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Abstract The Fontan procedure is a surgery that is
performed on single-ventricle heart patients, and, due to the
wide range of anatomies and variations among patients, lends
itself nicely to study by advanced numerical methods. We
focus on a patient-specific Fontan configuration, and per-
form a fully coupled fluid–structure interaction (FSI) anal-
ysis of hemodynamics and vessel wall motion. To enable
physiologically realistic simulations, a simple approach to
constructing a variable-thickness blood vessel wall descrip-
tion is proposed. Rest and exercise conditions are simulated
and rigid versus flexible vessel wall simulation results are
compared. We conclude that flexible wall modeling plays
an important role in predicting quantities of hemodynamic
interest in the Fontan connection. To the best of our knowl-
edge, this paper presents the first three-dimensional patient-
specific fully coupled FSI analysis of a total cavopulmonary
connection that also includes large portions of the pulmonary
circulation.

Keywords Blood flow · Fontan surgery · Fluid–structure
interaction · Variable wall thickness · Hyperelasticity ·
Wall shear stress

1 Introduction

Congenital heart defects are among the most prevalent form
of birth defects, occurring in roughly 1% of births. “Single
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ventricle”-type defects refer to cases where the heart has only
one effective or functional pumping chamber, and are usu-
ally fatal shortly after birth if left untreated. Single ventricle
patients usually require a staged surgical approach which cul-
minates with a Fontan procedure [13]. There are two variants
of the Fontan procedure, the extra-cardiac conduit (ECC) and
the lateral tunnel (LT) [31]. In both cases, the superior vena
cava (SVC) is connected to the right pulmonary artery. In the
ECC variant, a baffle is also constructed to connect the infe-
rior vena cava (IVC) to the pulmonary arteries, resulting in a
modified T-shaped junction. In the LT variant, a tunnel-like
patch is placed inside the atrium so that blood returning from
the inferior vena cava is directed through this tunnel. A con-
nection is then made between the end of the tunnel/top of the
right atrium and the underside of the pulmonary artery. As a
result of both the ECC and the LT, the circulation becomes a
single pump system, and the heart contains only oxygenated
blood. A surgical connection of the SVC and IVC directly to
the left and right pulmonary arteries is referred to as the total
cavopulmonary connection.

Congenital heart disease is a field that lends itself well to
study by numerical techniques due to the wide range of anat-
omies and variations among patients. Numerical techniques
allow us to examine the effects of the geometry of the Fontan
connection that plays an important role in the overall suc-
cess of the surgery, and assess blood flow characteristics and
energy losses associated with a given surgical design. There
are numerous articles on the total cavopulmonary connection
simulation (see, e.g., [7,11,22,25,26]) that do a very careful
CFD analysis on complex patient-specific configurations in
an attempt to answer some of these questions. Some of the
earlier work in computational fluid dynamics applied to con-
genital heart disease compared energy loss in the standard “t”
junction Fontan with the proposed “offset” model, and led
to the adoption of the offset model as the currently preferred



method [9,10,28,29]. However, the authors feel that despite
the abundance of articles on the subject, very little clinical
impact on Fontan surgery has been derived directly from
simulations. This is in part attributable to the limitations of
the simulation methods used for this application. This arti-
cle addresses one of these shortcoming by introducing flex-
ible wall modeling in Fontan surgery simulations. Including
arterial fluid–structure interaction (FSI) has been found to
be important for modeling other parts of the cardiovascu-
lar system (see, e.g., [5,46,47,51]), and the Fontan surgery,
as will be shown in this article, presents no exception. It
should be noted that an idealized Fontan configuration with-
out pulmonary branching was studied using flow–structure
interaction in [27].

The paper is outlined as follows. In Sect. 2, a simple
approach to vessel wall thickness reconstruction is proposed.
Modeling and discretization of the blood vessel wall requires
information not only about the material properties, but also
local wall thickness. In previous work, the wall thickness is
often directly related to the vessel radius and is expressed
in terms of its percentage. This definition is useful for ves-
sels that are straight and circular, however, its meaning is
lost for the case of real patient-specific vasculature due to
the presence of local curvature, vessel branching, and geo-
metric anomalies, such as aneurysms. CT imaging is able to
produce accurate blood volume data, yet the wall thickness
information is not easily accessible. The proposed method
for vessel wall thickness construction may be employed if
the only information available to the analyst is a mesh of the
vessel volume occupied by the blood. This is often the case
when commercial mesh generation packages are employed
that currently do not have a built-in capability to generate
solid layer meshes. The method we present in this work is
based on solving the Laplace partial differential equation to
prescribe the thickness and is able to handle arbitrarily com-
plex geometries.

In Sect. 3, a structural model of the vessel wall that only
make use of displacement degrees of freedom and does
not require a full three-dimensional solid discretization is
described. This approach is adopted due to the fact that three-
dimensional vessel wall meshing is currently not available
to us for the application presented here. However, for the
purposes of presenting ideas in this article, this modeling
approach is deemed sufficient. We expect to improve it in
the near future by employing a complete shell formulation
with rotational degrees of freedom or developing meshing
techniques in support of three-dimensional solid modeling.

In Sect. 4, numerical results for an ECC variant of a
patient-specific Fontan surgery configuration are presented.
Rest and exercise conditions are simulated and rigid and
flexible vessel wall modeling approaches are compared.
The results show that rigid wall modeling gives an over-
estimation of the wall shear stress and pressure, especially

for the case of exercise conditions. It is also shown that the
resistance boundary condition employed in the computations
and enforced only weakly at each outlet actually holds in a
nearly strong sense.

In Sect. 5, conclusions and future work are presented.

2 Vessel wall thickness reconstruction

Let � ∈ R3 be the blood vessel domain occupied by the
blood, and � be its boundary. Let �i , i = 1, 2, . . . , nsr f ,
denote i th inlet or outlet surface, and nsr f be the total num-
ber of inlets and outlets in a given patient-specific model.
We introduce a volumetric thickness function T : � → R
whose restriction to the arterial surface approximates the
actual thickness of the arterial wall. The thickness function T
is assumed to satisfy the following boundary value problem:

−�T = 0 in � (1)

T =
(∫

�i
d�

π

)1/2

× x% on �i (2)

∂T

∂n
= 0 on � \

nsr f⋃
i=1

�i (3)

The formulation corresponds to the Laplace equation for
T subject to prescribed Dirichlet boundary conditions at
inlets and outlets, where x is the wall thickness expressed
as a percentage of the area-averaged radius. Homogeneous
Neumann or flux boundary conditions are assumed to hold
on the remainder of the boundary.

The method effectively collects the wall thickness infor-
mation at the inlets and outlets of the patient-specific model
and propagates it into the domain interior. Smooth distribu-
tion of wall thickness is expected everywhere in the domain,
including geometrically complex branching regions, due to
the favorable properties of the Laplace operator. The method
can be applied to any patient-specific model independent of
its complexity, and guarantees that the wall thickness at all
inlets and outlets is exactly x% of the area-averaged radius.
The formulation (1)–(3) is amenable to a heat transfer inter-
pretation, where inlets and outlets correspond to regions of
prescribed temperature with no heat exchange on the rest of
the boundary.

We tested the proposed thickness reconstruction method
on an idealized bifurcation model as well as patient-specific
Fontan surgery configurations. In both cases, inlet and outlet
vessel wall thickness was assumed to be 10% of the respective
area-averaged radii. Figures 1 and 2 show the resultant wall
thickness distribution for the bifurcation and Fontan models,
respectively. In both cases a very reasonable smooth distribu-
tion of wall thickness is attained, especially considering how
little information was taken as input data. In particular, the



Fig. 1 Reconstructed thickness distribution from inlet and outlet data
for an idealized bifurcation model. The radii of the arterial branches are
R1 = 0.31 cm, R2 = 0.22 cm, and R3 = 0.175 cm. Near the bifurca-
tion, the largest branch thins to 8.7% of its radius, while the two smaller
ones thicken to 11.5 and 14% of their respective radii

Fig. 2 Reconstructed thickness distribution from inlet and outlet data
for a patient-specific Fontan surgery configuration

results of the Fontan configuration show a physiologically
realistic, gradual thinning of the vessel wall from larger to
smaller branches.

Remark It should be noted that the thickness boundary con-
dition specification is not restricted to the inlets and outlets.
This information, if available from measurements or other
sources, may be incorporated in other parts of the patient-
specific model domain. In situations where the geometry
is locally complex (such as extreme stenosis or aneurysm),
additional constraints on the thickness can be imposed at
specific locations within the domain.

Remark In this paper we do not claim that vessel wall thick-
ness is distributed according to the Laplace equation. The
proposed method is an approximate technique that allows for

incorporation of a reasonably realistic variable wall thickness
in the simulations that make use of limited input data. This
approach gives more physiologically realistic results than
the constant wall thickness assumption, which is employed
in most patient-specific vascular flow–structure interaction
computations reported in the literature.

Remark We would like to note that there are a few recent
variable wall thickness computations reported in [42] with
a membrane wall model, in [37,49] with a continuum wall
model, and in [36] with a continuum wall model and fairly
complex arterial shapes. However, the technique used in this
article is more general and easier to use than those employed
in [36,37,49].

3 Vessel wall modeling

3.1 Kinematics

Let X denote the coordinates of the reference or material
configuration of the blood vessel. We assume that the ves-
sel wall is discretized into three-node triangles and define its
parameterization, restricted to each triangular element, as

X(ξ1, ξ2, ξ3) =
3∑

A=1

NA(ξ1, ξ2)X A + Hξ3 N. (4)

In the above equation, ξ1 and ξ2 are the surface or in-plane
parametric coordinates, ξ3 is the through-thickness paramet-
ric coordinate, H is the vessel wall thickness in the reference
configuration, NA’s are the triangular element shape func-
tions, and X A’s are the nodal coordinates of the luminal sur-
face. Also in Eq. (4), N is the unit outward normal in the
reference configuration given by

N =
∂X
∂ξ1
× ∂X

∂ξ2∥∥∥ ∂X
∂ξ1
× ∂X

∂ξ2

∥∥∥ . (5)

Because we associate X A’s with a luminal surface rather
than the blood vessel mid-surface, the parametric coordinate
ξ3 is assumed to take values in the interval [0, 1]. In equation
(4), we also assumed that the vessel thickness H is constant
on every triangle, however, some thickness variation from
triangle to triangle is expected.

The displacement field u is assumed to be a function of
in-plane parametric coordinates only, and is given by

u(ξ1, ξ2) =
∑

A

NA(ξ1, ξ2)uA, (6)

where uA’s are the nodal displacement degrees of freedom.
The deformation gradient F becomes

F =
(

I + ∂u
∂ X

)
(7)



for which the displacement gradient ∂u/∂ X is computed as

∂u
∂ X
=

⎡
⎢⎢⎣
↑ ↑ ↑
∂u
∂ξ1

∂u
∂ξ2

0

↓ ↓ ↓

⎤
⎥⎥⎦

⎡
⎢⎢⎣
↑ ↑ ↑

∂ X
∂ξ1

∂ X
∂ξ2

∂ X
∂ξ3↓ ↓ ↓

⎤
⎥⎥⎦
−1

. (8)

The additional kinematic quantities to be used in the sequel
are C = FT F and J = detF, the Cauchy-Green deforma-
tion tensor and the determinant of the deformation gradient,
respectively (see, e.g., [16]).

3.2 The weak formulation

Let Vh and Wh be the discrete solution and weighting func-
tion spaces. The semi-discrete weak formulation of the solid
problem is stated as follows: Find u ∈ Vh , such that ∀w ∈
Wh

Nsel∑
e=1

∫
�e

wρ0
∂2u
∂t2 d�e +

∫
�e

∇Xw : FSd�e

−
∫
�e

wρ0 f d�e −
∫
�e

whd�e = 0, (9)

where ρ0 is the tissue density, f and h are the body and
surface forces, respectively, d�e is the infinitesimal element
of the shell surface, d�e = Hed�e, and He is the thickness
of the triangular element e. All quantities in the above for-
mulation are referred to the reference configuration and the
summation is taken over Nsel triangular surface elements.

We model the tissue as a hyperelastic material and assume
the existence of a stored elastic energy of the form

ϕ (C, J ) = 1

2
µ(J−2/3trC − 3)+ 1

2
κ

(
1

2
(J 2 − 1)− lnJ

)
.

(10)

From (10), the second Piola-Kirchhoff stress tensor S and the
fourth-rank tensor of material tangent moduli C are obtained
by performing the following differentiations

S = 2
∂ϕ

∂C
(C, J ), (11)

and

C = 4
∂2ϕ

∂C∂C
(C, J ). (12)

Explicit expressions for S and C in terms of C and J are
lengthy, so we do not present them here and refer the reader
to [2] for details. Parameters µ and κ in (10) are the material
shear and bulk moduli, respectively.

3.3 Enforcement of zero through-thickness stress condition

To avoid thickness locking and ensure consistency with
the three-dimensional theory, normal stress in the thick-
ness direction must vanish (see, e.g, [6]). The zero through-
thickness stress condition may be expressed as

SN N ≡ N · SN = 0, (13)

where SN N is a scalar value of the through-thickness stress. In
the case of a linear stress–strain relationship, the enforcement
of the above condition may be accomplished by appropriately
modifying the tensor of elastic moduli (see„ e.g., [17]) and,
as a result, the stress–strain law. In our case, the stress–strain
relationship (11) is nonlinear, which motivates the following
Newton iteration approach to satisfying equation (13). The
idea is to linearize (13) and iterate on a through-thickness
strain until convergence.

We first define a through-thickness strain component as

CN N ≡ N · C N, (14)

and a corresponding deformation gradient component as

FnN ≡ n · FN, (15)

where n is the unit outward normal in the current configura-
tion given by

n =
∂x
∂ξ1
× ∂x

∂ξ2∥∥∥ ∂x
∂ξ1
× ∂x

∂ξ2

∥∥∥ , (16)

and x’s are the coordinates of the current configuration given
by

x = X + u. (17)

The following three-stage algorithm is executed at every
integration point on the triangle surface (one point integration
is used on the stress terms):

Stage 1—Initialization: Given the displacement gradient
∂u/∂ X , initialize

F(0) = (I + ∂u/∂ X) (18)

C(0) = F(0) T F(0) (19)

J (0) = detF(0) (20)

F (0)
nN = n · F(0)N (21)

C (0)
N N = N · C(0)N, (22)

where the bracketed superscript denotes the iteration index.
Stage 2—Iteration: For i = 0, 1, . . . , nmax repeat the

following steps



(1) Compute

S(i) = 2
∂ϕ

∂C
(C(i), J (i)) (23)

C(i) = 4
∂2ϕ

∂C∂C
(C(i), J (i)) (24)

S(i)
NN = N · S(i)N (25)(
∂SNN

∂CNN

)(i)

= 1

2
NI NJ C (i)

IJKL NK NL , (26)

where CIJKL and NI are the cartesian components of C
and N , respectively.

(2) Solve for the increment �Ci+1
NN from the Newton line-

arization of the zero through-thickness stress condition
(13)

(
∂SNN

∂CNN

)(i)

�C (i+1)
NN + S(i)

NN = 0 (27)

(3) Update C and F, and compute J as follows

C(i+1) = C(i) +�C (i+1)
NN N ⊗ N (28)

F(i+1) = F(i) + 1

2

(
�C (i+1)

NN

F (i)
nN

)
n⊗ N (29)

J (i+1) = detF(i+1), (30)

and increment the iteration counter i ← i + 1.

Convergence to machine precision is achieved in only
three to four iterations.

Stage 3—Finalization: The resultant values of F and S
are used to assemble the left-hand-side and right-hand-side
of the discrete residual equations corresponding to the weak
form (9). The material tangent modulus C is modified as

CIJKL ← CIJKL − CIJMN NM NN NO NPCOPKL

NQ NRCQRST NS NT
(31)

prior to being employed in the assembly of the left-hand-
side matrix corresponding to the discrete variational state-
ment (9).

Remark The surface-based solid formulation presented in
this section is simple in that it only makes use of the
displacement degrees of freedom. Likewise, the zero
through-thickness stress condition is enforced through a
straight-forward iterative algorithm. However, due to a
simplified definition of the displacement variables and the
deformation gradient (see Eqs. 6–8), element out-of-plane
rotations generate strains and, as a result, stresses. To over-
come this modeling deficiency, in the future, we plan to go to
a full shell formulation with rotational degrees of freedom.

Alternatively, this issue may also be circumvented by using
thee-dimensional solid modeling as in [3,19,42,48,51].

4 Numerical simulations

4.1 Coupled FSI formulation for vascular blood flow

Our current moving-domain vascular flow–structure interac-
tion computational methodology consists of the following
features.

The blood is governed by the Navier–Stokes equations of
incompressible flow posed on a moving domain. The Arbi-
trary Lagrangian-Eulerian (ALE) formulation is used (see,
e.g., [12,18]), which is a well-suited approach for vascular
blood flow applications. However, space-time fine elements
were also employed for vascular FSI with great success (see,
e.g., [39,42,46,47]). The vessel wall is modeled as a hyper-
elastic material in the Lagrangian description. At the inter-
face between the blood and the elastic wall, velocity and
traction compatibility conditions are assumed to hold. The
motion of the fluid domain is governed by the equations of
linear elasticity subject to displacement boundary conditions
coming from the motion of the arterial wall.

At the discrete level, the fluid formulation makes use of
the recently proposed residual-based variational multiscale
method [1]. This methodology is equally applicable to turbu-
lent and laminar flows, and is thus well-suited for our appli-
cation, where the nature of the flow is not known a priori,
and some regions may be turbulent while others are laminar.
The Jacobian-based mesh stiffening technique is employed
in which the elastic modulus of the smaller fluid elements
near the solid wall is increased in proportion to the inverse
of the element volume (see, e.g., [21,38,40], and [34,35,43]
for more advanced mesh moving techniques). This results
in fluid mesh stiffening near solid wall boundaries and, as a
consequence, preservation of small elements where they are
needed for accurate computation of boundary layer phenom-
ena and the wall shear stress.

The time-dependent equations are solved using the gener-
alized-α time integrator proposed in [8] for structural dynam-
ics, and developed for fluid mechanics in [20] and FSI in [2].

The meshes for the blood volume and the vessel wall are
compatible at their interface. Fluid and solid mesh compat-
ibility is not necessary in general, however, the simulation
procedures are significantly simplified as a result of this
assumption: the kinematic compatibility condition is satis-
fied point-wise by having a unique set of degrees of freedom
at the fluid-solid interface, and the traction condition holds
in a weak sense.

A quasi-direct solution strategy is adopted in which the
increments of the fluid and solid variables are obtained in a
simultaneous fashion (see [41] for terminology and details).



Fig. 3 Patient-specific Fontan surgery model that includes the inferior
vena cava (IVC), superior vena cava (SVC), and pulmonary circulation
represented by the left upper lobe (LUL), left middle lobe (LML), left
lower lobe (LLL), right upper lobe (RUL), right middle lobe (RML),
and right lower lobe (RLL). Image is rotated anterior to posterior for
ease of viewing

The effect of the mesh motion on the fluid equations is
omitted from the tangent matrix for efficiency, as advocated
in [4] for cardiovascular flow–structure applications.

4.2 Patient-specific Fontan surgery configuration
computational model

The Fontan surgery model that is used in the computations
is shown in Fig. 3. The model is comprised of two inlets,
corresponding to the Inferior Vena Cava (IVC) and Supe-
rior Vena Cava (SVC), for which the time-periodic flowrate
is prescribed. The model also has 20 outlet branches corre-
sponding to the pulmonary circulation. At each outlet, resis-
tance boundary conditions are prescribed of the form

p = Cr q, (32)

where p is the pressure, q is the volumetric flowrate, and Cr

is the resistance constant. The resistance data is tabulated in
Table 1 and the numbering of the branches in Fig. 3 is the
same as that in the table. The resistance data is chosen to
match cardiac catheterization pressure data for this patient,
as described below, and corresponds to case when the patient
is resting, which we refer to as “rest conditions”. The resis-
tance is lowered in the case of exercise conditions, which
is taken into account in the simulations presented later in
this section. Note that, on the venous side, the intramural
pressure is significantly lower than on the arterial side, and,
as a result, the resistance boundary condition (32) does not
have an ambient pressure component. As an alternative to
resistance outflow boundary conditions, Windkessel (RCR)
and impedance outflow boundary conditions (see, e.g., [50])
will be investigated in future studies.

Remark Because the ambient pressure in the venous circu-
lation is very low as compared to the arterial circulation, the

Table 1 Resistance data at rest condition (in dyn s/cm5)

Tag Name Resistance Tag Name Resistance

1 LUL 7128.27 12 RUL 4532.76

2 LUL 8024.40 13 RUL 9693.90

3 LUL 7426.53 14 RML 10387.80

4 LUL 7426.35 15 RML 10062.90

5 LML 8699.04 16 RML 11913.30

6 LML 6870.51 17 RML 6374.43

7 LML 11436.30 18 RML 4737.24

8 LML 14357.70 19 RLL 3156.48

9 LML 7777.80 20 RLL 3023.55

10 LLL 5564.25 21 SVC –

11 LLL 15519.60 22 IVC –

See Fig. 3 for the numbering of the branches. For the exercise condition,
the resistance values were decreased by 10%

Fig. 4 Tetrahedral mesh for the Fontan surgery model

vessel configuration taken from image data may be used to
approximate the reference, zero-stress configuration. How-
ever, in general, the vessel configuration coming from image
data is not stress-free, which needs to be accounted for in the
modeling. The reader is referred to [37,44] for a method of
obtaining an estimated zero pressure geometry from patient-
specific image data.

We use the following material properties in our computa-
tions. The fluid density and dynamic viscosity are 1.06 g/cm3

and 0.04 g/cm s, respectively. The vessel wall has the density
1.00 g/cm3, and shear and bulk moduli of 1.72 × 106 and
1.67× 107 dyn/cm2, respectively.

The tetrahedral mesh of the Fontan model is shown in
Fig. 4. The mesh is refined near boundary layers and regions
of complex branchings based on the error indicators from
a standalone fluid mechanics computation using vascular
blood flow mesh adaption techniques in [32]. Although good



Table 2 Tetrahedral mesh statistics for the Fontan surgery model

Total nodes Total elements Surface elements

200,785 1,010,672 97,918

mesh quality for standalone fluid dynamics simulation is
obtained, procedures in [32] will need to be enhanced to han-
dle coupled FSI cases. Boundary-layer mesh refinement was
also used in [45] and [37]. The latter reference also included
comparative results from meshes with and without boundary
layer resolution.

Mesh statistics are summarized in Table 2. The mesh
has over 106 tetrahedral elements, which, in combination
with boundary layer meshing and accurate numerics, ensures
high-fidelity simulation results.

4.3 Simulation results

We simulate rest and exercise conditions, and also compare
rigid and flexible wall results in each case. Exercise flow con-
ditions correspond are generated by increasing the IVC flow
rate by three times, while keeping SVC flow fixed. These

values are at or slightly above the typical range for a Fontan
patient found in clinical exercise data, in which on average
Fontan patients are able to approximately double their car-
diac index at peak exercise [14,33].

The inflow flowrates as a function of time for both IVC
and SVC branches are given in Fig. 5. Note that the SVC
flowrate is synchronized with the heart cycle, while the IVC
flowrate is synchronized with the respiratory cycle. Cardiac
catheterization pressure tracings, echocardiography, and MR
studies have all demonstrated that respiration significantly
effects Fontan flow rates and pressures [15,30]. As seen with
the echocardiographic tracings, quantitative real-time phase
contrast MR measurements by Hjortdal et al. [15] show that
flow rates in the IVC vary significantly with respiration at rest
(as much as 80%), with smaller cardiac pulsatility superim-
posed. Cardiac variations in the SVC were found to be small,
with no significant respiratory variation. Based on this data,
we impose a respiration model to model flow variations in
the IVC following our previously published work [24]. This
model assumes three cardiac cycles per respiratory cycle,
and values of heart rate and respiratory rate are increased
during exercise following the data of Hjortdal et al. Also
note that the cycles are shorter, and maximum flowrate is
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Fig. 5 IVC and SVC inflow flowrates for rest and exercise conditions

Fig. 6 Isosurfaces of vessel
wall displacement magnitude



Fig. 7 Comparison of the Fontan model configurations at high systole and low diastole

Fig. 8 Comparison of blood velocity streamlines at peak flowrate for exercise conditions

significantly higher for the exercise condition case. Resis-
tance data provided in Table 1 corresponds to the case of
rest conditions. Downstream resistance values were chosen
to match patient-specific cardiac catheterization pressure in
the IVC and SVC. The LPA/RPA flow split of 45/55 was
prescribed. On each side (LPA and RPA), flow was distrib-

uted amongst the pulmonary outlets by grouping them into
upper, middle, and lower lobes. Resistances were chosen to
distribute 20% of the flow to the upper lobe and 40% each to
the middle and lower lobes. These values were based on the
assumption that each of the ten major lung segments receives
equal flow. Within each lobe group, flow was distributed



Fig. 9 Comparison of blood velocity streamlines at peak flowrate for rest conditions

Fig. 10 Blood velocity streamlines at low flowrate

Fig. 11 Comparison of wall
shear stress at rest conditions

according to the outlet areas. An initial steady simulation was
run to verify that catheterization pressure data was matched
within 0.5 mmHg in the IVC and SVC. For exercise condi-
tions, resistivity of the vessels decreases uniformly to 90%
of the original values based on clinical observations that pul-

monary vascular resistance (PVR) in both normal children
and Fontan patients decreases with exercise [23,33].

Figure 6 shows isosurfaces of the vessel wall displacement
magnitude for rest and exercise simulations. The inflow flow-
rate is higher for the case of exercise conditions leading to



Fig. 12 Comparison of wall
shear stress at exercise
conditions
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Fig. 13 Comparison of blood pressure at IVS, SVC, and selected outlets at rest conditions

increased levels of intramural pressure and, as a result, larger
magnitude of wall displacement. We zoom on the different
parts of the model and compare the configurations at peak
systole and low diastole in Fig. 7. We can see from the figure
that the relative displacement between the two configurations
is quite moderate.

Figure 8 shows the blood flow velocity streamlines at
peak systole for the exercise condition simulation, compar-
ing rigid and flexible results. The rigid wall case gives an

over-prediction of the instantaneous flow speed with respect
to the flexible case. There are also some differences in the
streamline patterns, especially in the regions of complex ves-
sel branchings. Velocity streamlines at rest conditions are
compared in Fig. 9. Although the flow speed is again over-
predicted by the rigid wall simulation, the differences in the
streamline patterns are less pronounced. Flow streamlines
at low flowrate comparing rest and exercise conditions are
shown in Fig. 10. Under rest conditions, due to flow reversal
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Fig. 14 Comparison of blood pressure at IVS, SVC, and selected outlets at exercise conditions

during the later parts of the respiratory cycle, a swirl-like fea-
ture develops near the inflow of the IVC giving rise to helical
flow patters in the branch. This feature is not present for the
exercise condition case.

We next examine the wall shear stress (WSS) and com-
pare the results of rigid wall and flexible wall simulations. In
Fig. 11, the rest conditions are compared at peak flow, while
Fig. 12 shows a comparison for the exercise case. The over-
all distribution of WSS is similar and WSS highs and lows
tend to concentrate near the arterial branchings. A closer
examination of the WSS data revealed that in the case of rest
conditions, the WSS for the rigid wall simulation over-pre-
dicts that of the flexible wall by as much 17% in the case
of rest conditions and by as much as 45% in the case of
exercise conditions. The data was taken at several discrete
locations on the arterial wall and the locations are indicated
by arrows in the figures. This data, as well as the flow stream-
line comparison presented above, clearly shows that flexible
wall modeling is important for Fontan surgery simulations
and has a greater effect on the outcomes of the simulations
in the case of exercise conditions.

Computed pressure time histories for SVC, IVC, and
selected outlet branches are shown in Figs. 13 and 14. In
all cases there is a distinct pressure time lag between rigid
and flexible simulation results. Furthermore, the flexible wall

assumption produces a smoothing effect on the pressure out-
put. In both rest and exercise cases, the pressure peak is
always higher for the the rigid wall simulation and the over-
prediction is greater for the exercise conditions simulation,
just as in the case of the WSS.

Finally, in Figs. 13 and 14, the outlet pressure data is pre-
sented in two ways: i. The pressure field is taken directly
and averaged over the outlet cross-sections; ii. The flow-
rate is computed through the outlets and multiplied by the
corresponding resistance constant (see equation (32)). The
figures show no visible differences between the two quan-
tities. This indicates that resistance boundary conditions,
although imposed only weakly in the discrete formulation,
actually hold in a nearly strong sense. (For the numerical
formulation and implementation details of the weak enforce-
ment of pressure-flow boundary conditions, see, e.g., [2,4].)

5 Conclusions

We applied computational fluid–structure interaction
analysis to the simulation of a patient-specific Fontan sur-
gery configuration. Tetrahedral meshes that are refined
near boundary layers and regions of complex blood ves-
sel branching are employed for the fluid mechanics part of



the simulation. Structural discretization makes use of the
resultant triangulation of the blood vessel surface. A simple
structural model with only displacement degrees of freedom
and a hyperelastic constitutive law is proposed, for which a
zero through-thickness stress condition is enforced using an
integration-point-level Newton iteration algorithm. Variable
blood vessel wall thickness is assumed in the simulations,
which is prescribed using a newly developed reconstruction
technique based on the Laplace partial differential equation.
Despite the ad hoc nature of the approach, it leads to phys-
iologically realistic vessel wall thickness distributions for
patient-specific vascular models, independent of their geo-
metric complexity.

Simulation results for a patient-specific Fontan model
show that flexible wall modeling has an important effect
on quantities of hemodynamic interest, and thus cannot be
neglected for this class of problems. In particular, blood flow
patterns differ for rigid and flexible wall simulations, and the
wall shear stress and pressures are over-predicted when the
rigid wall assumption is employed. The differences in these
quantities are more pronounced for the exercise conditions
simulations, for which flowrates and pressures are higher,
and blood flow velocities have greater spatial and temporal
variability.

Limitations of this work include a lack of patient spe-
cific clinical data on pulmonary flow distribution and exer-
cise hemodynamics (flow waveforms and resistance values).
These limitations will be addressed in future clinical studies.
Another limitation is the lack of material property data for
vasculature on the venous side. Future work should examine
the effects of uncertainties in these quantities on simulation
outputs.
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