. Computational
example: FSI analysis
of transcatheter aortic
valve replacement

This FSI computation of a transcatheter heart
valve (THV) is from [99]. Transcatheter aor-
tic valve replacement (TAVR) is a minimally in-
vasive alternative to open-heart valve replace-
ment that has been increasingly used for treating
various valvular diseases. The prosthetic aor-
tic valve is deployed using a catheter and is an-
chored to the aortic annulus, crushing the dis-
eased valve and assuming its function. A suc-
cessful TAVR procedure depends on the proper
anchoring of the THV in the aortic root of the
patient. Computational FSI of TAVR offers an
effective approach to understand the interaction
between the THV and cardiac system and to im-
prove THV designs for pre-operative planning.
This is a mixed ALE-VMS/IMGA computation
in the framework of the FSITICT, and the IGA
is used in discretizing also the structural me-
chanics part of the FSI problem. To achieve
physiological realism, the dynamics of the THV
is coupled to the deforming arterial wall and the
enclosed blood flow domain. The leaflets are
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0.5 1.0 2.5 3.0

Fig. 12: Flow analysis of a BHV. Isosurfaces corre-
sponding to a positive value of the second in-
variant of the velocity gradient tensor, colored
by the velocity magnitude (m/s), at t = 1.035,
1.135, 1.175, 1.355, 1.445 s.

0.5 1.0 2.5 3.0

Fig. 13: Flow analysis of a BHV. Isosurfaces corre-
sponding to a positive value of the second in-
variant of the velocity gradient tensor, colored
by the velocity magnitude (m/s), at t = 1.450,
1.455, 1.465, 1.495, 1.645 s.
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0.0 15.0 30.0

Fig. 14: Flow analysis of a BHV. Magnitude of the WSS
(Pa) at t = 1.035, 1.135, 1.175, 1.355, 1.445,
1.450, 1.455, 1.465, 1.495, 1.645 s. One-third
of the valve is transparent.

modeled using a transversely isotropic material
that represents the mechanics of the extracellu-
lar matrix with the embedded network of colla-
gen fibers.

A comprehensive TAVR system, the 26 mm
CoreValve, was simulated in three stages in order
to obtain the radial outward and friction forces
between the aortic wall and the THV frame. The
first stage is the crimping of THV. This is neces-
sary since THVs are designed to have a diameter
larger than that of the aortic root. During the
second stage, the deployment procedure, the in-
teraction between the THV and arterial wall is
studied as the wall expands and contracts. In
the third stage, the FSI simulation is employed
to calculate the friction and radial forces. Their
ratio is an important factor for determining the
THV’s anchoring ability.

Several cardiac cycles are computed until a
time-periodic solution is achieved. The TAVR
FSI results are shown in Figure 15. Snapshots of
the detailed fluid solution fields, strain distribu-
tion, and the top view of of the valve during the
cardiac cycle were plotted to illustrate the com-
plexity of this dynamic, multiphysics system.
During systole, starting at t = 0.0 s, the ventric-
ular pressure is larger than the aortic pressure,
which causes the valve to open and the strain
to start increasing. The leaflets open and con-
tact the frame at t = 0.06 s, and the valve fully
opens at t = 0.25 s. The valve starts to close
and reaches the fully closed configuration around
t = 0.38 s. The fully loaded configuration at
t = 0.52 s, where the maximum strain occurs, is
also shown in the figure. Generally, the highest
level of strain occurs during diastole when the
leaflets are fully loaded. The friction force mag-
nitude distribution is shown in Figure 16 for the
fully open and fully closed configurations. In the
fully closed configuration, the magnitude of the
friction force is significantly larger compared to
the fully opened configuration, especially around
the annulus. As the valve closes and the leaflets
provide a blockage for the blood flow, the magni-
tude of the friction force increases to counter the
effect of the additional force on the THV. The
coefficient of static friction is shown in Figure 17,
which is defined by the ratio of the friction force
to the radical force. The results indicate that
the minimum of the friction coefficient, 0.22, is

c© 2022 Journal of Advanced Engineering and Computation (JAEC) 181



VOLUME: 6 | ISSUE: 3 | 2022 | September
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Fig. 15: Volume rendering of the velocity field at several points during a cardiac cycle. The strain map (MIPE) on
the skirt and leaflets and the top view of the THV are also shown at each time. The strains are evaluated
on the outer side of the shells.

necessary to anchor the TAVR without migra-
tion.

16. Concluding remarks

We have provided an overview of the IGA-based
computational-cardiovascular-medicine meth-
ods built around the core methods ST-SUPS,
ALE-SUPS, RBVMS, ALE-VMS, and ST-VMS.
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Fig. 16: The friction force magnitude distribution at
the fully-opened configuration (t = 0.25 s) and
the fully-closed configuration (t = 0.52 s).
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Fig. 17: Ratio of friction force magnitude to radial force
magnitude over a cardiac cycle.

The superior accuracy the IGA discretization
brings in both fluid and solid mechanics is
in representing both the problem geometry
and the variables computed. While IGA mesh
generation for complex geometries is signif-
icantly more challenging than finite element
mesh generation, the accuracy attained makes
the effort involved in addressing that challenge
worth it. We provided an overview of how the
challenge has mostly been overcome with the
complex-geometry mesh generation methods
CGIMG and NSVGMG or circumvented with
the immersed-boundary method IMGA. Quite
often, specific classes of problems, such as car-
diovascular medicine, require special methods
targeting specific classes of computations, and
we provided, as an example, an overview of one
of such methods. The computational examples
we presented for complex-geometry cardiovas-
cular medicine clearly show that the advanced

methods introduced have significantly increased
the scope of the IGA-based computational
analysis in cardiovascular medicine.
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