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Abstract

We deploy the immersogeometric approach for tracking moving objects. The method immerses
objects into non-boundary-fitted meshes and weakly enforces Dirichlet boundary conditions on the
object boundaries. The object motion is driven by the integrated surface force and external body
forces. A residual-based variational multiscale method is employed to stabilize the finite element
formulation for incompressible flows. Adaptively refined quadrature rules are used to better cap-
ture the geometry of the immersed boundaries by accurately integrating the intersected background
elements. Treatment for the freshly-cleared nodes (i.e. background mesh nodes that are inside
the object at one time step, but are in the fluid domain at the next time step) is considered. We
assess the accuracy of the method by analyzing object motion in different flow structures includ-
ing objects freely dropping in viscous fluids and particle focusing in unobstructed and obstructed
micro-channels. We show that key quantities of interest are in very good agreements with analyt-
ical, numerical and experimental solutions. We also show a much better computational efficiency
of this framework than current commercial codes using adaptive boundary-fitted approaches. We
anticipate deploying this framework for applications of particle inertial migration in microfluidic
channels.
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1. Introduction

Control and localization of finite-size particles (e.g., cells and precipitates) in aqueous flows
are useful in biological processing, chemical reaction control, and for creating structured materials.
Some examples include fast identification of E. coli in water, robust removal of circulating tumor
cells from the blood plasma, and fast separation of cell types for rapid flow cytometry. The precise,
efficient and cheap localization of a heterogeneous collection of cells in a fluid medium is an
important challenge with multiple engineering and health applications. Computational modeling
of particle motion, especially under inertial flow conditions, is a promising approach to understand,
control and localize cells in microfluidic devices.

Tracking finite-size particle motion in inertial flows (especially in obstructed geometries) is a
computationally challenging problem. Approaches to simulate such a system include boundary-
fitted and non-boundary-fitted methods. In the boundary-fitted approach, the fluid problem is
solved on a mesh that conforms to the fluid–object (particle) interface and deforms around it. The
fluid problem on the deforming domain is written in an arbitrary Lagrangian–Eulerian (ALE) [1–3]
or a space–time (ST) [4, 5] coordinate system. Boundary-fitted methods have the advantage of sat-
isfying kinematic constraints, such as no-slip boundary conditions, by construction. However, for
situations that involve large translational and/or rotational interface motions, the boundary-fitted
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mesh can become severely distorted if it is continuously deformed from a single reference con-
figuration, harming both the conditioning of the discrete problem and the accuracy of its solution.
Applying boundary-fitted methods to complex moving-interface problems may therefore require
specialized solution strategies to maintain fluid mesh quality. One approach is remeshing, in which
all or part of the fluid domain is re-discretized when mesh distortion becomes too extreme [6–8].
Mesh management is complicated further if the object moves into and out of contact with other
objects, changing the topology of the fluid domain [9, 10].

For these reasons, non-boundary-fitted approaches have become a popular alternative for the
simulation of moving-interface problems. Non-boundary-fitted methods approximate the solution
of boundary value problems on analysis meshes that do not necessarily conform to the boundary of
the domain. The analysis object is arbitrarily superimposed onto (or immersed into) a background
fluid mesh. Such methods have greater geometric flexibility than their boundary-fitted counter-
parts. However, kinematic constraints such as Dirichlet boundary conditions at the immersed
interface can no longer be imposed strongly on the discrete solution space. To apply interface con-
ditions, one must devise a suitable method for weak enforcement. The first non-boundary-fitted
approach that became widely known for computational fluid dynamics (CFD) was the immersed
boundary method [11, 12]. Since then, immersed methods have been applied to a variety of flow
problems [13–16]. In the context of finite elements, several adaptations of immersed methods
were explored in the 2000s for the simulation of fluid interacting with moving objects. Glowinski
and coworkers [17–19] simulated viscous flows interacting with rigid particles by enforcing the
rigid-body-motion constraint on the overlapping fluid mesh through a distributed Lagrange mul-
tiplier field. Zhang, Liu and cowokers [20–23] developed the immersed finite element method
(IFEM) to use a flexible Lagrangian solid mesh that moves on top of a background Eulerian fluid
mesh. Casquero et al. [24] later enhanced IFEM by introducing non-uniform rational B-splines
(NURBS) as the basis functions to improve the robustness and accuracy of the immersed method.
In addition, Rüberg and Cirak [25] and Kadapa et al. [26] applied Nitsche’s method [27] at the im-
mersed interface with background B-spline finite elements for the simulation of moving-boundary
problems.

While immersed methods show great flexibility in solving complex moving-boundary prob-
lems, they typically suffer from reduced accuracy of the solution near the immersed boundary.
Kamensky et al. [28] and Xu et al. [29] found that the reduced accuracy is partially related to the
representation of the geometry in the immersed domain. The immersogeometric analysis (IMGA)
approach was proposed to alleviate this issue, by faithfully capturing the immersed geometry in
the intersected elements. The method also alleviates the difficulties associated with CFD mesh
generation around complex design geometries. The immersogeometric method is comprised of the
following main components. A variational multiscale (VMS) formulation of incompressible flows
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[30–33] is used, which provides accuracy and robustness in both laminar and turbulent flow simu-
lations. The Dirichlet boundary conditions on the surface of the immersed geometry are enforced
weakly using an extension of Nitsche’s method [27, 34]. This weak boundary condition formula-
tion can be integrated over the immersed object surface directly using its computer-aided design
(CAD) boundary representation (B-rep) [35, 36]. An exact representation of the design geometry
is therefore used in the simulation, sharing the same philosophy with isogeometric analysis [37].
Adaptively refined quadrature rules are used to accurately integrate the background elements cut
by the immersed boundary. It was found in Xu et al. [29] that improved quadrature in intersected
elements is critical for obtaining accurate flow solutions when using immersed methods. In this
work, we apply the immersogeometric method to the analysis of moving-particle problems.

Applying the IMGA approach to problems with moving objects raises some challenges. The
most significant one is the treatment of freshly-cleared nodes – the nodes that are previously inside
the object at one time step, but are outside (i.e. in the fluid domain) at the next time step due to
object motion. These nodes lack a time history of the fluid field. This may result in numerical
issues arising from improper initial guesses, leading to numerical instabilities and error accumula-
tion. Udaykumar et al. [38] approximated the velocity and pressure on those freshly-cleared nodes
via interpolation of neighboring fluid nodes and immersed object surface points. We adopt this
technique and extend it in the context of a finite element framework.

The paper is organized as follows. In Section 2, we summarize the formulation of the Navier–
Stokes equations of incompressible flows posed on a non-boundary-fitted discretization. Section 3
describes the details of implementation of the framework. In Section 4, we verify and validate
the developed method using several cases, including free falling 2D cylinder and 3D sphere in
viscous fluids, and particle focusing and migration in obstructed and unobstructed channels. We
demonstrate the capability of the developed framework on applications of fluid–structure interac-
tion. Finally, we draw conclusions and motivate future research in Section 5.

2. Immersogeometric analysis

In this section, we summarize the variational formulation of the Navier–Stokes equations of
incompressible flows and its spatial and temporal discretizations. We also emphasize the weak
enforcement of boundary conditions, which is an essential component of the IMGA framework.

2.1. Governing equations of incompressible flows

The Navier–Stokes equations of the incompressible flows posed on a time-dependent fluid
domain Ωt are written as

ρ f

(
∂u
∂t

+ u · ∇∇∇u − f
)
−∇∇∇ ·σσσ = 0 , (1)
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∇∇∇ · u = 0 , (2)

where ρ f , u, and f are the fluid density, the flow velocity and the external force per unit mass,
respectively. We use ∂(·)

∂t to denote a partial time derivative taken with respect to a fixed spatial
coordinate in the referential domain. The stress and strain-rate tensors are defined respectively as

σσσ (u, p) = −p I + 2µεεε(u) , (3)

εεε(u) =
1
2

(
∇∇∇u +∇∇∇uT

)
, (4)

where p is the pressure, I is an identity tensor, and µ is the dynamic viscosity. The problem (1)–
(4) is accompanied by suitable boundary conditions, defined on the boundary of the fluid domain,
Γt = ΓD

t ∪ ΓN
t :

u = ug on ΓD
t , (5)

−p n + 2µεεε(u) n = h on ΓN
t , (6)

where ug denotes the prescribed velocity at the Dirichlet boundary ΓD
t , h is the traction vector at

the Neumann boundary ΓN
t , and n is the unit normal vector pointing in the wall-outward direction.

2.2. Semi-discrete variational multiscale formulation

Consider a collection of disjoint elements {Ωe
t }, ∪eΩ

e
t ⊂ R

d, d = 2, 3, with closure covering
the fluid domain: Ωt ⊂ ∪eΩ

e
t . Note that Ωe

t is not necessarily a subset of Ωt because of the non-
conforming fluid–structure interface. Let Vh

u and Vh
p be the discrete velocity and pressure spaces

of functions supported on these elements. The strong problem (1)–(6) may be recast in a weak
form and posed over these discrete spaces to produce the following semi-discrete problem: Find
uh ∈ Vh

u and ph ∈ Vh
p such that for all wh ∈ Vh

u and qh ∈ Vh
p:

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
= 0 . (7)

The bilinear form BVMS and the load vector FVMS are given as

BVMS
(
{wh, qh}, {uh, ph}

)
=

∫
Ωt

wh · ρ f

(
∂uh

∂t
+ uh · ∇∇∇uh

)
dΩ +

∫
Ωt

εεε(wh) : σσσ
(
uh, ph

)
dΩ

+

∫
Ωt

qh∇∇∇ · uh dΩ

−
∑

e

∫
Ωe

t∩Ωt

(
ρ f uh · ∇∇∇wh +∇∇∇qh

)
· u′ dΩ
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−
∑

e

∫
Ωe

t∩Ωt

p′∇∇∇ · wh dΩ +
∑

e

∫
Ωe

t∩Ωt

ρ f wh · (u′ · ∇∇∇uh) dΩ

−
∑

e

∫
Ωe

t∩Ωt

ρ f∇∇∇wh :
(
u′ ⊗ u′

)
dΩ, (8)

and

FVMS
(
{wh, qh}

)
=

∫
Ωt

wh · ρ f dΩ +

∫
ΓN

t

wh · h dΓ , (9)

where u′ is defined as

u′ = −τM

(
∂uh

∂t
+ uh · ∇∇∇uh − f −

1
ρ f
∇∇∇ ·σσσ

(
uh, ph

))
, (10)

and p′ is given by

p′ = −ρ fτC∇∇∇ · uh . (11)

Eqs. (8)–(11) feature the residual-based VMS formulation of Navier–Stokes equations of incom-
pressible flows [33]. The additional terms added onto the standard weak Galerkin form can be
interpreted as a combination of streamline/upwind Petrov Galerkin (SUPG) stabilization and VMS
large-eddy simulation of turbulence modeling [31–33, 39–42]. The stabilization parameters are
designed as

τM =

( Ct

∆t2 + u ·G u + CI ν
2 G : G

)−1/2

, (12)

τC = (τM tr G)−1 , (13)

where ∆t is the time-step size, CI is a positive constant [43–45], ν = µ/ρ f is the fluid kinematic
viscosity, G is the element metric tensor calculated by the mapping from the isoparametric element
to its physical counterpart x(ξ):

Gi j =

d∑
k=1

∂ξk

∂xi

∂ξk

∂x j
, (14)

tr G is the trace of G, and the parameter Ct is typically set to 4 [33, 41].

2.3. Variationally consistent weak boundary conditions

The standard way of strongly imposing Dirichlet boundary conditions in Eq. (7) is not feasible
in IMGA. We thus impose the Dirichlet boundary conditions weakly in the sense of Nitsche’s
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method [25, 27–29, 34]. The semi-discrete problem becomes

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
−

∫
ΓD

t

wh ·
(
−ph n + 2µεεε(uh) n

)
dΓ

−

∫
ΓD

t

(
2µεεε(wh) n + qh n

)
·
(
uh − ug

)
dΓ

+

∫
ΓD

t

τBwh ·
(
uh − ug

)
dΓ = 0 . (15)

The detailed interpretation of different terms can be found in Bazilevs and Hughes [34]. The pa-
rameter τB is a penalty-like stabilization parameter that helps to satisfy the no-slip condition on the
boundary and ensure the stability (or coercivity) of the formulation. If τB is too large, the penalty
term dominates the formulation, overshadowing the variational consistency that is responsible for
the good performance of the method, and can result in an ill-conditioned stiffness matrix. If τB is
too small, on the other hand, the solution is not stable, and the solver may confront convergence
issues. Following the suggestion and numerical experience in Kamensky et al. [46] and Wu et al.
[47], we define τB = max {CB

invρ f h/∆t,CB
visµ/h}, where CB’s are positive dimensionless constants.

This definition ensures that the penalty does not disappear in the inviscid limit and the formulation
remains stable in the viscous limit. For simplicity, we choose h to be the size of the whole cut
element. Our numerical experiments reveal that the proposed formulation of penalty preserves the
accuracy very well.

2.4. Time discretization and iterative method

We employ the backward Euler finite difference scheme to complete the discretization in time:

ρ f
∂u
∂t

= ρ f
un − un−1

∆t
= L(un, pn), (16)

where the operator L(un, pn) represents all the other terms except the time-dependent term in
Eq. (1) evaluated at the current time step n. ∆t may be selected to follow CFL condition. We
implement the parallelized moving immersogeometric method within our in-house parallel finite
element framework. The domain decomposition is achieved via ParMETIS [48]. The (non)linear
system is solved via PETSc [49]. Specifically, we utilize the SNES construct (line search quasi-
Newton), which uses the KSP construct (BCGS solver), for the linearized system. For some time
steps, the SNES solver may not achieve a prescribed tolerance of the norm of absolute/relative
residuals. For these time steps, we apply LU preconditioner to the sub-blocks of the matrix.
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3. Implementation of moving B-rep

3.1. Modeling the rigid body motion

The objects are modeled as rigid bodies. We denote the velocities associated with the objects
as vi, with the subscript i indicating the ith immersed object. The motion of the objects can be
described in the Lagrangian reference frame by

dxc
i

dt
= vc

i ,
dvc

i

dt
=

Fi

mi
, (17)

dθθθc
i

dt
= ωωωc

i ,
d
(
Jiωωω

c
i

)
dt

= Ti, (18)

where xc
i and θθθc

i are the linear and angular locations of the centroid of the ith object, vc
i and ωωωc

i are
the linear and angular velocities of the centroid of the ith object, Fi and Ti are the overall force
and torque integrated over the surface of the ith object, and mi and Ji

1 are the mass and moment
of inertia tensor of the ith object. Fi and Ti are computed from the solution of the fluid field, and
defined as follows:

Fi =

∮
(ΓD

t )i

σσσi (u, p) nidΓ, Ti =

∮
(ΓD

t )i

ri × (σσσi (u, p) ni) dΓ, (19)

where
(
ΓD

t

)
i

is the boundary of the ith object, σσσi (u, p) is the stress tensor acting on its surface, ri

is the distance vector from its centroid to its surface, and ni is the unit normal vector of its surface
pointing outward. The coordinates xi and velocity vi of the surface points of the ith object are
computed as

xi = xc
i + ri, vi = vc

i +ωωωc
i × ri. (20)

vi is imposed as the prescribed velocity at the Dirichlet boundary of the ith object. Assuming
the overall force and torque acting on the ith object surface are constant during one time step, we
approximate the object motion as follows

(xc
i )

n+1 − (xc
i )

n

∆t
=

(vc
i )

n+1 + (vc
i )

n

2
,

(vc
i )

n+1 − (vc
i )

n

∆t
=

(Fi)n

mi
, (21)

(θθθc
i )

n+1 − (θθθc
i )

n

∆t
=

(ωωωc
i )

n+1 + (ωωωc
i )

n

2
,

(ωωωc
i )

n+1 − (ωωωc
i )

n

∆t
=

(Ti)n

Ji
. (22)

1For particle shapes (2D cylinders or 3D spheres) considered in this work, the tensor Ji is reduced to a constant
scalar Ji; we use Ji for simplicity in subsequent content.
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Following the conservative traction definition for weakly imposed boundary conditions [50], we
compute (Fi)n and (Ti)n as

(Fi)n =

∫
(ΓD

t )i

σσσi(un, pn)nidΓ −

∫
(ΓD

t )i

τB(un − vn
i )dΓ, (23)

(Ti)n =

∫
(ΓD

t )i

ri × (σσσi(un, pn)ni) dΓ −

∫
(ΓD

t )i

ri × τ
B(un − vn

i )dΓ. (24)

Each object velocity is evaluated using an explicit forward Euler scheme, which requires small ∆t

to ensure accuracy and stability.2 Each object location is then updated by the average velocity,
which results in a more stable and accurate position evolution. Note that Eqs. (21) and (22) are
essentially Newmark-beta method [51] with γ and β set to zero.

3.2. In-out test

The in-out test essentially returns a Boolean value depending on if a certain point is inside
or outside the object. There are a variety of approaches for performing an in-out test, including
ray-tracing algorithms. In this work, we only consider analytical shapes for our objects and can
therefore determine the in-out result of a query point simply by using the geometry equation of
the object. Note that the equation of the object geometry will change every time step because
of the linear and angular motion of the object. We transform the query point into the Lagrangian
reference frame of the object in the in-out test so that we can retain the consistency of the geometry
equation to avoid its computation in Euler reference frame at every time step during the movement
of the object.

3.3. Treatment of freshly-cleared nodes

Consider the nodes in the background mesh that are covered by an object at current time step.
At the next time step, some of these nodes may no longer be covered by the object due to the
motion of the object. We call these nodes “freshly-cleared”. Note that we have no fluid history of
the flow field recorded on those nodes. In practice, most of the freshly-cleared nodes are on the
intersected elements because ∆t is small and the distance that an object can travel in one time step
is also small. Those nodes may have solution values even if they are inside the object; however, the
solutions on those nodes are for satisfying the weakly imposed boundary conditions on the object
surface and achieving the accuracy of the solution on their neighbor nodes inside the fluid domain.
Therefore, the values on the freshly-cleared nodes are not the correct solutions of the fluid field.

To obtain a reasonable solution on those nodes and complete the fluid field solution, we in-
terpolate using the solution of their neighbor nodes in the fluid domain and boundary values of

2This is equivalent to employing a very small Courant number from the CFL condition.
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Figure 1: Schematic of the interpolation of the freshly-cleared nodes.

nearby points on the object surface. This provides a good initial guess to start the solution process
at next time step. We denote the union of the variables in fluid field as U = {u, p}, and the union
of the variables on the ith object surface as Vi = {vi, pi}. The union of interpolated variables on the
freshly-cleared nodes corresponding to the ith object is denoted as Vfc

i , which can be written as

Vfc
i =

Nf∑
k=1

1
(df)k

Uk +
Ns∑

k=1

1
(ds)k

(Vi)k

Nf∑
k=1

1
(df)k

+
Ns∑

k=1

1
(ds)k

, (25)

where df and ds are the distances of neighbor nodes in fluid domain and nearby points on the object
surface to the freshly-cleared nodes, respectively, and Nf and Ns are their respective numbers of
nodes. All the nodes in fluid domain and points on object surface that are used to interpolate at one
particular freshly-cleared node are set to be in the region centered at the freshly-cleared node with
a radius of O(h).3 A schematic of this is shown in Figure 1.

3.4. Workflow of the framework

We first solve for the fluid field solution Un at current time step n, provided the updated coor-
dinates of surface points of each object, xn

i , and the updated boundary velocities on surface points
of each object, vn

i , and fluid field solution Un−1 from last time step n − 1. We evaluate the overall
force and torque over each object surface, Fn

i and Tn
i , based on xn

i , vn
i , and Un. We then update the

coordinates of surface points of each object, xn+1
i , at next time step n + 1. We check if there are

any freshly-cleared nodes in the fluid field, and interpolate for those nodes using Un at neighbor

3We also ensure that Nf and Ns are comparable.
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Given fluid field Un−1 = { un−1, pn−1 } and
{ xn

i , vn
i } on surface points of each object

Solve for fluid field Un

Compute { Fn
i , Tn

i } over each object surface

Update xn+1
i on surface points of each object

Check for freshly-cleared nodes

Compute pn
i on surface points of each object

and interpolate for freshly-cleared nodes

Update vn+1
i on surface points of each object

Pass fluid field Un to time step n + 1 with
{xn+1

i , vn+1
i } on surface points of each object

no

yes

Figure 2: Flowchart of the process of moving IMGA.

nodes in fluid field, and Vn
i at nearby points on corresponding object surface. We need to com-

pute the boundary values of pressure on surface points of each object, pn
i , before the interpolation

of pressure. Finally, we update the velocities on surface points of each object, vn+1
i , as boundary

conditions at time step n + 1, and pass the fluid field Un, which is interpolated for freshly-cleared
nodes, to solve for Un+1. This procedure is shown in Figure 2.

3.5. Non-dimensionalization

We non-dimensionalize the variables and parameters as follows:

x∗ =
x
L0
, u∗ =

u
u0
, t∗ =

t
L0/u0

, ρ∗ =
ρ

ρ f
,
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with

p∗ =
p

u0µ/L0
, g∗ =

g
u0µ/(ρ f L2

0)
(
viscous scaling

)
, (26)

or

p∗ =
p

ρ f u2
0

, g∗ =
g

u2
0/L0

(
inertial scaling

)
, (27)

where L0 is the characteristic length, u0 is the characteristic velocity depending on the problems of
interest, and g is the gravitational acceleration. We employ viscous scaling when Reynolds number
Re =

ρ f u0L0

µ
� 1, and inertial scaling when Re is moderate.

4. Verification and validation

In this section, we illustrate the moving IMGA framework using several benchmark problems
and results.

4.1. Free falling cylinder with low Reynolds number (2D)

A free dropping cylinder with diameter D and density ρs will reach an equilibrium state with a
constant terminal velocity VT in a sufficiently tall channel (channel height H) filled with a viscous
fluid. Drag force FD, buoyancy Fb, and gravitational force Fg will eventually reach an equilibrium
state so that the net force is zero, and the cylinder will move with the constant terminal velocity.

For creeping flow with low Re number (Re � 1), we have an analytical solution for the terminal
velocity of a cylinder with an infinite length [52]:

VT =

(
ρs − ρ f

)
gD2

16µ

(
ln

(W
D

)
− 0.9157 + 1.7244

( D
W

)2

− 1.7302
( D
W

)4)
, (28)

where W is the channel width, and g is the magnitude of gravitational acceleration. The infi-
nite cylinder length allows us to perform 2D simulations to verify our moving immersogeometric
framework. A mesh convergence study is performed to show that the simulated terminal veloc-
ity converges to the analytical solution with increasing mesh density. We set ρ f = 103 kg/m3,
ρs = 1.25 × 103 kg/m3, g = 9.81 m/s2, µ = 0.5 kg/(m·s), D = 5 × 10−3 m, W = 0.04 m and
H = 0.06 m. Using these parameters, we get a terminal velocity VT = 9.12 × 10−3 m/s, and
Re = 0.0912 based on VT and D. Since Re � 1, we non-dimensionalize this problem using a
viscous scaling. Initial conditions are set as zero velocity and pressure in the whole fluid domain.
No-slip boundary conditions are imposed on the lateral and bottom walls, and the traction-free
boundary condition is imposed on the top wall. The problem setup is shown in Figure 3a.
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(a) Problem setup. (b) Cluster mesh.

Figure 3: Free falling 2D cylinder with low Reynolds number: Problem setup and cluster mesh.

The intersection region of the fluid domain and the object surface needs more refinement to
capture the immersed boundary and resolve the no-slip boundary condition. In this case, knowing
that the trajectory is a straight line, we refine the mesh all the way along the trajectory to avoid
any remeshing and interpolation between two meshes. Hsu et al. [35] suggested that the ratio
between the element size of the immersed surface and the element size of the background mesh
that intersects the immersed surface needs to be at most 1/2. We choose the ratio to be 1/2 for all
the simulations in this paper. In addition, we also keep the ratio between the sizes of the largest and
smallest background elements around 4 as a reasonable maximum aspect ratio of any background
elements in the fluid domain. The dimensionless element size across the fluid–structure interface is
set to 0.1, 0.05, and 0.025 for three different mesh densities, which result in a total element number
of 35×120, 70×240, and 140×480, respectively. An example of the fixed cluster mesh (70×240)
is shown in Figure 3b. The dimensionless time step ∆t is set to 1 × 10−3.

The result of the mesh convergence study with the analytical terminal velocity is presented
in Figure 4. We can clearly see that the numerically computed terminal velocity converges to
the analytical result with increasing mesh density. The relative error with the analytical terminal
velocity is 3.84%, 1.26%, and 0.1% for the mesh of 35×120, 70×240, and 140×480, respectively.
The mesh density of 70×240 (dimensionless element size across the interface to be 0.05) produces
a fairly accurate result. We also present the velocity magnitude contour along with the streamlines
at time t = 1 after the cylinder reaches the terminal velocity in Figure 5. We can see two large
vortices caused by the downward motion of the cylinder as physically expected in this case. Similar
velocity magnitude contour and streamlines are also observed in Casquero et al. [24].
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Figure 4: Free falling 2D cylinder with low Reynolds number: Mesh convergence result of the
cylinder terminal velocity compared with the analytical solution.

Figure 5: Free falling 2D cylinder with low Reynolds number: Fluid velocity magnitude contour
and streamlines at t = 1.

4.2. Free falling sphere with moderate Reynolds number (3D)

The second benchmark problem we consider is a free falling 3D sphere in fluids with moder-
ate Reynolds number. In this case, we compare the results from the moving immersogeometric
framework with experimental benchmark results. We employ a similar case as in the last section,
but replace the 2D cylinder with a 3D sphere, and simulate a free dropping sphere to compare with
the experimental results in Ten Cate et al. [53]. The size of the domain is 0.1 m × 0.16 m × 0.1 m.
The diameter of the sphere is D = 0.015 m, and it is released at rest at the height where its bottom
apex is 0.12 m away from the bottom wall. The working fluid has a density ρ f = 960 kg/m3, and a
dynamic viscosity µ = 0.058 kg/(m·s). The density of the sphere is ρs = 1120 kg/m3. This results
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(b) Comparison of the sphere sedimental velocity.

Figure 6: Free falling 3D sphere with moderate Reynolds number: Comparisons of the sphere
trajectory and velocity.

in a Reynolds number Re = 31.9 based on V0 = 0.128 m/s [53] and D. Since Re is moderate in
this case, we non-dimensionalize it using inertial scaling. The dimensionless element size across
the interface is set to 0.05, and the dimensionless ∆t is set to 0.01. The same initial conditions and
boundary conditions as in the last section are imposed.

We show the comparison of the dimensionless height of the sphere, as well as the dimensionless
sedimental velocity of the sphere in Figure 6. We can see a very good agreement in both the
trajectory and the sedimental velocity between our numerical results and the experimental results.
In addition, we can observe that sedimental velocity magnitude drastically decreases as the sphere
approaches the bottom wall. This is because of the so-called wall-effect force that appears when the
sphere moves close towards the bottom boundary. Note that this wall-effect force is an important
force in particle focusing problems, and we are able to capture its effect very well in this example.
We also show the contours of the velocity magnitude at different heights (7.15, 4.88 and 0.41) in
Figure 7. These results qualitatively match the contours in experimental studies [53].

4.3. Neutral buoyant circular particle focusing in a straight channel

In this case, we deploy our framework to model more complex flow physics. A circular particle
moving in a straight channel will focus at unique locations in the channel cross-section. This is the
so-called inertial focusing effect [54]. The motion of the particle is driven by a fully developed flow
in the channel. The fluid velocity profile is disturbed locally by the particle, which leads to a more
complicated velocity gradient (i.e. more complicated viscous force) on the particle surface, and
therefore results in a more intricate interaction between the particle and fluid. According to Amini
et al. [55], there are two dominant forces in this case – shear-gradient force and wall-effect force.
The particle will focus to a unique position where these forces balance out. Feng et al. [56] showed
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Figure 7: Free falling 3D sphere with moderate Reynolds number: Fluid velocity magnitude con-
tours at different heights. The heights are 7.15, 4.88 and 0.41 (from left to right.)

that a particle with diameter D = 0.25, released at a lateral position y < 0.5, in a channel at Re = 40
calculated based on channel width and maximum inlet velocity (parabolic profile), will focus at
the lateral position y = 0.272. To observe this focusing phenomena, a sufficiently long channel is
needed. An estimate of relation of the channel length and particle hydraulic diameter for focusing
can be found in Di Carlo [57]. We choose a 2D channel with dimensionless sizes of length and
width to be L × W = 40 × 1, and release the particle at the lateral position y = 0.225, with an
initial dimensionless horizontal velocity V0 = 0.66 [56]. The dimensionless element size across
the interface is set to 0.05, and the dimensionless ∆t is set to 5× 10−4. The initial conditions of the
fluid are set as fully developed flow profiles of velocity and pressure in the absence of the particle.
The boundary conditions are parabolic velocity profile at the inlet, and traction-free at the outlet.
No-slip boundary condition is imposed on channel walls.

We perform remeshing and utilize the meshing framework Gmsh [58]. To minimize the number
of remeshes required, we refine a large bounding circle that contains the particle. The radius of the
bounding circle is set to be three times of the radius of the particle. This allows particle motion
for several hundreds of time steps before remeshing. We remesh and interpolate when the particle
is within a length of particle radius from the refinement boundary, and reset the bounding sphere
center to be the particle centroid after remeshing. The problem setup and an unstructured mesh
example are shown in Figure 8.

We plot the particle trajectory in Figure 9. The criterion we employ to verify inertial focusing is
that the lateral position remains constant across 5 dimensionless seconds (out of totally simulated
32.8 dimensionless seconds). Figure 9 clearly illustrates that the framework is able to capture
the focusing phenomena. Our result shows a focusing at the lateral position y = 0.280, which is
slightly higher than the result in Feng et al. [56], with a relative error of 0.8% scaled by the channel
width.
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(a) Problem setup.

(b) A mesh example.

Figure 8: Neutral buoyant circular particle focusing in a straight channel: Problem setup and a
mesh example.
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Figure 9: Neutral buoyant circular particle focusing in a straight channel: Particle trajectory.

4.4. Circular particle focusing in a straight channel with pillar

We simulate a 2D channel with a circular pillar as the obstruction in the channel. This is the
canonical example of inertial interaction of particles in obstructed flow [59]. We define the domain
with the origin at the bottom left corner of the channel. Buoyancy is considered in this case. All
of the following parameters are in dimensionless form. The size of the channel (L × H) is 30 × 5,
where L is the length and H is the height of the channel. The diameter of the pillar is D = 2.5, and
it is centered at (5, 2.5). The diameter of the particle is d = 1, and it is released at (0.6, 1.25) with
zero initial velocity. The density ratio between particle and fluid is 1.01.
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(a) Problem setup.

(b) The unstructured (non-body-fitted) meshes at different times.

Figure 10: Circular particle focusing in a straight channel with pillar: Problem setup and moving
meshes at different times.

The Reynolds number is Re = 20, based on D and maximum inlet velocity (parabolic profile).
Cut element size is again set to 0.05, and ∆t = 2× 10−3. Inertial scaling of non-dimensionalization
is used. The initial conditions are fully developed flow profiles of velocity and pressure in the
absence of the particle and obstruction. The boundary conditions are parabolic velocity at the
inlet, and traction-free at the outlet. In this case, we have two objects – the moving particle, and
the static pillar. We consider the immersed method for both objects. We use Gmsh to refine a ring-
shaped region with a given center, radius, and band width to track the static pillar–fluid interface.
The case setup and unstructured moving meshes at different times are shown in Figure 10.

For this case, since we lack other numerical results to verify our framework, we simulate an
equivalent case using ANSYS Fluent 16.1 [60] with the body-fitted method. The detailed prob-
lem setup in Fluent is provided in the Appendix. We perform a mesh convergence study for the
particle trajectory as the metric for both methods. The convergence result of moving IMGA is
shown in Figure 11. Since the mesh changes during the particle motion, we report time-weighted
average mesh densities for the moving IMGA. The three configurations that we evaluate consist
of increasing average numbers of elements of 7332, 14608 and 28268. We notice that all three
mesh densities produce similar results for the moving IMGA, which indicates the coarsest mesh
would be able to reasonably predict the particle motion. In contrast, it is observed that using Fluent
with body-fitted method, the particle trajectory is substantially more sensitive to the mesh density.
We consider three configurations with increasing average numbers of elements of 7414, 15027
and 28182, with only the latter two configurations producing converging results (see Figure 15 in
Appendix that shows this behavior). To ensure a fair assessment of computational efficiency, we
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Figure 11: Circular particle focusing in a straight channel with pillar: Mesh convergence result of
the particle trajectory for moving IMGA.

Table 1: Circular particle focusing in a straight channel with pillar: Comparison of computational
efforts.

Moving IMGA Body-fitted Fluent
Average number of elements 28268 28182
Number of cores 16 16
Total simulation time (min) 199 1446

utilize the finest meshes in both simulations with the same number of processors to compare the
computation time. The details of this comparison are provided in Table 1. Our moving IMGA is
about 8 times faster than body-fitted Fluent at the same mesh density. This is anecdotal evidence
that the moving IMGA approach can produce good results at a substantially reduced computational
cost.

We present the particle trajectory and velocity comparisons with the finest meshes in both
simulations in Figures 12 and 13. The final vertical positions from present IMGA simulation and
Fluent are 1.12 and 1.08, respectively. The relative error between them is 0.8% of the channel
height. In addition, our framework shows the horizontal velocity eventually reaches a steady value
of 0.646, which is 92.9 % of the undisturbed fluid velocity at the same height, and the vertical
velocity is nearly zero. A more detailed comparison is shown in Figure 14. We plot the velocity
contours and streamlines at three locations (2.59, 1.05), (4.95, 0.566), and (7.17, 0.776). We can see
the particle starts to disturb the symmetry of the downstream wake region when it passes below
the pillar, and completely distorts the wake region during its subsequent movement. The lower
circulation in the wake region almost disappears.
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Figure 12: Circular particle focusing in a straight channel with pillar: Comparison of particle
trajectory.
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(a) Horizontal velocity.
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(b) Verticle velocity.

Figure 13: Circular particle focusing in a straight channel with pillar: Comparison of particle
velocities.

5. Conclusions and future work

We deployed the immersogeometric approach for tracking moving objects. We considered a
numerical treatment for the freshly-cleared nodes (i.e. background mesh nodes that are currently
in the fluid domain, but were inside the object at the last time step). We assessed the accuracy
of the method by analyzing object motion in different flow structures including free dropping ob-
jects in viscous fluids and particle focusing in unobstructed and obstructed micro-channels. We
showed that key quantities of interest are in very good agreement with analytical, numerical and
experimental solutions. We also showed a much better computational efficiency of our framework
than current commercial codes using adaptive body-fitted approaches. We conclude that the mov-
ing IMGA is a promising and viable approach for exploring the inertial focusing of particles in
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Figure 14: Circular particle focusing in a straight channel with pillar: Comparisons of fluid velocity
magnitude contours and streamlines. (upper) Moving IMGA. (lower) Body-fitted Fluent.

complex micro-channels with obstructions. The interaction of the particle with the obstruction as
mediated by the fluid, and the scaling behavior of this interaction with increasing particle diameter
and Reynolds number will be the focus of subsequent studies using this framework.
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Appendix

The simulation of particle moving in an obstructed (pillar) channel with body-fitted method was
performed on ANSYS Fluent 16.1 using the built-in Dynamic Mesh (DM) module. The Navier–
Stokes equations are solved by the default solver using the SIMPLE algorithm. The particle evo-
lution is calculated in the 6 Degree-of-Freedom (6DOF) solver for rigid-bodies. An implicit mesh
update feature is enabled – the dynamic mesh is updated during the course (convergence) of the
solution of flow fields in one time-step, which results in a stable mesh update and better tracking of
the particle positions. The remeshing is automatically determined by the solver based on the worst
element skewness due to the particle motion and controlled by given remeshing parameters. The
remeshing parameters are guided by the default (minimum/maximum) mesh sizes from the initial
undeformed domain. In addition, the spring constant factor is set to 0.5 using the spring-based
smoothing method for the dynamic mesh. The flow fields are projected from the previous mesh
to the current mesh upon remeshing. The flow fields are solved over a dimensional domain, 0.3
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Figure 15: Circular particle focusing in a straight channel with pillar: Mesh convergence result of
the particle trajectory using Fluent.

m ×0.05 m, where the fluid properties of density and dynamic viscosity measure, 1000 kg/m3,
and 0.1 kg/(m·s), respectively. The particle is released at x = 0.006 m, and, y = 0.0125 m, with
the origin set at bottom left corner. The particle mass, and moment-of-inertia about the z-axis are
externally supplied through a User-Defined Function (UDF) using the DEFINE SDOF PROPERTIES
macro, and measure, 0.0793 kg, and 1 × 10−6 kg·m2. The buoyant-force on the particle is imposed
as an external force, prop[SDOF LOAD F Y] = 0.770 N. The weight of the particle is computed
by enabling the gravity option under the 6DOF solver with the value of 9.81 m/s2. The initial
conditions are taken as fully developed profiles of velocity and pressure, in the absence of the par-
ticle, and pillar, whose maximum values measure, 0.2 m/s, and 19.2 Pa. The boundary conditions
include parabolic-velocity inlet, and zero-pressure outlet.
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von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem

Mathematischen Seminar der Universität Hamburg, 36:9–15, 1971.

24



[28] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks,
and T. J. R. Hughes. An immersogeometric variational framework for fluid–structure inter-
action: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics

and Engineering, 284:1005–1053, 2015.

[29] F. Xu, D. Schillinger, D. Kamensky, V. Varduhn, C. Wang, and M.-C. Hsu. The tetrahedral
finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex
geometries. Computers & Fluids, 141:135–154, 2016.

[30] T. J. R. Hughes, L. Mazzei, and K. E. Jansen. Large eddy simulation and the variational
multiscale method. Computing and Visualization in Science, 3:47–59, 2000.

[31] T. J. R. Hughes, L. Mazzei, A. A. Oberai, and A. Wray. The multiscale formulation of
large eddy simulation: Decay of homogeneous isotropic turbulence. Physics of Fluids, 13:
505–512, 2001.

[32] T. J. R. Hughes, G. Scovazzi, and L. P. Franca. Multiscale and stabilized methods. In Ency-

clopedia of Computational Mechanics. John Wiley & Sons, 2004.

[33] Y. Bazilevs, V. M. Calo, J. A. Cottrel, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompressible
flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.

[34] Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid
mechanics. Computers & Fluids, 36:12–26, 2007.

[35] M.-C. Hsu, C. Wang, F. Xu, A. J. Herrema, and A. Krishnamurthy. Direct immersogeometric
fluid flow analysis using B-rep CAD models. Computer Aided Geometric Design, 43:143–
158, 2016.

[36] C. Wang, F. Xu, M.-C. Hsu, and A. Krishnamurthy. Rapid B-rep model preprocessing for
immersogeometric analysis using analytic surfaces. Computer Aided Geometric Design, 52:
190–204, 2017.

[37] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics

and Engineering, 194:4135–4195, 2005.

[38] H. S. Udaykumar, R. Mittal, and P. Rampunggoon. Interface tracking finite volume method
for complex solid–fluid interactions on fixed meshes. International Journal for Numerical

Methods in Biomedical Engineering, 18(2):89–97, 2002.

25



[39] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier–Stokes
equations. Computer Methods in Applied Mechanics and Engineering, 32:199–259, 1982.

[40] T. E. Tezduyar. Stabilized finite element formulations for incompressible flow computations.
Advances in Applied Mechanics, 28:1–44, 1992.

[41] T. E. Tezduyar and Y. Osawa. Finite element stabilization parameters computed from element
matrices and vectors. Computer Methods in Applied Mechanics and Engineering, 190:411–
430, 2000.

[42] M.-C. Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes. Improving stability
of stabilized and multiscale formulations in flow simulations at small time steps. Computer

Methods in Applied Mechanics and Engineering, 199:828–840, 2010.

[43] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element

Method. Cambridge University Press, Sweden, 1987.

[44] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, 2nd ed.

Springer, Berlin, 2002.

[45] A. Ern and J. L. Guermond. Theory and Practice of Finite Elements. Springer, Berlin, 2004.

[46] D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, and T. J. R. Hughes. Immer-
sogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming
B-splines. Computer Methods in Applied Mechanics and Engineering, 314:408–472, 2017.

[47] M. C. H. Wu, D. Kamensky, C. Wang, A. J. Herrema, F. Xu, M. S. Pigazzini, A. Verma,
A. L. Marsden, Y. Bazilevs, and M.-C. Hsu. Optimizing fluid–structure interaction systems
with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting
gear. Computer Methods in Applied Mechanics and Engineering, 316:668–693, 2017.

[48] K. Schloegel, G. Karypis, and V. Kumar. ParMETIS - Parallel Graph Partitioning and Fill-
reducing Matrix Ordering , Version 4.0.3. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/
overview, 2013. University of Minnesota, Minneapolis, MN.

[49] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
A. Dener, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes,
R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang.
PETSc users manual. Technical Report ANL-95/11 - Revision 3.10, Argonne National Lab-
oratory, 2018. http://www.mcs.anl.gov/petsc.

26

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.mcs.anl.gov/petsc


[50] Y. Bazilevs and I. Akkerman. Large eddy simulation of turbulent Taylor–Couette flow us-
ing isogeometric analysis and the residual-based variational multiscale method. Journal of

Computational Physics, 229:3402–3414, 2010.

[51] N. M. Newmark. A method of computation for structural dynamics. ASCE Journal of the

Engineering Mechanics Division, 85:67–94, 1959.

[52] J. Happel and H. Brenner. Low Reynolds number hydrodynamics: with special applications

to particulate media. Springer Science & Business Media, 2012.

[53] A. Ten Cate, C. H. Nieuwstad, J. J. Derksen, and H. E. A. Van den Akker. Particle imaging
velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under
gravity. Physics of Fluids, 14(11):4012–4025, 2002.

[54] G. Segre. Radial particle displacements in poiseuille flow of suspensions. Nature, 189:209–
210, 1961.

[55] H. Amini, W. Lee, and D. Di Carlo. Inertial microfluidic physics. Lab on a Chip, 14(15):
2739–2761, 2014.

[56] J. Feng, H. H. Hu, and D. D. Joseph. Direct simulation of initial value problems for the
motion of solid bodies in a newtonian fluid. Part 2. Couette and Poiseuille flows. Journal of

fluid mechanics, 277:271–301, 1994.

[57] D. Di Carlo. Inertial microfluidics. Lab on a Chip, 9(21):3038–3046, 2009.

[58] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre-
and post-processing facilities. International journal for numerical methods in engineering,
79(11):1309–1331, 2009.

[59] A. J. Chung, D. Pulido, J. C. Oka, H. Amini, M. Masaeli, and D. Di Carlo. Microstructure-
induced helical vortices allow single-stream and long-term inertial focusing. Lab on a Chip,
13(15):2942–2949, 2013.

[60] ANSYS Fluent Theory Guide. Release 16.1. Ansys, Inc., Canonsburg, PA, 2015.

27


	Introduction
	Immersogeometric analysis
	Governing equations of incompressible flows
	Semi-discrete variational multiscale formulation
	Variationally consistent weak boundary conditions
	Time discretization and iterative method

	Implementation of moving B-rep
	Modeling the rigid body motion
	In-out test
	Treatment of freshly-cleared nodes
	Workflow of the framework
	Non-dimensionalization

	Verification and validation
	Free falling cylinder with low Reynolds number (2D)
	Free falling sphere with moderate Reynolds number (3D)
	Neutral buoyant circular particle focusing in a straight channel
	Circular particle focusing in a straight channel with pillar

	Conclusions and future work

