
The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow
around complex geometries

Fei Xua, Dominik Schillingerb, David Kamenskyc, Vasco Varduhnb, Chenglong Wanga, Ming-Chen Hsua,∗

aDepartment of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
bDepartment of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA

cInstitute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA

Abstract

We present a tetrahedral finite cell method for the simulation of incompressible flow around geometrically complex objects.
The method immerses such objects into non-boundary-fitted meshes of tetrahedral finite elements and weakly enforces Dirichlet
boundary conditions on the objects’ surfaces. Adaptively-refined quadrature rules faithfully capture the flow domain geometry in
the discrete problem without modifying the non-boundary-fitted finite element mesh. A variational multiscale formulation provides
accuracy and robustness in both laminar and turbulent flow conditions. We assess the accuracy of the method by analyzing the
flow around an immersed sphere for a wide range of Reynolds numbers. We show that quantities of interest such as the drag
coefficient, Strouhal number and pressure distribution over the sphere are in very good agreement with reference values obtained
from standard boundary-fitted approaches. We place particular emphasis on studying the importance of the geometry resolution in
intersected elements. Aligning with the immersogeometric concept, our results show that the faithful representation of the geometry
in intersected elements is critical for accurate flow analysis. We demonstrate the potential of our proposed method for high-fidelity
industrial scale simulations by performing an aerodynamic analysis of an agricultural tractor.

Keywords: Immersed method, Complex geometry, Immersogeometric finite elements, Geometric accuracy in intersected
elements, Weakly enforced boundary conditions, Tetrahedral finite cell method

1. Introduction

Immersed methods approximate the solution of boundary
value problems on analysis meshes that do not necessarily con-
form to the boundary of the domain. Such methods have greater
geometric flexibility than their boundary-fitted counterparts and
circumvent the meshing obstacles that frequently impede anal-
ysis of problems posed on geometrically-complex domains. In
the context of computational fluid dynamics (CFD), immersed
methods have a long tradition that dates back at least to the
Immersed Boundary Method developed by Peskin [1] to simu-
late cardiac mechanics and associated blood flow. Since then,
the body of research on immersed methods area has undergone
tremendous growth [2–5].

In the context of finite elements [6], several variants of im-
mersed methods for fluids have been explored over the last
decade. Löhner et al. [7–9] adapted kinetic and kinematic en-
forcement of boundary conditions used in immersed bound-
ary methods [5] for use in adaptive nodal finite element grids.
Glowinski et al. [10–12] simulated viscous flow interacting
with rigid particles by forcing the rigid body motion in each
particle sub-domain onto the overlapping fluid field via a dis-
tributed Lagrange multiplier field. Zhang, Liu and cowork-
ers [13–16] proposed the Immersed Finite Element Method
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(IFEM) to use a flexible Lagrangian solid mesh that moves on
top of a background Eulerian fluid mesh. This circumvented the
major limitation of the immersed boundary method where the
fiber-like one-dimentional structure carries mass but does not
occupy volume, and opened the door to the immersed methods
for fluid–structure interaction (FSI) problems. The concept of
IFEM was extended recently by Casquero et al. [17] to use Non-
Uniform Rational B-Splines (NURBS) as the basis functions to
improve the robustness and accuracy of the immersed method
for FSI.

In addition, several researchers designed immersed methods
that resolve immersed boundaries and introduce weak coupling
schemes for velocity and stress fields directly at the interface.
Baaijens [18] and Parussini et al. [19, 20] combined the ficti-
tious domain approach with Lagrange multiplier fields at the
interface for immersed thin and volumetric structures. Gersten-
berger, Wall and coworkers [21–23] combined Lagrange multi-
plier fields with interface enrichments of the velocity and pres-
sure fields in the sense of the extended finite element method
to ensure the separation of physical and fictitious domains.
Rüberg and Cirak [24, 25] combined weak Nitsche-type cou-
pling methods at the interface with Cartesian B-spline finite el-
ements for moving boundary and FSI problems. Several groups
also started to work on non-boundary-fitted FSI methods, where
both the fluid and the solid domains are immersed [26–30].

This work presents an immersed method for solving incom-
pressible flow problems on unstructured tetrahedral finite el-
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ement meshes. The proposed method combines a variational
multiscale (VMS) formulation of incompressible flow [31–34],
consistent weak enforcement of boundary conditions [35–38],
and a geometrically-accurate representation of the fluid domain
in the integration of the variational problem on elements that
straddle the domain boundary. We emphasize the implications
of the latter, highlighting the importance of accurately describ-
ing the geometry in intersected elements for obtaining accu-
rate flow solutions. Several studies have shown that inaccurate
quadrature in elements cut by domain boundaries introduces a
geometry error, which prevents higher-order accuracy of im-
mersed methods [39, 40]. Influenced by isogeometric analy-
sis [41, 42], which has recently drawn broader recognition to
the importance of eliminating geometric errors, we follow our
previous work [43] in denoting immersed methods that accu-
rately represent the geometry of the domain as immersogeomet-
ric methods.

A pioneering instantiation of the immersogeometric con-
cept is the Finite Cell Method (FCM), introduced by Parvizian
et al. [44] and Düster et al. [45]. The FCM represents the geom-
etry of the domain in intersected elements by adaptive quadra-
ture points, such that the geometric accuracy can be increased
by adding additional levels of quadrature points, if needed. The
adaptive quadrature scheme is based on the decomposition of
each intersected element into sub-cells that can be efficiently
organized in hierarchical tree data structures. Although this
strategy leads to an increased number of quadrature points in
intersected elements, its implementation is extremely robust
and flexible; sub-cell decomposition can operate with almost
any geometric model, ranging from boundary representations
in computer aided geometric design to voxel representations
obtained from medical imaging technologies [46].

Since its inception, significant efforts have been invested to
further develop the FCM. Technical improvements include the
weak imposition of boundary and coupling conditions [47, 48],
local refinement schemes [49–53], and improved quadrature
rules for intersected elements [39, 40, 54]. Furthermore, the
FCM has been successfully applied for large deformation anal-
ysis [55, 56], thermoelasticity [57], homogenization [58], bone
mechanics [59], topology optimization [60], and elastodynam-
ics and wave propagation [61–63]. A concise summary of the
FCM and related developments and applications can be found
in the recent review article by Schillinger and Ruess [46]. In
addition, there exists an open-source MATLAB code1 that pro-
vides an easy-to-handle starting point for running numerical
tests with the FCM [64].

Most prior work on the FCM used structured meshes of
hexahedral elements, but this is not a necessary feature of the
FCM. Varduhn et al. [65] recently applied the FCM with un-
structured meshes of tetrahedral elements. The present contri-
bution extends the tetrahedral FCM of [65] to simulations of
incompressible flow, where the flexibility of unstructured tetra-
hedral meshes is useful for boundary layer refinement. One key
feature of this study is that for all example problems consid-
ered, we employ a boundary-fitted finite element method based

1http://fcmlab.cie.bgu.tum.de

on the VMS formulation with weakly enforced boundary condi-
tions to compute reference solutions. Corresponding boundary-
fitted and immersogeometric analyses use tetrahedral meshes
with the same refinement pattern and approximately the same
number of degrees of freedom. Based on this comparison, we
show that our immersogeometric method achieves results that
are in very good accordance with standard boundary-fitted re-
sults in terms of key quantities of interest.

This paper is organized as follows. In Section 2, we de-
scribe the precise variational problem under consideration and
our discrete formulation of it. Section 3 details the implemen-
tation of the key technical components, including a tree based
element decomposition for geometrically accurate quadrature
in intersected elements and an efficient point-location query for
inside-outside tests. Section 4 focuses on the canonical bench-
mark of the flow around a sphere at Reynolds numbers of 100,
300 and 3700. We compare the results of immersogeomet-
ric analysis to boundary-fitted reference computations of this
benchmark problem to demonstrate that our method accurately
computes quantities of interest. Section 5 presents a detailed ac-
count of the accuracy of our method for the flow analysis of the
full-scale tractor, illustrating the potential of immersogeomet-
ric analysis for high-fidelity aerodynamic analysis of industrial-
scale problems. Section 6 draws conclusions and motivates fu-
ture work.

2. Variational formulation and discretization

In this section, we summarize the variational formulation
of the Navier–Stokes equations of incompressible flow and its
spatial and temporal discretizations. We also briefly review the
variational multiscale (VMS) method and the weak enforce-
ment of boundary conditions. Note that the framework re-
viewed in this section equally holds for immersogeometric and
boundary-fitted finite element methods.

2.1. Governing equations of incompressible flow

Let Ω (subsets of Rd, d ∈ {2, 3}) denote the spatial domain
and Γ be its boundary. The incompressible Navier–Stokes equa-
tions on Ω can be written as

ρ

(
∂u
∂t

+ u · ∇∇∇u − f
)
−∇∇∇ ·σσσ = 0 , (1)

∇∇∇ · u = 0 , (2)

where ρ, u, and f are the density of the fluid, the velocity of
the fluid and the external force per unit mass, respectively. The
stress and strain-rate tensors are defined respectively as

σσσ (u, p) = −p I + 2µεεε(u) , (3)

εεε(u) =
1
2

(
∇∇∇u +∇∇∇uT

)
, (4)

where p is the pressure, I is the identity tensor and µ is the dy-
namic viscosity. The problem (1)–(4) is accompanied by suit-
able boundary conditions, defined on the boundary of the fluid
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domain, Γ = ΓD ∪ ΓN :

u = g on ΓD , (5)

−p n + 2µεεε(u) n = h on ΓN , (6)

where g denotes the prescribed velocity at the Dirichlet bound-
ary ΓD, h is the traction vector at the Neumann boundary ΓN ,
and n is the outward unit normal.

2.2. Semi-discrete variational multiscale formulation

Consider a collection of disjoint elements {Ωe}, ∪eΩ
e ⊂ Rd,

with closures covering the fluid domain: Ω ⊂ ∪eΩe. Note that
Ωe is not necessarily a subset of Ω. Let Vh

u and Vh
p be the

discrete velocity and pressure spaces of functions supported on
these elements. The strong problem (1)–(6) may be recast in a
weak form and posed over these discrete spaces to produce the
following semi-discrete problem: Find uh ∈ Vh

u and ph ∈ Vh
p

such that for all wh ∈ Vh
u and qh ∈ Vh

p:

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
= 0 . (7)

The bilinear form BVMS and the load vector FVMS are given as

BVMS
(
{wh, qh}, {uh, ph}

)
=

∫
Ω

wh · ρ

(
∂uh

∂t
+ uh · ∇∇∇uh

)
dΩ

+

∫
Ω

εεε(wh) : σσσ
(
uh, ph

)
dΩ +

∫
Ω

qh∇∇∇ · uh dΩ

−
∑

e

∫
Ωe∩Ω

(
uh · ∇∇∇wh +

∇∇∇qh

ρ

)
· u′ dΩ

−
∑

e

∫
Ωe∩Ω

p′∇∇∇ · wh dΩ

+
∑

e

∫
Ωe∩Ω

wh · (u′ · ∇∇∇uh) dΩ

−
∑

e

∫
Ωe∩Ω

∇∇∇wh

ρ
:
(
u′ ⊗ u′

)
dΩ

+
∑

e

∫
Ωe∩Ω

(
u′ · ∇∇∇wh

)
τ ·

(
u′ · ∇∇∇uh

)
dΩ , (8)

and

FVMS
(
{wh, qh}

)
=

∫
Ω

wh · ρ f dΩ +

∫
ΓN

wh · h dΓ , (9)

where u′ is defined as

u′ = −τM

(
ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − f

)
−∇∇∇ ·σσσ

(
uh, ph

))
, (10)

and p′ is given by

p′ = −ρ τC∇∇∇ · uh . (11)

Equations (8)–(11) emanate from the VMS formulation of the
Navier–Stokes equations of incompressible flow [34]. The
terms integrated over element interiors would not appear in a

Galerkin method based on the canonical weak form of incom-
pressible Navier–Stokes. These additional terms may be in-
terpreted both as stabilization and as a turbulence model [32–
34, 66–69]. The stabilization parameters are

τM =

( Ct

∆t2 + u ·G u + CI ν
2 G : G

)−1/2

, (12)

τC = (τM tr G)−1 , (13)

τ =
(
u′ ·G u′

)−1/2 , (14)

where ∆t is the time-step size, CI is a positive constant de-
rived from an appropriate element-wise inverse estimate [70–
72], ν = µ/ρ is the kinematic viscosity, G generalizes the notion
of element size to physical elements mapped from a parametric
parent element by x(ξ):

Gi j =

d∑
k=1

∂ξk

∂xi

∂ξk

∂x j
, (15)

tr G is the trace of G, and the parameter Ct is typically equal to
4 [34, 68].

Note that we allow the fluid domain boundary to intersect
the finite elements. Hence, each intersected element consists of
a fluid portion of Ωe, over which the formulation is integrated,
and a portion of Ωe outside of the fluid domain, over which the
integration is discarded. The boundary Γ is discretized into a
number of surface elements. In a boundary-fitted method, these
boundary elements naturally arise as the surfaces of finite el-
ements adjacent to the boundary of the fluid domain. In an
immersogeometric method, surface elements are defined inde-
pendently of the background finite element mesh.

2.3. Variationally consistent weak boundary conditions

The standard way of imposing Dirichlet boundary condi-
tions in Eq. (7) is to enforce them strongly by ensuring that they
are satisfied by all trial solution functions. This is not feasible
in immersed methods (and not always desirable in boundary-
fitted ones (see, e.g., [38])). We replace the strong enforcement
by weakly enforced Dirichlet boundary conditions in the sense
of Nitsche’s method [73] proposed by Bazilevs et al. [35–37].
The semi-discrete problem becomes

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
−

∫
ΓD

wh ·
(
−ph n + 2µεεε(uh) n

)
dΓ

−

∫
ΓD

(
2µεεε(wh) n + qh n

)
·
(
uh − g

)
dΓ

−

∫
ΓD,−

wh · ρ
(
uh · n

) (
uh − g

)
dΓ

+

∫
ΓD
τB

TAN

(
wh −

(
wh · n

)
n
)
·
((

uh − g
)
−

((
uh − g

)
· n

)
n
)

dΓ

+

∫
ΓD
τB

NOR

(
wh · n

) ((
uh − g

)
· n

)
dΓ = 0 . (16)
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In the above equation, ΓD,− is the inflow part of ΓD, on which
uh · n < 0. The term integrated over ΓD,− increases the sta-
bility of the formulation without breaking variational consis-
tency [35]. τB

TAN and τB
NOR are stabilization parameters that act

on the tangential and normal components of the velocity at the
boundary, respectively. They need to be chosen element-wise
as a compromise between the following two requirements. If
they are too large, they assume a penalty-type character, affect-
ing the conditioning of the stiffness matrix and overshadowing
the variational consistency. If they are too small, the solution
of Eq. (16) is unstable. Bazilevs et al. [35–37] indicate that the
stabilization parameters should scale like τB

(·) = CB
I µ/h, where

h has dimensions of length and indicates the element size at the
boundary and CB

I is a dimensionless constant. In immersoge-
ometric methods, the definitions of h and CB

I depend on how
the boundary intersects each element. References [48, 74] de-
scribe a method for computing optimal stabilization parameters
in each intersected element. In this work, for simplicity, we use
uniform values of τB

TAN and τB
NOR. These uniform values typi-

cally need to be higher than the element-wise stabilization pa-
rameters computed using the methods of [48, 74]. Overestima-
tion of τB

TAN may lead to excessive penalization of flow slipping
along the boundary. Although maybe counter-intuitive at first
sight, some violation of the no-slip boundary condition is in fact
desirable, in particular for coarse meshes, as it imitates the pres-
ence of a boundary layer [35–38, 75]. This allows for an accu-
rate overall flow solution, even if the mesh size in wall-normal
direction is relatively large. Also, over-penalization of solution
differences between non-matching meshes tends to produce os-
cillatory coupling forces, as is well-known in computational
contact mechanics [76–80]. High-fidelity surface traction cal-
culations would therefore likely benefit from the methods of
references [48, 74]. In the present work, though, we are prin-
cipally interested in net forces on structures and turbulent flow
characteristics, for which we found uniform penalty constants
sufficient.

Remark 1. For immersogeometric methods, weakly enforced
boundary conditions are particularly attractive as the addi-
tional Nitsche terms in Eq. (16) are formulated independently
of the mesh. In contrast to strong enforcement, which relies
on boundary-fitted meshes to impose Dirichlet boundary con-
ditions on the discrete solution space, the Nitsche terms in
Eq. (16) also hold for intersected elements, where the domain
boundary does not coincide with element boundaries. All that is
needed is a separate discretization of the domain boundary with
independent boundary segments whose position in intersected
elements is known or can be determined.

2.4. Time integration and iterative solution methods

We complete the discretization of Eq. (16) by a time inte-
gration scheme from the family of generalized-α integrators.
Generalized-α methods were introduced by Chung and Hul-
bert [81] for structural dynamics and later extended to the un-
steady Navier–Stokes problem by Jansen et al. [82]. The sub-
set of generalized-α methods used in the current work is pa-
rameterized by a single number, ρ∞, where 0 ≤ ρ∞ ≤ 1 (see

Bazilevs et al. [83] for details). Following Bazilevs et al. [34],
we use ρ∞ = 0.5 for all computations presented in this paper.
The generalized-α scheme is implicit and requires solution of a
nonlinear algebraic problem at each time step. We directly ap-
ply Newton–Raphson iterations (with an approximate tangent)
to converge the residual of this algebraic problem. For each
Newton–Raphson iteration, the linear system is solved using a
block-diagonal preconditioned GMRES method [84, 85].

3. Implementation of the tetrahedral finite cell method

The main challenge entailed by non-boundary-fitted meshes
is the geometrically accurate evaluation of volume and surface
integrals in intersected elements. These integrals directly em-
anate from the variational formulation (16). Our immersogeo-
metric method largely draws on the FCM, which is briefly re-
viewed first. Specializing to tetrahedral elements, we detail the
basic technology components, which are a volume quadrature
method based on recursive subdivision of intersected elements
and a surface quadrature method that uses an independent sur-
face mesh. In addition, we briefly describe the implementa-
tion of an efficient point location query to determine whether
a quadrature point is located inside or outside of the fluid do-
main. We finally outline an efficient workflow for the gener-
ation of immersogeometric meshes that combines our quadra-
ture methods with an open-source mesh generator and locally
refined boundary layers.

3.1. The finite cell method

The FCM is a technique for solving partial differential equa-
tions posed on complex geometries. For a summary of recent
developments, we refer the interested reader to [46]. The FCM
is based on the fictitious domain concept illustrated in Fig. 1.
Its main idea is to extend the original fluid domain to a more
tractable shape, e.g., a rectangular prism bounding the origi-
nal domain. The FCM discretizes the embedding domain into

Ω

Ω
Ω = Ω     + Ω

Γ

phys

fict

fictphys

Figure 1: The physical domain of interest Ωphys is extended by the fictitious
domain Ωfict into an embedding domain Ω to allow easy meshing of complex
geometries. Elements without support in Ωphys can be discarded from the mesh,
since they do not contribute to the solution fields in the physical domain.
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Figure 2: Quadrature scheme based on adaptive sub-cells (blue lines). Quadra-
ture points within the fluid domain (marked in pink) are used in the numerical
integration. Quadrature points outside (marked in green) are discarded.

elements irrespective of the geometric boundary of potentially
complex embedded objects. This introduces elements that are
intersected by the geometric boundary, which creates complex
integration domains in intersected elements. For Cartesian el-
ements, Düster et al. [45] describe a method of automatically
generating quadrature rules for finite cell computations by di-
viding intersected elements into sub-cells and applying stan-
dard quadrature rules within the sub-cells.

Our immersogeometric approach adapts the sub-cell based
adaptive quadrature scheme of the Cartesian FCM to the tetra-
hedral case. Based on this scheme, we are able to evaluate ar-
bitrary integration domains in intersected tetrahedral elements
that arise in non-boundary-fitted discretizations of Eq. (8). The
basic concept is based on the increase of quadrature points
around geometric boundaries in each intersected cell, so that ar-
bitrary integration domains that emanate from the intersecting
boundary can be taken into account accurately. This is achieved
by recursively splitting intersected cells into sub-tetrahedra. At
each level, only those sub-tetrahedra that are intersected by the
boundary are further split. This procedure leads to an aggre-
gation of sub-tetrahedra of finer levels along the intersecting
boundary. For each of the sub-tetrahedra, the standard 4-point
quadrature rule for linear tetrahedral elements is applied. This
keeps the amount of quadrature points per sub-tetrahedron con-
stant and allows an easy calculation of the weights and local
coordinates of the recursive quadrature points. For clarity, we
illustrate the quadrature scheme based on adaptive sub-cells for
triangles in 2D in Fig. 2. We emphasize that splitting is per-
formed on the quadrature level only and does not affect the ba-
sis functions, which are still defined on the original tetrahedral
element. The subdivision procedure into sub-tetrahedra and re-
lated algorithms are detailed in the following section.

3.2. Subdivision based adaptive quadrature of intersected
tetrahedra

The decision of whether or not to subdivide an element or
sub-tetrahedron would ideally depend on whether or not it is in-
tersected by the immersed boundary. The decision of whether
or not to include a quadrature point in the quadrature rule re-
quires a second test, to determine whether a point is included in
the domain of the partial differential equation. In certain cases,
such as triangulated surfaces immersed in tetrahedral meshes,

11

7 5

8
10

6 9

1

2

3

4

subdivided tetrahedron

inner octahedron

4

1

2

3

ξ

η

ζ

original tetrahedron

Figure 3: The rule used to subdivide a tetrahedron into sub-tetrahedra.

it is possible to devise an analytical surface–element intersec-
tion test. However, the necessity of an inside/outside test re-
mains and, to reduce the number of assumptions required of
the immersed boundary representation, we propose to approx-
imate the surface–element intersection test using only the in-
side/outside test. This approximation can be made to within
the resolution of the finest level of sub-tetrahedra by using
the bottom-up approach detailed by Varduhn et al. [65]. The
bottom-up approach applies an inside/outside test to all quadra-
ture points of the finest level of subdivision, then combines
groups of fully-included tetrahedral sub-cells into larger tetra-
hedral sub-cells wherever possible, to reduce the final number
of quadrature points. This involves a costly preprocessing step
to generate the quadrature rule.

In the terminology of [65], the present work uses a top-
down approach to generate quadrature rules. This method in-
vokes the inside/outside test fewer times while generating a
quadrature rule, but does not always resolve the boundary ge-
ometry as precisely. The algorithm that we use to determine
the set of quadrature points and weights for each tetrahedral el-
ement of the original mesh is to apply the following recursive
procedure to an integration tetrahedron covering the entire ele-
ment, with integer input l ≥ 0 indicating the level of recursion:

1. Propose a set of Nq quadrature points (and associated
weights) appropriate for integrating smooth functions
over the current integration tetrahedron. These points
may be obtained by transforming quadrature points from
a reference tetrahedron and scaling the weights appropri-
ately.

2. Count the numbers Nin and Nout of the vertices of the
integration tetrahedron falling inside and outside of the
immersed object. This requires four calls to the in-
side/outside test.

3. If Nin = 0, Nout = 0, or l = 0, do not recurse. If Nout >
0, add the proposed quadrature points falling in the fluid
domain to the quadrature rule. This requires Nq calls to
the inside/outside test.

4. Otherwise, if Nin > 0, Nout > 0, and l > 0, discard the
points proposed in Step 1, divide the integration tetrahe-
dron into 12 children, as depicted in Fig. 3, and apply this
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procedure recursively to each of the children, with input
(l − 1).

Section 3.4 details our implementation of the inside/outside
test required for Steps 2 and 3. The division of a parent sub-
tetrahedron into 12 children for Step 4 may be stated precisely
as follows. We start by defining the 4-tuple of parametric
points (p1,p2,p3,p4) ∈ (R3)4: these are the sub-tetrahedron’s
vertices in the parametric space of the top-level tetrahedral
element of the finite element mesh. Next, we introduce the
additional points

p5 = 1
2 (p1 + p2), p9 = 1

2 (p2 + p4),
p6 = 1

2 (p1 + p3), p10 = 1
2 (p3 + p4),

p7 = 1
2 (p1 + p4), p11 = 1

4 (p1 + p2 + p3 + p4),
p8 = 1

2 (p2 + p3),

in this parameter space. The 12 children are defined by 4-tuples
of parametric verticies chosen from the set {p1, . . . ,p11}, as
illustrated in Fig. 3:

1 - (p5,p7,p6,p1), 7 - (p8,p10,p6,p11),
2 - (p9,p5,p8,p2), 8 - (p10,p9,p7,p11),
3 - (p10,p8,p6,p3), 9 - (p5,p6,p11,p8),
4 - (p7,p9,p10,p4), 10 - (p9,p7,p11,p5),
5 - (p6,p7,p5,p11), 11 - (p7,p10,p11,p6).
6 - (p5,p9,p8,p11),

This subdivision rule can be applied recursively to each
child tetrahedron by substituting its 4-tuple of verticies for
(p1,p2,p3,p4).

Remark 2. Another choice of the subdivision scheme is to sub-
divide a tetrahedron into only eight sub-tetrahedra [86]. This
generates fewer sub-tetrahedra at each level of recursion and
reduces the cost of the preprocessing phase of the bottom-up
method for generating the quadrature rule, which must access
all tetrahedra at the finest level of subdivision. The proliferation
of sub-tetrahedra at finer levels of subdivision is of less concern
in top-down approaches to generating quadrature rules, and the
12-sub-tetrahedron method used here confers an additional ben-
efit. In severely distorted finite elements, the ratio of the maxi-
mum edge length of a child sub-tetrahedron to the diameter of
its parent sub-tetrahedron can be arbitrarily close to one when
using the 8-sub-tetrahedron method. This could impede its abil-
ity to resolve discontinuities in the integrand, because the max-
imum length over which the integrand was assumed smooth
would not decrease significantly. The introduction of an extra
central vertex, namely p11 in the above discussion, eliminates
this possibility in the 12-sub-tetrahedron subdivision.

3.3. Immersed surface integration
The weak boundary conditions formulated in Section 2.3

require that we evaluate surface integrals of traces of functions
defined on the background finite element mesh. We follow the
general approach of Düster et al. [45], by breaking the im-
mersed surface into quadrature elements independently of the
finite element mesh, and defining a quadrature rule on these el-
ements. The points of these surface element quadrature rules

must then be located in the parameter space of the tetrahedral
finite elements in which they fall. This requires us to invert the
mapping from the finite element parameter space to physical
space. This inversion may be accomplished for general para-
metric elements by Newton iteration.

For the linear tetrahedral elements employed here, the map-
ping is affine, and its inverse can be computed in closed form.
We could, in principle, invert the parameter-to-physical-space
mapping for each background element until finding one in
which the inverted parameters are within the element’s para-
metric domain, but this procedure would be intractably costly
to perform for every surface quadrature point. Instead, we com-
pute bounding boxes for finite elements, then associate these
bounding boxes with the leaves of a spatial octree that they
intersect. For each surface quadrature point, we then recur-
sively search for its containing finite element in the sub-tree
containing the point. With this approach, we need only invert
parameter-to-physical-space mappings of the subset of finite el-
ements whose bounding boxes intersect the unique leaf of the
octree that contains the surface quadrature point. Assuming that
the element size of the finite element mesh is quasi-uniform in a
mesh parameter, h, the octree should be constructed such that its
coarsest level contains the entire set of finite elements and the
leaf cells of its finest level have diameter Θ(h). When the finite
element mesh is broken into subdomains for parallel computa-
tion, a separate octree may be generated for each subdomain,
and the location of surface quadrature points in the finite ele-
ment mesh may be carried out in parallel, with no communica-
tion overhead.

3.4. Simple-but-effective point location query
To determine whether a point x is inside or outside of a

nominally closed surface, we employ ray tracing. We count
the number of times, N, that a ray emanating from x intersects
the surface. If N is odd, then x is inside of the surface and, if
N is even, then x is outside of the surface. The operation of
ray–surface intersection does not depend on the surface being
closed, so this algorithm will execute even if the surface rep-
resentation is not watertight. To make this procedure robust in
the case of non-watertight surfaces and inexact floating-point
arithmetic, one may cast several rays from x along different di-
rections and return the inside/outside classification given by the
majority of these rays. In the present work, we have taken care
to ensure that the surface representations are closed, and we
make inside/outside decisions using only one ray per point.

The operation of ray–surface intersection has been inves-
tigated very thoroughly by the computer graphics commu-
nity [87]. A number of high-performance implementations
with sophisticated optimizations are publicly available, e.g.,
the Manta interactive ray tracer [88]. In the present work,
we have implemented a simple-but-effective strategy which we
have found sufficiently fast for our purposes. First, we break
the immersed surface into primitives (viz. triangles, in the
present work) and sort these primitives into an octree hierar-
chy of bounding boxes as a preprocessing step. We then recur-
sively intersect rays with occupied sub-trees of the octree. This
avoids many unnecessary ray–primitive intersection operations
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relative to the brute force approach of testing each ray against
each surface primitive.

3.5. Generating adaptive non-boundary-fitted meshes
The immersogeometric concept based on the FCM is in-

dependent of a specific basis and can be used with any basis
function technology and element type. The main motivation for
using tetrahedral elements is their ability to provide locally re-
fined three-dimensional discretizations, which is required here
for boundary layer resolution. In contrast to hexahedral el-
ements, there exist generally valid refinement algorithms for
tetrahedra that work in any situation without restrictions. The
availability of a large number of advanced tetrahedral meshing
tools [89] motivates the integration of such a tool to generate
an initial unstructured tetrahedral mesh. In many immersed
situations, conforming to the boundary of a simple geometry
(e.g., a rectangular box as the embedding domain) is the only
restricting requirement for generating a mesh; the discretiza-
tion process is extremely fast, even for a very large number of
elements. At the same time, we can make use of advanced al-
gorithms for mesh regularization and smoothing to ensure high-
quality tetrahedral elements. We present a workflow based on
an open-source mesh generator Gmsh [90] to efficiently gener-
ate non-boundary-fitted adaptive tetrahedral meshes.

In immersogeometric analysis, the whole embedding do-
main, including physical and fictitious domain, is discretized
irrespective of the immersed boundary. The actual geometry
of the immersed object is not explicitly needed for the mesh
generation. Instead, one only needs to specify how the mesh
should be graded in terms of element size over the embedding
domain, with finer element sizes in the area of boundary layers.
Gmsh enables control of the local mesh size via special func-
tions that can be used in the input script. The functions we use
include “Point”, “Attractor”, “Threshold”, “Box”, and “Min”.
“Point” specifies the location where a specific mesh size will be
enforced. “Attractor” specifies the mesh size within a “Thresh-
old” distance to a geometrical entity such as “Point”. We use
these functions to set the element sizes in the vicinity of the im-
mersed boundary. Since elements can arbitrarily intersect with
the immersed boundary, that is, the mesh conformity does not
need to be enforced, this procedure is significantly less demand-
ing and much more reliable than conforming mesh generation.
In addition, we use “Box” to specify the element size inside of
a parallelepiped to locally (and uniformly) refine zones where
the flow is expected to be more complex. Finally, when sev-
eral mesh size control functions are active at the same location,
“Min” is used to resolve this overconstraint by choosing the
mesh size to be the minimum of the sizes specified in those
functions. For more details of the Gmsh functions, the reader is
referred to [90].

4. Benchmark example: Flow around a sphere

The flow around a sphere at Reynolds numbers Re = 100
and 300 for laminar flow and Re = 3700 for turbulent flow con-
stitute canonical test cases, for which a large number of refer-
ence results are available in the literature (see, e.g., [91–95] for
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Figure 4: Computational domain, boundary conditions, and the immersed
sphere. The refinement boxes, where finer element sizes are used, are also
shown in the figure.

laminar flow and [96–98] for turbulent flow). We use this exam-
ple as a first benchmark to assess the accuracy of our immerso-
geometric method in both laminar and turbulent flow regimes.
In addition to reference values from the literature, we compute
further reference results using the same variational framework
with standard boundary-fitted tetrahedral meshes that are com-
parable in terms of overall mesh resolution and boundary layer
mesh grading.

4.1. Problem set-up
Figure 4 illustrates the dimensions of the computational do-

main, the location and size of the immersed sphere, and the
boundary conditions. We note that for this example all indi-
cations of size are non-dimensional. The radius of the sphere,
the inflow velocity and the fluid density are all one, so that the
Reynolds number Re = µ−1 is defined as the inverse of the
viscosity (and vice versa). The inlet boundary condition and
the slip boundary condition on the lateral faces are strongly en-
forced, while the no-slip/no-penetration condition u = 0 on the
surface of the sphere is enforced weakly as described in Sec-
tion 2.3 .

As there is no analytical flow solution to this problem, we
use characteristic quantities of interest that are widely used in
fluid mechanics to compare solutions. The drag coefficient is
computed as CD = 2FD/(ρU2A), where FD is the drag force, ρ
is the fluid density, U is the inflow speed, and A is the frontal
area of the sphere. We note that we evaluate the drag force us-
ing the variationally consistent conservative definition of trac-
tion [75, 99] in the following form:

th = −σσσhn − ρ
{
uh · n

}
−

(
uh − g

)
+ τB

TAN

((
uh − g

)
−

((
uh − g

)
· n

)
n
)

+ τB
NOR

((
uh − g

)
· n

)
n , (17)

where { · }− denotes the negative part of the bracketed quantity,
that is, {A}− = A if A < 0 and {A}− = 0 if A ≥ 0. In our
case, the sphere is stationary, hence we have g = 0. Parametric
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Table 1: Element sizes in the boundary-fitted mesh for laminar flow around a sphere.

Mesh
Total number
of elements

Near sphere
element size

Inner refinement box
element size

Outer refinement box
element size

Outer box
element size

BM0 229,694 0.02 0.2 0.8/
√

2 1.2
BM1 1,710,898 0.01 0.1 0.4/

√
2 1.0

BM2 8,519,435 0.005 0.05 0.2/
√

2 0.8

Table 2: Element sizes in the immersogeometric mesh for laminar flow around a sphere.

Mesh
Total number
of elements

Near sphere
element size

Inner refinement box
element size

Outer refinement box
element size

Outer box
element size

IM0 304,330 0.02 0.2 0.8/
√

2 1.2
IM1 1,833,434 0.01 0.1 0.4/

√
2 1.0

IM2 9,041,302 0.005 0.05 0.2/
√

2 0.8

Figure 5: Central section through the coarsest boundary-fitted mesh (BM0).

studies in [43] found that quantities of interest for flow over a
2D cylinder were relatively insensitive to the precise values of
the stabilizing penalties τB

NOR and τB
TAN. In the computations of

this paper, we set τB
NOR = τB

TAN = 103.
The non-dimensional length of the recirculation bubble is

computed as L/d, where d is the diameter of the sphere and L
is the length from the rear end of the sphere to the point where
the velocity in x-direction changes sign. For Re = 300 and
3700 vortex shedding occurs, which can be characterized by the
Strouhal number defined as St = f d/U, with f being the fre-
quency of vortex shedding. For the turbulent case, we record the
drag history over time, and use the Lomb-Scargle periodogram
technique to extract the frequency (see [98] for details).

4.2. Mesh design and boundary layer resolution

The proper design of the fluid mesh with a suitable reso-
lution of boundary layers is a key requirement for successful
high-fidelity analysis in CFD. Our immersogeometric method
does not eliminate mesh design considerations, as locations for
adaptive boundary layer resolution and the degree of the mesh
grading still need to be specified. However, non-boundary-
fitted meshes speed up the generation of reliable CFD meshes
significantly, since boundary layer elements do not have to con-
form to (potentially very complex) surfaces of immersed ob-
jects.

Figure 6: Central section through the coarsest immersogeometric mesh (IM0).
Note that the elements within the immersed sphere without support in the fluid
domain are removed before analysis.

In this section, we summarize the boundary-fitted and im-
mersogeometric tetrahedral mesh generations for the sphere
benchmark. For the laminar cases at Re = 100 and 300, we
consider three sets of boundary-fitted meshes denoted by BM0,
BM1 and BM2. The mesh statistics and the characteristic el-
ement sizes used in the different areas are detailed in Table 1.
Figure 5 illustrates the coarsest boundary-fitted mesh (BM0),
for which the central section in x-direction is shown. We ob-
serve that the local refinement is performed around the sphere,
where we expect sharp boundary layers, and in the wake region
behind the sphere, where we expect the formation of vortices.

Using the workflow described in Section 3.5, we generate
immersogeometric tetrahedral meshes denoted by IM0, IM1
and IM2 for the laminar flow cases. The three meshes have
comparable mesh resolution to their boundary-fitted counter-
parts. Table 2 shows detailed mesh characteristics for all three
immersogeometric meshes and a central cut of the coarsest one
(IM0) is shown in Fig. 6.

Comparing the number of elements, we observe that the
immersogeometric meshes have slightly more elements than
the corresponding boundary-fitted meshes. This is due to the
elements that are located within the domain of the immersed
sphere. Since in our immersogeometric method all elements
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Table 3: Element sizes used in the immersogeometric and boundary-fitted mesh
generations for turbulent flow case.

Near sphere
element size

Inner
refinement box
element size

Outer
refinement box
element size

Outer box
element size

0.004 0.04 0.16/
√

2 0.8

without support in the fluid domain will be removed in a post-
processing step and are not taken into account during the anal-
ysis, the effective number of elements (and hence the effective
number of degrees of freedom) is equivalent for corresponding
immersogeometric and boundary-fitted meshes. We note that
the surface of the immersed sphere needs to be discretized as
well. We use a simple triangulation of the surface, whose ele-
ment size is half of the volume element size near the sphere. We
perform standard triangular quadrature on the surface triangles
to evaluate the weak boundary condition terms in the variation
formulation (16).

For the turbulent case at Re = 3700, we consider only one
mesh resolution design for generating the immersogeometric
and corresponding boundary-fitted meshes. The mesh design
is based on the experience reported by Bazilevs et al. [98], in
which the same VMS formulation with weakly enforced bound-
ary conditions presented in Section 2 was employed. Note
that prismatic elements were used for the boundary layer mesh
in [98]. In our cases, for the sake of consistency between im-
mersogeometric and boundary-fitted meshes, only tetrahedral
elements are considered and we keep the element heights in the
boundary layer comparable to those reported in [98]. Table 3
summarizes the characteristic element sizes at different loca-
tions in the computational domain shown in Fig. 4. The result-
ing immersogeometric mesh consists of 12,068,115 tetrahedral
elements (11,019,886 effective elements, including 922,404 in-
tersected elements) and the boundary-fitted counterpart consists
of 10,911,263 elements.

Remark 3. CFD meshes often include thin layers of
anisotropic prismatic or hexahedral elements near no-slip
boundaries to resolve the sharp gradients in wall normal direc-
tion. In the tangential direction, the element size can be rela-
tively large. This reduces the total number of elements relative
to isotropic tetrahedral meshes, such as those used in this pa-
per. However, tetrahedral elements offer us great geometrical
flexibility, allowing efficient and automatic mesh generation. It
is also possible to generate high-quality anisotropic boundary
layer meshes using only tetrahedral elements (see, e.g., [100–
102]), but we have not attempted to apply this technology in the
present work.

4.3. Immersogeometric results for laminar flow
For the sphere example at moderate Reynolds numbers,

we obtain laminar flow that over time reaches a stable state.
Re = 100 leads to an axisymmetric steady flow pattern and
Re = 300 leads to a periodic flow pattern in the wake of the
sphere. We note that in all our computations, we use a constant
time-step size of ∆t = 0.01, which ensures that there are more
than 500 steps within one period for the Re = 300 case. As

Table 4: Different flow characteristics, computed with our immersogeomet-
ric method and different levels l of adaptive quadrature sub-cells, and with a
boundary-fitted mesh of comparable size.

Re = 100 Re = 300
CD L/d CD St

IM2 (l = 0) 1.142 0.858 0.719 0.139
IM2 (l = 2) 1.093 0.856 0.662 0.135
BM2 1.093 0.857 0.661 0.135

initial condition, we apply a constant flow field corresponding
to the uniform inflow velocity over the entire fluid domain.

4.3.1. The importance of accurate geometry resolution
We test the influence of the accuracy with which we resolve

the geometry in intersected elements. To this end, we focus on
the finest immersogeometric mesh (IM2) and vary the number
of sub-cell levels l in the adaptive quadrature scheme. Taking
more sub-cell levels into account increases the accuracy of the
domain integration, which is directly linked to geometric accu-
racy. We focus here on the effect of the domain integration in
intersected elements, since we know from earlier studies (see,
e.g., [39]) that it has a significantly larger impact on the solu-
tion than the accuracy of the surface integral. We ensure a suffi-
ciently fine resolution of the surface discretization of the sphere
by using a triangulation with half the characteristic length of
the finest tetrahedral elements.

Table 4 shows the results of the flow characteristics for
Re = 100 and 300 obtained from computations without adap-
tive quadrature, with two levels of adaptive quadrature sub-
cells, and with a boundary-fitted mesh of comparable mesh
resolution. The drag coefficient depends on the flow near the
sphere boundary and appears to be particularly sensitive to
quadrature error, exhibiting variations of up to 10%. The non-
dimensional recirculation length L/d and the Strouhal number
mainly depend on the flow pattern in the wake of the sphere,
which are less sensitive to the near boundary flow. Comparing
the quantities with results obtained from boundary-fitted com-
putations, we clearly see that an increased geometric resolution
is mandatory to achieve accurate flow solutions.

Increasing the number of adaptive sub-cell levels becomes
expensive for larger l, because the number of quadrature points
increases exponentially [56]. To find a suitable compromise
between computational cost and geometric accuracy, we grad-
ually increase the number of levels from l = 0 to l = 4 for the
Re = 100 case. Figure 7 plots the corresponding drag coef-
ficient versus the number of sub-cell levels. We observe that
from l = 0 to l = 1 there is a huge improvement. We still obtain
an improvement from l = 1 to l = 2, but the difference between
l = 2 and l = 4 is very small. Taking into account the increase
in computing time (see Table 5 and Remark 4), we conclude
that l = 2 levels of adaptive sub-cells represent a good bal-
ance between computational cost and geometric accuracy for
the present immersogeometric method.

Remark 4. The computations reported in Table 5 are car-
ried out in a parallel computing environment on the Lonestar
Linux cluster [103] at the Texas Advanced Computing Center
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Table 5: Total computing time required to run 50 time steps with different levels
of adaptive quadrature sub-cells on the same mesh (IM2).

l = 0 l = 1 l = 2 l = 4
Time (s) ∼ 323 ∼ 347 ∼ 442 ∼ 3521

Levels of adaptive quadrature
0 1 2 3 4

C
D

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

Figure 7: Drag coefficient CD, computed with our immersogeometric method
and different levels of adaptive quadrature sub-cells for flow at Re = 100. We
include the corresponding boundary-fitted result as reference (dashed line).

(TACC) [104]. The system consists of 1,888 compute nodes,
each with two Intel Xeon X5680 3.33GHz hex-core processors
and 24GB of memory. A description of our parallelization strat-
egy and a demonstration of its strong linear scaling can be found
in Hsu et al. [105]. The mesh is partitioned into 480 subdo-
mains using METIS [106], and each subdomain is assigned to
a processor core. For the computations in Table 5, we use two
Newton iterations per time step, with 80 and 250 GMRES iter-
ations for the first and second Newton iterations, respectively,
and record the time required to run 50 time steps.

4.3.2. Convergence and mesh independence study
To get an idea of the overall accuracy of the flow solution

that we can achieve with our immersogeometric method, we
compare the immersogeometric results in terms of the drag co-
efficient, the non-dimensional length of the recirculation bub-
ble and the Strouhal number with reference values that we
computed with boundary-fitted meshes as well as correspond-
ing values reported in the literature. This comparison is done
for the complete series of meshes with increasing mesh den-
sity that we defined in Section 4.2. This also allows for a
mesh independence study for both the immersogeometric and
boundary-fitted cases. Table 6 shows the reference values ob-
tained with the boundary-fitted discretizations BM0, BM1 and
BM2 at Reynolds numbers Re = 100 and 300. We also show
the maximum and minimum range of values for these quanti-
ties that we found in the CFD literature, specifically consulting
these articles [91–95]. Table 7 shows the corresponding quan-
tities obtained with the immersogeometric method and meshes
IM0, IM1 and IM2 that are of comparable mesh density and
grading. The immersogeometric computations are based on

Table 6: Mesh independence study for boundary-fitted discretization.

Re = 100
CD L/d

BM0 1.131 0.790
BM1 1.094 0.855
BM2 1.093 0.857
Literature 1.060–1.096 0.850–0.880

Re = 300
CD St

BM0 0.715 0.123
BM1 0.662 0.136
BM2 0.661 0.135
Literature 0.634–0.671 0.134–0.137

Table 7: Mesh independence study for immersogeometric discretization with
l = 2 levels of adaptive quadrature sub-cells.

Re = 100 Re = 300
CD L/d CD St

IM0 1.141 0.767 0.714 0.123
IM1 1.095 0.855 0.662 0.134
IM2 1.093 0.856 0.662 0.135

l = 2 levels of adaptive quadrature sub-cells to ensure the accu-
rate resolution of the geometry in intersected elements.

The overall convergence behavior of the computed quan-
tities is equivalent in both immersogeometric and boundary-
fitted cases. Comparing the results between the different mesh
sizes within each method, we see that the results obtained with
the finest meshes are sufficiently converged and can be con-
sidered as mesh independent. A comparison of the values in
Tables 6 and 7 shows that with a comparable mesh resolution,
our immersogeometric method achieves the same accuracy as
the boundary-fitted method.

4.4. Immersogeometric results for turbulent flow

For assessing the accuracy of our immersogeometric
method for turbulent flows, we increase the Reynolds number
in the current benchmark to Re = 3700. For this configuration
and Reynolds number, there occurs a laminar flow separation
near the equator of the sphere and a transition to turbulence in
the wake of the sphere [97]. We compare the immersogeomet-
ric results in terms of key quantities of interest with reference
values obtained from our boundary-fitted computations, as well
as with Direct Numerical Simulation (DNS) results reported by
Rodriguez et al. [97] and VMS results computed by Bazilevs et
al. [98].

In our immersogeometric and boundary-fitted computa-
tions, we use a time-step size of 0.0015. Figure 8 shows the
immersogeometric result of instantaneous vortical structures by
visualizing the isosurfaces of λ2 = −0.1,−0.5 and −1. λ2 is
the second largest eigenvalue of the tensor S2 + ΩΩΩ2, where S
and ΩΩΩ are the symmetric and antisymmetric components of∇∇∇u,
respectively. The vortex core is defined as the region where
λ2 < 0 [107]. The figure illustrates the three-dimentional
chaotic nature of turbulent flow in the wake of the sphere. Fig-
ure 9 shows the contours of the instantaneous out-of-plane vor-
ticity component on a planar cut, computed with both methods.
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Figure 8: Visualization of the immersogeometric result of instantaneous vortical structures in the wake of the sphere for turbulent flow at Re = 3700.

(a) Boundary-fitted result.

(b) Immersogeometric result.

Figure 9: Contour of instantaneous out-of-plane vorticity component on a pla-
nar cut.

The results illustrate the laminar shear layer and its separation
from the sphere. They also show the break-up of the shear layer,
its transition to turbulence and the turbulent wake, which char-
acterize the flow at sub-critical Reynolds numbers [97].

We report further the time-averaged quantities of interest in
Table 8, computed with our immersogeometric and boundary-
fitted methods, and compare them with reference values in the
literature [97, 98]. We investigate the time-averaged drag co-
efficient CD, the Strouhal number St, and the non-dimensional
length L/d of the recirculation bubble evaluated from the rear
end of the sphere. In addition, we compute the time-averaged
pressure coefficient Cpb at an azimuthal angle of 180◦, which
corresponds to the rearmost point of the sphere in the main
flow direction. Time averaging is performed when the flow so-
lution has converged to a quasi-steady state. Figure 10 shows
the mean velocity streamlines on a planar cut, from which the
time-averaged recirculation bubble can be seen.

(a) Boundary-fitted result.

(b) Immersogeometric result.

Figure 10: Time-averaged velocity streamlines on a planar cut.

Table 8: Comparison of time-averaged quantities of interest for turbulent flow
at Re = 3700.

CD L/d St Cpb

Immersogeometric (l = 0) 0.399 2.26 0.205 -0.254
Immersogeometric (l = 1) 0.397 2.26 0.208 -0.258
Immersogeometric (l = 2) 0.393 2.27 0.218 -0.217
Boundary-fitted 0.393 2.27 0.217 -0.215
DNS (Rodriguez et al. [97]) 0.394 2.28 0.215 -0.207
VMS (Bazilevs et al. [98]) 0.392 2.28 0.221 -0.207

4.4.1. The importance of accurate geometry resolution
We assess the role of accurate geometry resolution in im-

mersogeometric analysis of turbulent flow by varying the num-
ber of levels l of adaptive quadrature sub-cells in intersected
elements. We observe in Table 8 that the immersogeometric
results converge to the boundary-fitted reference values when l
is increased from 0 to 2, i.e., under the refinement of adaptive
quadrature sub-cells. We also find that all quantities obtained
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Figure 11: Time-averaged pressure coefficient evaluated along the upper crown
line of the sphere. We compare our reference boundary-fitted result with results
from the literature [97, 98].
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Figure 12: Comparison of the time-averaged pressure coefficient computed
with our immersogeometric method with different levels l of adaptive quadra-
ture sub-cells and our boundary-fitted method as reference.

with l = 2 are in good agreement with the values reported in the
literature.

Figures 11 and 12 plot the distribution of the time-averaged
pressure coefficient over the upper crown line of the sphere
along the main flow direction computed with different meth-
ods. Figure 11 shows that our boundary-fitted simulation re-
sult is in very good accordance with results from the literature.
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Figure 13: Mean streamwise velocity profiles at three different locations in the
wake. DNS [97] result is plotted as reference.
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Figure 14: RMS of the streamwise velocity fluctuations at two different loca-
tions in the sphere wake. DNS result [97] and VMS results for three different
time windows [98] are plotted as references.

We note that even though the same variational formulation and
characteristic element sizes are used in our simulation and that
of Bazilevs et al. [98], different element types were used in the
boundary layer mesh (see Section 4.2), which result in the slight
difference between our results.

Figures 12a and 12b show that results obtained with our im-
mersogeometric method match the result of our boundary-fitted
method well, while clear convergence towards the boundary-
fitted reference can be observed under the increased levels of
adaptive quadrature sub-cells. This confirms that a faithful rep-
resentation of the geometry in terms of accurate volume quadra-
ture in intersected elements is a key requirement for obtaining
accurate flow results with our immersogeometric method.

Figure 13 compares the profiles of the mean streamwise
velocity at three different positions in the wake computed by
DNS [97] and our immersogeometric method with l = 0 and
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(a) Front view. (b) Back view.

(c) Detailed view 1. (d) Detailed view 2. (e) Detailed view 3.

Figure 15: Time-averaged pressure distribution over the tractor surface, computed with the immersogeometric mesh.

l = 2 levels of adaptive quadrature sub-cells. We observe that
our results and the DNS results are in very good agreement,
even when the adaptive quadrature is not applied (l = 0). This is
due to the fact that the streamwise velocities compared are away
from the immersed boundary, and as a result, are not sensitive
to the accuracy of the geometry resolution. Figure 14 shows
the root-mean-square (RMS) of the streamwise velocity fluctu-
ations at two different locations in the sphere wake. DNS re-
sult [97] and VMS results for three different time windows [98]
are plotted along with our immersogeometric result (l = 2).
Bazilevs et al. [98] observed that the RMS of the streamwise
velocity fluctuations is sensitive to the time window selection
in the very near wake. In our case, a window of 300 time units
is used for the evaluation. The comparison with the references
clearly shows the accuracy of our immersogeometric method
based on VMS turbulence model and weakly enforced bound-
ary conditions for turbulent flow problems.

5. Industrial scale example: Turbulent flow around a trac-
tor

Aerodynamic analysis of vehicles based on standard CFD
tools with boundary-fitted meshes is a standard practice in the
automotive industry. However, there are several important chal-
lenges that hamper the efficient use of standard CFD tools. Typ-
ical vehicle designs lead to very complex fluid domain bound-

aries. This constitutes a major obstacle for the transfer of fluid
domains into boundary-fitted computational meshes, since it
requires labor-intensive intermediate steps such as decompo-
sition of large geometric models, geometry clean-up, and mesh
manipulation. An example is the agricultural tractor shown in
Fig. 15, which incorporates many geometrically complex de-
tails. In the context of tractor design, aerodynamic analysis help
designers determine how air flow around the tractor can con-
tribute to the cooling of the engines at low driving speeds. In
this section, we will use the tractor to demonstrate how immer-
sion of complex geometries into a non-boundary-fitted mesh
can alleviate many challenges of standard boundary-fitted mesh
generation in the context of large-scale industrial applications.
We also verify the accuracy of our immersogeometric method
by comparison with standard boundary-fitted meshes of com-
parable size and refinement pattern.

5.1. Tractor set-up

The dimensions of the tractor, the surrounding fluid domain,
and the boundary conditions are illustrated in Fig. 16. We spec-
ify a uniform inflow with a streamwise velocity of 11.176 m/s
(25 mph) ahead of the tractor. This velocity corresponds to the
typical driving speed of an agricultural tractor. For simplicity,
we assume a no-slip boundary condition on the ground. At a
constant temperature of 300 K (26.85◦C), the density and dy-
namic viscosity of the air are 1.177 kg/m3 and 1.846 × 10−5
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Figure 16: Dimensions and boundary conditions of the flow domain and the immersed tractor geometry.

kg/(m·s), respectively. The characteristic length of the tractor
is defined as the distance from the leading to the rear end in
the direction of the main flow and is 4.208 m. The Reynolds
number is approximately 3 × 106, which corresponds to highly
turbulent flow. The geometry of the tractor is described by a
boundary representation, which was designed with a CAD tool
and exported in STL-format.

5.2. Generating immersogeometric and boundary-fitted
meshes

We employ the workflow described in Section 3.5 to gener-
ate an adaptive immersogeometric mesh of the tractor, leverag-
ing the refinement capabilities of the open-source mesh gener-
ator Gmsh [90]. We locally refine the tetrahedral mesh close to
the tractor surface and the ground surface for capturing bound-
ary layers, and behind the tractor to capture the wake. The final
immersogeometric mesh consists of 11,489,570 linear tetrahe-
dral elements (9,367,179 effective elements) and is shown in
Figs. 17a and 17b. In all (1,953,920) intersected elements we
add two levels of adaptive quadrature sub-cells to accurately
integrate the volume integrals. Sufficiently accurate integration
in intersected elements is required to faithfully capture the ge-
ometry of the tractor, which is a key requirement for obtaining
accurate flow solutions with our immersogeometric method.

To obtain simulation results based on standard boundary-
fitted meshes for comparison, we use a commercial mesh gener-
ator ANSA [108] due to its robustness in generating boundary-
fitted meshes for complex geometries. We ensure that the lo-
cal refinement pattern close to the tractor and ground surfaces
and in the wake of the tractor is comparable to the immerso-
geometric mesh. A zoom of our boundary-fitted mesh can be
seen in Fig. 17c. We note that due to the fine geometric details
of the tractor, local refinement of the surface mesh in many of
the regions is necessary to be able to fit the fine-scale geometry
with boundary-conforming tetrahedral elements. The quality of
the volume mesh depends highly on the quality of the surface
mesh used for its generation. The total number of elements in
the boundary-fitted mesh is 10,854,275, which is comparable to
the immersogeometric mesh.

We note that a significant advantage of the immersogeomet-
ric workflow is its geometric flexibility. For example, it enables
us to impose a uniform mesh size along the immersed trac-
tor surface regardless of fine-scale geometric features. We can
therefore easily control the mesh size resolution independently
of the geometry, for example, to obtain a coarser mesh for fast
preliminary design studies. This is not possible in boundary-
fitted analysis, where a coarser mesh requires geometry opera-
tions first to remove all geometric features that are of finer scale
than the targeted minimum element length.

5.3. Comparison of immersogeometric and boundary-fitted re-
sults

In both immersogeometric and boundary-fitted computa-
tions, we use a time-step size of 3×10−4 s. Both meshes are par-
titioned into 504 subdomains, each assigned to a processor core.
The computations are carried out on the Lonestar Linux clus-
ter described in Remark 4. Figure 15 shows the time-averaged
static pressure over the tractor surface, computed with our im-
mersogeometric method. We observe that the pressure distri-
bution over geometric details of the tractor surface is captured
well. Figure 18 illustrates the instantaneous vortical structures
of the highly turbulent flow around the tractor by visualizing the
isosurfaces of λ2 = −1.5,−2 and −5. Snapshots of the velocity
magnitude on planar cuts at different heights above the ground
at the same time instant as Figure 18 are shown in Figure 19.
Detailed flow features such as flow around the pipe and mirrors
can be clearly seen.

To compare the immersogeometric and boundary-fitted re-
sults, we first compute the time-averaged drag coefficient CD =

2FD/ρU2A, where U is the inflow velocity, FD is the time-
averaged drag force, and A = 5.942 m2 is the area of the frontal
tractor surface projected onto a plane perpendicular to the main
flow direction. The values of CD are 0.851 and 0.838 for the
immersogeometric and boundary-fitted computations, respec-
tively. The results are in good agreement between the two meth-
ods, with a deviation of 1.55%. We note that the reported drag
coefficients are in good accordance with those of observed in
similar industry benchmarks. For example, the drag coefficient
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(a) Overall view of the immersogeometric mesh.

(b) Zoom of the immersogeometric mesh.

(c) Zoom of the standard boundary-fitted mesh.

Figure 17: Locally refined tetrahedral meshes of the fluid domain for aerodynamic analysis of the tractor. We show the mesh cut along a plane in flow direction.
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Figure 18: Visualization of the immersogeometric result of instantaneous vortical structures for turbulent flow around the tractor.

(a) Height 0.6 m. (b) Height 1.2 m.

(c) Height 1.8 m. (d) Height 2.4 m.

Figure 19: Snapshots of the instantaneous velocity magnitude on planar cuts at different heights above the ground, computed with our immersogeometric method.

of heavy vehicles traveling at 25 mph is in the range of 0.7–
0.9 [109].

Figure 20 displays time-averaged velocity and pressure
fields on a planar cut. We observe that immersogeometric re-
sults are in excellent accordance with the boundary-fitted re-
sults. To assess the accuracy of the immersogeometric results
at single points of the surface, we plot the distribution of the
time-averaged pressure coefficient CP = 2(P − P∞)/ρU2 along
curves over the tractor surface. The results are plotted for a

curve over the top surface and one over the bottom surface of
the tractor in Figs. 21a and 21b, respectively. Overall good
agreement between the two methods is observed. This shows
that our immersogeometric method is able to achieve accurate
flow solutions near the boundary of an immersed object, where
all elements are intersected, for high Reynolds number turbu-
lent flow problems.

As discussed in Section 4.3.1, the use of integration sub-
cells improves the immersogeometric solution quality, but

16



(a) Boundary-fitted. (b) Immersogeometric.

Figure 20: Time-averaged velocity and pressure fields on a planar cut.
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(a) CP distribution on the top surface.

X-distance from the leading end (m)
0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4

C
P

-1

-0.6

-0.2

0.2

0.6

1

1.4

1.8 Boundary-fitted
Immersogeometric

(b) CP distribution on the bottom surface.

Figure 21: Time-averaged pressure coefficient CP plotted along two curves over the tractor surface.

comes at the cost of additional computation during the finite
element assembly procedures. The additional computations are
in the form of quadrature over elements, and do not require any
communication between subdomains. The impact of this ad-
ditional cost on wall clock time may therefore be mitigated by
simply partitioning the mesh into more subdomains (each as-
signed to a processor core). To demonstrate this, we perform
a scalability study of our immersogeometric method using the

tractor example presented in this section. For each parallel test,
we compute 200 time steps, each with three Newton iterations.
100, 100 and 250 GMRES iterations are used for the first, sec-
ond and third Newton iterations, respectively. The computa-
tions are carried out on the Lonestar Linux cluster described
in Remark 4. The results are shown in Figure 22 and demon-
strate nearly ideal scaling. Although the immersogeometric
case takes more wall clock time than the boundary-fitted case
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Figure 22: Scalability study for the example of turbulent flow around a tractor.

when 504 partitions are used for both, equivalent times may
be achieved by simply partitioning the immersogeometric mesh
into more subdomains. As the cost of access to supercomput-
ing resources drops, it is not computer time but rather the time
of human analysts—which is often spent on mesh design—that
dominates overall analysis cost. We therefore believe that it is
useful to investigate numerical methods that require moderate
increases in computation but drastically simplify mesh genera-
tion.

6. Conclusions and future work

In this paper, we presented an immersogeometric frame-
work for analyzing incompressible flows around geometrically
complex objects immersed in non-boundary-fitted tetrahedral
finite element meshes. The main components of this framework
are the variational multiscale method, the weak enforcement of
boundary conditions, an adaptive quadrature scheme for the in-
tegration of intersected elements, and the local refinement of
areas with boundary layers.

We examined in detail two representative example prob-
lems: flow around a sphere and aerodynamic analysis of a
tractor. We showed that the immersogeometric solutions were
in good agreement with reference solutions, both in terms of
characteristic parameters such as the drag coefficient and the
Strouhal number, and in terms of near-boundary solution fea-
tures such as the pressure distribution plotted over surface lines
of immersed objects. We also demonstrated that such agree-
ment is not achieved without the faithful representation of sur-
face geometry provided by our approach. The tractor analysis
indicates that our immersogeometric method can greatly sim-
plify the mesh generation process for industrial turbulent flow
problems without sacrificing accuracy.

Some future research directions in immersogeometric CFD
include:

• Development of advanced quadrature schemes for inter-
sected elements that are geometrically faithful and com-
putationally efficient.

• Improved weak boundary and coupling conditions that
limit the dependence on stabilization parameters and
maintain a good conditioning of the system matrix.

• Boundary layer refinement strategies with anisotropic ap-
proximation power.

• Extension of the methods from this paper to higher-order
finite element spaces.

• Efficient treatment of moving immersed boundaries.

The last of these points is of particular importance to immerso-
geometric FSI analysis [43, 110, 111].
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[44] J. Parvizian, A. Düster, and E. Rank. Finite cell method: h- and p- exten-
sion for embedded domain methods in solid mechanics. Computational
Mechanics, 41:122–133, 2007.
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