
Leveraging code generation for transparent
immersogeometric fluid–structure interaction

analysis on deforming domains

Grant E. Neighbor1, Han Zhao2, Mehdi Saraeian1, Ming-Chen Hsu1

and David Kamensky2*

1Department of Mechanical Engineering, Iowa State University, 2043
Black Engineering, Ames, IA 50011, USA.

2Department of Mechanical and Aerospace Engineering, University of
California San Diego, 9500 Gilman Drive, Mail Code 0411, La Jolla,

CA 92093, USA.

*Corresponding author(s). E-mail(s): dmkamensky@eng.ucsd.edu;

Abstract
Code generation technology has been transformative to the field of numeri-
cal partial differential equations (PDEs), allowing domain scientists and engi-
neers to automatically compile high-performance solver routines from abstract
mathematical descriptions of PDE systems. However, this often assumes a
rigid code structure, which is only appropriate to a subset of applications
and numerical methods, such as the traditional finite element methods used
by the FEniCS code generation system. The present contribution demon-
strates how to productively integrate FEniCS into a custom implementation
of immersogeometric analysis (IMGA) of thin shell structures interacting with
incompressible fluid flows on deforming domains. IMGA is an emerging
paradigm for numerical PDEs with complex domain geometries, where non-
watertight geometry descriptions are used directly as computational meshes.
In particular, we generalize past related work by leveraging code generation
to concisely pull back the deforming-domain Navier–Stokes problem to a sta-
tionary reference mesh. We also show how code generation enables rapid
implementation of different material models for the structure subproblem.
We verify our implementation using several benchmark problems, demon-
strate its robustness and flexibility by simulating a prosthetic heart valve
immersed in a flexible artery, and distribute the full source code online, to

1

2 Code generation for immersogeometric FSI on deforming domains

be used and modified by the community. Impact of the last item is ampli-
fied by the transparent nature of our code-generation-based implementation.

Keywords: Isogeometric analysis, Fluid–structure interaction, Immersed boundary,
Open-source software, FEniCS, Heart valve

Statements and declarations

Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.

Article highlights
• Open-source implementation of immersogeometric fluid–structure interaction

using FEniCS-based code generation.
• Background fluid domain deforms, using a symbolic pullback to a reference

domain.
• Code generation enables prototyping of constitutive models for immersed

structure.

1 Introduction
Traditionally, software to compute numerical approximations to solutions of partial
differential equation (PDE) systems has been developed separately for different PDE
systems. Developing a new PDE solver is often a daunting task, as many applications
demand that software be optimized carefully for parallel high-performance comput-
ing (HPC) systems. However, over the past several decades, researchers from applied
math have demonstrated that effective numerical methods for a wide range of PDE
systems can be represented as variational problems posed over finite-dimensional
spaces of solution functions, called finite element (FE) methods [1]. This shared
structure suggests that a common set of software abstractions can be used to imple-
ment different numerical schemes for different PDEs, spanning a broad range of
application domains. In particular, the translation of variational forms into computa-
tional kernels for FE assembly is a systematic enough process that optimized code
for these kernels can be generated automatically from the mathematical definition of
a variational form. A leading example of code generation for numerical PDEs is the
FEniCS Project [2]. In its canonical workflow, users write the variational forms of
their PDEs in the Python-based Unified Form Language (UFL) [3], and these UFL
problem statements are then automatically compiled into efficient C++ kernels [4]
that plug into a general high-performance FE solver called DOLFIN [5].

FEniCS has proven highly popular with scientists, mathematicians, and engi-
neers across a wide range of disciplines. Providing a comprehensive picture of its
applications to-date would require a dedicated review article, but a cursory glance at

Code generation for immersogeometric FSI on deforming domains 3

citation data reveals FEniCS-based work ranging from basic research in numerical
methods [6, 7] and exotic physical phenomena [8, 9] to industrial-scale engineer-
ing analysis [10–13]. The concise and readable nature of UFL problem statements
also encourages using code as a form of scientific communication. While voices
within the computational math and science communities have increasingly called for
reproducibility of numerical results [14, 15], code generation enables the stronger
condition of transparency, where code shared by researchers is essentially as easy to
understand (and thus also to modify and extend) as the notation from published arti-
cles. This attribute of code generation has also made it popular in pedagogical works
[16, 17].

Despite the promise code generation shows for streamlining the process of con-
ducting and disseminating research, challenges remain. In particular, systems like
FEniCS assume that the target problem consists of a single PDE system defined
on a given domain, over which a good quality FE mesh can be generated. In engi-
neering problems, it is often the case that multiple coupled subproblems are posed
on different subdomains, whose upstream geometrical descriptions are separately
parameterized and often even mathematically ill-defined, such as computer-aided
design (CAD) models specifying volumes through non-watertight descriptions of
boundary surfaces. Geometric complexity can also occur downstream of engineering
analysis, as an emergent feature of a PDE system’s solution. Examples of this include
large deformations of soft materials and topological changes due to fracture and/or
contact mechanics. Numerical schemes to couple non-matching parameterizations of
geometry or contend with topological changes—e.g., immersed boundary [18, 19] or
meshfree [20] methods—cannot be reduced to the self-contained element-level ker-
nels assumed by FEniCS’s code generation architecture. An active area of research is
then: How can code generation capabilities be gainfully applied in conjunction with
such methods?

To motivate the present contribution, we introduce a problem which exhibits both
upstream and downstream geometric complexity: fluid–structure interaction (FSI)
analysis of prosthetic heart valves. In summary, the most popular class of pros-
thetic valves mimic the structure of native valves, in which thin flexible leaflets are
passively opened and closed by periodic blood flow. The large deformation and espe-
cially topology change (during valve closure) of the fluid subproblem’s domain are
obvious examples of downstream geometric complexity. However, applications like
optimizing prosthetic valve leaflets and patient-specific modeling also benefit from
seamless integration of analysis with upstream CAD geometry and medical imaging
data. Kamensky, Hsu, and various other collaborators have recently published a series
of articles on heart valve FSI analysis [21–25].1 In particular, these authors directly
use a CAD model of the valve as an analysis mesh, which is an example of isogeo-
metric analysis (IGA) [29, 30], and couple it to an unfitted mesh of the artery lumen,

1We shall not attempt to review all recent work on heart valve FSI here, as this (substantial) task is already accomplished
by dedicated review articles [26–28]; our introduction is limited to direct ancestors of the present contribution.

4 Code generation for immersogeometric FSI on deforming domains

which is an instance of an immersed method.2 They refer to the synergy between
IGA and immersed methods as immersogeometric analysis (IMGA).

The cited works implemented these methods in custom research codes, without
regard for transparency. The recent paper [32] implemented a subset of this immer-
sogeometric FSI functionality as the open-source library CouDALFISh [33], which
used FEniCS for classical FE analysis of the fluid and the FEniCS-based IGA library
tIGAr [34] for IGA of the valve leaflets. However, the functionality of CouDAL-
FISh documented in [32] was quite limited. In particular, there was no option to use
boundary-fitted arbitrary Lagrangian–Eulerian (ALE) [35] FSI where feasible, such
as for modeling the mild deformations of an elastic artery’s lumen. Reference [22]
demonstrated that artery deformation is crucial to accurate analysis, but the heart
valve example of [32] simply treated the artery as rigid. The present contribution
builds upon [32], introducing the following novelties:
• Formulating ALE FSI on a static reference domain, leveraging abstractions

from FEniCS UFL to maintain a clear interpretation (whereas previous work in
[32] was limited to an Eulerian description of the fluid, and did not include a
solid subproblem).
• Interfacing this formulation with the immersogeometric fluid–thin structure

interaction method of [21], which entails some changes to the algorithm from
[32].
• Demonstrating the potential for rapid prototyping of soft tissue constitutive

models, expressed in symbolic form using FEniCS UFL, which was technically
possible with only the technology from [32], but not implemented or tested until
the present work.

In the remainder of this paper, we first introduce the mathematical problem under
consideration (Section 2), then recall the particular immersed technique that we use
for the fluid–thin structure interaction analysis (Section 3). Section 4 then discusses
the implementation of the above-itemized contributions, and how it leverages code
generation technology. Numerical results for several problems are then presented,
including various benchmarks (Section 5) and a simulation of a prosthetic heart valve
in a flexible artery (Section 6). Finally, Section 7 draws conclusions and discusses
potential future developments.

2 Combined fluid–solid and fluid–shell interaction
This paper considers the problem of a thin shell structure (modeled geometrically as a
surface of co-dimension one) immersed in a “background” 3D fluid–solid continuum.
The two subproblems are constrained to have the same velocity on the topologically-
2D midsurface of the shell structure, with the 3D continuum’s traction jump across
the surface equal to a normal force acting on the shell. Mathematically, we can write
this problem as: Find shell structure midsurface velocity vsh ∈ Ssh, background fluid–
solid velocity vfs ∈ Sfs, fluid pressure p ∈ Sp, and interface Lagrange multiplier

2We interpret the adjective “immersed” rather liberally here, using it to refer to any numerical method in which a
computational mesh is not fitted to a boundary or interface; this is at odds with some references, which reserve it for a
specific method introduced by [31].

Code generation for immersogeometric FSI on deforming domains 5

λ ∈ Sλ such that for all test functions (wsh,wfs, q, δλ) ∈ Vsh ×Vfs ×Vp ×Vλ,

Rsh(vsh,wsh) + Rfs({vfs, p}, {wfs, q})
+Cλ(vsh, vfs, δλ) +Cλ(wsh,wfs, λ) = 0 , (1)

where S(·) are spaces of trial functions satisfying Dirichlet boundary conditions
(if any) and V(·) are corresponding test function spaces. The variational forms Rsh
and Rfs define the shell structure and fluid–solid continuum subproblems, while Cλ

defines the FSI kinematic constraint. We now elaborate on these definitions in the
following sections.

2.1 Fluid–solid continuum
Following the kinematic framework established by [36], we refer momentum balance
for the fluid–solid continuum to a static reference domainΩy. This domain is mapped
to the physical domain Ωx by a motion ϕ̂, which can be defined by a displacement
field, û, such that the spatial point x corresponding to a reference point y is given by

x = ϕ̂(y) = y + û(y) . (2)

The mapping ϕ̂ and displacement û depend, in general, on time, but this depen-
dence has been suppressed above for notational simplicity. When differentiating with
respect to time, we must be precise about what spatial coordinate is held fixed. In this
paper, we shall use

∂ f
∂t

∣∣∣∣∣
y

and
∂ f
∂t

∣∣∣∣∣
x

(3)

to denote partial time derivatives of some field f at a fixed points in the reference
domain and spatial domains, respectively. In particular, the velocity of the mapping
from the reference to physical domain is

v̂ =
∂û
∂t

∣∣∣∣∣
y

. (4)

We must similarly disambiguate spatial derivatives. Spatial derivatives in Ωx are
denoted using ∇x and spatial derivatives in Ωy are denoted using ∇y. We divide the
reference domain Ωy into two subsets Ωso

y and Ωf
y such that

Ωy = Ω
so
y ∪Ω

f
y . (5)

The images Ωso
x and Ωf

x of these subsets under the mapping ϕ̂ are occupied by solid
and fluid material respectively in physical space. In the solid subdomain, we identify
each reference point y ∈ Ωso

y with a material point X, for consistency with prevailing
conventions from the literature on nonlinear solid mechanics. Following the conven-
tion established by (3), the partial time derivative at a fixed material point is denoted

6 Code generation for immersogeometric FSI on deforming domains

∂/∂t|X (corresponding to the notation “D/Dt” in many references), and spatial deriva-
tives in Ωso

y are denoted with ∇X . The fluid–solid continuum residual Rfs can be split
into two forms integrated over these subdomains:

Rfs({v, p}, {w, q}) = Rf({v, p}, {w, q}) + Rso(v,w) . (6)

We now define these forms for an incompressible Newtonian fluid (Section 2.1.1)
and a hyperelastic solid (Section 2.1.2).

2.1.1 Incompressible Newtonian fluid

The weak formulation of the incompressible Navier–Stokes equations on a deforming
domain is frequently given as

Rf({v, p}, {w, q}) =
∫
Ωf

x

ρf

(
∂v
∂t

∣∣∣∣∣
y
+ (v − v̂) · ∇xv

)
· w − f · w dΩx

+

∫
Ωf

x

σ : ∇xw + q∇x · v dΩx

+

∫
∂Ωx∩∂Ω

f
x

(h − γρf {(v − v̂) · nx}− v) · w d∂Ωx , (7)

where ρf is the fluid mass density,

σ = 2µf sym∇xv − pI (8)

is the Cauchy stress for dynamic viscosity µf, I is the identity tensor, ∇x differentiates
with respect to spatial position, f is a body force per unit volume, h is an applied
momentum flux on ∂Ωx∩∂Ω

f
x, nx is the outward-facing unit normal to ∂Ωx, {·}− takes

the negative part of its argument, i.e.,

{ f }− =
1
2

(f − | f |) , (9)

and 0 ≤ γ ≤ 1 is a dimensionless scalar parameter.

Remark 1 The term involving {·}− stabilizes the problem when flow enters the domain through
a Neumann boundary part. When no flow is entering the boundary, h has the interpretation of
a traction vector, whereas, when flow is entering the boundary, it becomes a combination of
traction and advective flux. The parameter γ controls the strength of this stabilizing effect. See
[37] for details. Note that this term is included in the continuous problem, to ensure that it is
well-posed.

The formulation (7) contains the awkward combination of a temporal partial
derivative taken on the static reference domain and spatial partial derivatives taken
on the deforming spatial domain. Our discretization will be based on referring the

Code generation for immersogeometric FSI on deforming domains 7

entire formulation back to the reference domain, which may be accomplished by the
following substitutions:∫

Ωf
x

(· · ·) dΩx →

∫
Ωf

y

(· · ·) ĴdΩy , (10)∫
∂Ωx∩∂Ω

f
x

(· · ·) d∂Ωx →

∫
∂Ωy∩∂Ω

f
y

(· · ·)
∣∣∣ĴF̂−T · ny

∣∣∣ d∂Ωy , (11)

∇x(· · ·) → ∇y(· · ·) · F̂−1 , (12)

nx →
ĴF̂−T · ny∣∣∣ĴF̂−T · ny

∣∣∣ , (13)

where

F̂ =
∂ϕ̂

∂y
(14)

is the deformation gradient of the motion ϕ̂,

Ĵ = det F̂ (15)

is its determinant, and ny is the outward-facing unit normal to Ωy.
When discretizing the fluid in space, i.e., posing the fluid subproblem on finite-

dimensional subspaces of Sfs and Vfs, we augment Rf with additional terms,
following the variational multiscale (VMS) theory utilized by Bazilevs and collab-
orators in [36, 38–45]. This maintains the stability of the formulation even when
the exact solution contains features too small to resolve with a given spatial dis-
cretization. A common source of such solution features is flow turbulence, and VMS
can correspondingly be understood as an implicit large-eddy simulation filter, as
discussed in [38], with favorable comparisons to direct numerical simulation.

2.1.2 Hyperelastic solid

Within the solid subdomain, we assume that the background continuum velocity field
can be expressed as the time derivative of a displacement field, viz.,

vfs

∣∣∣
Ωso

y
=
∂uso

∂t

∣∣∣∣∣
X

, (16)

where uso is the solid material’s displacement field. We further assume that

û = uso (17)

in Ωso
y , i.e., that the reference domain deforms with the material. An obvious impli-

cation is that v̂ = vfs within the solid subdomain. Accordingly, we also drop the ˆ(·)
from the deformation gradient (14) and its determinant (15), which now correspond

8 Code generation for immersogeometric FSI on deforming domains

to the material motion:

F = I + ∇Xuso and J = det F . (18)

With these assumptions, the solid residual form Rso can be written as

Rso(v,w) =
∫
Ωso

y

ρso
0
∂v
∂t

∣∣∣∣∣
X
· w − f0 · w + (FS) : ∇Xw +Cdρ

so
0 v · w dΩy

−

∫
∂Ωso

y ∩∂Ωy

h0 · w d∂Ωy , (19)

where h0 is an applied traction per unit reference boundary area, f0 is a body force
per unit reference volume, ρso

0 is mass density per unit reference volume, S is the 2nd

Piola–Kirchhoff stress, and Cd is a mass damping coefficient. The defining feature of
a hyperelastic solid is that S can be obtained by differentiating a scalar energy density:

S =
∂ψ

∂E
, (20)

where ψ is an elastic energy density per unit reference volume and

E =
1
2

(
FT F − I

)
(21)

is the Green–Lagrange strain tensor. These definitions imply that

(FS) : ∇Xw = S : DwE = Dwψ , (22)

where Dw is a Gateaux derivative with respect to displacement in the direction w.
In this work, we consider only moderately compressible solids.3 In that case, an

appropriate discretization is the Bubnov–Galerkin method, i.e., simply restricting the
form Rso to finite-dimensional subsets of Sfs andVfs.

2.2 Kirchhoff–Love shell structure
The thin immersed structure is a simplification of the hyperelastic solid, where the
reference domain is instead a thin region of thickness hth, extending symmetrically in
the normal direction from a 2D midsurface manifold Γ0. As in the case of the solid,
we assume that the shell structure velocity is derived from a displacement field,

vsh =
∂ush

∂t
, (23)

3This is in contrast with the shell structure subproblem, where we consider incompressible material in some problems,
to model biological soft tissue in heart valve leaflets. One might (correctly) point out that a high-fidelity model of arterial
soft tissue should also be incompressible, but the scope of our solid artery modeling is limited to capturing its effect on
valve dynamics; this does not depend critically on details of the artery’s constitutive model.

Code generation for immersogeometric FSI on deforming domains 9

where the partial time derivative is taken at a fixed point in Γ0. If the through-
thickness direction is parameterized by an arc-length coordinate ξ3 ∈ (−hth/2, hth/2),
then the residual form can be written as

Rsh(v,w) = hth

∫
Γ0

ρsh
0
∂v
∂t

dΓ0 +

∫ hth/2

−hth/2

∫
Γ0

S : DwE dΓ0dξ3 , (24)

where ρsh
0 is the shell structure’s mass density per unit reference volume, and S and E

are again the 2nd Piola–Kirchhoff stress and Green–Lagrange strain. However, in the
Kirchhoff–Love thin shell theory, kinematic assumptions are invoked to simplify the
definition of E so that it depends entirely on derivatives of the midsurface displace-
ment, and S is assumed to satisfy a plane stress condition in the tangent plane to Γ0.
For the case of hyperelastic material models, the complete shell structure formulation
used in this work can be found in [46].

A notable feature of the Kirchhoff–Love shell model is that the approximate
expression for E involves second derivatives of the midsurface displacement, as does
S (through its dependence on E). This means that the displacement function spaces
Ssh and Vsh must be at least contained in the Sobolev space H2(Γ0) for Rsh to be
well-defined. In practical terms, this means that, if one wishes to use a conforming
Bubnov–Galerkin discretization with piecewise-polynomial displacements, the dis-
crete displacements must be at least C1 between elements. As mentioned in [29, 47],
we accomplish this in the present work by using IGA with smooth B-spline function
spaces for the midsurface displacement.

2.3 FSI kinematic constraint
The fluid–thin-structure constraint form Cλ in (1) is defined generally as

Cλ(a1, a2,b) =
∫
Γ0

(a1 − a2) · b dΓ0 . (25)

This corresponds to enforcement of the constraint vfs = vsh on the shell midsurface,
enforced by the Lagrange multiplier λ, in (1).

Note that the integral over the reference shell midsurface Γ0 differs from many
formulations in the literature, implying that λ is a traction per unit reference midsur-
face area. This does not affect the velocity solutions to the continuous problem, but it
simplifies the implementation of some numerical schemes. In particular, if the inte-
gral is discretized using a collection of quadrature points on Γ0, their corresponding
weights will not depend on spatial derivatives of the shell midsurface displacement
ush.

10 Code generation for immersogeometric FSI on deforming domains

2.4 Shell structure self-contact
In principle, the FSI kinematic constraint should prevent initially-separated parts of
an immersed shell structure from interpenetrating (since they are constrained to fol-
low the motion of a continuous velocity field).4 However, when FSI kinematics are
enforced approximately in the discrete setting, it is usually necessary to augment the
shell structure formulation with some treatment of contact mechanics. In this work,
we use a nonlocal regularization of contact, fitting into the general framework of
volumetric potentials introduced by [49]. In summary, the residual (24) of the shell
structure subproblem is augmented with a term of the form

+ DwEc , (26)

where5

Ec =
1
2

∫
Γ0\BRself (X1)

∫
Γ0

ϕ (r1→2) dX1dX2 (27)

is a potential energy associated with contact forces, in which BRself (X1) is a ball of
radius Rself > 0 about X1 (to exclude “contact” between points that are within Rself of
each other in the reference configuration),

r1→2 = ∥(X2 + ush(X2)) − (X1 + ush(X1))∥ℓ2 (28)

is the distance between the deformed images of material points X1,X2 ∈ Γ0, and the
potential density ϕ governs the repulsion between material points. In this work, ϕ is
selected such that its derivative (i.e., the magnitude of repulsive force density) is

ϕ′(r) = −kc

0 , r ≥ rmax ,
(rmax − r)2/(2scrmax) , (1 − sc)rmax < r < rmax ,
rmax(1 − sc/2) − r , r ≤ (1 − sc)rmax ,

(29)

where kc modulates the stiffness of contact forces, 0 < rmax < Rself is the maximum
range of nonlocal contact, and 0 ≤ sc ≤ 1 is the fraction of rmax over which activation
of forces is smoothed. While it does not preclude penetration of the shell surface
through itself at finite kc, it provides more reliable nonlinear convergence with a fixed
time step than the singular potential given in [49], which required a specialized time
integrator and line search algorithm.

When the integrals of (27) are discretized using a finite set of quadrature points,
the method becomes computationally similar to the “pinball” method of [50], as dis-
cussed in [49, Section 3.2]. In this work, we use as quadrature points the nodes of the
finite element function space to which tIGAr extracts the isogeometric midsurface
displacement space. An extension of the model given by (27) to frictional contact can
be found in [51], while [52] reviews nonlocal regularizations of contact mechanics
more generally.

4This mathematical result of course contradicts everyday experience; the principled solution is to consider the interac-
tion of flow with surface roughness, as detailed in [48], but we proceed with a practical ad hoc approach in the present
work.

5A factor of h2
th has been absorbed into the potential density ϕ, to account for the difference between area integrals here

and volume integrals in [49, (17)].

Code generation for immersogeometric FSI on deforming domains 11

2.5 Deformation of the fluid mesh
While we have now fully specified the physical problem being solved, we have yet
to specify how the reference-to-physical displacement û is defined in the fluid sub-
domain. In this work, we define it to satisfy an artificial elasticity-like problem with
2nd Piola–Kirchhoff stress

Ŝ = K̂
(
tr Ê

)
I + 2µ̂

(
Ê −

tr Ê
3

I
)

, (30)

where Ê is the Green–Lagrange strain associated with the motion ϕ̂ and µ̂ and K̂
are artificial shear and bulk moduli. These artificial material parameters are scaled
inversely by a power of Ĵ, i.e.,

µ̂ = K̂ = K̂0 Ĵ−p , (31)

where K̂0 > 0 is a reference stiffness value for the fictitious problem and larger
values of p ≥ 0 penalize deformations that locally flatten volume elements. This
scaling of artificial material parameters is related to earlier work on Jacobian-based
mesh stiffening [36, 53–57], and has the goal of preserving physical-domain mesh
element quality in the fluid subproblem. The reference-to-physical displacement field
is subject to the boundary condition

û = uso on Ωso
y ∩Ω

f
y . (32)

It may also be subject to other Dirichlet boundary conditions on ∂Ωy ∩ ∂Ω
f
y, which

depend on the particular problem being solved.

3 FSI with the dynamic augmented Lagrangian method
and explicit geometry

Our discretizations of the shell, solid, and fluid subproblems use well-known for-
mulations, as mentioned in Sections 2.2 and 2.1. The discretization of the kinematic
constraint from Section 2.3 uses a method introduced in [21], which we now refer
to as the dynamic augmented Lagrangian (DAL) scheme [58, 59], along with a
time-explicit treatment of the computational geometry problem of computing the
shell–mesh intersection, which increases robustness without incurring any of the
“added mass” instabilities [60] that often plague explicit fluid–structure coupling.

3.1 The dynamic augmented Lagrangian method
DAL is formulated in the discrete-in-time setting, where we want to enforce the
constraint

Cλ(vn+α
fs , vn+α

sh , δλ) =
∫
Γ0

(
vn+α

fs − vn+α
sh

)
· δλ dΓ0 = 0 ∀δλ ∈ Vλ , (33)

12 Code generation for immersogeometric FSI on deforming domains

where n + α is an intermediate time level between steps n and n + 1, where the con-
straint enforcement is collocated. Typically, the choice of α here is tied to some initial
baseline time integration scheme used to discretize time derivatives in the fluid–solid
and shell subproblems. For instance, if the subproblems are discretized with back-
ward Euler, we would use α = 1, if they were discretized with the implicit midpoint
rule, we would use α = 1/2, and if they were discretized with generalized-α [61, 62],
we would use α = αf, where αf is interpreted following the notation conventions of
[36] rather than the original reference.

Emphasizing constraint enforcement and suppressing unnecessary functional
arguments for visual clarity, we write our discrete-in-time formulation as: Find vn+1

fs ,
pn+1, vn+1

sh , and λn+1 such that for all wfs, q, wsh, and δλ,

Rfs + Rsh +

∫
Γ0

(wfs − wsh) · λn+1 dΓ0

+

∫
Γ0

(
vn+α

fs − vn+α
sh

)
· δλ dΓ0

+

∫
Γ0

β
(
vn+α

fs − vn+α
sh

)
· (wfs − wsh) dΓ0 = 0 , (34)

where we have added a penalty term, with penalty parameter β ≥ 0, to augment the
constraint enforcement of the Lagrange multiplier λn+1. In the spatially-continuous
setting, this penalty term is technically redundant in light of the Lagrange multiplier
terms, but it will play a crucial role in the derivation of the DAL method.

To obtain the DAL method, we first regularize the formulation (34) by using
only a scalar Lagrange multiplier associated with the normal part of the kinematic
constraint:

Rfs + Rsh +

∫
Γ0

λn+1 (wfs − wsh) · nn+α
sh dΓ0

+

∫
Γ0

δλ
(
vn+α

fs − vn+α
sh

)
· nn+α

sh dΓ0

+

∫
Γ0

β
(
vn+α

fs − vn+α
sh

)
· (wfs − wsh) dΓ0 = 0 , (35)

where nn+α
sh is the unit normal vector to the deformed shell structure midsurface

at time level n + α. In this modified problem, the tangential portion of the con-
straint is regularized, and enforced entirely through the penalty term. If the penalty β
scales inversely with a refinement parameter h → 0, this still enforces the tangential
constraint exactly in fully-converged analyses.

The essential feature of the DAL method is to update the Lagrange multiplier
explicitly, using the forces computed from an implicit treatment of the penalty term.
This results in a two-step solution procedure for each time step: Find vn+1

fs , pn+1, and

Code generation for immersogeometric FSI on deforming domains 13

vn+1
sh such that for all wfs, q, and wsh,

Rfs + Rsh +

∫
Γ0

λn (wfs − wsh) · nn+α
sh dΓ0

+

∫
Γ0

β
(
vn+α

fs − vn+α
sh

)
· (wfs − wsh) dΓ0 = 0 , (36)

then find λn+1 such that for all δλ∫
Γ0

(
λn+1 −

(
λn + β

(
vn+α

fs − vn+α
sh

)
· nn+α

sh

))
δλ dΓ0 = 0 . (37)

IfVλ is a piecewise-constant space defined on Γ0 and the integral
∫
Γ0

is approximated
using one quadrature point per element on this space, then a static condensation pro-
cedure provides the following explicit formula for updating the Lagrange multiplier
field:

λn+1 = λn + β
(
vn+α

fs − vn+α
sh

)
· nn+α

sh . (38)
In this way, the DAL approach eliminates the need to solve a discrete saddle point
problem, while also allowing for strong constraint enforcement in the steady limit
with only moderate values of the penalty value β, which do not harm the conditioning
of the implicit algebraic problem solved at each time step. Extensive discussion of
DAL and comparison with related methods can be found in [59, Section 4.4].

Remark 2 References [58, 63] introduced improvements to the basic DAL method described
above. These improvements allow for a priori error estimation in the context of a simplified
model problem [64], and can greatly improve the quality of the approximate Lagrange multi-
plier. However, their impact on the velocity solutions of the fluid and shell structure are minimal
in most cases, and they are conceptually orthogonal to the main contributions of the present
work.

Remark 3 An important question about DAL is: How well does it prevent flow through
immersed structures? A naive investigation into this question might focus on the constraint
residual, vn+α

fs − vn+α
sh . However, the effect of the concentrated multiplier and penalty forces on

the accuracy of the surrounding fluid solution is of far greater significance than constraint sat-
isfaction to apparent flow through the structure. The numerical tests of [21, Section 4.4] show
how solutions with accurate satisfaction of the constraint can still have large apparent leak-
age through the structure. This is fundamentally due to stabilized FE formulations not being
“pressure-robust” in the sense defined by [65]. The solution of [21] was to locally modify sta-
bilization parameters near the immersed boundary. This solution is analyzed mathematically in
[24, Appendix A] and found effective by [32, 66–68] across a variety of immersed-boundary
methods and software frameworks. The present work also uses this local modification of sta-
bilization parameters. An alternative solution is to use a pressure-robust formulation for the
background fluid, as done in [24, 69, 70]. A pressure-robust stabilized IGA formulation was
recently implemented with FEniCS/tIGAr in [71], but CouDALFISh is designed around a
classical FE discretization with the standard VMS formulation cited earlier.

14 Code generation for immersogeometric FSI on deforming domains

3.2 Explicit treatment of geometry
When resolving the problem (36) implicitly, the location of deformed shell mid-
surface points pulled back to Ωy by ϕ̂ depends on the unknown shell structure
displacement un+1

sh and the displacement ûn+1 of Ωy to Ωx, which depends, through
the boundary condition (32), on the unknown solid displacement uso. When a
time-independent finite element mesh for the background fluid–solid subproblem is
defined on Ωy, this means that material points on the shell midsurface may jump
between elements of the background mesh during an iterative nonlinear solution
process, making convergence difficult, due to non-smoothness of the residual.

Reference [32] circumvented this difficulty by treating the geometry of the shell–
mesh intersection explicitly. In that work, the background mesh was static, so this
reduced to using an explicit predictor for un+1

sh to locate the (n + α)-level shell–mesh
intersection throughout the nonlinear iteration, while still updating un+1

sh implicitly in
the nonlinear residual (36) to avoid added mass instabilities.

We now generalize this explicit treatment of geometry to the deforming-mesh set-
ting of the present work. To maintain a fixed shell–mesh intersection throughout the
nonlinear iteration to solve (36), we also use an explicit predictor for ûn+1 through-
out the nonlinear iteration. We then solve the mesh deformation problem described
in Section 2.5 once at the end of each time step to obtain ûn+1, using the converged
solution of un+1

so in the boundary condition (32).

4 Implementation leveraging FEniCS and tIGAr
As discussed in Section 1, the primary contribution of the present work is to
implement the formulation and discretization described in Sections 2 and 3 in an
open-source library that makes effective use of code generation technology. Our
starting point is the library CouDALFISh (pronounced “cuttlefish” and standing for
Coupling via DAL of Fluids with Isogeometric Shells), described in [32]. The orig-
inal version of this library described in the cited reference coupled an isogeometric
discretization of a thin shell with a stabilized finite element discretization of incom-
pressible Newtonian fluid on a static domain. The isogeometric shell analysis was
implemented using the library tIGAr [34], which extends FEniCS to IGA, while the
fluid subproblem was implemented using pure FEniCS. To make the shell and fluid
discretizations modular and individually reusable, they were abstracted behind the
concise modules ShNAPr (Shell Nonlinear Analysis Programs) [72] and VarMINT
(Variational Multiscale Incompressible Navier–Stokes Technology) [73] respectively.

In the language and notation of Section 2, the problem considered in [32] would
correspond to the special case in which Ωx = Ωy = Ω

f
y, implying that û = 0, Ωso

y = ∅,
the background solid subproblem can be neglected entirely, and there is no need
to formulate (much less solve) a fictitious problem for û in Ωf

y. Restriction to this
special case greatly simplified the implementation of CouDALFISh. We refer the
reader to [32] for a detailed discussion of the initial version of CouDALFISh, and
focus the present section on what has been modified since then, to generalize it to the
problem setting described in Section 2. In particular, we discuss how code generation

Code generation for immersogeometric FSI on deforming domains 15

simplifies treatment of the deforming fluid domain (Section 4.1) and how we integrate
this treatment into the overall solution algorithm of CouDALFISh (Section 4.2).

4.1 Transparent pullbacks to the reference domain
The pullback of the fluid subproblem (7) to Ωy, summarized as the substitutions
(10)–(13), would be tedious to implement directly in a finite element solver with-
out leveraging code generation. In many traditional finite element implementations,
this change of variables is simply offloaded to existing shape function routines, under
the assumption that the reference-to-physical displacement û is approximated using
isoparametric elements. In such implementations, the coordinates of nodes in the
mesh data structure are updated using û, and (7) is assembled over the deformed
mesh. However, this approach can be limiting for various reasons:
• One might wish to use an analytical or superparametric deformation of the

reference domain.
• The hyperelastic background solid subproblem and the artificial problem for û

in the fluid subdomain are more naturally posed on Ωy.
• Expressing the pullback symbolically as part of the problem residual enables

automated differentiation of the residual with respect to û. This functional
derivative may be needed in some types of implicit solvers or shape optimization
schemes.

As such, to maximize the generality of our implementation (which we may wish to
use in contexts other than immersed FSI), we prefer to pull the fluid subproblem back
to the reference domain. Fortunately, this choice adds no significant complexity to
the implementation when taking advantage of modern code generation capabilities.

The value of UFL for simplifying the implementation of the fluid subproblem
on Ωy lies in its extensibility. Because UFL is embedded within the Python pro-
gramming language, it can be augmented with new auxiliary operators by simply
defining Python functions. For example, the spatial gradient operator defined by the
substitution (12) can be implemented as

def gradx(f,x):
return dot(grad(f),inv(grad(x)))

where x is a symbolic UFL expression of spatial position x = ϕ̂(y) = y + û(y), the
native UFL grad function acts as ∇y when the finite element mesh is defined on
Ωy (so that grad(x) is effectively F̂), dot contracts over the last index of its first
argument and first index of its second, and inv symbolically inverts a UFL matrix.
This applies naturally to a tensor f of arbitrary rank, with the unambiguous index-
notation interpretation

F̂kA =
∂ûk

∂yA
+ δkA and (∇xf)i··· jk =

∂ fi··· j
∂yA

F−1
Ak . (39)

In this work, we augment functions from the original implementation of VarMINT
used by [32] to include optional keyword arguments for the spatial position x, which

16 Code generation for immersogeometric FSI on deforming domains

are then used to apply the corresponding domain pullback, via easily-understandable
constructions like the gradx function listed out explicitly above.

Remark 4 As explained in [34], a similar change-of-variables implementation is used for IGA
by tIGAr, wherein DOLFIN operates directly on a mesh in the spline parameter space.

4.2 Temporary mesh motion and solution algorithm
In the specific context of immersed FSI, updating the mesh to be in Ωx is over-
whelmingly advantageous for one specific task: locating the background elements
containing deformed images of quadrature points on Γ0. DOLFIN already imple-
ments robust computational geometry routines for locating points in finite element
meshes, but these are only applicable to immersed FSI if the mesh is in Ωx. Thus,
we follow the approach of temporarily updating the mesh by adding û to its ver-
tices, performing this computational geometry operation, then reverting the mesh to
its original position inΩy, over which the fluid, solid, and reference-to-physical map-
ping problems are posed. Thus, the overall algorithm for computing the (n + 1)-level
solution within a single time step can be summarized as follows:

1. Compute explicit predictors for the (n + 1)-level fluid–solid velocity, shell
structure displacement, and mesh displacement.

2. Compute the (n + α)-level deformed positions of fluid–shell coupling points
using the predicted (n + 1)-level shell structure displacement.

3. Repeat the following steps until reaching a converged6 solution to the nonlinear
problem (36). Each pass of these steps is referred to as a “block iteration”,
following the terminology of [74]. (This is a generalization of the block iteration
algorithm analyzed in [24, Section 4] for the case of a static fluid domain.)
(a) Assemble the vector and matrix corresponding to the monolithic fluid–solid

residual (6) and its derivative with respect to vn+1
fs .

(b) Temporarily move the fluid–solid mesh of Ωy to the current configuration
(using the explicit predictor for ûn+1, as discussed in Section 3.2).

(c) Add contributions from the Γ0 integrals in (36) to the assembled fluid–solid
system.

(d) Apply Dirichlet boundary conditions to the assembled fluid–solid residual
vector and Jacobian matrix.

(e) Solve for an increment of the fluid–solid solution and update the current
values.

(f) Assemble the vector and matrix corresponding to the shell subproblem
residual (24) and its derivative with respect to un+1

sh .
(g) Add contributions to the assembled shell structure system corresponding to

the contact residual (26) and its Jacobian.

6By default, convergence is tested by computing ℓ2 norms of assembled residual vectors for both the fluid–solid and
shell subproblems, normalizing these against residual norms computed at the start of the iteration, and checking whether
both fall below a given relative tolerance.

Code generation for immersogeometric FSI on deforming domains 17

(h) Add contributions from the Γ0 integrals in (36) to the assembled shell
structure system, using the updated fluid solution from step 3e.

(i) Apply Dirichlet boundary conditions to the assembled shell structure
system.

(j) Solve for an increment of the shell displacement solution and update the
current values.

(k) Move the mesh back to its static reference configuration.
4. Solve the fictitious hyperelastic mesh deformation problem of Section 2.5 to

obtain ûn+1, using the converged solution for un+1
so as a boundary condition.

Remark 5 Our reliance on temporary modification of the mesh data structure for applying
point sources in Ωx effectively limits the mesh displacement û to being piecewise linear, due
to many of the computational geometry routines in FEniCS being restricted to affine simplicial
elements. Because û must coincide with the solid displacement in Ωso

y and we assume a single
continuous FE space on Ωy for vfs, the piecewise-linear restriction on û propagates to the fluid
velocity. This limitation on the polynomial degree of velocity elements imposes high resolution
requirements for fully resolving turbulent flow features. Section 6 discusses the implications
of this for heart valve FSI.

5 Benchmark tests
This section summarizes the results of benchmark testing to verify the implemen-
tations of pullbacks to Ωy and computation of immersed boundary forces on a
deforming Ωf

x.

5.1 Navier–Stokes on a deforming domain
To test the deforming-domain fluid formulation in the updated library VarMINT, we
use the classic 2D Taylor–Green vortex problem [75], a special case of the Navier–
Stokes equations for incompressible fluids that has an analytic solution. This problem
allows us to verify the implementation of the fluid ALE-VMS formulation from
Section 2.1.1 and the pullbacks to the reference configuration described in Section
4.1. The exact two-dimensional velocity solution is

v(x, t) = (sin(x1) cos(x2)e1 − cos(x1) sin(x2)e2) e−2νft, (40)

where νf = µf/ρf is the kinematic viscosity and {ei} are standard Cartesian basis
vectors in physical space. We choose the spatial domain Ωx = [−π, π] × [−π, π].
The problem is solved on the static reference domain Ωy, which deforms to Ωx via a
nontrivial time-dependent deformation with the prescribed displacement field

û(y, t) =
1
5

sin (y1) sin (y2) sin
(

2πt
T

)
(e1 + e2) , (41)

where T is the simulation duration. To simplify the enforcement of boundary
conditions, the displacement field is chosen to specifically maintain ∂Ωy = ∂Ωx.

18 Code generation for immersogeometric FSI on deforming domains

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
log(h)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

lo
g(

no
rm

)
H1 norm
slope = 1

L2 norm
slope = 2

Fig. 1: Optimal convergence of Taylor–Green vortex problem to the analytical solu-
tion for given element sizes, h.

The computations presented here use continuous degree-one finite element spaces
for the pressure and all velocity components with νf = 0.01 and T = 1. Each mesh is
generated from a uniform N ×N structured quadrilateral mesh divided into triangles.
The computation uses an implicit midpoint time-stepping scheme and takes N time
steps to uniformly cover the interval [0,T]. The exact velocity solution is strongly
enforced across the domain boundary and the exact pressure is enforced at a sin-
gle corner of the domain. For further details, the reader is referred to the published
GitHub repository [73] that contains the script needed to reproduce the results shown
here.

Figure 1 shows the convergence of solutions to this problem under mesh refine-
ment. We see optimal first- and second-order convergence of the H1 and L2 norms
of the error, respectively. The reported error norms are calculated at t = T and plot-
ted against a mesh-size parameter, h = 2π

N . A representative snapshot of a numerical
solution is also shown in Figure 2, illustrating how the qualitative structure of the
solution in Ωx is preserved, despite the motion of the mesh.

5.2 Conforming FSI: The Turek and Hron benchmark
We next consider a test of the coupled fluid–solid problem without any immersed
shell structure to validate the boundary-fitted coupling and mesh motion implemen-
tations behind (6). For this, we use the 2D benchmark proposed by Turek and Hron
[76] and studied extensively by other authors (e.g., [77–82]). The benchmark involves
incompressible channel flow over a rectangular block of solid material, which is fixed
to a cylinder at its leading edge and deflects periodically due to vortex shedding. The
FSI3 case of [76] is adopted here. Detailed information on the problem setup and a set
of converged reference results are provided by [76]. Here we give a brief summary.
The length and height of the channel domain are 2.5 m and 0.41 m, respectively. The
center of the cylinder is positioned at (0.2 m, 0.2 m) measured from the bottom-left
corner of the channel. The radius of the cylinder is 0.05 m. The elastic structure bar
has a length and height of 0.35 m and 0.02 m, respectively. The bottom-right corner
of the structure is positioned at (0.6 m, 0.19 m) and the left end is fully attached to the

Code generation for immersogeometric FSI on deforming domains 19

Fig. 2: Representative solution snapshot of the decaying Taylor–Green vortex on
a deformed domain. The solution presented here was computed on a 16 × 16(
log (h) = −0.406

)
uniform quadrilateral mesh split into triangles and is shown at

t = 0.21875.

Table 1: Setup cases for the Turek–Hron FSI3 benchmark where N is the total num-
ber of triangular elements and h is the mesh size at the interface.

Setup N h (mm)
M1 17,327 8
M2 34,684 4
M3 77,985 2
M4 192,251 1

fixed cylinder. The setting is intentionally non-symmetric in the vertical direction to
ensure that the onset of a vortex street does not rely on an initial small perturbation.

A parabolic inflow velocity profile [76, Eq. (10)] is prescribed at the left channel
boundary with a mean inflow velocity of 2.0 m/s. A smooth increase of the velocity
profile in time [76, Eq. (11)] is applied as the initial inflow condition. The out-
flow boundary condition is traction-free, and the no-slip condition is applied on the
remaining boundaries, including the fluid–structure interface. The structure is elas-
tic and compressible, modeled as a St. Venant–Kirchhoff material. The density of
the structure is ρso

0 = 1.0 × 103 kg/m3, the Poisson’s ratio is ν = 0.4, and the shear
modulus is µs = 2.0 MPa. The fluid is incompressible Newtonian. The density is
ρf = 1.0 × 103 kg/m3 and the kinematic viscosity is νf = 1.0 × 10−3 m2/s.

Each finite element mesh of the domain is generated with Gmsh [83]. Table 1
describes the meshes size, h, near the fluid–object interface (both the cylinder and the
structure). The maximum element size for all of the mesh levels is hmax = 15 mm. The
interface mesh size h is maintained for any elements within 25 mm of the interface.
Outside of the uniformly-refined region, the elements are sized according to a linear
interpolation between h and hmax over 525 mm. In the absence of refinement, the
elements maintain an average size of hmax and conform to the outer boundary.

20 Code generation for immersogeometric FSI on deforming domains

Fig. 3: A sample solution of the Turek–Hron FSI3 benchmark on mesh M1 showing
the boundary-fitted nature of the mesh.

We discretize this 2D problem using the updated version of VarMINT for the
deforming fluid subdomain and a standard Bubnov–Galerkin formulation of hypere-
lasticity in the solid subdomain. The problem utilizes a fully-implicit backward-Euler
time integration scheme and a consistent time step size of 1.0 × 10−3 s between dif-
ferent mesh refinement levels. The solid displacement at the fluid–structure interface
and the channel domain boundaries are used as boundary conditions for the mesh
problem, solved as a hyperelasticity problem for the internal mesh displacement per
(30). The strongly-coupled fluid–solid problems and mesh motion problem are solved
iteratively until both converge in a typical block-iterative fashion [74] to validate the
fluid–solid coupling. That is, this benchmark does not make use of the CouDALFISh
solution algorithm described in Section 4.2 so that the two coupling types (con-
forming fluid–solid and immersed fluid–shell) could be independently validated. The
sparse, parallel, direct solver MUMPS [84] was used as the linear solver for both the
fluid–solid and mesh problems. Again, the reader is referred to the GitHub repository
[73] that contains the scripts used to produce the results here.

A representative snapshot of the results on a coarse mesh (M1) are shown in
Figure 3. The snapshot displays the velocity field and highlights the boundary-fitted
nature of the mesh. Table 2 shows the comparison quantity results over several mesh
resolutions, which compare well with the published benchmark results in [76]. The
displacements in Table 2 are evaluated at the center of the tip of the structure bar, ini-
tially located at (0.6 m, 0.2 m). The displacements are presented here in terms of their
mean, amplitude, and frequency in accordance with [76]. The lift and drag forces in
Table 2 are computed over the entire fluid–object boundary using the conservative
definition of traction [85, Eq. (37)], which accounts for any contributions from the
stabilization terms at the boundary.

5.3 2D valve immersed in a deforming domain
We now move on to a more complicated verification test, which can be viewed as
a 2D model problem sharing some features with a heart valve. Minor variants of
this problem have been thoroughly studied in numerous references [21, 58, 86–88].

Code generation for immersogeometric FSI on deforming domains 21

Table 2: Numerical results for the Turek–Hron FSI3 benchmark. u1 and u2 are the
horizontal and vertical displacements of the structure bar recorded at the center of its
tip. Drag and lift forces are evaluated over the entire fluid–object interface.

Setup u1 (mm) u2 (mm) Drag (N) Lift (N) f1 (Hz) f2 (Hz)
M1 −1.56 ± 1.53 1.74 ± 24.90 436.80 ± 20.25 −4.12 ± 190.83 11.1 5.6
M2 −2.39 ± 2.29 1.35 ± 31.41 454.24 ± 24.96 1.85 ± 171.09 11.1 5.6
M3 −2.53 ± 2.41 1.45 ± 32.51 458.19 ± 25.54 2.06 ± 156.78 11.1 5.5
M4 −2.55 ± 2.43 1.49 ± 32.66 457.74 ± 25.65 2.39 ± 154.30 11.0 5.5
REF −2.69 ± 2.53 1.48 ± 34.38 457.30 ± 22.66 2.22 ± 149.78 10.9 5.3

We refer to [21, Section 4.7] for a complete statement of the domain dimensions,
boundary conditions, material properties, etc. that are reused in the present work.
However, we briefly summarize the problem here. A horizontal channel is modeled
by a rectangular domain of 8.0 × 1.61 with no-slip boundary conditions on the top
and bottom, a homogeneous Neumann boundary condition on the right end, and a
parabolic inflow profile [21, Eq. (55)] on the left, whose amplitude varies periodically
in time. Two thin beams, each with a height of 0.7 and a thickness of 0.0212, are
located 2.0 from the inlet and are immersed in this channel, one with a cantilever
support on the top side and the other with a cantilever support on the bottom. These
beams deflect periodically, in response to the inflow profile. Although they never
contact each other in the standard version of the benchmark,7 the beams are still
referred to as “leaflets”, in a loose analogy to heart valve mechanics. The fluid and
structure have equal densities of ρf = ρ

sh
0 = 100. The dynamic viscosity of the fluid

is µf = 10. The beam is modeled using a St. Venant–Kirchhoff material with E =
5.6 × 107 and Poisson’s ratio of ν = 0.4.

Because immersed shells are fundamentally a 3D problem, this 2D problem was
solved on a finite element mesh with a layer of two elements. To maintain the 2D
nature of the problem, the out-of-plane velocity component in both the fluid and shell
was strongly constrained to zero. The final discrete mesh contains N × 5N × 2 tetra-
hedral elements where N is the number of elements in the x2 direction. The default
structured tetrahedral mesh generated in FEniCS (mesh = BoxMesh(N,5N,2)) is
not symmetric. We found that the asymmetric nature of the background fluid mesh
introduced asymmetry in the velocity solution. To remedy this, and avoid using an
external mesh generator, we discovered that the uniform refinement algorithm in
FEniCS (mesh = refine(BoxMesh(N/2,5N/2,1)) produces a symmetric mesh of
N×5N×2 elements. The temporal discretization is refined with the spatial discretiza-
tion such that the time step size ∆t = T/(32N), where T = 3.0 is the total simulation
time. In this study, three meshes, N = 16, 32, and 64, are considered. The interested
reader is referred to the published CouDALFISh repository [33] for the complete
code (geometry, mesh, boundary conditions, solver algorithms, problem script, etc.)
to reproduce the exact problem setup and results shown here.

This problem was previously used to verify the initial implementation of
CouDALFISh in [32], with the stationary-domain restriction of Ωx = Ωy = Ω

f
x. As

with the 2D Taylor–Green problem in Section 5.1, we now solve with a nontrivial

7A variant with leaflet coaptation is documented in [58].

22 Code generation for immersogeometric FSI on deforming domains

Fig. 4: Sample solutions at two different time steps on a coarse mesh deformed in
two different configurations.

0 0.5 1 1.5 2 2.5 3
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

x 1-d
is

pl
ac

em
en

t

reference
16x80 elements
32x160 elements
64x320 elements

0 0.5 1 1.5 2 2.5 3
Time

0

0.1

0.2

0.3

0.4

0.5
x 2
-d
is
pl
ac
em
en
t

Fig. 5: Plots showing the convergence of both the x1- and x2-displacement of the top-
leaflet tip to the boundary-fitted reference.

time-dependent deformation of Ωy, given by displacement

û(y, t) = A sin
(
2π

y1

L

)
sin

(
2π

y2

H

)
sin

(
fπ

t
T

)
(e1 + e2) (42)

where A = 0.15 is a chosen displacement amplitude, f = 8 is a chosen oscillation
frequency, T = 3 is the total simulation time, and L = 8 and H = 1.61 are the domain
length and height, respectively.

Several representative snapshots of the solution are shown in Figure 4, demon-
strating that the overall symmetry of the solution is preserved, despite a mesh
deformation that does respect that symmetry. We also compare the results with a
converged reference solution from [21, Section 4.7.2]. In particular, we look at the
deflection of the top leaflet as a function of time. The time histories plotted in Figure
5 show a clear convergence toward the reference solution as the immersed discretiza-
tions are refined. Figure 6 also plots the difference between the tip deflections of
the top and bottom leaflets for each immersed discretization. The asymmetry clearly
converges to zero, despite the asymmetric mesh deformation.

Code generation for immersogeometric FSI on deforming domains 23

0 0.5 1 1.5 2 2.5 3
Time

0

1

2

3

4
%

 d
if

fe
re

nc
e

in
 x

1-d
is

pl
ac

em
en

t 16x80 elements
32x160 elements
64x320 elements

0 0.5 1 1.5 2 2.5 3
Time

0

1

2

3

4

5

6

%
 d

if
fe

re
nc

e
in

 x
2-d

is
pl

ac
em

en
t 16x80 elements

32x160 elements
64x320 elements

Fig. 6: Each plot shows the difference in displacement between the two tips, one plot
for each independent direction of displacement (x1 and x2 directions). The differences
are presented as percentages of the maxima with respect to time of the corresponding
tip displacement components. The convergence towards zero signifies a symmetric
displacement between the two leaflet tips under refinement of the fluid mesh.

6 Application to FSI of a bioprosthetic heart valve
Having verified the accuracy of the deforming-domain fluid solver, using benchmarks
for both pure Navier–Stokes and FSI, we move on to a complex application, namely,
FSI simulation of a bioprosthetic heart valve immersed in a flexible artery. We sum-
marize the problem setup in Section 6.1, followed by a presentation and discussion of
the simulation results in Section 6.2. For all results in this section, the geometry defi-
nitions, mesh creation scripts, boundary and initial condition files, solver algorithms,
problem scripts, and basic post-processing tools are included in the CouDALFISh
repository on GitHub [33] for simulation reproducibility and transparency.

6.1 Geometry, boundary conditions, and parameters
Many of the main modeling assumptions for the background artery FSI (Section
6.1.1) and immersed leaflet shell structure (Section 6.1.2) are adopted from prior
work, e.g. [21–25, 89–92], but we reiterate them here for completeness.

6.1.1 Fluid–solid background problem

The background fluid–solid domain is defined in its reference configuration, Ωy, to
model the aortic root, sinuses, and a short portion of the ascending aorta. Our finite
element mesh of this geometry is shown in Figure 7, consisting of 742, 716 tetrahe-
dral elements. The solid domain is comprised of 112, 752 structured elements in two
layers. The fluid domain is 629, 964 elements split between three layers of boundary-
layer structured elements and a center unstructured region that is refined near the
valve. The mesh was generated with the open-source meshing tool Gmsh [83]. We
designate the ventricular end as the “inflow” and the aortic end as the “outflow”,
based on the nominal flow direction permitted by the valve. The artery wall thickness
is 14% of the lumen radius at a given axial cross-section, while the overall length

24 Code generation for immersogeometric FSI on deforming domains

Fig. 7: Subfigure (a) shows a cross-section of the computational mesh for the heart
valve problem. The flow “inlet” is on the bottom and the flow “outlet” is on the top.
The solid domain (112, 752 structured tetrahedral elements) is shown in red and fluid
domain (629, 964 elements) in gray. Subfigure (b) shows the relative positioning of
the valve and the background mesh. The valve stent base is aligned with the root of
the sinus, shown in more detail in (c). Subfigure (d) shows the relative sizes of fluid
elements and shell elements along the valve’s belly region.

of the domain from inflow to outflow is 10.5 cm. The diameter of the artery lumen’s
cross-section is 2.3 cm at the inflow and 3.0 cm at the outflow, following the aorta
geometry from [90]. The bottom of the sinus (aortic annulus) is located 1.0 cm from
the inlet.

Following [22], we use a neo-Hookean hyperelastic solid with mass damping and
a dilational penalty as an effective model for the elasticity of the artery and dissipation
due to interaction with surrounding tissue. (We do not claim that this provides accu-
rate stresses within the artery wall, as it neglects the layered structure.) Specifically,
the second Piola–Kirchhoff stress in the material is given by

S = µsJ−2/3
(
I −

1
3

(tr C) C−1
)
+

1
2
κ
(
J2 − 1

)
C−1 , (43)

where we choose a Young’s modulus E = 1.0 × 107 dyn/cm2 and the Poisson’s ratio
ν = 0.45. The shear modulus and bulk modulus, respectively, are found from the fol-
lowing equations: µs =

E
2(1+ν) and κ = E

3(1−2ν) . For the mass-proportional damping
term we choose Cd = 1.0 × 10−4 s−1. The density of the solid is ρso

0 = 1.0 g/cm3.
The solid subdomain is subject to sliding boundary conditions [93] at the inflow and

Code generation for immersogeometric FSI on deforming domains 25

outflow, and is fixed at its intersection with the prosthetic valve’s stent. The outer
boundaries of the artery are treated as traction-free (where, again, the effects of inter-
action with surrounding tissue are modeled through the choice of effective stiffness
and mass damping).

For the fluid subproblem posed within the artery lumen, we assume a Newtonian8

dynamic viscosity of µf = 3.0 × 10−2 g/(cm s) and a mass density of ρf = 1.0 g/cm3.
The fluid subproblem is driven by applied fluxes at the inflow and outflow. The inflow
flux is given by the pressure profile

h|inflow = −pinnx , (44)

where the scalar pressure pin varies periodically in time, following the profile of [90,
Figure 18] (varying between approximately 128 mmHg during systole and −2 mmHg
during diastole in a cardiac cycle of 0.86 s). The flux at the outflow is determined
based on the volumetric flow rate, viz.,

h|outflow = −(p0 + RQ)nx , (45)

where p0 = 80 mmHg is a baseline pressure value, R = 70 dyn s/cm5 is a resistance
coefficient, and

Q =
∫
∂Ωf

x|outflow

v · nx d∂Ωx (46)

is the volumetric flow rate through the outflow. The backflow stabilization coefficient
γ in (7) is set to 1 on both the inflow and outflow.

Remark 6 The choice of γ = 1 is motivated by mathematical stability analysis of model prob-
lems (e.g., the coercivity analysis of [95, Section 2.1] for advection–diffusion with Neumann
boundary conditions). The coefficient γ was not considered a free parameter in the first refer-
ence [96] introducing this form of backflow stabilization. It was later introduced in [37] with
the the possibility of γ < 1. Reducing γ may lessen the impact of stabilization on the flow solu-
tion while remaining stable in practice. In this example, we opt for the original choice of γ = 1.
In any case, it is important to note that the value of γ, especially at the inflow, affects the cali-
bration of resistance boundary conditions, because backflow stabilization adds a net resistance
to flow when applied to both ends of a tube. Thus, resistance boundary conditions must be cal-
ibrated for specific choices of γ. (However, in the present example, we simply choose a value
of R that provides a volumetric flow rate within the physiological range, and do not attempt to
calibrate it using patient-specific data.)

The velocity and pressure fields are initialized to zero throughout the whole
domain. To ease convergence at the start of the simulation, the simulation starts at
t = 0.6 s (during the diastole of the cardiac cycle) and the pressures pin and p0 are lin-
early increased over 0.03 s (300 steps when ∆t = 1× 10−4) until pin matches the inlet
pressure profile in [90, Figure 18] and p0 matches the outlet baseline pressure. The
results presented in this section correspond to the next complete cardiac cycle, which

8Although blood flow has well-documented non-Newtonian features, the Newtonian model remains appropriate in
large arteries [94].

26 Code generation for immersogeometric FSI on deforming domains

Fig. 8: Isometric, top, and side views of the valve geometry and discretization with
the leaflet patches shown in white and the stent patches shown in red.

starts at t = 0.86 s. Based on previous experience with these problems, we observe
this “first” cycle to have a well-settled solution in the fluid domain and relatively
periodic valve kinematics between cardiac cycles.

6.1.2 Modeling the valve

We model a bioprosthetic valve consisting of thin leaflets clamped into a rigid stent.
The valve and stent are modeled as a multi-patch B-spline surface, designed in the
CAD software Rhinoceros [97]. The valve has an overall height of 0.94 cm and diam-
eter of 2.235 cm (not including the suture ring). The outer diameter of the suture ring
is 2.8 cm. The spline geometry is shown in Figure 8. Following the IGA paradigm,
this spline model also serves as the analysis mesh. The mesh has a total of 1, 386
cubic B-spline elements, 960 of which make up the three leaflets and 426 elements
make up the stent patches. The valve is located such that the suture ring is level with
the aortic annulus and centered in the aortic root, shown in Figure 7. The stent patches
are entirely fixed, while the clamped attachments of leaflets are modeled by fixing
two rows of B-spline control points at each attachment edge.

Constitutive modeling of the chemically treated soft tissue used in bioprosthetic
valves remains a subject of ongoing research [98–100]. It is thus useful to develop
a software framework that permits rapid prototyping of different hyperelastic poten-
tials. The present contribution achieves this through the flexible isogeometric shell
analysis module ShNAPr. While an initial version of ShNAPr was introduced in
[32], the present study looks deeper into its implications for studying material mod-
els in heart valve FSI. In particular, the submodule ShNAPr.hyperelastic provides a
universal interface to automate the implementation of incompressible hyperelastic
constitutive models, which uses computer algebra within FEniCS UFL to circumvent
the manual calculation of tensor derivatives spelled out in [89]. The general form of
a hyperelastic energy density for an incompressible material is

ψ(E) = ψel(E) − p(J − 1) , (47)

where p is a Lagrange multiplier to enforce the constraint that J = 1. To perform sim-
ulations with a given hyperelastic potential, one must only implement a single Python

Code generation for immersogeometric FSI on deforming domains 27

function psi el(E) corresponding to ψel(E), given a UFL representation E of the
3D Green–Lagrange strain in a local Cartesian coordinate system whose third basis
vector is orthogonal to the shell midsurface. For example, to use an incompressible
neo-Hookean model, one would simply define

def psi_el(E):
mu = Constant(1e4)

C = 2.0*E + Identity(3)

I1 = tr(C)

return 0.5*mu*(I1-3.0)

where the UFL scalar mu is assumed to be the shear modulus. Note that this user-
defined function corresponds to the 3D constitutive model. Following the formulation
[46, Section 5.1], (47) is then implemented generically within the library as

psi_el(E) - p*(J-1.0)

where

C = 2.0*E + Identity(3)

J = sqrt(det(C))

defines the Jacobian determinant J in terms of E, and p is the return value of the
function

def incompressiblePressureKL(psi_el,E):
E = variable(E)

dpsi_el_dC = 0.5*diff(psi_el(E),E)

C22 = 2.0*E[2,2] + 1.0

return 2.0*dpsi_el_dC[2,2]*C22

which uses a plane-stress criterion on the second Piola–Kirchhoff stress to statically
condense the Lagrange multiplier for an arbitrary user-defined choice of ψel. This
procedure is not limited to the neo-Hookean model defined as an example earlier.

Remark 7 The indices of E and dpsi el dC (corresponding to ∂ψel/∂C) and the variable name
C22 for the out-of-plane component of C follow the convention of indices starting from zero,
not one, which FEniCS UFL inherits from the Python programming language it is embedded
in.

As a demonstration of the value of code generation to heart valve FSI, we com-
pare simulation results using two different material models for the valve leaflets.
Specifically, we consider the isotropic neo-Hookean (NH) potential,

ψel =
1
2

c0 (I1 − 3) , (48)

and the isotropic Lee–Sacks (LSI) potential [89],

ψel =
1
2

c0 (I1 − 3) +
1
2

c1

(
ec2(I1−3)2

− 1
)

, (49)

28 Code generation for immersogeometric FSI on deforming domains

Table 3: Material properties for the different models compared in this work.
Model c0

(
dyn/cm2

)
c1

(
dyn/cm2

)
c2

NH 3670000 – –
LSI 676080 132848 38.1878

where I1 = tr C and {ci} are material parameters that are given in Table 3.
The parameters of the Lee–Sacks models are chosen according to the calibra-

tion of [89] and the shear modulus for the neo-Hookean model is derived from the
Young’s modulus, E, of the St. Venant–Kirchhoff model in [23, Section 3.1] assum-
ing a perfectly incompressible medium. That is, assuming a Poisson’s ratio of 0.5,
c0 = µs = E/3. Additionally, the density of the valve is ρsh

0 = 1.0 g/cm3 and the
leaflet thickness is 0.0386 cm in all cases, following the data reported in [89].

6.1.3 Contact parameters

The contact parameter Rself must be selected to be less than the initial distance
between leaflets in the reference configuration, to permit contact forces between
the leaflets. In this work, it is chosen as Rself = 0.0308 cm. The range of contact
forces must be less than this, as mentioned earlier, and rmax is correspondingly set
to rmax = Rself/1.3 ≈ 0.0237 cm. The stiffness and smoothing parameters are set to
kc = 1.0 × 1011 g cm−4s−2 and sc = 0.2, based on experience with this problem class.

6.1.4 Time-integration scheme

All heart valve FSI results here were computed with a time step size of ∆t = 1 ×
10−4 s and a generalized-α time integration scheme for the baseline time integrator
for subproblems, on top of which DAL is applied (cf. Section 3.1). The spectral
radius of the amplification matrix in the limit of ∆t → ∞ is set to ρ∞ = 0.0, to
maximize numerical damping of high-frequency modes, which improves robustness
in complicated calculations (while maintaining formal second-order accuracy of the
generalized-α scheme).

6.1.5 Nonlinear solution procedure

Section 4.2 presents the nonlinear solution procedure for the valve without any men-
tion of the nonlinear tolerances or special considerations, so we include those here
for completeness. For a full simulation of a cardiac cycle, the computation is limited
to three block iterations or a relative tolerance of 1.0 × 10−3, whichever is reached
first. The size of the background mesh problem necessitates an iterative solver, but
the scaling of the stability parameters near the immersed boundary [21, Section 4.4]
makes it difficult to converge the linear solver within each Newton iteration. Follow-
ing the original heart valve example published with CouDALFISh, we again fix the
number of GMRES [101] iterations for the fluid linear solver to 300 iterations, which
is usually enough to still allow the outer nonlinear iteration to converge. The shell
structure problem uses a direct solver (UMFPACK [102]).

Code generation for immersogeometric FSI on deforming domains 29

6.2 Results
Figure 9 shows slice-intersection renderings of several snapshots of the FSI analysis
results for the Lee–Sacks model. The flow-field solutions show the development of
the jet upon opening of the valve and the stopping of flow at the valve closing. The
element size and polynomial degree in the fluid mesh downstream of the valve is
not sufficient to resolve the detailed vortex dynamics expected at the flow’s peak
Reynolds number, especially as it encounters an adverse pressure gradient during the
onset of diastole. However, the primary quantity of interest in many bioprosthetic
valve analyses is the stress field within the leaflets, which is relatively insensitive to
downstream vortex dynamics. Fully-resolved fluid dynamics may be relevant to other
questions, though (e.g., studies on hemolysis, wall shear stress, or noise), and we
refer the reader to [103–106] for examples of highly-resolved simulations of valvular
hemodynamics and in-depth discussion of the turbulent flow features.

Figure 10 shows slice-intersection renderings comparing the aorta displacement
at systole and diastole (t = 0.25 s and t = 0.52 s, respectively). The deformation solu-
tions show the significant displacement of the domain, especially near the inlet during
systole. The significance of arterial wall deformation for valvular FSI analysis was
clearly demonstrated by [22], where it was shown to provide a mechanism for dissi-
pating the kinetic energy of the diastolic blood hammer, damping the oscillation of
the heart valve, which is clearly visible in plots of volumetric flow rate over time [22,
Figure 8].9 This important damping effect is reproduced in the present work, where
the outflow flow rate in Figure 11 exhibits no significant oscillation after valve clo-
sure. Additionally, the flow rate in Figure 11 implies a cardiac output of 6.97 L/min
and is quantitatively consistent with the results of [22] and [23].

The deformation and flow field for the neo-Hookean model (48) is qualitatively
similar to the Lee–Sacks results. However, a closer examination in Figure 12 reveals
significant differences in the strain (and therefore stress) distributions, which can
have major implications for the long-term durability of valve leaflets [107]. Figure 12
shows snapshots of the valve leaflet deformations, with the maximum in-plane eigen-
value of E (MIPE) plotted over the surface, evaluated on the aortic side of the leaflets.
In particular, we see that the neo-Hookean model has large concentrations of strain
near the commissure points of each leaflet, while the strain is more evenly distributed
with the Lee–Sacks model. This is in agreement with the earlier observations of [23,
Figure 5], where a Fung-type constitutive model with similar exponential stiffening
properties also led to more even strain distributions, by more strongly penalizing
strain concentrations in the energy functional.

7 Conclusions
This paper has introduced a modern, open-source implementation of the immersoge-
ometric FSI analysis techniques of [21, 22], emphasizing the role of code generation
technology in ensuring transparency and versatility. In particular, it generalizes the
work of [32] by immersing thin structures into deforming fluid domains. In doing so,

9For a detailed explanation of the mechanism behind this flow rate oscillation, see the electrical circuit analogy used to
discuss results in [21, Section 5.4.4].

30 Code generation for immersogeometric FSI on deforming domains

Fig. 9: A sample of the flow-field solutions at selected time steps showing the devel-
opment of the jet upon opening and the stopping of flow at the valve closing. The
duration of a single cardiac cycle is 0.86 s.

Fig. 10: Two section views showing the difference in the aorta shape between peak
systole (t = 0.25 s, shown in red) and diastole (t = 0.52 s, shown in blue).

we showed how code generation can be used to design clear abstractions for referring
problems on deforming domains back to static reference configurations. The suit-
ability of this implementation for complex applications was demonstrated by using
it to test the effects of different material models on FSI-induced strain of prosthetic
heart valve leaflets in a deforming artery. In the context of this application, our use
of code generation was shown to greatly simplify the process of implementing new
material models in FSI analysis. The code for this project will be maintained in the
publicly-accessible Git repository [33] and its dependencies [72, 73, 108]. Any dis-
cussion of code structure in this document refers to the state of the repository at time

Code generation for immersogeometric FSI on deforming domains 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

-200

-100

0

100

200

300

400

500

V
ol

um
et

ri
c

F
lo

w
ra

te
 (

m
L

/s
)

Fig. 11: The volumetric flow rate at the outlet of the domain throughout the cardiac
cycle. The flow rate is quantitatively comparable to [23] and results in an overall
cardiac output of 6.97 L/min.

Fig. 12: Selected snapshots comparing MIPE for the different constitutive models.

of submission,10 and some results shown in the paper were computed using earlier
versions. The comparison between material models in Section 6.2 served primarily to
demonstrate methodology and software capabilities, rather than to answer a question
of scientific interest. However, we believe that the present contribution will lower
the human resource cost and increase the reproducibility and transparency of studies
like [91, 109], which derive nontrivial physical insights from FSI simulations using
DAL-based IMGA.

10This repository state can always be recovered using Git, but we expect post-publication changes to improve the
software, and recommend against reverting to previous states for most practical purposes.

32 Code generation for immersogeometric FSI on deforming domains

Acknowledgments. G. E. Neighbor and M. Saraeian were partially supported
by the Presbyterian Health Foundation Team Science Grant No. C5122401, and
M.-C. Hsu was partially supported by the National Heart, Lung, and Blood Insti-
tute of the National Institutes of Health under Award No. R01HL142504. H. Zhao
was partially supported by National Aeronautics and Space Administration Grant
No. 80NSSC21M0070 and D. Kamensky was partially supported by National Sci-
ence Foundation Grant No. 2103939. This support is gratefully acknowledged. We
also thank the Texas Advanced Computing Center (TACC) at the University of Texas
at Austin for providing high-performance computing resources that contributed to the
results presented in this paper.

References
[1] Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite

Element Method. Dover Books on Mathematics Series. Dover Publications,
Sweden (2012)

[2] Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of Dif-
ferential Equations by the Finite Element Method. Springer, Switzerland
(2012)

[3] Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: Unified
Form Language: A domain-specific language for weak formulations of partial
differential equations. ACM Trans. Math. Softw. 40(2), 9–1937 (2014)

[4] Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math.
Softw. 32(3), 417–444 (2006)

[5] Logg, A., Wells, G.N.: DOLFIN: Automated finite element computing. ACM
Trans. Math. Softw. 37(2), 1–28 (2010)

[6] Evans, J.A., Kamensky, D., Bazilevs, Y.: Variational multiscale modeling
with discretely divergence-free subscales. Computers & Mathematics with
Applications 80(11), 2517–2537 (2020)

[7] Calo, V.M., Ern, A., Muga, I., Rojas, S.: An adaptive stabilized conform-
ing finite element method via residual minimization on dual discontinuous
Galerkin norms. Computer Methods in Applied Mechanics and Engineering
363, 112891 (2020)

[8] Medina, E., Farrell, P.E., Bertoldi, K., Rycroft, C.H.: Navigating the landscape
of nonlinear mechanical metamaterials for advanced programmability. Phys.
Rev. B 101, 064101 (2020)

[9] Carlson, J., Pack, A., Transtrum, M.K., Lee, J., Seidman, D.N., Liarte, D.B.,
Sitaraman, N.S., Senanian, A., Kelley, M.M., Sethna, J.P., Arias, T., Posen, S.:
Analysis of magnetic vortex dissipation in Sn-segregated boundaries in Nb3Sn

Code generation for immersogeometric FSI on deforming domains 33

superconducting RF cavities. Phys. Rev. B 103, 024516 (2021)

[10] Hoffman, J., Jansson, J., Johnson, C.: New theory of flight. Journal of
Mathematical Fluid Mechanics 18(2), 219–241 (2016)

[11] Jansson, J., Krishnasamy, E., Leoni, M., Jansson, N., Hoffman, J.: In:
López Mejia, O.D., Escobar Gomez, J.A. (eds.) Time-Resolved Adaptive
Direct FEM Simulation of High-Lift Aircraft Configurations, pp. 67–92.
Springer, Switzerland (2018)

[12] Petras, A., Leoni, M., Guerra, J.M., Jansson, J., Gerardo-Giorda, L.: Effect of
tissue elasticity in cardiac radiofrequency catheter ablation models. In: 2018
Computing in Cardiology Conference (CinC), vol. 45, pp. 1–4 (2018)

[13] Richardson, C.N., Sime, N., Wells, G.N.: Scalable computation of thermome-
chanical turbomachinery problems. Finite Elements in Analysis and Design
155, 32–42 (2019)

[14] LeVeque, R.J., Mitchell, I.M., Stodden, V.: Reproducible research for scien-
tific computing: Tools and strategies for changing the culture. Computing in
Science Engineering 14(4), 13–17 (2012)

[15] Ivie, P., Thain, D.: Reproducibility in scientific computing. ACM Comput.
Surv. 51(3) (2018)

[16] Scott, L.R.: Introduction to Automated Modeling with FEniCS. Computa-
tional Modeling Initiative LLC, Chicago (2018)

[17] Angoshtari, A., Matin, A.G.: Finite Element Methods in Civil and Mechanical
Engineering. CRC Press, Boca Raton, Florida (2020)

[18] Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517
(2002)

[19] Mittal, R., Iaccarino, G.: Immersed boundary methods. Annual Review of
Fluid Mechanics 37, 239–261 (2005)

[20] Chen, J.-S., Hillman, M., Chi, S.-W.: Meshfree methods: Progress made after
20 years. Journal of Engineering Mechanics 143(4), 04017001 (2017)

[21] Kamensky, D., Hsu, M.-C., Schillinger, D., Evans, J.A., Aggarwal, A.,
Bazilevs, Y., Sacks, M.S., Hughes, T.J.R.: An immersogeometric variational
framework for fluid–structure interaction: Application to bioprosthetic heart
valves. Computer Methods in Applied Mechanics and Engineering 284,
1005–1053 (2015)

[22] Hsu, M.-C., Kamensky, D., Bazilevs, Y., Sacks, M.S., Hughes, T.J.R.: Fluid–
structure interaction analysis of bioprosthetic heart valves: significance of

34 Code generation for immersogeometric FSI on deforming domains

arterial wall deformation. Computational Mechanics 54, 1055–1071 (2014)

[23] Hsu, M.-C., Kamensky, D., Xu, F., Kiendl, J., Wang, C., Wu, M.C.H.,
Mineroff, J., Reali, A., Bazilevs, Y., Sacks, M.S.: Dynamic and fluid–structure
interaction simulations of bioprosthetic heart valves using parametric design
with T-splines and Fung-type material models. Computational Mechanics 55,
1211–1225 (2015)

[24] Kamensky, D., Hsu, M.-C., Yu, Y., Evans, J.A., Sacks, M.S., Hughes, T.J.R.:
Immersogeometric cardiovascular fluid–structure interaction analysis with
divergence-conforming B-splines. Computer Methods in Applied Mechanics
and Engineering 314, 408–472 (2017)

[25] Xu, F., Morganti, S., Zakerzadeh, R., Kamensky, D., Auricchio, F., Reali,
A., Hughes, T.J.R., Sacks, M.S., Hsu, M.-C.: A framework for designing
patient-specific bioprosthetic heart valves using immersogeometric fluid–
structure interaction analysis. International Journal for Numerical Methods in
Biomedical Engineering 34(4), 2938 (2018)

[26] Borazjani, I.: A review of fluid-structure interaction simulations of prosthetic
heart valves. Journal of Long-Term Effects of Medical Implants 25(1-2), 75–
93 (2015)

[27] Hirschhorn, M., Tchantchaleishvili, V., Stevens, R., Rossano, J., Throckmor-
ton, A.: Fluid–structure interaction modeling in cardiovascular medicine –
a systematic review 2017–2019. Medical Engineering & Physics 78, 1–13
(2020)

[28] Abbas, S.S., Nasif, M.S., Al-Waked, R.: State-of-the-art numerical
fluid–structure interaction methods for aortic and mitral heart valves simula-
tions: A review. SIMULATION 98(1), 3–34 (2022)

[29] Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Computer Methods
in Applied Mechanics and Engineering 194, 4135–4195 (2005)

[30] Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward
Integration of CAD and FEA. Wiley, Chichester (2009)

[31] Peskin, C.S.: Flow patterns around heart valves: A numerical method. Journal
of Computational Physics 10(2), 252–271 (1972)

[32] Kamensky, D.: Open-source immersogeometric analysis of fluid–structure
interaction using FEniCS and tIGAr. Computers & Mathematics with Appli-
cations 81, 634–648 (2021)

[33] https://github.com/david-kamensky/CouDALFISh: CouDALFISh source

https://github.com/david-kamensky/CouDALFISh

Code generation for immersogeometric FSI on deforming domains 35

code

[34] Kamensky, D., Bazilevs, Y.: tIGAr: Automating isogeometric analysis with
FEniCS. Computer Methods in Applied Mechanics and Engineering 344, 477–
498 (2019)

[35] Donea, J., Huerta, A., Ponthot, J.-P., Rodriguez-Ferran, A.: Arbitrary
Lagrangian–Eulerian methods. In: Encyclopedia of Computational Mechan-
ics. Volume 3: Fluids. John Wiley & Sons, Hoboken, New Jersey (2004). Chap.
14

[36] Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid–
structure interaction: theory, algorithms, and computations. Computational
Mechanics 43, 3–37 (2008)

[37] Esmaily-Moghadam, M., Bazilevs, Y., Hsia, T.-Y., Vignon-Clementel, I.E.,
Marsden, A.L., of Congenital Hearts Alliance (MOCHA), M.: A compari-
son of outlet boundary treatments for prevention of backflow divergence with
relevance to blood flow simulations. Computational Mechanics 48, 277–291
(2011)

[38] Bazilevs, Y., Calo, V.M., Cottrel, J.A., Hughes, T.J.R., Reali, A., Scovazzi,
G.: Variational multiscale residual-based turbulence modeling for large eddy
simulation of incompressible flows. Computer Methods in Applied Mechanics
and Engineering 197, 173–201 (2007)

[39] Akkerman, I., Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Hulshoff, S.: The role
of continuity in residual-based variational multiscale modeling of turbulence.
Computational Mechanics 41, 371–378 (2008)

[40] Bazilevs, Y., Michler, C., Calo, V.M., Hughes, T.J.R.: Isogeometric variational
multiscale modeling of wall-bounded turbulent flows with weakly enforced
boundary conditions on unstretched meshes. Computer Methods in Applied
Mechanics and Engineering 199, 780–790 (2010)

[41] Takizawa, K., Bazilevs, Y., Tezduyar, T.E.: Space–time and ALE-VMS tech-
niques for patient-specific cardiovascular fluid–structure interaction modeling.
Archives of Computational Methods in Engineering 19, 171–225 (2012)

[42] Bazilevs, Y., Hsu, M.-C., Takizawa, K., Tezduyar, T.E.: ALE–VMS and ST–
VMS methods for computer modeling of wind-turbine rotor aerodynamics
and fluid–structure interaction. Mathematical Models and Methods in Applied
Sciences 22, 1230002 (2012)

[43] Hsu, M.-C., Akkerman, I., Bazilevs, Y.: Finite element simulation of wind
turbine aerodynamics: Validation study using NREL Phase VI experiment.
Wind Energy (2014)

36 Code generation for immersogeometric FSI on deforming domains

[44] Korobenko, A., Hsu, M.-C., Akkerman, I., Bazilevs, Y.: Aerodynamic simula-
tion of vertical-axis wind turbines. Journal of Applied Mechanics 81, 021011
(2014)

[45] Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Long, C.C., Marsden, A.L.,
Schjodt, K.: ST and ALE-VMS methods for patient-specific cardiovascular
fluid mechanics modeling. Mathematical Models and Methods in Applied
Sciences 24, 2437–2486 (2014)

[46] Kiendl, J., Hsu, M.-C., Wu, M.C.H., Reali, A.: Isogeometric Kirchhoff–Love
shell formulations for general hyperelastic materials. Computer Methods in
Applied Mechanics and Engineering 291, 280–303 (2015)

[47] Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R.: Isogeometric shell
analysis with Kirchhoff–Love elements. Computer Methods in Applied
Mechanics and Engineering 198, 3902–3914 (2009)

[48] Ager, C., Schott, B., Vuong, A.-T., Popp, A., Wall, W.A.: A consistent
approach for fluid-structure-contact interaction based on a porous flow model
for rough surface contact. International Journal for Numerical Methods in
Engineering 119(13), 1345–1378 (2019)

[49] Kamensky, D., Xu, F., Lee, C.-H., Yan, J., Bazilevs, Y., Hsu, M.-C.: A contact
formulation based on a volumetric potential: Application to isogeometric sim-
ulations of atrioventricular valves. Computer Methods in Applied Mechanics
and Engineering 330, 522–546 (2018)

[50] Belytschko, T., Neal, M.O.: Contact-impact by the pinball algorithm with
penalty and Lagrangian methods. International Journal for Numerical Methods
in Engineering 31(3), 547–572 (1991)

[51] Kamensky, D., Behzadinasab, M., Foster, J.T., Bazilevs, Y.: Peridynamic mod-
eling of frictional contact. Journal of Peridynamics and Nonlocal Modeling
1(2), 107–121 (2019)

[52] Kamensky, D., Alaydin, M.D., Bazilevs, Y.: A review of nonlocality in com-
putational contact mechanics. In: Aldakheel, F., Hudobivnik, B., Soleimani,
M., Wessels, H., Weißenfels, C., Marino, M. (eds.) Current Trends and Open
Problems in Computational Mechanics, pp. 239–246. Springer, Cham (2022)

[53] Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid–Structure
Interaction: Methods and Applications. Wiley, Chichester (2013)

[54] Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Mittal, S.: Parallel finite-
element computation of 3D flows. Computer 26(10), 27–36 (1993)

Code generation for immersogeometric FSI on deforming domains 37

[55] Johnson, A.A., Tezduyar, T.E.: Mesh update strategies in parallel finite ele-
ment computations of flow problems with moving boundaries and interfaces.
Computer Methods in Applied Mechanics and Engineering 119, 73–94 (1994)

[56] Stein, K., Tezduyar, T.E., Benney, R.: Automatic mesh update with the solid-
extension mesh moving technique. Computer Methods in Applied Mechanics
and Engineering 193, 2019–2032 (2004)

[57] Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid–
structure interactions with large displacements. Journal of Applied Mechanics
70, 58–63 (2003)

[58] Kamensky, D., Evans, J.A., Hsu, M.-C.: Stability and conservation properties
of collocated constraints in immersogeometric fluid–thin structure interaction
analysis. Communications in Computational Physics 18, 1147–1180 (2015)

[59] Hsu, M.-C., Kamensky, D.: Immersogeometric analysis of bioprosthetic heart
valves, using the dynamic augmented Lagrangian method. In: Tezduyar,
T.E. (ed.) Frontiers in Computational Fluid–Structure Interaction and Flow
Simulation, pp. 167–212. Springer, Cham (2018)

[60] van Brummelen, E.H.: Added mass effects of compressible and incompress-
ible flows in fluid–structure interaction. Journal of Applied Mechanics 76,
021206 (2009)

[61] Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics
with improved numerical dissipation: The generalized-α method. Journal of
Applied Mechanics 60, 371–75 (1993)

[62] Jansen, K.E., Whiting, C.H., Hulbert, G.M.: A generalized-α method for
integrating the filtered Navier-Stokes equations with a stabilized finite ele-
ment method. Computer Methods in Applied Mechanics and Engineering 190,
305–319 (2000)

[63] Kamensky, D., Evans, J.A., Hsu, M.-C., Bazilevs, Y.: Projection-based sta-
bilization of interface Lagrange multipliers in immersogeometric fluid–thin
structure interaction analysis, with application to heart valve modeling. Com-
puters & Mathematics with Applications 74(9), 2068–2088 (2017)

[64] Yu, Y., Kamensky, D., Hsu, M.-C., Lu, X.Y., Bazilevs, Y., Hughes, T.J.R.:
Error estimates for projection-based dynamic augmented Lagrangian bound-
ary condition enforcement, with application to fluid–structure interaction.
Mathematical Models and Methods in Applied Sciences 28(12), 2457–2509
(2018)

[65] John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.: On the divergence
constraint in mixed finite element methods for incompressible flows. SIAM

38 Code generation for immersogeometric FSI on deforming domains

Review 59(3), 492–544 (2017)

[66] Casquero, H., Bona-Casas, C., Gomez, H.: NURBS-based numerical prox-
ies for red blood cells and circulating tumor cells in microscale blood flow.
Computer Methods in Applied Mechanics and Engineering 316, 646–667
(2017)

[67] Boilevin-Kayl, L., Fernández, M.A., Gerbeau, J.-F.: Numerical methods for
immersed FSI with thin-walled structures. Computers & Fluids 179, 744–763
(2019)

[68] Boilevin-Kayl, L., Fernández, M., Gerbeau, J.-F.: A loosely coupled scheme
for fictitious domain approximations of fluid-structure interaction problems
with immersed thin-walled structures. SIAM Journal on Scientific Computing
41(2), 351–374 (2019)

[69] Casquero, H., Zhang, Y.J., Bona-Casas, C., Dalcin, L., Gomez, H.: Non-body-
fitted fluid–structure interaction: Divergence-conforming B-splines, fully-
implicit dynamics, and variational formulation. Journal of Computational
Physics 374, 625–653 (2018)

[70] Casquero, H., Bona-Casas, C., Toshniwal, D., Hughes, T.J.R., Gomez, H.,
Zhang, Y.J.: The divergence-conforming immersed boundary method: Appli-
cation to vesicle and capsule dynamics. Journal of Computational Physics 425,
109872 (2021)

[71] Tong, G.G., Kamensky, D., Evans, J.A.: Skeleton-stabilized divergence-
conforming B-spline discretizations for incompressible flow problems of high
Reynolds number. Computers & Fluids 248, 105667 (2022)

[72] https://github.com/david-kamensky/ShNAPr: ShNAPr source code

[73] https://github.com/david-kamensky/VarMINT: VarMINT source code

[74] Tezduyar, T.E., Sathe, S.: Modelling of fluid–structure interactions with the
space–time finite elements: Solution techniques. International Journal for
Numerical Methods in Fluids 54(6–8), 855–900 (2007)

[75] Taylor, G.I.: On the decay of vortices in a viscous fluid. The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science 46(274),
671–674 (1923)

[76] Turek, S., Hron, J.: Proposal for numerical benchmarking of fluid-structure
interaction between an elastic object and laminar incompressible flow. In:
Bungartz, H.-J., Schäfer, M. (eds.) Fluid-Structure Interaction, pp. 371–385.
Springer, Berlin, Heidelberg (2006)

https://github.com/david-kamensky/ShNAPr
https://github.com/david-kamensky/VarMINT

Code generation for immersogeometric FSI on deforming domains 39

[77] Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M.: Numerical bench-
marking of fluid-structure interaction: A comparison of different discretization
and solution approaches. In: Bungartz, H.-J., Mehl, M., Schäfer, M. (eds.)
Fluid Structure Interaction II, pp. 413–424. Springer, Berlin, Heidelberg
(2010)

[78] Tian, F.-B., Dai, H., Luo, H., Doyle, J.F., Rousseau, B.: Fluid–structure
interaction involving large deformations: 3D simulations and applications to
biological systems. Journal of Computational Physics 258, 451–469 (2014)

[79] Mehl, M., Uekermann, B., Bijl, H., Blom, D., Gatzhammer, B., van Zui-
jlen, A.: Parallel coupling numerics for partitioned fluid–structure interaction
simulations. Computers & Mathematics with Applications 71(4), 869–891
(2016)

[80] Bungartz, H.-J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K.,
Shukaev, A., Uekermann, B.: precice – a fully parallel library for multi-physics
surface coupling. Computers & Fluids 141, 250–258 (2016)

[81] Heil, M., Hazel, A.L., Boyle, J.: Solvers for large-displacement fluid–structure
interaction problems: segregated versus monolithic approaches. Computa-
tional Mechanics 43, 91–101 (2008)

[82] Breuer, M., De Nayer, G., Münsch, M., Gallinger, T., Wüchner,
R.: Fluid–structure interaction using a partitioned semi-implicit predic-
tor–corrector coupling scheme for the application of large-eddy simulation.
Journal of Fluids and Structures 29, 107–130 (2012)

[83] Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering 79(11), 1309–1331 (2009)

[84] a MUltifrontal Massively Parallel sparse direct Solver, M.: http://mumps.
enseeiht.fr/. Accessed 24 April 2016

[85] Bazilevs, Y., Hsu, M.-C., Scott, M.A.: Isogeometric fluid–structure interaction
analysis with emphasis on non-matching discretizations, and with application
to wind turbines. Computer Methods in Applied Mechanics and Engineering
249–252, 28–41 (2012)

[86] Hesch, C., Gil, A.J., Arranz Carreño, A., Bonet, J.: On continuum immersed
strategies for fluid-structure interaction. Computer Methods in Applied
Mechanics and Engineering 247-248, 51–64 (2012)

[87] Gil, A.J., Carreño, A.A., Bonet, J., Hassan, O.: An enhanced immersed
structural potential method for fluid–structure interaction. Journal of Compu-
tational Physics 250, 178–205 (2013)

http://mumps.enseeiht.fr/
http://mumps.enseeiht.fr/

40 Code generation for immersogeometric FSI on deforming domains

[88] Wick, T.: Flapping and contact FSI computations with the fluid–solid
interface-tracking/interface-capturing technique and mesh adaptivity. Compu-
tational Mechanics 53(1), 29–43 (2014)

[89] Wu, M.C.H., Zakerzadeh, R., Kamensky, D., Kiendl, J., Sacks, M.S., Hsu, M.-
C.: An anisotropic constitutive model for immersogeometric fluid–structure
interaction analysis of bioprosthetic heart valves. Journal of Biomechanics 74,
23–31 (2018)

[90] Wu, M.C.H., Muchowski, H.M., Johnson, E.L., Rajanna, M.R., Hsu, M.-
C.: Immersogeometric fluid–structure interaction modeling and simulation
of transcatheter aortic valve replacement. Computer Methods in Applied
Mechanics and Engineering 357, 112556 (2019)

[91] Johnson, E.L., Wu, M.C.H., Xu, F., Wiese, N.M., Rajanna, M.R., Her-
rema, A.J., Ganapathysubramanian, B., Hughes, T.J.R., Sacks, M.S., Hsu,
M.-C.: Thinner biological tissues induce leaflet flutter in aortic heart valve
replacements. Proceedings of the National Academy of Sciences 117(32),
19007–19016 (2020)

[92] Xu, F., Johnson, E.L., Wang, C., Jafari, A., Yang, C.-H., Sacks, M.S., Krish-
namurthy, A., Hsu, M.-C.: Computational investigation of left ventricular
hemodynamics following bioprosthetic aortic and mitral valve replacement.
Mechanics Research Communications 112, 103604 (2021)

[93] Bazilevs, Y., Hsu, M.-C., Zhang, Y., Wang, W., Kvamsdal, T., Hentschel, S.,
Isaksen, J.: Computational fluid–structure interaction: Methods and applica-
tion to cerebral aneurysms. Biomechanics and Modeling in Mechanobiology
9, 481–498 (2010)

[94] Arzani, A.: Accounting for residence-time in blood rheology models: do we
really need non-Newtonian blood flow modelling in large arteries? Journal of
The Royal Society Interface 15(146), 20180486 (2018)

[95] Hughes, T.J.R., Wells, G.N.: Conservation properties for the Galerkin and sta-
bilised forms of the advection–diffusion and incompressible Navier–Stokes
equations. Computer Methods in Applied Mechanics and Engineering 194(9),
1141–1159 (2005)

[96] Bazilevs, Y., Gohean, J.R., Hughes, T.J.R., Moser, R.D., Zhang, Y.: Patient-
specific isogeometric fluid–structure interaction analysis of thoracic aortic
blood flow due to implantation of the Jarvik 2000 left ventricular assist device.
Computer Methods in Applied Mechanics and Engineering 198, 3534–3550
(2009)

[97] https://www.rhino3d.com/: Rhinoceros3D software

https://www.rhino3d.com/

Code generation for immersogeometric FSI on deforming domains 41

[98] Sacks, M.S., Zhang, W., Wognum, S.: A novel fibre-ensemble level constitu-
tive model for exogenous cross-linked collagenous tissues. Interface Focus 6,
20150090 (2016)

[99] Zhang, W., Zakerzadeh, R., Zhang, W., Sacks, M.S.: A material modeling
approach for the effective response of planar soft tissues for efficient com-
putational simulations. Journal of the Mechanical Behavior of Biomedical
Materials 89, 168–198 (2019)

[100] Zhang, W., Motiwale, S., Hsu, M.-C., Sacks, M.S.: Simulating the time evolv-
ing geometry, mechanical properties, and fibrous structure of bioprosthetic
heart valve leaflets under cyclic loading. Journal of the Mechanical Behavior
of Biomedical Materials 123, 104745 (2021)

[101] Saad, Y., Schultz, M.: GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal of Scientific and
Statistical Computing 7, 856–869 (1986)

[102] Davis, T.A.: Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern mul-
tifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)

[103] Borazjani, I.: Fluid–structure interaction, immersed boundary-finite element
method simulations of bio-prosthetic heart valves. Computer Methods in
Applied Mechanics and Engineering 257, 103–116 (2013)

[104] Flamini, V., DeAnda, A., Griffith, B.E.: Immersed boundary-finite element
model of fluid–structure interaction in the aortic root. Theoretical and Com-
putational Fluid Dynamics 30(1), 139–164 (2016)

[105] Becsek, B., Pietrasanta, L., Obrist, D.: Turbulent systolic flow downstream of
a bioprosthetic aortic valve: Velocity spectra, wall shear stresses, and turbulent
dissipation rates. Frontiers in Physiology 11 (2020)

[106] Nitti, A., De Cillis, G., de Tullio, M.D.: Numerical investigation of turbulent
features past different mechanical aortic valves. Journal of Fluid Mechanics
940, 43 (2022)

[107] Thubrikar, M.J., Deck, J.D., Aouad, J., Nolan, S.P.: Role of mechanical stress
in calcification of aortic bioprosthetic valves. J. Thorac. Cardiovasc. Surg.
86(1), 115–125 (1983)

[108] https://github.com/david-kamensky/tIGAr: tIGAr source code

[109] Johnson, E.L., Rajanna, M.R., Yang, C.-H., Hsu, M.-C.: Effects of membrane
and flexural stiffnesses on aortic valve dynamics: Identifying the mechanics
of leaflet flutter in thinner biological tissues. Forces in Mechanics 6, 100053
(2022)

https://github.com/david-kamensky/tIGAr

	Introduction
	Combined fluid–solid and fluid–shell interaction
	Fluid–solid continuum
	Incompressible Newtonian fluid
	Hyperelastic solid

	Kirchhoff–Love shell structure
	FSI kinematic constraint
	Shell structure self-contact
	Deformation of the fluid mesh

	FSI with the dynamic augmented Lagrangian method and explicit geometry
	The dynamic augmented Lagrangian method
	Explicit treatment of geometry

	Implementation leveraging FEniCS and tIGAr
	Transparent pullbacks to the reference domain
	Temporary mesh motion and solution algorithm

	Benchmark tests
	Navier–Stokes on a deforming domain
	Conforming FSI: The Turek and Hron benchmark
	2D valve immersed in a deforming domain

	Application to FSI of a bioprosthetic heart valve
	Geometry, boundary conditions, and parameters
	Fluid–solid background problem
	Modeling the valve
	Contact parameters
	Time-integration scheme
	Nonlinear solution procedure

	Results

	Conclusions
	Acknowledgments

