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Summary
Early-stage wind turbine blade design usually relies heavily on low-fidelity structural mod-
els; high-fidelity, finite-element-based structural analyses are reserved for later design stages
because of their complexworkflows and high computational expense. Yet, high-fidelity structural
analyses often provide design-governing feedback such as buckling load factors. Mitigation of
the issues of workflow complexity and computational expense would allow designers to utilize
high-fidelity feedback earlier, more easily, and more often in the design process. Thus, a blade
analysis framework that employs isogeometric analysis (IGA), a simulation method that over-
comesmany of the aforementioned drawbacks associatedwith traditional finite element analysis
(FEA), is presented. IGA directly utilizes the mathematical models generated by computer-aided
design (CAD) software, requiring less user interaction and no conversion of parametric geome-
tries to finite element meshes. Furthermore, IGA tends to have superior per-degree-of-freedom
accuracy comparedwith traditional FEA. Issues unique to IGA in the context ofwind turbineblade
design, such as coupling of thin-shell components, are addressed, and a design approach that
combines reduced-order aeroelastic analysis with IGA is outlined. Aeroelastic analysis is used to
efficiently provide dynamic kinematic data for a wide range of wind load cases, while IGA is used
to performbuckling analysis. The value of incorporating high-fidelity analysis feedback into blade
design is demonstrated through optimization of the NREL/SNL 5MWwind turbine blade. A vari-
ety of potential designs are produced with reduced blade mass and material cost, and IGA-based
buckling analysis is shown to provide design-governing constraint information.
KEYWORDS:
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1 INTRODUCTION
The trend of increasing wind turbine blade length is ultimately driven by the pursuit of cheaper wind energy through larger swept areas. However,
under some basic assumptions, it can be shown that while rotor power increase is related to rotor size through a quadratic relationship, rotor
weight is related to rotor size through a cubic relationship. 1 This is known as the cube-square law and it suggests significant challenges in the
design of larger blades, especially because cost-effectiveness is a priority. Although the cube-square law appears to have been overcome in practice
through a variety of design methods, 2 increasing blade length nevertheless entails considerable structural design challenges. In particular, it has
been suggested that blade buckling, especially with regard to nonlinear effects, is of concern for longer blades. 3–7
Wind turbine blade design typically relies heavily on computationally efficient, reduced-order aerodynamic and structural models, especially in

the early stages of blade design. This is a sensible approach given a vast design space, the large number of design iterations typically performed, and
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the ample accuracy of many reduced-order models. The value of reduced-order approaches can be especially realized in the context of optimiza-
tion. 8–15 Some types of analyses, however, are more difficult to perform reliably using reduced-order models. Thus, higher-fidelity finite element
analysis (FEA), including both shell and solid FEA, is typically employed in the later design stages to evaluate, for example, buckling load factors as
required by design standards such as the IEC 61400. 16 Because blades are often optimized without taking this accurate buckling feedback into
account, late-stage FEA can reveal design flaws that trigger additional, laborious design iteration. Notably, the focus during these iterations usually
shifts away from blade optimality and towards satisfaction of design standards. To address these issues, various creative design approaches can be
employed. For example, Bottasso et al. 17 constructed an optimization framework that employs multiple levels of fidelity. Regardless of the design
approach used, however, the computational cost and labor associated with traditional FEA have the potential to be prohibitive. Thus, numerous
design approaches stand to benefit from improved high-fidelity structural analysis workflows andmethodologies.
The present work therefore outlines a framework for isogeometric analysis (IGA)-based design and optimization of wind turbine blade struc-

tures. IGA was first introduced by Hughes et al. 18 and is based on the idea that the smooth, parametric functions used in computer-aided design
(CAD) can also be used as finite element basis functions, eliminating the need for extra mesh generation. IGA is therefore capable of effectively
uniting design and analysis paradigms, employing a single model for all such activities. This can ultimately reduce designer labor and requisite
user interaction. IGA has also been shown to feature significantly improved per-degree-of-freedom accuracy relative to traditional FEA in many
cases. 19,20 Past wind turbine and wind turbine blade simulations have employed IGA, 21–32 but none of these efforts have utilized IGA for the pur-
poses of iterative blade design. The present framework enables IGA-based wind turbine blade design through a variety of unique approaches and
developments presented herein. Furthermore, the framework is demonstrated through the modeling, analysis, and optimization of the NREL/SNL
5MW reference blade design.
This paper is outlined as follows. The salient theoretical and technical aspects of the presented framework for isogeometric analysis of wind

turbine blades are described in Section 2. In Section 3, the details of the reference 5 MW blade model are described, and the IGA-based model is
presented and verified. Additionally, mesh convergence studies are performed and, where possible, the results are comparedwith results obtained
using traditional FEA. In Section 4, the 5 MW blade design is optimized using a combination of reduced-order aeroelastic analyses and IGA-based
buckling analysis. Lastly, Section 5 presents a variety of conclusions based on construction and employment of the IGA-based framework for blade
design.

2 FRAMEWORK FOR ISOGEOMETRIC ANALYSISOFWINDTURBINE BLADES
2.1 Isogeometric analysis fundamentals
Typical FEAmethods rely on networks of interpolants (i.e. finite elements) to represent a solution field. These networks generally consist of nodes,
at which the solution of interest is directly represented, and elements, over which the solution field is represented by predefined functions. Corre-
spondingly, geometries in FEA are represented by finite element meshes comprised of, for example, linear triangular elements. Alternatively, CAD
systems typically employ a variety of analytic or parametric functions, such as splines, for advanced geometry representation, visualization and
manipulation. For the engineering designer utilizing both CAD and computer-aided engineering (CAE), these unique geometric paradigms entail
the management of separate, but necessarily related, geometry descriptions. This can lead to a significant amount of manual labor for the design
engineer. 33
The core recognition of Hughes et al. 18 was that the parametric functions used by CAD systems to represent geometry can also be used to

represent the solutionfields of partial differential equations. For example, if an object ismodeled geometrically using non-uniform rational B-splines
(NURBS), which are employed in thiswork, the solution field can readily be represented using the exact same set ofNURBS functions. This approach
entails the significant practical advantage of needing tomaintain only one geometry description throughout design and analysis. In addition to this,
NURBSbasis functions have a number of propertiesmaking themuseful for analysis, including partition of unity and non-negativity. The partition of
unity property indicates that, the sum of the values of all basis functions at any parametric location is equal to one. The property of non-negativity
indicates that the value of any basis function is always greater than or equal to zero. The technical value of these properties is explored in detail by
Hughes et al. 18
Given a scalar parametric variable u, a B-spline curve is defined by a set of non-interpolated control points,Pi, i = 1, ..., n; degree, p; and a knot

vector, Ξ = [ξ1, ξ2, ..., ξn+p+1], which is a set of scalar parametric coordinates dividing the curve into segments over which distinct sets of basis
functions have influence. The basis functions are defined by the Cox-deBoor recursion formula. 34 For degree p = 0,

Ni,0(ξ) =

1 if ξi ≤ ξ < ξi+1 ,
0 otherwise,

(1)
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FIGURE 1Quadratic NURBS (left) and Lagrange (right) basis functions shown over three elements.

and for degree p ≥ 1,
Ni,p(ξ) =

ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) . (2)
While rational B-splines are sufficient for representing many shapes, they are not capable of perfectly representing conic sections. Thus, B-spline
basis functions can be further generalized to defineNURBS entities. For each of the n control points,Pi, a weight,wi, is assigned. Theseweights are
used to describe the relative strength of influence of a basis function, in effect defining new, rational basis functions:

Rp
i (ξ) =

Ni,p(ξ)wi
n∑

j=0
Nj,p(ξ)wj

. (3)

A NURBS curve can therefore be defined as a linear combination of the n basis functions and n control points:
C(ξ) =

n∑
i=0

Rp
i (ξ)Pi . (4)

For a net ofm × n control points,Pi,j, and weights, wi,j, and with the introduction of a second parametric direction, η; associated knot vector,H ;
degree, q; and set of basis functions,Nj,q(η); a similar approach can be used to define bi-directional rational basis functions andNURBS surfaces:

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Nj,q(η)wi,j
n∑

k=0

m∑
l=0

Nk,p(ξ)Nl,q(η)wk,l

, (5)

S(ξ, η) =

n∑
i=0

m∑
j=0

Rp,q
i,j (ξ, η)Pi,j . (6)

Ifwi,j is the same value for all i and j, thenS(ξ, η) becomes a rational B-spline surface. Much of the utility of both surface modeling and IGA is owed
to the advantageous characteristics of these functions; more of the mathematical details of NURBS are given by Piegl and Tiller 34 and Hughes et
al. 18 IGA relies on the utilization of such functions to derive appropriate variational formulations for partial differential equations. In other words,
in, for example, NURBS-based IGA, the governing equations are discretized directly using NURBS. For structural IGA, the degrees of freedom are
usually the displacements of the control points.
A cursory comparison of NURBS basis functions and Lagrange basis functions is shown in Figure 1. In both cases, quadratic basis functions are

used to span three elements. As is the case in traditional FEA, the concept of "elements" is employed in IGA. In NURBS-based IGA, the spaces in
between the knots in a valid knot vector are considered elements. For example, given the knot vector of Ξ = [0, 0, 0, 1, 2, 3, 3, 3], the parametric
space ξ = [0, 1] is considered an element. This definition is employed despite the fact that some of basis functions that are active in the space
of this element remain active beyond ξ = 1, a key distinction from traditional finite elements. Also as in traditional FEA, mesh refinement is an
important procedure in IGA. Both h-refinement, which corresponds to knot insertion of NURBS functions, and p-refinement, which corresponds
to degree elevation, are possible. p-refinement entails changing the degree of the functions being used (e.g. NURBS), whereas h-refinement inserts
knots to "divide" elements. k-refinement, which consists of p-refinement followed by h-refinement, is also possible in IGA and has some beneficial
qualities. For more information, details about both IGA and the use of NURBS in the context of IGA are described by Hughes et al. 18
Some efficiency comparisons of IGA and traditional FEA have been performed in the literature. For example, Benson et al. 19 demonstrated that

structural analysis of a roof using 4,512 linear Belytschko–Tsay elements produced accurate results in 10.5 CPU seconds. Alternatively, using IGA,
results of equivalent accuracywere obtained in 2.90CPU seconds using only 450quadraticNURBS elements. Such performance improvements can
be observed in other contexts as well, especially when complex geometries are involved. 20,35 This underscores the efficient nature of IGA.
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2.2 Isogeometric analysis of thin-shell composites
Wind turbineblades are commonly analyzedas shell structures.An isogeometricKirchhoff–Love thin-shell formulationwasfirst proposedbyKiendl
et al. 36 and was reformulated for composite shells by Bazilevs et al. 22 The thin-shell formulation was shown by Korobenko et al. 26 to accurately
model wind turbine blade kinematics. Furthermore, the thin-shell formulation is computationally advantageous relative to thick-shell formulations
in that it does not feature rotational degrees of freedom. This makes it a particularly appropriate formulation for the purposes of iterative design.
In Kirchhoff–Love shell theory, the Green–Lagrange strain tensor, E, can be expressed as a combination of the membrane strain tensor, εεε, and

curvature change tensor,κκκ, at the shell midsurface:
E = εεε+ ζκκκ , (7)

where ζ is the through-thickness coordinate. For the problems considered in this work, a linear stress–strain relationship is assumed:
S = �E , (8)

where S is a second Piola–Kirchhoff stress tensor and � is a constitutive material tensor. Integrating the stress through the thickness, one can
define the stress resultant due to membrane action,N, and the stress resultant due to bending action,M. Where composites are used, these may
be defined as

N = �εεε+ �κκκ , (9)
M = �εεε+�κκκ . (10)

�, �, and � are the extensional (membrane), coupling, and bending stiffness tensors, respectively, calculated using classical laminated plate the-
ory. 37 In this work, these tensors are written with respect to the local Cartesian basis; the local Cartesian basis is oriented on the first covariant
base vector of themidsurface, which is alignedwith the first parametric direction of theNURBS surface. Employing the concept of virtual work, the
final structural formulationmay be obtained as

δWint − δWext = 0 , (11)
where

δWint =
∫
S

∫
ζ

δE : S dζdS =

∫
S

(δεεε : N + δκκκ : M) dS =

∫
S

δεεε : (�εεε+ �κκκ) dS +

∫
S

δκκκ : (�εεε+�κκκ) dS , (12)

and
δWext =

∫
S

δu · f dS . (13)

In the above, S denotes the shell midsurface in the reference configuration. δεεε and δκκκ are the virtual counterparts of εεε and κκκ, respectively, corre-
sponding to a virtual displacement vector δu. The load vector f represents both distributed external loads as well as (thickness-integrated) body
loads.
In the context of IGA, Equation 11 is discretized using, for example, NURBS, as Kiendl 38 describes in detail. Because second order derivatives

appear in the governing variational equations of the Kirchhoff–Love theory,C1-continuous approximation functions are required. This implies that
traditional low-order finite element approaches cannot be readily used to perform thin-shell analysis. In contrast, CAD-based functions, such as
NURBS, are naturallyC1-continuous and can be directly employed for thin-shell analysis.

2.3 Coupling of surface patches withmatching or non-matching discretization
Despite the many advantages offered by the isogeometric Kirchhoff–Love approach, maintaining C1 continuity of the approximation functions
throughout the entirety of a given structure is often unfeasible. Real-world objects are commonly composed of many NURBS surface patches. This
can be a result of the underlying CAD technology, designer intent, or some combination thereof. Models composed of multiple patches have C0

or even C−1 continuity between patches, the latter meaning that small gaps or overlaps between adjacent patches might appear. Such situations
naturally occur in the modeling of wind turbine blades because the outer shell of the blade and its shear webs cannot be modeled using a single
NURBS patch.
A variety of approaches for coupling thin-shell components havebeenoffered in thefield of IGA. 39–45Oneof themostwell-knownmethods is the

bending strip method, first introduced by Kiendl et al. 46 The method introduces NURBS-based strips of fictitious material featuring unidirectional
bending stiffness and zero membrane stiffness. In multiple instances, 22,27,46 bending strips were shown to be effective for performing IGA-based
simulation ofmulti-patchwind turbine blade structures. A keydrawback of the bending stripmethod, however, is that it requires theNURBS control
points on two coupled patches to be coincident at the coupling location. This arrangement is also known as conforming discretization. Conforming
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discretization is difficult to achieve in many circumstances, wind turbine blade modeling included, and requiring it greatly constrains the geometry
construction procedure.
A coupling approach that is capable of coupling patches with non-matching interfaces was proposed by Breitenberger et al. 43 In that work, both

displacement and rotational continuity are imposed via penalty formulations. However, the formulation for rotational continuity was restricted
to rotation angles less than π/2. Duong et al. 45 presented a different penalty formulation for rotational continuity which has no limitation on the
rotational angle but which is only applied to conforming patches. In the present paper, the approach presented by Duong et al. 45 is extended to
non-matching patches in order tomaximize the flexibility of the couplingmethodology.
Consider a patch interface between two surface patches SA and SB. These patches might be used to model, for example, a wind turbine blade’s

shear web and spar cap as shown in Figure 2. Note that the two patches do not have conforming discretization. In order to avoid undesirable jumps
in displacements and rotations at the patch interfaces, two separate penalty energies are defined. Thedisplacement penalty virtualwork is obtained
in a standard form as

δWpd =

∫
LAB

αd

(
δuA − δuB

)
·
(
uA − uB

) dL . (14)

LAB denotes the patch interface, uA and uB are the displacements of the corresponding points on surface patches SA and SB, respectively, and αd

is a penalty parameter of largemagnitude. For the rotational continuity between the two surfaces, the rotational penalty virtual work 45 is defined
δWpr =

∫
LAB

αr ((δ cosφ− δ cosφ0) (cosφ− cosφ0) + (δ sinφ− δ sinφ0) (sinφ− sinφ0)) dL , (15)

where φ0 and φ are the angles between the surfaces before and after deformation, respectively. The virtual work formulation, Equation 11, is
augmented by δWpd and δWpr and restated as

δWint + δWpd + δWpr − δWext = 0 . (16)
For more details on the variations of the penalty energies, the reader is referred to Duong et al. 45
An inherent issue in penalty methods is the choice of penalty parameters. If the value of the penalty parameter is too low, the constraint is not

satisfied accurately enough. If the penalty parameter value is toohigh, thematricesmaybecome ill-conditioned and the solution of the linear system
is prone to large numerical errors. Ideally, penalty formulations should scalewith geometric andmaterial properties of the problem at hand in away
that makes the choice of the penalty parameters problem-independent. In the present framework the two penalty parametersαd andαr are linked
to a single dimensionless parameter,α, as follows:

αd = α
min(maxi,j(A

A
ij ),maxi,j(A

B
ij))

(hA + hB)/2
i = 1, 2, j = 1, 2 , (17)

αr = α
min(maxi,j(D

A
ij ),maxi,j(D

B
ij))

(hA + hB)/2
i = 1, 2, j = 1, 2 . (18)

AAij and ABij are the elements of local extensional stiffness matrices on surfaces SA and SB determined using classical laminated plate theory, 37 DAij
and DBij are the elements of local bending stiffness matrices, and hA and hB are the length of the local elements in the direction most parallel to
the penalty curve LAB. This formulation, along with an overall penalty parameter of α = 103, works effectively for a wide range of blade analyses,
reducing the extent to which the penalty-based approach is problem-dependent.
The interface curve LAB is a NURBS curve that can be easily generated for arbitrary configurations in most CAD systems. When performing

numerical integration of Equations 14 and 15, the integrands must be evaluated at quadrature points along LAB which requires information from
both surfaces SA and SB. For configurations in which a mapping between the parametric spaces of LAB, SA, and SB can be easily determined, this
evaluation is straightforward. Formore complex configurations, especially whenLAB is an approximation of the intersection of surfacesSA andSB,
this information is obtained from the points on SA and SB nearest to a given quadrature point onLAB.

2.4 Parametric generation of blade geometry
Reliable, parametric generation of IGA-suitable NURBS geometries is a nontrivial task. NURBS-based CAD geometries commonly contain small
gaps, overlaps, and trimmedNURBS regions. In IGA, such issuesmust be carefully avoided ormitigated because the functions are directly employed
for discretization purposes. Thus, given a wind turbine blade’s design parameters, it is critical to employ a set of geometric operations that will gen-
erate a model to which Equation 16 can be applied. Additionally, for the purposes of design, this set of operations should be applicable across a
range of design parameters. Following thework presented byHerrema et al., 31 the CAD software Rhinoceros 3D, a purely NURBS-based platform,
and Grasshopper 3D, a visual programming interface for Rhinoceros, are employed. The programmatic approach of Grasshopper allows consistent
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SA

SB

LAB

FIGURE 2 Two NURBS surfaces, SA and SB, representing the shear web and spar cap of a wind turbine blade. The surfaces must be coupled along
the curveLAB. Control point locations are indicated by spheres.

DP1 DP2 DP3
DP4 DP5

Pitch 
Axis

Chord

Twist

Leading Edge (LE)
LE Panel
Spar Cap
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TE Reinforcement
TE Panel
Shear Web

FIGURE3 Illustration of parameters defined at each station along the blade span in order to define blade geometry andmaterial regions. Parameter
values for the NREL/SNL 5MWblade are given in Table A1.

generation of geometries for a rangeof parametric inputswhereas its interactive nature enables efficient, intuitive alteration of the underlying algo-
rithms used to generate geometries. The algorithm used to generate the wind turbine blade geometry featured in this work is fundamentally the
sameas that presentedbyHerremaet al. 31However, the algorithmhasbeenenhanced to facilitateflatback airfoils, generationof shearwebgeome-
tries, and division of the high- and low-pressure surfaces into distinct material zones. While a single geometry is used in this work, this approach
could be used to generate a wide range of blade geometries.

3 5MWBLADEANALYSIS
In order to demonstrate the effectiveness of the framework described in Section 2, the NREL/SNL 5MW reference blade is modeled and analyzed.
After defining the reference 5 MW wind turbine blade model in Section 3.1, the model is verified with respect to the reference 47 in Section 3.2.
Mass, vibration, and buckling analyses are used and mesh refinement studies are performed throughout. The studies underscore the attractive
performance of the IGA-based framework.

3.1 NREL/SNL 5MWblademodel
The National Renewable Energy Laboratory (NREL) 5 MW blade was first introduced by Jonkman et al. 48 in the context of a full 5 MW turbine
definition which was intended to be a reference for offshore system development. The turbine is a three-bladed, upwind, variable-speed, variable-
pitch machine that is loosely representative of modern utility-scale turbines. The geometric definition of the NREL 5 MW blade itself, however,
was only intended to support basic aerodynamic analysis and did not contain enough detail to support construction of a three-dimensional CAD
model. Furthermore, only the distributed structural properties of the blade are given, rather than a complete composite layup. Resor, 47 as a part of
SandiaNational Laboratories (SNL), therefore establisheda rudimentary structural design that approximately reproduces thedistributed structural
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Material Zone Stack Usage

Leading Edge (LE) 1,2,3,2
LE Panel 1,2,3,7,2
Spar Cap 1,2,3,4,2
Trailing Edge (TE) 1,2,3,2
TE Reinforcement 1,2,3,5,6,2
TE Panel 1,2,3,6,2
Shear Web 8,9,8

FIGURE4ANURBS-basedmodel of theNREL/SNL5MWblade. Colors indicate zoneswith distinctmaterial stacking sequences. Grey lines indicate
element edges and black lines indicate surface patch edges. Stacking sequence for each material zone provided; stack definitions can be found in
Figure 5.

Stack ID Stack Name Material

1 Gelcoat Gelcoat

2 Triax Skins SNL Triax

3 Triax Root SNL Triax

4 UD Carbon UD Carbon

5 TE UD Glass E-LT-5500

6 TE Foam Foam

7 LE Foam Foam

8 DB Saertex Saertex

9 SW Foam Foam

FIGURE 5Definition of material stack spanwise thickness distributions and properties. 47

properties described by Jonkman et al. 48 The design also includes amore detailed geometry definition that is suitable for generation of high quality
surface geometries. The wind turbine blade definition described in Resor et al. 47 will hereafter be referred to as the NREL/SNL 5MWblade.
The properties of each airfoil cross section describing the NREL/SNL 5MWblade are given in Table A1. The table defines the properties needed

to establish a baseline aerodynamic profile, including airfoil type, twist degree, and pitch axis location. It also describes the location of the material
division points needed to divide the blade into distinct material zones. The parameters that are defined at each spanwise station are illustrated in
Figure 3.
Along with the geometry generation approach described in Section 2.4, the parameter values given in Table A1 are used to develop a NURBS-

based shell model, shown in Figure 4. Themodel consists of 21 NURBS surfaces, of degree 3 in both parametric directions, and 51 penalty coupling
curves. Each NURBS surface is assigned to a material zone with a distinct material stacking sequence, indicated by color in Figure 4. The relatively
high spanwise resolution of cross sections in Table A1 is not actually required to maintain geometric accuracy. However, the modeling software
used by Resor 47 assumes that stacks of materials have constant thickness between stations. This requires that many interpolated stationsmust be
defined to sufficiently represent significant ply drops. In the present work, material thicknesses are defined as piecewise linear functions of blade
spanwhich are evaluated at every integration point to determinematerial distribution. This simplification eliminates the need to use all stations for
model construction. More information is given in the footnotes of Table A1.
Each of the material zones indicated in Figure 4 employs a unique sequence of material stacks. Each of these material stacks consists of a single

orthotropicmaterialwith a distinct spanwise thickness distribution as defined in Figure 5.Material properties are described in Table 1whereE1 and
E2 are the Young’s moduli in the first and second material directions, respectively; G12 is the shear modulus; ν12 is Poisson’s ratio; ρ is the density;
σUT is theultimate tensile strength; andσUC is theultimate compressive strength. Further details are givenbyResor 47 andGriffith andAshwill. 49 As
Griffith and Ashwill explain, the material properties reported in Table 1 for Saertex and SNL Triax represent the homogenized properties of layups
having non-uniform, symmetric fiber orientations. Thus, in the stacking sequences described in Figure 4, these homogenizedmaterials, and all other
materials, are assumed to have an overall fiber orientation of zero degrees. In this work, thematerial axes are alignedwith the local Cartesian basis.
As a result, the first material direction is alignedwith the spanwise parametric direction of the local NURBS surface patch.
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TABLE 1Orthotropic material properties used in the NREL/SNL 5MWblade design.

Material Layer E1 E2 G12 ν12 ρ σUT σUC

Name Thickness (mm) (GPa) (GPa) (GPa) (-) (kg/m3) (GPa) (GPa)
Gelcoat 0.05 3.440 3.440 1.323 0.30 1235 - -
E-LT-5500 0.47 41.80 14.00 2.630 0.28 1920 0.972 0.702
SNL Triax 0.94 27.70 13.65 7.200 0.39 1850 0.700 -
Saertex 1.00 13.60 13.30 11.80 0.49 1780 0.144 0.213
Foam 1.00 0.256 0.256 0.022 0.30 200 - -
UDCarbon 0.47 114.5 8.390 5.990 0.27 1220 1.546 1.047

TABLE 2Blademass property comparisons for the reference and presentedmodels.

Property Ref 47 Mesh 1 Mesh 2 Mesh 3
Mass (kg) 17700 17184 17183 17183
Center ofMass (m) 19.102 19.373 19.373 19.373
FirstMassMoment of Inertia (kg-m) 3.381× 105 3.329× 105 3.329× 105 3.329× 105

SecondMassMoment of Inertia (kg-m2) 1.100× 107 1.079× 107 1.079× 107 1.079× 107

FIGURE 6 IGAMesh 1,Mesh 2, andMesh 3 (left to right).

3.2 Model verification
3.2.1 Mass properties
The fundamental mass properties of NURBS-based models with three levels of discretization are compared with the reference 47 5 MW blade
model. Mesh 1, shown in Figure 4, consists of 10800 cubic NURBS elements and 16367 control points over the 28 NURBS surfaces. Mesh 2
is obtained by performing a single global h-refinement of Mesh 1, and Mesh 3 is obtained by performing two global h-refinements of Mesh 1.
These meshes are shown in Figure 6. As discussed previously, the presented model and the reference model use different approaches for model-
ing material thickness distributions. Additionally, it is likely that slight geometrical differences exist, and it appears that Resor 47 employs a level of
discretization that does not yet produce converged solutions. Some differences in model properties are therefore expected. In general, however,
as Table 2 demonstrates, the fundamental blade mass properties compare favorably. The NURBS-based model is somewhat lighter overall with a
center ofmass slightly outboard comparedwith the reference blade. All threemodels have exactly the same area, 603.0m2, because, when h refine-
ment is used in IGA, the geometry remains unchanged. The mass differs slightly for Mesh 1, however, because the linear thickness distributions
are being approximated with discretization-dependent continuous functions. In general all of the listed properties are nearly identical for all three
levels of NURBS discretization.
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TABLE 3 Frequencies of vibration of the reference model and the IGA-based model with three levels of discretization. Blade modes depicted in
Figure 7.

Mesh 1 Mesh 2 Mesh 3
Ref 47 Freq (Hz) Diff (%) Freq (Hz) Diff (%) Freq (Hz) Diff (%)

1st flapwisea 0.87 0.919 5.63 0.919 5.63 0.919 5.63
1st edgewiseb 1.06 1.054 0.57 1.054 0.57 1.053 0.66
2nd flapwisec 2.68 2.809 4.81 2.808 4.78 2.808 4.78
2nd edgewised 3.91 3.886 0.61 3.884 0.66 3.883 0.69
3rd flapwisee 5.57 5.666 1.72 5.660 1.62 5.658 1.58
1st torsionf 6.45 6.698 3.84 6.694 3.78 6.692 3.75

(a) (b) (c) (d) (e) (f)

FIGURE 7 The first six vibrationmodes, described in Table 3, forMesh 1 of the IGA-based blademodel.

3.2.2 Vibration analysis
Having constructed a model of the NREL/SNL 5 MW blade that is suitable for IGA, a variety of analyses can be performed using the methodology
described in Section 2. The vibrational frequencies of awind turbine blade are important to quantify throughout design in order to avoid resonance
phenomena. Because vibration analysis incorporates both the mass properties and the stiffness properties of a structure, it is also a good candi-
date for comparing the presented IGA-based 5 MW model to the reference model. In the finite element context, linear vibration analysis can be
performed by considering the eigenvalue problem (

Klin − λiM
)

vi = 0 , (19)
where Klin is the linear stiffness matrix of the structure,M is the mass matrix, and λi is the ith eigenvalue associated with mode vector vi. The
relation of the ith frequency of vibration, ωi, to the eigenvalue is given by the equation ω2

i = λi. The eigenvalue problem in Equation 19 is solved
within the scientific software package SLEPc, 50,51 which is based on the software package PETSc. 52,53 Specifically, the SLEPc-default Krylov–Schur
solver is usedwith a shift-and-invert spectral transformation for extraction of interior eigenvalues.
The calculated frequencies of both the reference and the IGA-based model are reported in Table 3, with three levels of discretization used for

the IGA-based model. The blade modes, vi, of Mesh 1 are depicted in Figure 7. As discussed previously, some variation in computed frequencies
of vibration is expected due to a few differences in modeling strategies. As Table 3 shows, however, the first six computed frequencies all agree
reasonably well, with a largest difference of 5.63%, or approximately 0.05 Hz, and a lowest difference of 0.61%.

3.2.3 Buckling analysis
As discussed in Section 1, buckling load factor calculation is one of the key applications of high-fidelity structural analysis methods in blade design.
Linear buckling analysis, or eigenvalue buckling analysis, entails solving the equation(

Klin + λiKg
)

vi = 0 . (20)
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FIGURE 8 Convergence of lowest predicted buckling load factor relative to the most converged solution under mesh refinement for both IGA
computations (blue) and computations performed by Resor 47 (red).

Klin is the linear stiffness matrix of the structure,Kg is the geometric stiffness matrix 54 calculated based on critical aerodynamic load conditions,
and λi is the ith eigenvalue associated with mode vector vi. In this context, an eigenvalue λi is a scalar multiplier of the applied loads that will, in
theory, cause buckling of the structure. The PETSc-based SuperLU_DIST 55 direct solver is employed to solve the initial linear problem posed by
Equation16prior to constructingKg. The eigenvalueproblemposed inEquation20 is addressedby again employing the SLEPc-basedKrylov–Schur
solver with a shift-and-invert spectral transformation. 50,51
Comparisonof IGAbuckling results to the reference results is complicatedby the fact that buckling analysis is load-dependent. Loaddistributions

are not provided by Resor 47; hence, aeroelastic simulations, from which distributed loads can be extracted, are performed. This process will be
described in greater detail in Section 4.1. For the purposes of simple comparison, the extreme 50-year wind load case with 15 degrees of yaw error
is simulated and the instantaneous aerodynamic loads corresponding to themaximumflapwise root bendingmoment are applied. In the presented
framework, these loads are distributed to all blade surfaces evenly in the chordwise direction and varying in the spanwise direction according to the
load profile produced by aeroelastic analysis. The force yielded by aeroelastic analysis is converted to a traction which is a applied to the NURBS
surfaces.
Within the IGA-based framework, a buckling factor of 1.61 is calculated. This factor is within 2% of the lowest buckling factor of 1.64 reported

by Resor for the same load case. 47 Additionally, the mode shape, which shows buckling focused in the spar cap, is very similar to some of the mode
shapes shown by Resor. 47 However, this mode occurs at a different load factor in the work of Resor. 47 This difference is likely due, in part, to
differences in the aerodynamic load distributions.

3.2.4 Mesh refinement study
Mesh refinement studies using mass and vibration analyses were performed in previous sections. However, Resor 47 performs a mesh refinement
study via linear buckling analysis. Thus, in this section, a similar, IGA-basedmesh refinement study is performed for comparison.
Resor 47 performs a mesh refinement study for flapwise buckling of the NREL/SNL 5 MW blade modeled in ANSYS, 56 the results of which are

reproduced in Figure 8. Resor 47 applies a load distribution intended to recreate themaximum bendingmoment distribution experienced along the
blade span. For the IGA-based study, a simplified approach in which the loads corresponding to largest flapwise root bending moment, described
in Section 3.2.3, are employed. Resor 47 performs mesh refinement by incrementally reducing the target element size used in a meshing algorithm,
whereas refinement in the IGA framework is performed via h-refinement, described previously.
Figure 8 shows the results of the two mesh refinement studies. The resultant buckling loads are normalized with respect to the most refined

solution. It should be noted that the results in Figure 8 do not constitute a one-to-one comparison of traditional FEA to IGA. The element employed
by Resor, 47 ANSYS Shell181, is a four-node, thick-shell, linear element with six degrees of freedom at each node. The IGA model employs a thin-
shell formulation and cubic NURBSwith three degrees of freedom at each node. The total number of degrees of freedom (DOF) used in an analysis
is significant because it indicates the size of the linear algebra problem that must be solved; smaller problems can typically be solved more quickly.
Resor 47 only provides the number of elements used in the reference analysis, and the number of elements and DOF cannot be directly related
without any knowledge of the mesh topology. Still, the relative number of elements is at least indicative of the relative number of DOF, and hence
the linear algebra problem size, especially for meshes with fairly uniform discretization.
The results in Figure 8 demonstrate the efficiency of the presented IGA approach relative to a more traditional FEA approach. For the coars-

est ANSYS-based case having approximately 14200 elements, an error of approximately 34% is observed. In sharp contrast, when using 10800
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Calculate the value of
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FIGURE 9 Function evaluation procedure for a given set of design variables.

elements in the IGA framework an error of only 1.25% is observed, a level of error that is not achieved even by using more than 160000 ANSYS
Shell181 elements. Additionally, moderate refinement quickly drives error towards zero for isogeometric analysis.

4 DESIGNOPTIMIZATION
The efficiency of the IGA-based framework for wind turbine blade analysis underscores its value in the context of iterative analysis. Not only can
the use of IGA provide time savings but it can also provide benefits in regards to other practical issues such as mesh generation, data transfer, and
data storage. Thus, this section utilizes the aforementioned framework to perform IGA-buckling-constrained optimization of the blade mass and
material cost of the NREL/SNL 5MWblade.
Here, optimization is the primary design approach. A designermay employ other design strategies, such asmanual iterations, sensitivity studies,

etc. One may also employ different optimization methods than the methods employed in this work. It is likely that other design strategies would
lead to different results than those presented here. However, the IGA-based framework for wind turbine blade analysis could still be beneficially
employedwithin any of these other strategies.

4.1 Aeroelastic simulation
A critical task in wind turbine blade design is quantification of the aerodynamic loads, a complicated endeavor due to the interdependence of aero-
dynamic and structural factors. Advanced aeroelastic codes such as FAST 57 and HAWC2 58 utilize reduced-order models to predict overall wind
turbine behavior subject to the effects of aerodynamics, structural dynamics, control, and other factors. For the present optimization problem,
NREL’s FAST is employed in conjunction with high-fidelity IGA. Load analysis is performed using the methodology presented by Resor. 47 Resor 47
identifies a subset of IEC 61400 design load cases (DLCs) that are considered to be the most likely design drivers for a 5 MWwind turbine blade:
DLCs 1.2, 1.3, 1.4, 1.5, 1.6, and 6.3.
For the purposes of comparison, the evaluation of these load cases, as outlined by Resor, 47 is reproduced using FAST version 8. FAST is imple-

mented in the style of the Framework for Unified Systems Engineering and Design of Wind Plants (FUSED-Wind), 59 an open-source framework
for multidisciplinary optimization of wind energy systems which was developed as an extension to the NASA-developed OpenMDAO. 60While the
exact results obtained differ somewhat from those reported by Resor 47 because of slightly different material distributions, different versions of
FAST, and potentially different simulation settings that are not described by Resor 47, the overall trends and conclusions corroborate the reference
analysis. Neither ultimate stress analysis nor fatigue analysis are shown to be design-governing, with all stress values falling below the design limits
for eachmaterial andMiner’s fatigue analysis indicating amaterial life of well over 20 years. Amaximum tip deflection of 6.34m is observed during
the load case featuring a negative gust at rated speed (ECD-R), whereas a maximum flapwise moment of 23130 kN is observed during the 50-year
extremewind load casewith positive 15 degrees of yawmisalignment (EWM50+15). The aerodynamic loads corresponding to this case are used to
calculate the buckling load factor of 1.61 discussed in Section 3.2.3.
Given that the NREL/SNL 5MW reference blade design appears to be governed by the EWM50+15 and ECD-R load cases, only these cases are

utilized in the demonstration optimization problem. In reality, the governing load casesmay change as the design evolves; this factmust be carefully
considered in the industrial design context. For each set of designparameters, theprocedure for determiningobjective functionvalue is summarized
in Figure 9.
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TABLE4Theprice of the variousmaterials used in theNREL/SNL5MWblade design. Fiberglass costs (E-LT-5500, SNLTriax, and Saertex) are based
on dry fibermaterial whereas UDCarbonmaterial is pre-impregnated.

Material Price Kitting Thickness
($/kg) Cost ($/m2) Cost ($/mm)

Foam - 20.00 0.50
Gelcoat 14.00 - -
E-LT-5500 2.97 - -
SNL Triax 2.97 - -
Saertex 2.97 - -
Resin 4.65 - -
UDCarbon 26.40 - -

4.2 Objective function
The ultimate goal throughout the design of any wind turbine component is to reduce the overall cost of energy. Two primary ways to achieve this
are reduction of total blade material cost and reduction of blade mass. Blade mass reduction entails reduced loads on the nacelle and tower, which
could lead to reduced cost overall. Bladematerial cost is more obviously a contributor to turbine capital cost.
The optimization problem is therefore posed as follows:

minimize f(x)

subject to ci(x) ≤ 0 , i = 1, . . . , nc ,
x ∈ Ω .

(21)

x are the design variables, f(x) is the objective function, ci(x) are the nc inequality constraints, and Ω are the acceptable ranges for the design
variables. The objective function is defined

f(x) = w
M(x)−Mref

Mref
+ (1− w)

C(x)− Cref
Cref

, (22)
whereM(x) is the blade mass for a given set of design variables,Mref is the mass of the reference blade design, C(x) is the total blade material
cost for a given set of design variables,Cref is the reference total material cost, andw is the weighting variable indicating the relative importance of
mass and cost reduction, respectively. Market factors, blade transportation, systems-level interactions, and numerous other factors can influence
the optimal weighting for a given design scenario. It is not within the scope of this work to incorporate such factors; thus, a weighting of w = 0.5

is used for demonstration purposes. Blade mass is calculated using the various material densities given by Resor. 47 The cost of the majority of the
materials is dictated by the price per kilogram reported by Griffith and Johanns, 62 summarized in Table 4. Fiberglass materials are priced as dry
fibers; the fiber volume fractions and the cost of resin can be used to determine the infused cost. Alternatively, foam core is priced first on the basis
of kitted area and then according tomaterial thickness.

4.3 Constraints
One can restate the constrained optimization problem, Equation 21, as an unconstrained optimization problem by incorporating the constraints
into the original objective function using the exterior penalty method. 63 This yields a pseudo-objective function

Φ(x) = w
M(x)−Mref

Mref
+ (1− w)

C(x)− Cref
Cref

+

nc∑
i=1

βimax(0, ci(x))
2 , (23)

where βi is a large penalty parameter. An unconstrained optimization problem is ultimately solved:
minimize Φ(x)

subject to x ∈ Ω . (24)

This exterior penalty strategy presents a straightforward but effective way to incorporate constraints into the objective function. The strategy is
also beneficial in that it greatly increases the number of optimizationmethods that can be used to solve the problem.
Upon simulating the EWM50+15 and ECD-R load cases in FAST, many of the constraints ci(x) can be directly calculated. One set of constraints

is used to state that the maximum stresses in each structural material across the entirety of the blade should not exceed the material’s maximum
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FIGURE 10 Material stack thickness distributions with design variables identified by numerical markers. Indices of the variables ∆ti and corre-
sponding names given at right.

tensile strength with respect to a load factor:
cj(x) = σmaxj (x)−

σUTj

γu
≤ 0 , j = 1, . . . , nm . (25)

σmaxj is the maximum stress experienced by each material, σUTj
is the ultimate tensile strength of the material, nm is the number of materials for

which failure is a design concern, and γu is the safety factor used for evaluation of ultimate strength. For this work, γu = 1.755. 47 Stresses are
calculated using the approach described by Resor. 47
A tower clearance constraint can be similarly defined:

cnm+1(x) = δtip(x)−
δavail
γt
≤ 0 , (26)

where δtip is the maximum out-of-plane displacement experienced by any of the blades throughout all simulations, δavail is the available tower
clearance, and γt is the safety factor used for tip clearance evaluation. Here, δavail = 10.50mand γt = 1.485. 47
Lastly, after extracting the aerodynamic loads that produce the maximum bending moment in both the flapwise and edgewise directions, IGA-

based linear buckling analysis can be performed. The corresponding constraint is given as
cnm+2(x) = γb −min(λflap(x), λedge(x)) ≤ 0 , (27)

where λflap is the lowest buckling load factor as a result of the loads corresponding to the maximum flapwise bending moment, λedge is the lowest
buckling load factor as a result of the loads corresponding to themaximum edgewise bending moment, and γb is the factor of safety used for linear
buckling evaluation; in this case, γb = 1.62. All design load factors are the same as those used by Resor. 47

4.4 Design variables
For this problem, a relatively flexible design space is created within which the thickness of many of the material stacks can be varied at different
regions over the blade span. Some stack definitions remain invariant. For example, the external gelcoat is invariant because it does not play an
important role in blade structure andwould not bemodified for structural purposes. The triax skins, which are thin layers of fiberglass used consis-
tently throughout the blade structure to maintain general structural integrity, are also invariant. Additionally, the thickness of the fiberglass at the
root is not modified as it is assumed that the reference thickness is defined to account for the installation of bolts.
Figure 10 identifies the nv = 11 design variables that are used. For a variable indicated by a black numberedmarker in themiddle of a horizontal

line segment, the thickness over the entirety of that line segment is modified by a common variable∆ti. For a variable indicated by a black marker
directly overlapping an inflection point (i.e. variables one and three), the thickness at that inflection point is modified by a variable∆ti. The con-
nectivity of the linear piecewise functions in Figure 10 remains consistent throughout design variable variation. The variables are illustrated by the
expression

ti = trefi + ∆ti , i = 1, . . . , nv , (28)
where ti denotes the thickness at the point or points associated with design variable i for a given optimization iteration, trefi denotes the reference
thickness of the corresponding point or segment, and∆ti denotes the value of the design variable for a given optimization iteration.
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FIGURE 11 At left, blade mass and material cost of each starting point (diamonds) and blade mass and material cost of corresponding optimized
designs (circles). Unfilled points signify invalid designs as indicated by an objective function penalization of greater than 0.05. At right, blade mass
andmaterial cost of only valid optimized points and reference design.

4.5 Implementation and solution strategies
Theoptimization problem represented byEquation 24 is implemented inOpenMDAO, 60 a python-based software formultidisciplinary design anal-
ysis and optimization. FAST-based aeroelastic analyses are performed through the OpenMDAO-based FUSED-Wind 59; thus, the analyses can be
performed in parallel. A similar module is developed to dispatch the two IGA-based buckling analyses in serial fromwithin OpenMDAO. Using this
setup, each function evaluation takes approximately 12minutes on two cores of a Linuxmachine with Intel Xeon E5-2699 v3 2.30 GHz processors.
Each optimization problem is solved using two cores, with clear possibilities for improved efficiency and parallelism in the future. Based on experi-
ence, a penalty coefficient of βi = 1000 is used for all constraints and the optimization is terminated when the objective function varies by a factor
of less than 1.0× 10−6.
OpenMDAO provides access to a variety of optimization methods, and gradients can be automatically calculated within OpenMDAO via finite

difference. Here, the pyOpt-based 64 Sequential Least Squares Programming (SLSQP) method is selected for its relative robustness and ability to
incorporate gradient information. Experience indicates that the solution space of this particular optimization problem may be quite complicated.
While this factmight encourage the use of a global optimization algorithm, global optimization algorithms tend to require large numbers of function
evaluations. In this case, each function evaluation is computationally expensive. Thus, instead,multiple gradient-based optimizations are performed
with different starting points in the design space. Specifically, Latin hypercube sampling, which has been shown to be more effective than purely
random sampling, 65 is used to generate 15 distinct starting points for the 11 design variables.

4.6 Results and discussion
The initialmass and totalmaterial cost of each sample point aswell as the associated optimizedmass and totalmaterial cost are plotted in Figure 11.
The average number of function evaluations for each optimization, including function evaluations required for finite difference gradient evaluation,
is approximately 424. A wide variety of optimized designs are generated, and some of the designs do not perform well from a blade mass and
material cost perspective. This underscores the value of utilizingmany starting points for this particular problem and solution approach. In general,
however, one can see that, in the majority of the problems, either mass is decreased, material cost is decreased, the level of constraint violation is
decreased, or some combination of these pseudo-objective reductionmechanisms is achieved.
Detailed results of two of the optimizations are given in Table 5, and the values of the corresponding design variables are shown in Figure 12.

Each of these optimizations took approximately 2.5 days. The two designs in Table 5 are among the best-performing optimized designs. Both of the
designs, according to the objective function, Equation 23, perform better than the baseline 5 MW blade design. However, performance improve-
ment is achieved differently in each case. In the design designated here as the "Balanced" design, both blade mass and material cost are reduced,
demonstrating that it is possible to achieve improvement of both blademass andmaterial costmetrics simultaneously. This balanced design techni-
cally performs the best from the perspective of Equation 23. The "Lightweight" design, however, demonstrates improvement only of the blademass
metric, with an accompanying material cost increase. While material cost increase is not desirable from the perspective of the objective function,
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TABLE 5Optimization information and relative performance details of two of the best-performing optimized designs.

Design Initial Final Relative Relative Function
Name Objective Objective Mass (%) Cost (%) Evaluations

Balanced 1086.29 -0.026 -3.39 -1.80 498
Lightweight 0.08 -0.007 -7.74 +6.32 266
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FIGURE 12 Design variable values for the reference, balanced, and lightweight 5 MW blade designs. Bars indicate the allowable range for each
design variable.
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FIGURE 13 The total mass andmaterial cost contributions of the three primary types of materials in the baseline, balanced, and lightweight 5MW
blade designs. Fiberglass includes E-LT-5500, SNL Triax, Saertex, and resin.

the drastic blade mass reduction of 7.74 % could enable even more cost reduction in downstream components such as the drivetrain or the tower.
This could be desirable depending on the design context.
The left side of Figure 13 shows, for the baseline, balanced, and lightweight 5MWdesigns, the totalmass of the three primary types ofmaterials.

Thematerial types are fiberglass, which includes E-LT-5500, SNL Triax, Saertex, and resin; foam; and uni-directional carbon fiber. Similarly, the right
side of Figure 13 quantifies the contribution of each type of material towards overall material cost in each of the three designs. For the balanced
design, the mass of all three types of materials is reduced relative to the baseline design. In this case, buckling resistance is improved by more
optimally distributing fiberglass and foam, as shown in Figure 12. Furthermore, the overall material cost is also reduced in the balanced design
because the amount of each type of material is reduced.
The lightweight design demonstrates a substantially different approach. In the lightweight design, the amount of carbon is increased, enabling

reductions in the amounts of both fiberglass and foam that are used. Carbon’s high strength-to-weight ratio dictates that this exchange is quite
beneficial in terms of blade mass, enabling a 7.74% mass reduction, or over 1300 kg. Due to the high cost of carbon, however, the overall material
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TABLE 6Various performancemetrics of the reference and optimized 5MWblade designs.

Design Mass Material Buckling %Max % σUT

Name (kg) Cost ($) % of SF Deflection
Reference 17184 128618 100.41 90.71 37.50
Balanced 16602 126300 100.02 92.06 37.10
Lightweight 15853 136745 100.01 81.73 47.69
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FIGURE 14 The first buckling mode of the reference (top), balanced (middle), and lightweight (bottom) 5 MW blade designs. Modes are shown in
the internal structure of the blade (left) and on the suction side of the blade (right).

cost is adversely affected, even despite the cost reduction stemming from reduced fiberglass usage. Interestingly, the total cost of foamexperiences
little variation from case to case despite non-zero variables associated with foam thickness. This is because the overall cost that is attributed to
foam is dominated by kitting cost, determined by the total area over which the foam is applied, which is invariant in this optimization problem.
The results also illustrate the value of incorporating high-fidelity, IGA-based bucking analysis into an optimization problem like this one. Table

6 shows additional performance details of the reference, balanced, and lightweight designs, including absolute mass, absolute material cost, and
relevant constraint values. The buckling load factor for both of the optimized designs is approximately 100% of the design buckling safety factor of
1.62, indicating that the buckling constraint is active. In other words, the 5MWblade design is governed primarily by buckling in all configurations
presented here. If optimization were to be performed without considering this high-fidelity analysis feedback, it is likely that this behavior would
not be adequately captured. This could potentially increase the workload in later design stages.
The first bucklingmode for the reference, balanced, and lightweight blade designs is shown in Figure 14. In the reference design, buckling occurs

in the spar cap at approximately midspan. This result is reasonably consistent with the reference. 47 In the balanced design, the first buckling mode
remains concentrated in the spar cap but is shifted outboard. This is presumably due to the slightly reduced thickness of carbon fiber beyond 22.5
m as a result of a negative “Carbon2" variation as shown in Figure 12. Conversely, the lightweight design shows considerably different buckling
behavior, with the first bucklingmode concentrated on the inboard region of the shear web nearest to the trailing edge. This is reasonable behavior
given the increased thickness of carbon fiber in the spar cap and reduced thickness of both foam and Saertex fiberglass in the shear web.

5 CONCLUSION
A framework is presented through which IGA-based structural analysis of wind turbine blades can be easily performed. The framework employs
the efficient IGA Kirchhoff–Love shell formulation for composites and a penalty coupling technique to accommodate multi-patch geometry con-
struction. The technique is capable of coupling shell interfaces with non-matching control points and discretization, eliminating the restrictive
requirements imposed on the geometry construction by other methods.
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For the purposes of demonstration, the NREL/SNL 5 MW blade is modeled within Rhinoceros 3D, a NURBS-based CAD modeling software.

Analysis-suitable geometries can be generated from a set of input parameters within the CAD software in a matter of seconds, underscoring the
seamless approach enabled by IGA. The model behaves comparably to the reference model. 47 Upon inspecting the behavior of buckling solutions
under mesh refinement, it is clear that the IGA-based framework is capable of providing accurate solutions using significantly fewer elements
relative to a traditional FEA-based approach.
The NREL/SNL 5MWblade is also optimized within OpenMDAO 60 using both FAST and IGA-based buckling analysis. The objective function is

defined such that minimization of both blademass and total material cost are beneficial. Variation of material thickness profiles is enabled through
11 design variables, and constraints are defined based on IEC 61400 requirements. Optimization is performed on 15 initial blade designs, and
multiple designs of potential interest are identified. The optimized design with the absolute lowest objective function value, termed the "balanced"
design, features both reducedblademass and reducedmaterial cost relative to the referencedesign. Alternatively, the "lightweight" design features
a significant blademass reduction of over 7% achieved through the employment ofmore carbon fiber in the spar cap. In both of these optimizations,
the blade’s buckling behavior governs the design, highlighting the value of incorporating high-fidelity structural analysis into blade optimization
procedures.
The optimization procedure presented here is necessarily limited in scope. If buckling analysis were performed for loads applied over a wider

range of load angles, for example, it is quite possible that the results would differ. Additionally, numerous optimization algorithms could be
employed, some of which may improve the optimization results. Still, the presented framework provides the means to perform such explorations
more easily,more efficiently, andmore accurately. It also provides someoptimized design alternativeswhichmay performbetter than the reference
5MWdesign, potentially providing a starting point for future design studies.
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TABLEA1Definition of cross-sectional parameters used to construct the NREL/SNL 5MWblademodel.a

Blade TE Twist Chord Pitch
span (m) Airfoil Type (deg) (m) Axis DP1 DP2 DP3 DP4 DP5
0.00 circle round 13.31 3.386 0.5 0.0295 0.4114 0.5886 0.8523 0.9705
0.30c circle round 13.31 3.386 0.5 0.0294 0.4114 0.5886 0.8532 0.9706
0.40c interp round 13.31 3.386 0.5 0.0293 0.4114 0.5886 0.8535 0.9707
0.50c interp round 13.31 3.386 0.5 0.0293 0.4114 0.5886 0.8547 0.9707
0.60c interp round 13.31 3.386 0.5 0.0292 0.4114 0.5886 0.8540 0.9708
0.70c interp round 13.31 3.386 0.5 0.0291 0.4114 0.5886 0.8543 0.9709
0.80c interp round 13.31 3.386 0.5 0.0291 0.4114 0.5886 0.8546 0.9709
1.37 circle round 13.31 3.386 0.5 0.0288 0.4114 0.5886 0.8562 0.9712
1.50c interp round 13.31 3.387 0.4985 0.0287 0.4102 0.5868 0.8565 0.9713
1.60c interp round 13.31 3.388 0.4974 0.0286 0.4094 0.5854 0.8568 0.9714
4.10 interpb round 13.31 3.629 0.4692 0.0272 0.3876 0.5508 0.8638 0.9728
5.50 interp round 13.31 3.873 0.4535 0.0265 0.3755 0.5315 0.8677 0.9735
6.83 interpb flat 13.31 4.124 0.4385 0.0257 0.3639 0.5131 0.8715 0.9743
9.00 interp flat 13.31 4.461 0.4141 0.0245 0.3450 0.4831 0.8775 0.9755
10.25 DU99-W-405 flat 13.31 4.557 0.4 0.0238 0.3342 0.4658 0.8810 0.9762
12.00 interp flat 12.53 4.615 0.4 0.0228 0.3313 0.4687 0.8859 0.9772
14.35 DU99-W-350 flat 11.48 4.652 0.4 0.0215 0.3274 0.4726 0.8925 0.9785
17.00 interp flat 10.68 4.584 0.4 0.0231 0.3230 0.4770 0.8871 0.9769
18.45 interpb flat 10.16 4.506 0.4 0.0240 0.3206 0.4794 0.8841 0.9760
20.50 interp flat 9.63 4.374 0.4 0.0253 0.3172 0.4828 0.8800 0.9747
22.55 DU97-W-300 flat 9.01 4.249 0.4 0.0265 0.3138 0.4862 0.8758 0.9735
24.60 interp flat 8.40 4.132 0.4 0.0278 0.3104 0.4896 0.8716 0.9722
26.65 DU91-W-250 flat 7.79 4.007 0.4 0.0291 0.3070 0.4930 0.8674 0.9709
30.75 DU91-W-250 flat 6.54 3.748 0.4 0.0316 0.3003 0.4997 0.8590 0.9684
32.00 interp flat 6.18 3.672 0.4 0.0323 0.2982 0.5018 0.8565 0.9677
34.85 DU93-W-210 flat 5.36 3.502 0.4 0.0341 0.2935 0.5065 0.8506 0.9659
37.00 interp flat 4.75 3.373 0.4 0.0354 0.2899 0.5101 0.8462 0.9646
38.95 DU93-W-210 flat 4.19 3.256 0.4 0.0366 0.2867 0.5133 0.8423 0.9634
41.00 interp sharp 3.66 3.133 0.4 0.0379 0.2833 0.5167 0.8381 0.9621
42.00c interp sharp 3.40 3.073 0.4 0.0385 0.2817 0.5183 0.8360 0.9615
43.04d NACA-64-618 sharp 3.13 3.010 0.4 0.0391 0.2799 0.5201 0.8339 0.9609
45.00 interp sharp 2.74 2.893 0.4 0.0403 0.2767 0.5233 0.8339 0.9597
47.15 NACA-64-618 sharp 2.32 2.764 0.4 0.0416 0.2731 0.5269 0.8339 0.9584
51.25 NACA-64-618 sharp 1.53 2.518 0.4 0.0442 0.2664 0.5336 0.8339 0.9558
54.67 NACA-64-618 sharp 0.86 2.313 0.4 0.0463 0.2607 0.5393 0.8339 0.9537
57.40 NACA-64-618 sharp 0.37 2.086 0.4 0.0479 0.2562 0.5438 0.8339 0.9521
60.13 NACA-64-618 sharp 0.11 1.419 0.4 0.0705 0.1886 0.6114 0.8339 0.9226
61.50 NACA-64-618 sharp 0.00 1.086 0.4 0.0921 0.1236 0.6764 0.8339 0.9079

Abbreviation: DP, division point
aRows highlighted in grey indicate cross sections used for aerodynamic analysis. Division points at which a shear web is defined indicated by
boldface.
bAn airfoil definition given by Jonkman et al. 48 was replaced by an interpolated profile for the purposes of smooth geometry. 47
cStations that are ignored during IGAmodel construction in order to achievemore uniform spanwise NURBS discretization.
dThe spanwise location at which the trailing edge reinforcement terminates.
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