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Abstract

In this paper we develop a framework for fluid–structure interaction (FSI) modeling and
simulation with emphasis on Isogeometric Analysis (IGA) and non-matching fluid–structure
interface discretizations. We take the augmented Lagrangian approach to FSI as a point of de-
parture. Here the Lagrange multiplier field is defined on the fluid–structure interface and is
responsible for coupling of the two subsystems. Thus the FSI formulation does not rely on
the continuity of the underlying function spaces across the fluid–structure interface in order to
produce the correct coupling conditions between the fluid and structural subdomains. However,
in deriving the final FSI formulation the interface Lagrange multiplier is formally eliminated
and the formulation is written purely in terms of primal variables. Avoiding the use of La-
grange multipliers adds efficiency to the proposed formulation. As an added benefit, the ability
to employ non-matching grids for multi-physics simulations leads to significantly relaxed re-
quirements that are placed on the geometry modeling and meshing tools for IGA.

We show an application of the proposed FSI formulation to the simulation of the NREL
5MW offshore wind turbine rotor, where the aerodynamics domain is modeled using volu-
metric quadratic NURBS, while the rotor structure is modeled using a cubic T-spline-based
discretization of a rotation-free Kirchhoff–Love shell. We conclude the article by showing FSI
coupling of a T-spline shell with a low-order Finite Element Method (FEM) discretization of
the aerodynamics equations. This combined use of IGA and FEM is felt to be a good balance
between speed, robustness, and accuracy of FSI simulations for this class of problems.
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1. Introduction

Isogeometric Analysis (IGA) [1, 2], despite its young age, has significantly matured as a
technology for geometry representation and computational analysis.

NURBS remain a standard tool for geometry modeling in CAD (Computer Aided Design)
and IGA. T-splines [3, 4] were introduced in the CAD community as a superior alternative to
NURBS allowing for local mesh refinement and the representation of geometry of arbitrary
topological genus, both of which are not possible with NURBS, but are critical for IGA. Since
that time, T-splines have been applied successfully in the context of IGA [5–8] and have been
enhanced to meet the demands of analysis [9, 10]. Advances in model quality definition and
improvement enable the generation of better parameterized shapes for IGA, thus improving
the quality of the computational solutions [11, 12]. Recent efforts to define standardized file
formats for data exchange between geometry modeling and computational analysis software
enabled straightforward solution of complicated structural problems that involve large defor-
mation, plasticity and contact, using well-validated commercial FEM software [13–17]. Fur-
thermore, IGA is able to elegantly handle many applications that otherwise create significant
challenges to standard finite element technology [18–20].

However, several challenges remain for IGA to be fully accepted as industrial-strength anal-
ysis technology. The ability to create 3D volumetric complex geometry models in an automated
manner is one such challenge. Another challenge is to prove that IGA is capable of producing
accurate and robust results for complex-geometry multi-physics problems (e.g., fluid–structure
interaction), which is one of the major demands of modern computational analysis.

This paper focuses on the coupling strategies, specific to IGA, for multi-physics applica-
tions. In particular, we consider fluid–structure interaction (FSI), which is an important rep-
resentative of this class of problems. We focus on and formulate computational approaches
for IGA that make use of non-matching discretizations of the domain geometry at the interface
between the fluid and structure subdomains. Such coupling procedures allow greater flexibility
in the computational analysis, and alleviate the difficulties of geometry modeling arising from
the necessity to construct matching multi-physics interface discretizations. Furthermore, the
mesh resolution of the structure and fluid mechanics problems may be tailored to the analysis
requirements of the individual subsystems, leading to improved computational efficiency.

The increased complexity of structural geometry places heavy demands on the fluid volume
mesh (or exterior mesh) generation around that structure. Generation of volumetric meshes
for IGA has been successful in a handful of applications [21], including wind turbine modeling
in [22]. However, no automatic mesh generation software for IGA exists to this day. Volumetric
geometry modeling and mesh generation for IGA is, at this point, an active area of research that
is still in its infancy (see [23, 24] for recent results for this challenging problem). As a result, in
order to take advantage of the superior accuracy of IGA for structural mechanics applications
(see, e.g., [25, 26]), and to leverage the existing advanced volumetric mesh generation tools for
standard finite elements, we propose to couple FEM for fluid mechanics and IGA for structural
dynamics. Although IGA was shown to produce results that are of better per-degree-of-freedom
quality than standard FEM for fluid mechanics and, especially, for turbulent flows [27], good-
quality aerodynamics may still be achieved with standard low-order FEM, with a manageable
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number of degrees of freedom. Such results were presented in [28–30] for several cases of wind
turbine aerodynamics simulations at full scale. We also feel this particular combination of FEM
and IGA has the highest potential for near-term adoption by (and, as a result, for broader impact
on) industry and national laboratories.

In this paper we propose an FSI methodology based on the augmented Lagrangian concept.
We formally eliminate the Lagrange multiplier on the fluid–structure interface to achieve a for-
mulation purely in terms of the primal variables (i.e., velocity and pressure for the fluid and
velocity for the structural problem). The fluid and structural mechanics trial and test functions
are not assumed to be equal at the interface, and the FSI coupling is taken care of in the varia-
tional formulation. This presents a convenient point of departure for a discrete FSI formulation
using non-matching fluid-structure interface discretizations. In the non-matching FSI formula-
tion one needs a functional definition of the kinematic quantities (velocity, displacement, etc.)
and tractions on the fluid and structure meshes, and the ability to transfer these quantities from
one mesh to the other. The L2-projection is chosen in this work for the transfer of kinematic
and traction data between the subdomains. It is found to be convenient from the standpoint of
computer implementation. However, this procedure does not guarantee discrete momentum and
energy conservation for non-matching discretizations. For a conservative approach to motion
and load transfer in FSI, see [31].

We demonstrate an application of the proposed framework and methodology to FSI mod-
eling and simulation of wind turbine rotors. The benefits of using IGA for this application
were discussed in [22], and the importance of FSI modeling for this class of problems was
demonstrated in [32]. In the aforementioned articles a model of a 5MW offshore wind tur-
bine rotor defined in [33] was simulated and the results for quantities of engineering interest
such as the aerodynamic torque and tip deflection were consistent with the findings of other
researchers [22, 28, 29, 32–35] who simulated the same design numerically. To validate the
aerodynamics procedures employed in this work, a smaller (20kW) rotor from [36] was sim-
ulated in [30], with very good matching between the experimental data and simulation results
for the aerodynamic (low-speed shaft) torque and blade cross-section pressure distribution. In
this work, we only consider the 5MW rotor, in part due to the fact that for large offshore wind
turbine designs the blade deflections are considerable, and the FSI effects are significantly more
pronounced.

This paper is outlined as follows.
In Section 2, we derive a family of FSI formulation at the continuous level using the aug-

mented Lagrangian approach as a point of departure and formally eliminating the interface
Lagrange multiplier. This leads to a set of FSI formulations, which are stated purely in terms of
the primal variables.

In Section 3, we present the individual fluid and structural mechanics formulations at the dis-
crete level, which are employed in the FSI computations presented in this paper. The equations
of fluid mechanics make use of the residual-based variational multiscale (VMS) formulation
of the Navier–Stokes equations [37] posed on a moving domain in the Arbitrary Lagrangian–
Eulerian (ALE) frame. This fluid mechanics formulation is referred to as the ALE–VMS
method. The ALE–VMS formulation is augmented with weakly enforced essential bound-
ary conditions, which were first proposed in [38] and further improved and studied in [39–41].
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The structural mechanics problem is governed by the rotation-free Kirchhoff–Love shell for-
mulation, which was first proposed in [42], and further extended in [43] to the case of more
complicated structural geometry, and in [32] to include dynamics and modeling of composite
materials for FSI simulations of wind turbine rotors. We conclude this section with a discussion
of the FSI coupling methodology employed in this work, as well as methods for kinematic and
traction data transfer between non-matching fluid and structural subdomain discretizations.

In Section 4, we present the simulation results. We begin by performing standalone struc-
tural simulations of the NREL 5MW offshore wind turbine blade from [22, 33] subject to the
aerodynamic traction (obtained from a separate aerodynamics computation from [35] using
NURBS-based IGA) and centripetal forces. The aerodynamics traction vector was transferred
to a matching bi-quadratic NURBS and a non-matching bi-cubic T-spline blade meshes. The
relative difference in the tip deflection predicted by the matching and non-matching structural
mechanics discretizations was less than 0.3%. We then perform an FSI simulation of the same
wind turbine blade using the same wind conditions, rotor speed and NURBS mesh as in [32],
however, the NURBS blade is now replaced with a T-Spline blade. Comparison of the FSI
results using the matching and non-matching interface discretizations gave nearly identical re-
sults. Finally, as our last example, we present a computation of a T-spline blade coupled to
a tetrahedral FEM fluid. In this case, all three rotor blades were simulated without invoking
the assumption of rotational symmetry. The results are also in good agreement with prior IGA
simulations, especially considering the coarseness of the aerodynamics FEM mesh.

In Section 5, we draw conclusions and outline future research directions.

2. FSI Formulation Based on the Augmented Lagrangian Approach

Let (Ω1)t ∈ R
d, d = 2, 3, represent the time-dependent domain of the fluid mechanics

(or aerodynamics) problem, let (Ω2)t ∈ R
d be the time-dependent domain of the structural

mechanics problem, and let (ΓI)t ∈ R
d denote the interface between the fluid and structural

domains. All the domains are taken at current time t at this point in the developments. Let u1

and p denote the fluid velocity and pressure, respectively. For the remainder of the article we
assume that the fluid mechanics is governed by the Navier–Stokes equations of incompressible,
isothermal, and Newtonian flow. Let u2 denote the velocity of the structure.

We define an augmented Lagrangian function N({u1, p},u2, λλλ) as

N({u1, p},u2, λλλ) = N1({u1, p}) + N2(u2)

+

∫
(ΓI)t

λλλ · (u1 − u2) dΓ

+
1
2

∫
(ΓI)t

β(u1 − u2) · (u1 − u2) dΓ, (1)

where N1 and N2 are the Lagrangian functionals whose stationary points generate the varia-
tional equations of fluid and structural mechanics, λλλ is a Lagrange multiplier for the kinematic
interface condition u1 = u2, and β is a penalty parameter, which we leave unspecified at the
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moment. The augmented Lagrangian approach may be interpreted as a combination of the La-
grange multiplier and penalty methods. It is a popular approach in optimization, as well as
in applications of nonlinear structural mechanics that involve some form of constraints (e.g.,
contact). Here, we adopt it as a point of departure for generating a family of FSI formulations.

Remark 1. The penalty term in Eq. (1) may be separated into normal and tangential velocity
contributions. This option will be exploited in the next section. For simplicity of presentation,
in this section, we keep this term in its original form.

Taking the variational derivatives of N with respect to the fluid, structural and Lagrange
multiplier unknowns, and setting the result to zero, yields the following set of variational equa-
tions: Find the fluid velocity and pressure, u1 ∈ Su and p ∈ Sp, the structural velocity, u2 ∈ Sd,
and the Lagrange multiplier λλλ ∈ Sl, such that for all weighting functions w1 ∈ Vu, q1 ∈ Vp,
w2 ∈ Vd, and δλλλ ∈ Vl

B1({w1, q}, {u1, p}) − F1({w1, q}) +

∫
(ΓI)t

w1 · λλλ dΓ +

∫
(ΓI)t

w1 · β(u1 − u2) dΓ = 0, (2)

B2(w2,u2) − F2(w2) −
∫

(ΓI)t

w2 · λλλ dΓ −

∫
(ΓI)t

w2 · β(u1 − u2) dΓ = 0, (3)∫
(ΓI)t

δλλλ · (u1 − u2) dΓ = 0, (4)

where Su, Sp, Sd, and Sl are the function spaces for the fluid velocity and pressure, structural
velocity, and the Lagrange multiplier solutions, respectively, and Vu, Vp, Vd, and Vl are the
corresponding weighting function spaces. B1, B2, F1, and F2 are the semilinear forms and linear
functional corresponding to the fluid and structural mechanics problems, respectively, and are
given by:

B1({w, q}, {u, p}) =

∫
(Ω1)t

w · ρ1

(
∂u
∂t

∣∣∣∣∣
x

+ u · ∇∇∇xu
)

dΩ

+

∫
(Ω1)t

εεε (w) : σσσ1 (u, p) dΩ +

∫
(Ω1)t

q∇∇∇x · u dΩ, (5)

F1({w, q}) =

∫
(Ω1)t

w · ρ1f dΩ +

∫
(Γ1h)t

w · h dΓ, (6)

B2(w,u) =

∫
(Ω2)t

w · ρ2
∂u
∂t

∣∣∣∣∣
X

dΩ +

∫
(Ω2)t

εεε (w) : σσσ2(u) dΩ (7)

F2(w) =

∫
(Ω2)t

w · ρ2f dΩ +

∫
(Γ2h)t

w · h dΓ, (8)
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where ρ1 and ρ2 are the fluid and structural densities, f and h are the applied body force and
surface traction,

∣∣∣∣
x

denotes the fact that the time derivative in the fluid mechanics equations is

taken with respect to the fixed coordinates of the spatial configuration, while
∣∣∣∣
X

in the structural
problem denotes the fact that the time derivative is taken with respect to the fixed coordinates
of the material configuration. The fluid Cauchy stress σσσ1 is given by

σσσ1 (u, p) = −pI + 2µεεε (u) , (9)

where I is the identity tensor, µ is the fluid dynamic viscosity, and εεε (u) is the strain-rate tensor
given by

εεε (u) =
1
2

(
∇∇∇xu +∇∇∇xuT

)
. (10)

At this point we do not detail the structural Cauchy stress σσσ2 as we wish to keep the structural
mechanics formulation as flexible as possible.

The variational formulations given by Eqs. (2)–(3) give the following Euler–Lagrange
conditions on the fluid-structural interface (ΓI)t:

λλλ = −σσσ1n1 − β(u1 − u2), (11)
λλλ = σσσ2n2 − β(u1 − u2), (12)

where n1 and n2 are the unit outward normal vectors to the fluid and structural domains, respec-
tively. Note that, at the fluid–structure interface, n1 = −n2. Subtracting Eq. (11) from Eq. (12)
results in

σσσ1n1 +σσσ2n2 = 0, (13)

which the fluid and structure tractions are in equilibrium at their interface. The Lagrange mul-
tiplier Eq. (4) implies the kinematic compatibility condition at the fluid–structure interface,
namely

u1 = u2. (14)

Remark 2. Note that the traction compatibility condition given by Eq. (13) was derived without
using the kinematic compatibility condition u1 = u2. This is a consequence of the augmented
Lagrangian formulation.

Introducing Eq. (14) into Eqs.(11)–(12) yields

λλλ = −σσσ1n1 = σσσ2n2, (15)

which gives an interpretation of the Lagrange multiplier as the interface traction vector that may
be computed from the fluid or structural subdomains. As a result, λλλ may be expressed as convex
combination of the fluid and structure traction vectors as

λλλ = −ασσσ1n1 + (1 − α)σσσ2n2, (16)
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where α is a real number.

We now formally eliminate the Lagrange multiplier from the formulation of the FSI
problem. The variation of λλλ with respect to the fluid and structural mechanics unknowns may
be computed directly from Eq. (16), which gives

δλλλ = −αδ{u1,p}σσσ1n1({w1, q}) + (1 − α)δu2σσσ2n2(w2). (17)

Introducing Eqs. (16)–(17) into Eqs. (2)–(4), scaling Eq.(4) by the parameter γ, and combining
Eqs. (2)–(4) into a single variational form gives: find u1 ∈ Su, p ∈ Sp, and u2 ∈ Sd, such that
for all w1 ∈ Vu, q1 ∈ Vp, and w2 ∈ Vd

B1({w1, q}, {u1, p}) − F1({w1, q}) + B2(w2,u2) − F2(w2)

+

∫
(ΓI)t

(w1 − w2) · (−ασσσ1n1 + (1 − α)σσσ2n2) dΓ

+ γ

∫
(ΓI)t

(
−αδ{u1,p}σσσ1n1({w1, q}) + (1 − α)δu2σσσ2n2(w2)

)
· (u1 − u2) dΓ

+

∫
(ΓI)t

(w1 − w2) · β(u1 − u2) dΓ = 0. (18)

The variational statement given by Eq. (18) defines a family of FSI formulations parameterized
by α, β and γ. However, we note that the different choices of these parameters do not change
the underlying FSI problem.

In this work we choose α = 1 and γ = 1. The former choice is motivated by the fact
that here we wish to avoid taking a variation of the structural Cauchy stress, while the latter
choice leads to adjoint consistency of our discrete formulation (see [44] for details). We
postpone the choice of β until we state the discrete FSI problem.

With this definition of the parameters, we obtain the following coupled formulation: find
u1 ∈ Su, p ∈ Sp, and u2 ∈ Sd, such that for all w1 ∈ Vu, q1 ∈ Vp, and w2 ∈ Vd

B1({w1, q}, {u1, p}) − F1({w1, q}) + B2(w2,u2) − F2(w2)

−

∫
(ΓI)t

(w1 − w2) ·σσσ1n1 dΓ

−

∫
(ΓI)t

(
δ{u1,p}σσσ1n1({w1, q})

)
· (u1 − u2) dΓ

+

∫
(ΓI)t

(w1 − w2) · β(u1 − u2) dΓ = 0. (19)

The coupled formulation given by Eq. (19) leads to the following interpretation of the individual
fluid and structural subproblems. The fluid subproblem may be obtained by setting w2 = 0. This
yields: find u1 ∈ Su and p ∈ Sp such that for all w1 ∈ Vu and q1 ∈ Vp

B1({w1, q}, {u1, p}) − F1({w1, q})
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−

∫
(ΓI)t

w1 ·σσσ1n1 dΓ

−

∫
(ΓI)t

(
δ{u1,p}σσσ1n1({w1, q})

)
· (u1 − u2) dΓ

+

∫
(ΓI)t

w1 · β(u1 − u2) dΓ = 0, (20)

where one immediately recognizes a continuous counterpart of the fluid mechanics formulation
with weakly enforced essential boundary conditions on the fluid velocity [38]. These essential
boundary conditions come from the structural velocity at the fluid–structure interface.

Setting {w1, q} = {0, 0} in Eq. (19) gives the following structural subproblem: find u2 ∈ Sd,
such that for all w2 ∈ Vd

B2(w2,u2) − F2(w2) +

∫
(ΓI)t

w2 · (σσσ1n1 + β (u2 − u1)) dΓ = 0, (21)

which states that at the fluid–structure interface the structural problem is driven by the fluid
traction vector t1 given by

t1 = −σσσ1n1 − β (u2 − u1) (22)

The traction vector contains the usual term −σσσ1n1, and it is also augmented by the term that is
proportional to the difference between the fluid and structural velocities at their interface.

Remark 3. Choosing α = 1 in Eq. (18) leads to subproblems defined by Eqs. (20) and (21).
With this choice, the fluid mechanics problem is responsible for satisfying the kinematic com-
patibility condition, while the structural subproblem is responsible for satisfying the traction
compatibility condition. This interpretation is consistent with how one typically thinks about
FSI problems. Other choices of α lead to different interpretations of the FSI problem. For
example, setting α = 0 reverses the roles of the fluid and structural subproblems in that now
the structure is responsible for satisfying the kinematic compatibility condition and the fluid
enforces the compatibility of tractions. Intermediate values of α lead to other interpretations of
the roles played by the individual subproblems.

Remark 4. The coupled formulation given by Eq. (18), derived using the augmented La-
grangian approach as a starting point, may also be interpreted as Nitsche’s method for FSI
(see, e.g., [45, 46]) or as a continuous version of the Discontinuous Galerkin method for FSI
applied at the fluid–structure interface.

Remark 5. In the above developments we assumed that the trial and test function spaces of
the fluid and structural subproblems are independent of each other. This approach provides
one with the framework that is capable of handling non-matching fluid and structural interface
discretizations. If we explicitly assume that the fluid and structural velocities and the corre-
sponding test functions are continuous at their interface, the FSI formulation given by Eq. (18)
reduces to: find u1 ∈ Su, p ∈ Sp, and u2 ∈ Sd, such that for all w1 ∈ Vu, q1 ∈ Vp, and w2 ∈ Vd

B1({w1, q}, {u1, p}) − F1({w1, q}) + B2(w2,u2) − F2(w2) = 0. (23)

8



This form of the FSI problem is suitable for matching fluid–structure interface meshes. Al-
though somewhat limiting, matching interface discretizations were employed in [47–52] to
solve several problems of contemporary interest in computational mechanics and engineering.

3. FSI Formulation for Non-Matching Discretizations Suitable for IGA and FEM

In this section we develop the coupled FSI formulation at the discrete level. We assume
non-matching fluid–structure interface discretization and take the continuous fluid and struc-
tural formulations from the previous section as a point of departure. We present the fluid and
structural mechanics problems separately, describe the fluid–structural coupling and present
our kinematic and traction data transfer methods between the non-matching fluid and structural
interface discretizations.

3.1. The ALE–VMS Formulation of Fluid Mechanics with Weak Boundary Conditions
We begin with the fluid mechanics problem given by Eq. (20), and state the corresponding

semi-discrete variational formulation: find uh
1 ∈ S

h
u and ph ∈ Sh

p such that for all wh
1 ∈ V

h
u and

qh
1 ∈ V

h
p

BMS
1 ({wh

1, q
h}, {uh

1, ph}) − FMS
1 ({wh

1, q
h})

−

Neb∑
b=1

∫
Γb ⋂

(ΓI)t

wh
1 ·σσσ1

(
uh

1, ph
)

n1 dΓ

−

Neb∑
b=1

∫
Γb ⋂

(ΓI)t

(
2µεεε

(
wh

1

)
n1 + qhn1

)
·
(
uh

1 − ûh
)

dΓ

−

Neb∑
b=1

∫
Γb ⋂

(ΓI)−t

wh
1 · ρ1

((
uh

1 − ûh
)
· n1

) (
uh

1 − ûh
)

dΓ

+

Neb∑
b=1

∫
Γb ⋂

(ΓI)t

τB
TAN

(
wh

1 −
(
wh

1 · n1

)
n1

)
·
((

uh
1 − ûh

)
−

((
uh

1 − ûh
)
· n1

)
n1

)
dΓ

+

Neb∑
b=1

∫
Γb ⋂

(ΓI)t

τB
NOR

(
wh

1 · n1

) ((
uh

1 − ûh
)
· n1

)
dΓ = 0, (24)

where BMS
1 and FMS

1 are the discrete counterparts of B1 and F1, respectively, given by

BMS
1 ({wh, qh}, {uh, ph}) =∫
(Ω1)t

wh · ρ1

(
∂uh

∂t

∣∣∣∣∣∣
x̂

+
(
uh − ûh

)
· ∇∇∇xuh

)
dΩ +

∫
(Ω1)t

εεε
(
wh

)
: σσσ

(
uh, ph

)
dΩ

+

∫
(Ω1)t

qh∇∇∇x · uh dΩ

+

Nel∑
e=1

∫
(Ωe

1)t

τSUPS

((
uh − ûh

)
· ∇∇∇xwh +

∇∇∇xqh

ρ1

)
· rM

(
uh, ph

)
dΩ

9



+

Nel∑
e=1

∫
(Ωe

1)t

ρ1νLSIC∇∇∇x · whrC(uh, ph) dΩ

−

Nel∑
e=1

∫
(Ωe

1)t

τSUPSwh ·
(
rM

(
uh, ph

)
· ∇∇∇xuh

)
dΩ

−

Nel∑
e=1

∫
(Ωe

1)t

∇∇∇xwh

ρ1
:

(
τSUPSrM

(
uh, ph

))
⊗

(
τSUPSrM

(
uh, ph

))
dΩ, (25)

and

FMS
1 ({wh, qh}) = F1({wh, qh}). (26)

The above formulation corresponds to an ALE–VMS method with weakly enforced essential
boundary conditions. The discrete velocities and pressures and the corresponding test func-
tions are now superscripted with h to denote their dependence on the mesh size. The Arbitrary
Lagrangian–Eulerian (ALE) formulation is employed to handle the moving spatial domain of
the fluid mechanics problem. Note that

∣∣∣∣
x̂

in Eq. (25) denotes the fact that the time derivative

is taken with respect to a fixed referential domain spatial coordinates x̂, and ûh is the mesh
velocity. The time-dependent fluid domain (Ω1)t is divided into Nel individual element subdo-
mains denoted by (Ωe

1)t. The discrete trial function spaces Sh
u for the velocity and Sh

p for the
pressure, as well as the corresponding test function spaces Vh

u and Vh
p are assumed to be of

equal order, and, in this work, are comprised of NURBS or FEM functions. In Eq. (25), rM and
rC are the residuals of the momentum and continuity (incompressibility constraint) equations,
respectively, given by

rM(uh, ph) = ρ1

(
∂uh

∂t

∣∣∣∣∣∣
x̂

+
(
uh − ûh

)
· ∇∇∇xuh − fh

)
−∇∇∇x ·σσσ1

(
uh, ph

)
(27)

and
rC(uh, ph) = ∇∇∇x · uh, (28)

and τSUPS and νLSIC are the stabilization parameters, whose definition may be found in [37, 48, 53–
60]).

The fluid–structure interface (ΓI)t is decomposed into Neb fluid domain surface elements,
and (ΓI)−t is defined as the “inflow” part of (ΓI)t as

(ΓI)−t =

{
x

∣∣∣∣ (uh
1 − ûh

)
· n1 < 0, ∀x ⊂ (ΓI)t

}
. (29)

The penalty parameter τB is, in general, assumed to be different for the slip and penetration
components of the flow velocity. However, for the computations presented in this work we use
the same definition for both, namely,

τB
TAN = τB

NOR =
CB

I µ1

hn
, (30)
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where hn is the wall-normal element size, and CB
I is a sufficiently large positive constant, which

is computed from an appropriate element-level inverse estimate (see, e.g., [61–63]). For more
details on weakly enforced boundary condition in fluid mechanics the reader is referred to [38–
40]. The main advantage of this approach over strongly enforced boundary conditions is the
added flexibility of the flow to slip on the solid surface in the case when the wall-normal mesh
size is relatively large. This effect tends to produce more accurate fluid mechanics solutions
than those coming from strongly enforced boundary conditions. See [30] for a recent success-
ful application of weakly enforced boundary conditions in the validation of the ALE–VMS
methodology for wind turbine aerodynamics at full scale.

Remark 6. The stabilization parameters τSUPS and νLSIC in the above equations originate from
stabilized finite element methods for fluid dynamics (see, e.g., [53–59]). The stabilization pa-
rameters were designed and studied extensively in the context of stabilized finite element for-
mulations of linear model problems of direct relevance to fluid mechanics. The design of τSUPS

and νLSIC is such that optimal convergence with respect to the mesh size and polynomial order of
discretization is attained for the cases of advection–diffusion, Stokes and Oseen equations (see,
e.g., [59] and references therein). Furthermore, enhanced stability for advection-dominated
flows and the ability to conveniently employ the same basis functions for velocity and pressure
variables for incompressible flow are some of the attractive outcomes of this method. More
recently, the stabilization parameters were derived in the context of the variational multiscale
methods [64, 65] and were interpreted as the appropriate averages of the small-scale Green’s
function, a key mathematical object in the theory of VMS methods (see [66] for an elaboration).
The ALE–VMS formulation is a moving-domain extension of the residual-based variational
multiscale (RBVMS) turbulence modeling technique proposed for stationary domains in [37].
It was also presented in [48] for moving domains in the context of FSI. Recently, in [67], the
authors extended the RBVMS formulation for moving domain problems using the space–time
finite element method.

Remark 7. Rather than setting the no-slip boundary conditions exactly, the weak boundary
condition formulation gives the no-slip solution only in the limit as hn → 0. As a result,
coarse boundary layer discretizations do not need to struggle to resolve thin boundary layers;
the flow simply slips on the solid boundary. Because of this added flexibility, the weak boundary
condition enforcement approach tends to produce more accurate results on meshes that are too
coarse to capture the boundary layer solution. However, as the mesh is refined to capture the
boundary layer, both weak and strong boundary condition formulations produce nearly identical
results (see [39]).

Remark 8. Although the weak boundary condition formulation is also stable for very large
values of CB

I , we do not advocate this choice. Large values of CB
I place a heavy penalization

on the no-slip condition, and the above mentioned flexibility of the method is lost together with
the associated accuracy benefits. We advocate using CB

I that is just large enough to guarantee
the stability of the discrete formulation.

The mesh velocity ûh in Eqs. (24)–(25) is obtained as follows. On the fluid–structure inter-
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face (ΓI)t the fluid domain mesh velocity ûh is given by

ûh = Πh
1uh

2, (31)

where Πh
1 is a projection or interpolation operator onto the space spanned by the basis functions

of the fluid mechanics problem restricted to the fluid–structure interface. In this work we use
an L2-projection. On the fluid mechanics domain interior the mesh velocity is obtained as a
time derivative of an appropriate extension of the structural displacement on the fluid–structure
boundary into the fluid domain interior. In the case of wind turbine simulations presented in this
paper, the differential equations of elastostatics (subject to time-dependent boundary conditions)
are employed to handle the deflection part of the rotor structural motion, while the rotational
part of the rotor motion is handled exactly (see [32] for a precise mathematical formulation of
this technique). For a variety of other mesh update strategies the reader is referred to [68–71].
Equation (31) couples the fluid mechanics problem to the structural mechanics problem, which
is discussed in the next section.

To connect the discrete fluid mechanics formulation presented in this section to the contin-
uous counterpart given by Eq. (20) in the previous section, we observe that: 1. The Galerkin
terms are replaced with their ALE–VMS counterparts on the first line of Eq. (24); 2. The dis-
crete counterpart of the variation of the fluid traction vector from the third line of Eq. (20) may
be computed directly as

δ{uh
1,p

h}σσσ1n1({wh
1, q

h}) = 2µεεε(wh
1)n1 + qhn1, (32)

which motivates the third term in Eq. (24). However, note the sign change on the pressure test
function, which is necessary for the pressure stability of the discrete formulation. The term on
the fourth line of Eq. (24) is added to enhance the stability of the formulation on (ΓI)−t . These
enhancements do not violate consistency or adjoint consistency of the discrete formulation; 3.
Finally, the penalty parameter β from the fourth line of Eq. (20) is set equal to τB. As a result,
the penalty term of the augmented Lagrangian formulation directly translates to the penally
term of the weakly enforced boundary conditions.

3.2. Rotation-Free Kirchhoff–Love Shell Formulation of Structural Mechanics
In this work, we use a shell formulation for the structural mechanics problem. We assume

that the shell midsurface is described using a piece-wise smooth (C1-continuous or smoother)
geometrical mapping. We also allow regions where the mapping reduces to the C0 level. We
are thinking of situations where the surface geometry of the shell is described using several
NURBS patches, which are “glued” together with C0 continuity, or as a single or multiple T-
spline surfaces, also with a possible continuity reduction. (For complex shell structures the
geometry definition often requires that the continuity of the geometrical mapping is reduced to
the C0 level. Examples of such cases include a trailing edge of an airfoil or a I-beam, the latter
being a non-manifold surface.) For this reason we define

(Γ2)0 =

Nsp⋃
i=1

(Γi
2)0, (33)
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(Γ2)t =

Nsp⋃
i=1

(Γi
2)t, (34)

where (Γ2)0 and (Γ2)t denote the structure midsurface in the reference and deformed configu-
ration, respectively, (Γi

2)0 and (Γi
2)t, i = 1, 2, . . . ,Nsp, are the structural patches or subdomains

in the reference and deformed configuration, respectively, and Nsp is their number. Following
the procedures developed in [32, 42, 43], we state the discrete variational formulation of the
rotation-free Kirchhoff–Love shell as: find the velocity of the shell midsurface uh

2 ∈ S
h
d, such

that for all functions wh
2 ∈ V

h
d,∫

(Γ2)t

wh
2 · ρ2hth

(
∂uh

2

∂t

∣∣∣∣∣∣
X
− f

)
dΓ +

∫
(Γ2)0

δεεε
h
·
(
Aεεεh

+ Bκκκh
)

dΓ

+

∫
(Γ2)0

δκκκ
h
·
(
Bεεεh

+ Dκκκh
)

dΓ −

∫
(ΓI)t

wh
2 · (Π

h
2th

1) dΓ = 0. (35)

In the above formulation hth is the shell thickness, εεεh and κκκh are the tensors of membrane strains
and curvature changes, written in Voigt notation and with respect to the local Cartesian basis
oriented on the first covariant basis vector of the midsurface, δεεεh and δκκκh are their variations,
and A, B, and D are the membrane, coupling and bending stiffnesses pre-integrated through the
thickness.

The last term on the left-hand-side of Eq. (35) is the discrete counterpart of the fluid traction
vector from Eq. (22) given by

th
1 = −σσσh

1n1 − τ
B
(
ûh − uh

1

)
, (36)

where the mesh velocity ûh is obtained from the structural velocity uh
2 using Eq. (31), and Πh

2
is a projection or interpolation operator onto the space spanned by the basis functions of the
structural mechanics problem restricted to the fluid–structure interface. Here, Πh

2 corresponds
to the L2-projector, which globally conserves forces and moments acting on the structure.

Kirchhoff–Love shell kinematics assumes that the shell director stays orthogonal to the
shell midsurface during the motion, which eliminates transverse shear strains. Transverse shear
stresses are also neglected in the theory. These assumptions are adequate provided the shell is
sufficiently thin. While the formulation is able to accommodate large structural deformations,
it is assumed that the stress-strain relationship is linear (i.e., the St. Venant–Kirchhoff material
model is used). Composite materials, which are typically employed in the manufacturing of
wind turbine blades, are modeled within this framework by homogenizing the structural ma-
terial properties (density and stiffness) in the through-thickness direction. See [32] for more
details.

Remark 9. It was shown in [35] that the use of thin shell theory is suitable for the current
application in that the transverse shear effect is not playing an important role in predicting
the deformation of the composite wind turbine blade under the combined action of centripetal,
gravity, and aerodynamic loads.
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The variational formulation given by Eq. (35) is valid over regions of the shell surface
described by a smooth mapping. In the regions where the continuity of the mapping drops to
the C0 level, the formulation is no longer conforming. The Bending Strip Method, introduced
in [43], overcomes this difficulty by adding a simple, physically-motivated penalty-like bending
stiffness term to Eq. (35), thus enabling the application of a rotation-free shell formulation to
structures with topology that may not be represented using a single smooth mapping. The
additional benefits of the bending strip approach, such as the possibility of coupling solids and
shells, are described in [43].

For alternative rotation-free shell formulations the reader is referred to [13, 15, 72–77]

3.3. Time Integration of the FSI Equations and Coupling
The ALE formulation for fluid mechanics and the Lagrangian formulation for the structural

mechanics give a natural setting for a finite-difference-in-time time integration of this coupled
FSI system. We employ the Generalized-alpha technique [48, 78, 79] in this work, which is a
fully-implicit second-order accurate method with control over the dissipation of high-frequency
modes. At each time step the combined fluid, structure and mesh motion discrete residuals
are converged to zero by means of a block-iterative FSI coupling approach (see [80–82] for
the terminology). The block-iterative approach consists of repeating the following sequence
of linear solves: 1. We obtain the fluid mechanics solution increment holding the structural
and mesh solutions fixed. 2. We update the fluid mechanics solution, compute the fluid traction
force on the structure and compute the structural solution increment; 3. We update the structural
solution and use elastic mesh motion to update the fluid domain velocity and position. We
note that only the deflection part of the mesh motion is computed using linear elastostatics,
while the rotation part is computed exactly. This three-step iteration sequence is repeated until
convergence to an appropriately coupled discrete solution is achieved.

Remark 10. The block-iterative approach to FSI coupling is stable for our application. This is
in part because wind turbine blades are heavy relative to the surrounding air. In addition, the
fluid mechanics problem is not posed on an enclosed domain, which presents difficulties for
incompressible flow [83]. As a result, FSI coupling for wind turbine problems does not present
as significant of a challenge as it does for the applications in, for example, cardiovascular blood
flow [47, 49], or parachute modeling [84, 85]. In the latter cases, a quasi-direct FSI coupling
approach, which couples the fluid and structural equations in the left-hand-side matrix, appears
to be critical for achieving the necessary robustness of the computational procedures. The chal-
lenges for wind turbine simulations lie in the ability to accurately approximate the individual
fluid and structural mechanics problems at such large spatial scales, and in the management of
the fluid mechanics mesh during the simulations.

So far, we discussed weakly enforced boundary conditions for the fluid mechanics problem.
In the case strong boundary conditions are employed, we propose to modify the fluid mechanics
formulation and the FSI coupling procedures as follows.

• Set uh
1 = ûh = Πh

1uh
2 strongly on (ΓI)t.
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• This reduces the discrete formulation of the fluid mechanics problem given by Eq. (24)
to: find uh

1 and ph such that for all (wh
1)0 and qh

1

BMS
1 ({(wh

1)0, qh}, {uh
1, ph}) − FMS

1 ({(wh
1)0, qh}) = 0,

where the subscript 0 on wh
1 indicates that a subset of the fluid mechanics test functions,

which are not supported on the fluid–structure interface, is employed.

• Given the fluid mechanics solution from the previous step, compute the fluid traction
vector on the fluid–structure interface as: find th

1, such that for all (wh
1)g∫

(ΓI)t

(wh
1)g · th

1 dΓ = BMS
1 ({(wh

1)g, qh}, {uh
1, ph}) − FMS

1 ({(wh
1)g, qh}), (37)

where the subscript g on wh
1 indicates that a subset of the fluid mechanics test functions,

which are supported on the fluid–structure interface, is employed. This is known as the
conservative definition of the traction vector on the boundary with strongly enforced es-
sential boundary conditions (see, e.g., [86, 87] for the importance of using conservative
flux definitions on essential boundaries and in coupled problems).

• Project the computed fluid mechanics traction vector th
1 to the structural mechanics do-

main discretization of the fluid–structure interface and solve the structural mechanics
problem. In the case of matching fluid–structure interface discretization no projection is
necessary.

• Update the fluid mechanics mesh position and velocity, check for convergence of the
fluid, structure and mesh residuals, and repeat the iteration if necessary. If not, go to the
next time step.

3.4. Data Transfer for IGA and FEM Surface Discretizations
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Figure 1: Illustration of the closest point projection, and the associated difficulties, using 2D curves. Vertical
notches on the curves denote element boundaries in the physical domain.

Non-matching interface discretizations in the FSI problem necessitate the use of interpola-
tion or projection of kinematic and traction data between the fluid and structural surface meshes
(see, e.g., [31, 67], or the developments in the previous section). Here we describe the compu-
tational procedures, which can simultaneously handle IGA and FEM discretizations.
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Figure 2: Illustration of the procedure of finding the closest point in the case the Newton-Raphson iteration con-
verges to a parametric value outside an element. In this case, additional candidates for the closest point are searched
on element boundaries and corners. The procedure is equally applicable to the case of triangular and rectangular
topology of the underlying surface.

Let f h
1 and f h

2 be the arbitrary functions defined on two surfaces Γh
1 and Γh

2, respectively. The
functions are represented in the discrete IGA or FEM spaces defined on the surfaces, which
may be the standalone surfaces or boundaries of the corresponding volumetric domains. We
also define Πh

1 and Πh
2 to be the L2-projection operators corresponding to the discrete function

spaces defined on Γh
1 and Γh

2, respectively. We write

f h
1 = Πh

1 f h
2 (38)

to mean that f h
1 is an L2-projection of f h

2 onto the space of functions defined on Γh
1. In the case

Γh
1 and Γh

2 coincide geometrically, Eq. (38) is unambiguous. However, when the two domains
are mismatched, which is typically the case for FSI involving complex structural surfaces, the
L2-projection given by Eq. (38) requires a more careful consideration.

The matrix form of Eq. (38) may be written as∑
B∈ηηη1

∫
Γh

1

NANB dΓ fB =

∫
Γh

1

NA f h
2 dΓ, (39)

NA’s are the basis functions defined on Γh
1, ηηη1 is their set, fB’s are the discrete solution co-

efficients of the L2-projection problem giving f h
1 =

∑
B∈ηηη1

NB fB, and A, B ∈ ηηη1. The Gauss
quadrature (or other numerical integration) approximation of the right-hand-side of Eq. (39)
gives ∫

Γh
1

NA f h
2 dΓ ≈

Nel∑
e=1

Ne
int∑

i=1

NA(ζζζe
i ) f h

2 (ζζζe
i )W

e
i J(ζζζe

i ), (40)

where Nel is the number of elements on Γh
1, Ne

int is a number of Gauss points used on element e,
ζζζe

i ’s are the locations of the Gauss points in the parametric domain of element e, We
i ’s are the

corresponding quadrature weights, and J is the surface Jacobian determinant.
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In the case of surface discretizations matching geometrically, the quadrature formula given
by Eq. (40) may be evaluated directly. In the case of non-matching discretizations, however,
“ f h

2 (ζζζe
i )” needs to be suitably defined. We do this as follows: for every quadrature point on Γh

1
we find its closest point on Γh

2 and evaluate f h
2 there. The closest point, illustrated in Figure 1,

is defined as follows: if xG is a generic point on Γh
1, then its closest point xe

2(ξξξe) on Γh
2 is such

that the distance ‖xe
2(ξξξe) − xG‖ is minimized. Here xe

2(ξξξe) is the geometrical mapping defined
on a parametric element Γ̂e

2 of the surface Γh
2, and ξξξe are the parametric coordinates of this

element. The closest point is characterized by the solution of the following problem: find Γ̂e
2

and ξξξe = {ξe
1, ξ

e
2}

T ∈ Γ̂e
2 such that

∂xe
2(ξξξe)
∂ξe

1
· (xe

2(ξξξe) − xG) = 0 (41)

∂xe
2(ξξξe)
∂ξe

2
· (xe

2(ξξξe) − xG) = 0, (42)

that is, the distance vector (xe
2(ξξξe)−xG) is orthogonal to the two tangent vectors ∂xe

2(ξξξe)
∂ξe

1
and ∂xe

2(ξξξe)
∂ξe

2

of the surface Γh
2. The 2× 2 system of equations (41)–(42) is solved using the Newton-Raphson

iteration procedure. We find that a complete linearization of the equations is important for rapid
convergence of the iterations.

Remark 11. Note that the problem of finding the closest point and using it to define a projection
between two possibly non-matching surfaces is form-identical in IGA and FEM. All that is
needed is a parameterized surface, the notion of a parametric element, and the ability to define
a set of linearly independent basis functions on the surface. These features are common to both
IGA and FEM.

Existence (and uniqueness) of closest points depends on several factors. Situations that
may lead to non-existence of solutions in the sense of Eqs. (41)–(42) typically arise in the case
of non-smooth surfaces with discontinuous tangent vectors, or in the case of surfaces that are
not properly aligned (see Figure 1 for an illustration). As a result, the procedure described
above needs to be augmented to account for these situations. In what follows, we describe an
approach that appears to be robust in identifying closest points for arbitrary shaped surfaces.

We assume that for a given xG we solved the nonlinear system given by Eqs. (41)–(42)
for {ξe

1, ξ
e
2}

T on every element Γ̂e
2. We also assume that Γ̂e

2 is either a bi-unit quad or an isosceles
right triangle (see Figure 2). In the case of rectangular topology, for an appropriate subset of
elements in Γh

2, we go through the following cases:

1. If |ξe
1| ≤ 1 and |ξe

2| ≤ 1, store ξe
1 and ξe

2.
2. If |ξe

1| > 1 and |ξe
2| ≤ 1,

set ξe
1 = sgn(ξe

1), then solve
∂xe

2(ξξξe)
∂ξe

2
· (xe

2(ξξξe) − xG) = 0. (43)
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3. If |ξe
1| ≤ 1 and |ξe

2| > 1,

set ξe
2 = sgn(ξe

2), then solve
∂xe

2(ξξξe)
∂ξe

1
· (xe

2(ξξξe) − xG) = 0. (44)

4. If |ξe
1| > 1 and |ξe

2| > 1, or if the above case 2 or 3 generates a parameter that is out of
bounds,

set ξe
1 = sgn(ξe

1), and set ξe
2 = sgn(ξe

2) (45)

At this point each element in the subset generates one candidate for the closest point, and we
select the candidate that minimizes ‖(xe

2(ξξξe)−xG)‖. The four cases described above are illustrated
in Figure 2a. The triangular topology case, shown in Figure 2b is handled in an analogous
fashion. The rectangular topology approach is suitable for NURBS, T-spline, Catmull-Clark
subdivision, and quadrilateral FEM surfaces, while the triangular topology approach may be
used for Loop subdivison and triangular FEM surfaces.

4. Computational results

4.1. Testing of the Data Transfer Algorithm

Figure 3: Surface meshes of the wind turbine blade used in the computations in this paper. The black mesh
lines correspond to a bi-cubic T-spline discretization and the red mesh lines correspond to a bi-quadratic NURBS
discretization. Top: complete blade surface. Bottom: zoom on the blade tip, where the differences between the
two surfaces are clearly visible.

Before presenting the FSI results, we test the performance of the data transfer algorithm.
For this, a 5MW wind turbine rotor, assumed rigid, is simulated at prescribed steady inlet wind
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(a) (b)

Figure 4: Zoom on the tip of the blade surface mesh reparameterized by T-splines. Note that the tip singularity is
removed. Several extraordinary points [3, 88] are used to model the geometry in the vicinity of the tip. (a) Pressure
side. (b) Suction side.

Figure 5: Left: Aerodynamics of the rigidly rotating wind turbine rotor. Isosurfaces of wind speed at a time
instant. Top right: Magnitude of the aerodynamic traction vector on the blade surface. Bottom right: The blade
in the reference and deformed configurations. NURBS and T-spline meshes are superposed on the deformed
configuration, showing no visible differences between the two structural mechanics solutions.

velocity of 11.4 m/s and rotor angular velocity of 12.1 rpm. This setup corresponds to one of the
cases reported in [33]. The dimensions of the problem domain, the NURBS mesh employed,
and the overall problem setup are the same as in [32, 35]. The aerodynamic traction vector
is collected on the NURBS surface of the rotor, and used in the structural computations of a
single wind turbine blade whose surface meshes are shown in Figure 3. Here we employ two
discretizations of the blade. One is based on quadratic NURBS and the other on cubic T-splines.
The T-spline surface was obtained by reparameterizing the NURBS surface. Singularity in the
NURBS geometrical mapping due to coalesced control points at the blade tip is removed during
the reparameterization process (see Figure 4). Instead, several extraordinary points [3, 88] are
used to model the geometry in the vicinity of the tip. The T-spline reparameterization introduced
only very minor changes in the blade geometry (e.g., the blade surface area was reduced by
about 0.5%). The geometry error may be minimized further by locally adjusting the positions
of the T-spline mesh control points.

The NURBS model of the blade, which makes use of the Kirchhoff–Love rotation-free

19



composite shell formulation, in conjunction with the bending strip method, is described in detail
in [32]. There are 4,897 control points in the NURBS mesh. The T-spline model is based on
the same structural mechanics formulation, however, no bending strips are employed. The
underlying T-spline basis functions have sufficient continuity almost everywhere on the blade
surface to obviate the use of bending strips. The T-spline mesh has 3,572 control points.

We compute the blade static response under the action of the fluid traction vector. We also
include the effect of the centripetal force due to rotation, which is significant. In the case of the
NURBS blade, due to the fact that the fluid and structural meshes are matching at the interface,
no data transfer is necessary. The predicted blade tip deflection is 3.6098 m. We repeat the
calculation for the T-spline blade. The T-spline implementation in the isogeometric Kirchhoff–
Love shell code makes use of the Bézier extraction decomposition of the analysis geometry
(see [16, 17]). In this case, we project the aerodynamic traction vector from the boundary
of the fluid mechanics NURBS mesh to the T-spline structural mesh, compute the structural
displacement taking the centripetal force into account, and project the displacement back to the
NURBS mesh. In this case, the tip deflection is predicted to be 3.6193 m. This gives the relative
error of 0.26% between the matching and non-matching discretization simulations, which is felt
to be almost negligible. We also assessed the accuracy of the load transfer by comparing the
global aerodynamic force and moment on the NURBS and T-spline meshes. After the load
transfer, the error in the global force is only 0.14%, and the error in the global moment is only
0.10%.

The results of the aerodynamics and two structural computations are shown in Figure 5.

4.2. FSI Simulations

Figure 6: Illustration of the block-iterative FSI methodology for the simulation of wind turbine rotors. Due to
the relatively heavy weight of the wind turbine blades with respect to the surrounding air, this type of coupling is
sufficient for rapid convergence of the coupled nonlinear FSI equation system.

In this section we present FSI simulations of the 5MW wind turbine rotor. We first show the
case where we couple the NURBS fluid mechanics and T-spline structural mechanics discretiza-
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tions. We then show the results of the coupling between low-order FEM for fluid mechanics
and T-splines for structural mechanics. The FSI coupling procedure employed in both cases is
described in Section 3 and is also illustrated in Figure 6. The strong boundary condition version
of the FSI formulation is employed in the case of NURBS and T-spline coupling. This is due
to the fact that the NURBS fluid mechanics mesh has sufficient boundary layer refinement to
produce accurate results for the quantities of interest in the simulation. In the case of FEM
and T-spline coupling, because of the lack of adequate boundary layer resolution, a weakly en-
forced boundary condition version of the FSI coupling method is employed. In both cases we
use steady inlet wind velocity of 11.4 m/s and rotor angular velocity of 12.1 rpm, and compare
the results with the NURBS matching-interface computation, which we take as a benchmark
calculation.

4.2.1. Coupling of NURBS for Fluid and T-Splines for Structural Mechanics

Figure 7: Relative air speed in a blade cross-section, rotated to the reference configuration, corresponding to a
30 m radial cut. Note that the blade deflection is quite significant. Both the NURBS mesh of the fluid domain
boundary and the T-spline mesh of the blade are shown on the blade surface.

We perform an FSI computation for 8 s of real time, by which time the initial transient nearly
settles. For the three-bladed 5MW rotor we perform a single-blade simulation with only one
third of the cylindrical computational domain and rotationally-periodic boundary conditions.
Snapshots of the relative air speed on the blade axis cross-section at different times during the
simulation are shown in Figures 7 and 8. The results are shown on the deformed configuration,
which is rotated back to the initial position in order to show the blade deflection. Both the
T-spline mesh of the blade and the NURBS mesh of the fluid mechanics domain boundary cor-
responding to the fluid–structure interface are superposed on the figures. It is clear, especially
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(a) (b)

Figure 8: Relative air speed in a blade cross-section, rotated to the reference configuration. Zoom on the blade tip,
showing the superposition of the NURBS mesh of the fluid domain boundary and the T-spline mesh of the blade.
The snapshots correspond to the time close to (a) the beginning and (b) the end of the simulation, illustrating that
the T-spline and NURBS meshes stay “glued” to one another for the entire duration of the simulation.
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Figure 9: Relative error between the T-spline mesh tip displacement and the L2-projection thereof on the surface
mesh of the fluid domain. The relative error is very small and stays nearly constant for the entire simulation. This
shows the that structural kinematics is correctly and accurately transferred to the fluid mesh.

from Figure 8, which zooms on the blade tip and shows how different the NURBS and T-spline
meshes are, that the meshes stay “glued” to one another for the entire simulation. In Figure 9
we plot the blade tip displacement error between the fluid and structural surface meshes as a
function of time. The sole source of the error is the L2-projection of the kinematic data between
the two non-matching meshes. We note that the error magnitude does not exceed 0.03%.

The remainder of this section compares the non-matching mesh simulation with the T-spline
structural model of the blade, and the all-NURBS (fluid and structure) simulation using a match-
ing discretization of the fluid–structure interface. Figure 10 shows the time history of flapwise
and edgewise tip displacement. For this quantity, the results of the matching and non-matching
mesh simulations are nearly indistinguishable for the entire duration of the simulation. Time
history of the aerodynamic torque is shown in Figure 11. Both simulations produce the same
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Figure 10: Time history of the blade tip displacement. Comparison between the matching and non-matching
interface discretization FSI simulations reveals virtually no difference in tip displacement.
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Figure 11: Time history of the aerodynamic torque. Comparison between the matching and non-matching interface
discretization FSI simulations reveals no difference in large-scale response, while minor differences are present in
the small-scale oscillations. Both simulations compare favorably to the NREL data [33].

large-scale response, with some differences in the details of the low-amplitude high-frequency
torque oscillations. The results compare favorably to the aerodynamic torque data reported by
NREL in [33] for this blade design under the same wind and rotor speed conditions. The time
history of the twist angle at two different blade axial locations is shown in Figure 12. The blade
twists and untwists as it undergoes rotational motion. This is due to the reversal of the gravity
vector with respect to the aerodynamic traction vector as the blade tip passes its low and high
points. High-frequency twisting oscillations are present, showing minor differences between the
two simulations, however, the agreement between the matching and non-matching FSI cases is
very good.

This example shows that the proposed coupling methodology is such that there is very little
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Figure 12: Time history of the twist angle at the two cross-sections on the blade axis. Comparison between the
matching and non-matching interface discretization FSI simulations reveals no difference in large-scale response,
while minor differences are present in the small-scale oscillations.

or virtually no accuracy loss due to the presence of the non-matching FSI interface discretiza-
tion.

4.2.2. Coupling of FEM for Fluid and T-Splines for Structural Mechanics

Figure 13: Three-bladed rotor in a deformed configuration at a time instant during the FSI simulation.

In this section, we show preliminary computational results for the FSI coupling of FEM and
IGA. Instead of using rotational periodicity, we compute the full domain with three rotor blades.
We use an automatic mesh generator to create a linear tetrahedral mesh of the aerodynamics
domain, consisting of only 1,193,404 nodes. This is a significantly coarser fluid mechanics
mesh than the NURBS mesh used in the previous section. About 1.5 million control points
were employed for the discretization of 1/3 of the fluid domain in the case of the quadratics
NURBS mesh. The same structural T-spline mesh is employed here as in the previous section.

Figure 13 shows the three-bladed rotor at one time instant during the FSI simulation. Note
that some differences in the flap-wise deflection are present from one blade to another. Figure 14
shows the time history of the aerodynamic torque and the flapwise deflection of the rotor blades.
These quantities are reported for each blade individually, and the results are compared with
a NURBS/T-spline simulation from the previous section. While there is a very reasonable
overall agreement, the FEM/T-spline simulation predicts larger peak-to-peak variations in both
quantities during the initial transient response of the coupled system.
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Figure 14: Time history of the (a) aerodynamic torque and (b) flapwise deflection. Comparison between the
FEM/T-spline and NURBS/T-spline FSI simulations. The data is presented for each blade individually in the case
of FEM/T-spline simulation. The numbering of the blades is consistent with that in Figure 13.

Figure 15: Comparison of aerodynamic results between (a) FEM/T-spline, and (b) NURBS/T-spline FSI simula-
tions. Mesh (left), pressure (middle), and relative air speed (right) at a fixed time t = 7.5 s plotted on a cross-section
corresponding to 80% of the blade radius.

Some of the discrepancies in the results come from the differences in the starting configura-
tion for each blade, which directly affects the structural dynamics of the rotor. Other differences
come from the prediction of the aerodynamics phenomena. Figure 15 compares relative air
speed and pressure distribution at a fixed time on a cross-section corresponding to 80% of the
blade radius. We notice that the significantly finer NURBS mesh is capable of resolving some
of the trailing edge turbulence, while the coarse FEM mesh produces a “smoother” solution.
Nevertheless, despite the large differences in mesh resolution and the lack of real boundary-
layer meshing in the case of linear FEM, the large-scale features of the flow are qualitatively

25



and quantitatively very similar for both discretizations.

5. Conclusions

Although non-matching grids have been used in FSI for many years, we feel the proposed
framework and formulations are novel. The augmented Lagrangian framework with a formal
elimination of the Lagrange multiplier generates a family of FSI formulations at the continuum
level, which serves as a point of departure for the discrete FSI formulation proposed in this
work. The augmented Lagrangian approach naturally motivates weak enforcement of essential
boundary conditions for the fluid mechanics problem, explains the structure of the penalty terms
that stabilize the formulation, and leads to the definition of the fluid traction vector acting on
the structural surface that consistently accounts for slip velocity.

We proposed a robust procedure for transferring kinetic and traction data between the non-
matching IGA and FEM discretizations.

We successfully applied the proposed framework to the simulation of a 5MW wind turbine
rotor at full scale. The computational results suggest that virtually no accuracy is lost due to the
use of non-matching discretizations. Preliminary simulations coupling low-order FEM for the
fluid and IGA for the structure are likewise fairly successful.

In the future work we plan to perform more extensive testing of FEM and IGA coupling.
We plan to include rotor-tower interaction in these and other computations.
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