
Direct immersogeometric fluid flow and heat transfer analysis of
objects represented by point clouds

Aditya Balua, Manoj R. Rajannaa,1, Joel Khristya,1, Fei Xub, Adarsh Krishnamurthya,∗,
Ming-Chen Hsua,∗

aDepartment of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
bAnsys Inc., 807 Las Cimas Parkway, Austin, Texas 78746, USA

Abstract

Immersogeometric analysis (IMGA) is a geometrically flexible method that enables one to per-
form multiphysics analysis directly using complex computer-aided design (CAD) models. While
the IMGA approach is well-studied and has a remarkable advantage over traditional CFD, IMGA
still requires a well-defined B-rep model to represent the geometry. Obtaining such a model can
sometimes be equally as challenging as creating a body-fitted mesh. To address this issue, we de-
velop a novel IMGA approach for the simulation of incompressible and compressible flows around
complex geometries represented by point clouds in this work. The point cloud representation of
geometries is a direct method for digitally acquiring geometric information using LiDAR scan-
ners, optical scanners, or other passive methods such as multi-view stereo images. The point cloud
object’s geometry is represented using a set of unstructured points in the Euclidean space with (pos-
sible) orientation information in the form of surface normals. Due to the absence of topological
information in the point cloud model, there are no guarantees for the geometric representation to
be watertight or 2-manifold or to have consistent normals. To perform IMGA directly using point
cloud geometries, we first develop a method for estimating the inside–outside information and the
surface normals directly from the point cloud. We also propose a method to compute the Jacobian
determinant for the surface integration (over the point cloud) necessary for the weak enforcement
of Dirichlet boundary conditions. We validate these geometric estimation methods by comparing
the geometric quantities computed from the point cloud with those obtained from analytical geom-
etry and tessellated CAD models. In this work, we also develop thermal IMGA to simulate heat
transfer in the presence of flow over complex geometries. The proposed framework is tested for a
wide range of Reynolds and Mach numbers on benchmark problems of geometries represented by
point clouds, showing the robustness and accuracy of the method. Finally, we demonstrate the ap-
plicability of our approach by performing IMGA on large industrial-scale construction machinery
represented using a point cloud of more than 12 million points.

Keywords: Immersogeometric analysis; Point clouds; Geometric algorithms; Winding number;
Weakly enforced Dirichlet boundary conditions; Nitsche’s method

∗Corresponding authors
Email addresses: adarsh@iastate.edu (Adarsh Krishnamurthy), jmchsu@iastate.edu (Ming-Chen Hsu)

1These two authors contributed equally to this work.

The final publication is available at Elsevier via https://doi.org/10.1016/ j.cma.2022.115742

https://doi.org/10.1016/j.cma.2022.115742

1. Introduction

In immersogeometric analysis (IMGA), a solid object is immersed into a non-boundary-fitted
discretization of the background fluid domain that is used to solve flow physics using finite-
element-based computational fluid dynamics (CFD) [1, 2]. IMGA alleviates the labor-intensive
and time-consuming geometry cleanup process needed to create a boundary-conforming fluid mesh
to perform traditional CFD. For example, in boundary-fitted CFD mesh generation, small and thin
geometric features often need to be manually defeatured, and the resulting gaps in the boundary
representation (B-rep) of the solid model need to be filled to create a watertight surface represen-
tation of the solid object. This process can take up to several months for extensive industrial-scale
simulations of flow over complex geometries such as tractors and trucks [3–6].

IMGA has been shown to be a practical method [2, 7–9] for the simulation of incompressible
flow (both laminar and turbulent) around geometrically complex objects in the context of a tetra-
hedral finite cell approach [10]. Since the fluid domain is meshed independently, defeaturing or
removing small geometric features from the immersed object is no longer necessary. The method
was extended by Xu et al. [11, 12] to handle moving particles, by Zhu et al. [13] to consider free-
surface flows, and by Saurabh et al. [14, 15] to perform industrial scale large eddy simulations
using adaptive octree meshes. Xu et al. [16] recently proposed a compressible-flow version of the
IMGA formulation for the simulation of aircraft aerodynamics, and Hoang et al. [17] developed
a skeleton-stabilized IMGA technique for the simulation of fluid flow through a porous medium.
The immersogeometric approach has also been shown as an efficient method to solve computa-
tional fluid–structure interaction (FSI) problems for heart valve applications [18–26]. It is also
flexible enough to be automated and placed in an optimization loop that searches for an optimal
design [27]. A subset of the immersogeometric FSI functionality was recently implemented as the
open-source library CouDALFISh [28, 29].

We have previously developed the immersogeometric method to directly use the B-rep of the
computer-aided design (CAD) model to perform fluid flow simulations. We were able to perform
IMGA of flow over B-rep models represented using triangles [19], trimmed non-uniform rational
B-splines (NURBS) [7], and finally analytic surfaces [8]. These approaches were able to handle
complex geometry without needing any geometric defeaturing. However, they still worked based
on the boundary representation of the well-defined CAD model (2-manifold, watertight, and with
consistent normals). This paper extends the work to perform IMGA directly with point cloud repre-
sentation of the solid geometry, which relaxes these restrictions (manifoldness and watertightness
of the boundary representation).

In a point cloud representation, the boundary of the object is represented using a set of un-
structured points in the Euclidean space with (possible) orientation information in the form of
surface normals. Many geometric data acquisition methods, including optical laser-based scan-
ners, LiDAR scanners, and even passive methods such as multi-view stereo, produce a point cloud
representation of the geometry [30]. Further, there has been a high interest in performing flow
simulations over as-manufactured or in-use objects rather than ideal as-designed objects for per-
forming analysis (and to provide feedback) using digital twins [31–35]. In practice, we need the
geometric information corresponding to the in-use physical object to analyze the flow over them.
While it is possible to perform IMGA by first reconstructing the boundary surfaces and then using
them for the analysis, reconstructing the surfaces to generate watertight and manifold solid models
is by itself very challenging. In addition, such an approach would relax the restrictions on the B-

2

rep CAD models obtained directly after design. The geometry no longer needs to be cleaned up to
ensure it is watertight; points can be directly sampled from boundary surfaces to perform IMGA.

There are two main geometry processing steps for performing IMGA directly on point cloud
representations. First, we need to perform an inside–outside test to conduct a point membership
classification (PMC) on the background fluid mesh based only on the point cloud representation
of the solid model. Second, we need to perform surface integration over the point cloud to impose
the weak Dirichlet boundary conditions [36]. Surface integration requires estimating the surface
normals and area for each point in the point cloud to be used as the Jacobian determinant for each
surface element during integration. In addition, the fluid mesh needs to be adequately refined near
the surface locations, i.e., the region around the points of the point cloud. In this paper, we exploit
the prior art in geometric processing methods to achieve these steps.

Inside–outside evaluation for the background fluid mesh is necessary to identify points inside
the solid geometry. Traditionally, a point membership classification is performed over the solid
CAD model. However, these approaches are restricted to 2-manifold solids with a watertight
surface representation. Since point clouds are not manifold and do not have any inherent order, we
propose using the generalized winding-number-based inside–outside testing approach to perform
the point membership classification. This method relaxes the manifold and watertight requirements
of the surface representation.

As mentioned earlier, the immersed objects used in previous immersogeometric methods con-
sisted of tessellations, trimmed NURBS, or analytic surfaces. In the case of triangles, the Gaussian
quadrature points were directly generated on the planar triangular surfaces [2]. In the case of
trimmed NURBS, the NURBS parameterization was used to generate the quadrature points [7].
Similarly, the surface parametric equations were used to generate the Gaussian quadrature points
for trimmed analytic surfaces [8]. In this work, it is convenient for the integration points to be
co-located with the points of the point cloud. However, this approach requires calculating the Ja-
cobian of the integration for each point in the point cloud. In this paper, we have developed a
Voronoi projection-based area to compute the Jacobian determinant (or the effective area) associ-
ated with each point of the point cloud. In addition, we also need the surface normal corresponding
to each point in the point cloud. We use a local hyperplane fitting algorithm to compute the surface
normals.

In many industrial applications, fluid flow analyses are employed to verify and validate the
efficacy of thermal control systems. The thermal analysis predicts the surface and ambient tem-
peratures of critical components in an industrial product assembly. Previous work demonstrated
the capability to simulate heat transfer using a variational multiscale method with weakly enforced
Dirichlet conditions on conforming boundaries [37]. In this paper, we develop a thermal IMGA
formulation to apply fixed temperature boundary conditions weakly on immersed point cloud sur-
faces, showing convection and conduction of thermal quantities in the flow. We first validate
the proposed formulation using benchmark problems and later demonstrate the utility of thermal
IMGA on a large vehicle assembly.

To summarize, the specific contributions in this paper include: 1) Methods to compute the
surface Jacobian determinant and surface normals from the point cloud representation of a solid
model. 2) Methods to compute the inside–outside information for classifying the quadrature points
of the background fluid mesh. 3) A thermal IMGA formulation for modeling the heat transfer in
flow over an immersed object. 4) Validation studies on the proposed methods to understand their
efficacy in performing IMGA with a point cloud. 5) Demonstration of coupled fluid and thermal

3

Γ

Ω = Ωphys + Ωfict

Ωfict

Ωphys

Figure 1: An example of flow over an object. The object with boundary Γ is immersed into the domain Ω.
The immersed boundary separates the domain Ω into a physical part Ωphys and a fictitious part Ωfict.

flow analysis on a large industrial-scale object represented using a point cloud.
This paper is organized as follows. We provide the mathematical formulation of IMGA for

incompressible and compressible flows in Section 2. In Section 3, we provide details on processing
the point cloud for computing the normals, Jacobian determinant, and inside–outside information.
We also perform validation studies for the point cloud processing methods. Next, we provide the
details of the flow and thermal validation studies in Section 4 and the application of the method to
industrial-scale parts represented as point clouds in Section 5. Finally, in Section 6, we conclude
our work and provide a few directions for future work.

2. Immersogeometric analysis

The immersogeometric flow analysis methodology consists of three main components: 1) The
thermal fluid system is modeled using stabilized finite element methods for incompressible [37–39]
and compressible [40–42] flows. 2) The Dirichlet boundary conditions imposed on the immersed
objects are enforced weakly in the sense of Nitsche’s method [2, 16, 43]. 3) To accurately capture
the geometry of the flow domain, the concept of the Finite Cell Method (FCM) is employed in
which the quadrature rules are adaptively refined [2, 44, 45]. These numerical ingredients are
presented in this section.

2.1. Mathematical formulation
2.1.1. Variational multiscale formulation of the incompressible thermal fluid flow

LetΩ (subsets of Rd, d ∈ {2, 3}) denote the spatial domain, and Γ be its boundary. In the context
of immersogeometric flow analysis, the computational domain Ω consists of two exclusive parts,
the physical domain Ωphys, i.e., the fluid domain, and the fictitious domain Ωfict, i.e., the domain
enclosed by solid objects. Ωphys and Ωfict are separated by the immersed boundary Γ, as shown in
Figure 1. Consider a collection of disjoint elements {Ωe}, ∪eΩ

e ⊂ Rd, with closures covering the
computational domain, Ω ⊂ ∪eΩe, and let Γ be discretized into a collection of boundary elements
{Γb}. In what follows, Ωe

phys = Ω
e ⋂Ωphys and Ωe

fict = Ω
e ⋂Ωfict. Note that the finite-element

discretization of the domain Ω is created without conforming to the geometry Γ, which greatly
simplifies the mesh generation process. In what follows, a superscript h indicates that the variable

4

is evaluated in the discrete space. The variational multiscale (VMS) discretization of the incom-
pressible thermal fluid flow problem can be stated as: find the pressure ph, fluid velocity uh, and
temperature T h in the discrete solution space Sh, such that for all their corresponding test functions
wh

p, wh, and wh
T in the test function spaceVh,

BIC
(
{wh

p,w
h,wh

T }, {p
h,uh,T h}

)
− FIC

(
{wh

p,w
h,wh

T }
)
= 0, (1)

where

BIC
(
{wh

p,w
h,wh

T }, {p
h,uh,T h}

)
=∫

Ωphys

wh · ρ

(
∂uh

∂t
+ uh · ∇uh

)
dΩ +

∫
Ωphys

εεε(wh) : σσσ(uh, ph) dΩ +
∫
Ωphys

wh
p∇ · u

h dΩ

−
∑

e

∫
Ωe

phys

(
ρuh · ∇wh + ∇wh

p

)
· u′ dΩ −

∑
e

∫
Ωe

phys

p′∇ · wh dΩ

+
∑

e

∫
Ωe

phys

ρwh · (u′ · ∇uh) dΩ −
∑

e

∫
Ωe

phys

ρ∇wh :
(
u′ ⊗ u′

)
dΩ

+
∑

e

∫
Ωe

phys

ρ
(
u′ · ∇wh

)
τ ·

(
u′ · ∇uh

)
dΩ

+

∫
Ωphys

wh
T ρc

(
∂T h

∂t
+ uh · ∇T h

)
dΩ +

∫
Ωphys

∇wh
T · κ∇T hdΩ

+
∑

e

∫
Ωe

phys

∇wh
T · κ

IC
DC∇T hdΩ

−
∑

e

∫
Ωe

phys

ρc
(
uh · ∇wh

T

)
T ′dΩ +

∑
e

∫
Ωe

phys

wh
T ρc

(
u′ · ∇T h

)
dΩ

−
∑

e

∫
Ωe

phys

ρc∇wh
T ·

(
u′T ′

)
dΩ, (2)

and

FIC
(
{wh

p,w
h,wh

T }
)
=

∫
Ωphys

wh · ρfbuoy dΩ +
∫
ΓN

u

wh · h dΓ +
∫
ΓN

T

wh
T hT dΓ. (3)

In the above equations, ρ, c, and κ are the density, specific heat capacity, and thermal conductivity
of the fluid, respectively. σσσ(uh, ph) = −phI + 2µεεε(uh) and εεε(uh) = 1

2 (∇uh + (∇uh)T) are the Cauchy
stress and strain-rate tensors of incompressible fluid, respectively, with µ being the dynamic vis-
cosity. I is the d × d identity matrix if not otherwise specified. fbuoy is the buoyancy force per unit
mass modeled using Boussinesq approximation as −β (T − Tref) g, with β being the fluid thermal
expansion coefficient, Tref being the reference temperature, and g being the gravitational acceler-
ation. h and hT contain the prescribed traction and heat flux conditions, respectively, applied on
ΓN

u and ΓN
T , which are the portions of Γ where the corresponding Neumann boundary conditions

are applied. The fine-scale velocity, pressure, and temperature are defined by u′ = −τMrM/ρ,

5

p′ = −ρτCrC, and T ′ = −τErE/(ρc), respectively, where

rM = ρ

(
∂uh

∂t
+ uh · ∇uh

)
− ∇ ·σσσ1

(
uh, ph

)
− ρfbuoy , (4)

rC = ∇ · uh, (5)

rE = ρc
(
∂T h

∂t
+ uh · ∇T h

)
− ∇ ·

(
κ∇T h

)
. (6)

In the above equations, the stabilization parameters are given by

τM =

(Ct

∆t2 + uh ·Guh +CIν
2G : G

)− 1
2

, (7)

τC = (τMtrG)−1 , (8)

τE =

(Ct

∆t2 + uh ·Guh +CIα
2G : G

)− 1
2

, (9)

τ =
(
u′ ·Gu′

)− 1
2 , (10)

where ∆t is the time step size, the constants Ct = 4 and CI = 3 are chosen from an appropriate
element-wise inverse estimation [46, 47], ν = µ/ρ is the kinematic viscosity, α = κ/(ρc) is the ther-
mal diffusivity, and G contains the information about the element size derived from the element
geometric mapping from the parametric parent element to physical coordinates x(ξ). The compo-
nents of G are defined as Gi j =

∂ξk
∂xi

∂ξk
∂x j

. The term κICDC formulates a discontinuity capturing (DC)
operator, which provides additional numerical stability to locations where temperature gradients
are large. The DC stabilization parameter [48] is given by

κICDC = CIC
DC

(
∇T h ·G∇T h

)− 1
2
|rE| , (11)

where CIC
DC is a positive constant scaling the strength of the DC operator and is set to 0.5 in this

paper.
The standard way of imposing Dirichlet boundary conditions is to enforce them strongly by

ensuring that these conditions are satisfied by all trial solution functions, which is not feasible
in immersed methods. Instead, the strong enforcement is replaced by weakly enforced Dirichlet
boundary conditions originally introduced by Bazilevs et al. [36, 49, 50] for incompressible isother-
mal flows and later extended in Refs. [37, 51, 52] for thermal fluid flows. Let ΓD = ΓD

u ∪ Γ
D
T be

the portions of Γ on which the velocity and temperature Dirichlet boundary conditions are applied.
The semi-discrete problem of the thermal fluid system can now be stated as follows:

BIC
(
{wh

p,w
h,wh

T }, {p
h,uh,T h}

)
− FIC

(
{wh

p,w
h,wh

T }
)

−
∑

b

∫
Γb ⋂

ΓD
u

wh ·
(
−ph n + 2µεεε(uh) n

)
dΓ −

∑
b

∫
Γb ⋂

ΓD
u

(
wh

p n + γ̃ 2µεεε(wh) n
)
·
(
uh − uD

)
dΓ

−
∑

b

∫
Γb ⋂

Γ
D,−
u

wh · ρ
(
uh · n

) (
uh − uD

)
dΓ +

∑
b

∫
Γb ⋂

ΓD
u

wh · τIC
µ

(
uh − uD

)
dΓ

6

−
∑

e

∫
Γb ⋂

ΓD
T

wh
T κ∇T h · n dΓ −

∑
b

∫
Γb ⋂

ΓD
T

γ̃ κ∇wh
T · n

(
T h − TD

)
dΓ

−
∑

b

∫
Γb ⋂

Γ
D,−
T

wh
T ρc

(
uh · n

) (
T h − TD

)
dΓ +

∑
b

∫
Γb ⋂

ΓD
T

wh
T τ

IC
κ

(
T h − TD

)
dΓ = 0. (12)

In the above, uD is the prescribed velocity on ΓD
u , TD is the prescribed temperature on ΓD

T , n is the
unit outward normal vector, and ΓD,− is the inflow part of ΓD, on which uh · n < 0. The value of
γ̃ can be selected as 1 or −1 which determines whether Eq. (12) is a symmetric or non-symmetric
type of Nitsche’s method, respectively [16, 36, 53]. Finally, τIC

µ and τIC
κ are stabilization parameters

that need to be estimated element-wise as a compromise between the conditioning of the stiffness
matrix, variational consistency, and the stability of the formulation. The choice of γ̃ influences the
performance of the weak boundary condition operator and the selection of τIC

µ and τIC
κ , which will

be discussed in detail in Section 2.1.3.
An important advantage of using weakly enforced Dirichlet boundary conditions is the release

of the point-wise no-slip condition at the boundary of the fluid domain. This, in turn, allows the
flow to slip slightly on the solid surface and imitates the presence of the thin boundary layer that
typically needs to be resolved with spatial refinement. It was shown in Bazilevs et al. [50] and Hsu
et al. [54] that weak boundary conditions allow for an accurate overall flow solution even if the
mesh size in the wall-normal direction is relatively large. In the immersogeometric method, the
fluid mesh is arbitrarily cut by the object boundary, leaving a boundary layer discretization of in-
ferior quality compared to the boundary-fitted counterpart. However, it was shown in Xu et al. [2]
that accurate flow solutions were obtained using the immersogeometric method with a mesh reso-
lution and refinement pattern comparable to the boundary-fitted mesh used to obtain the reference
values. We believe this is partially due to the use of weak-boundary-condition formulation.

2.1.2. Compressible flow formulation
The compressible-flow governing equations are discretized using a streamline upwind Petrov–

Galerkin (SUPG) formulation [55–69] augmented by a DC operator [70–81]. In what follows,
Roman indices take on values {1, ..., d}, and summation convention on repeated indices is applied.
In addition, we use (·),t to denote a partial time derivative, and we use (·),i to denote the spatial
gradient. Let Y = [p u T]T denote the solution vector of pressure, velocity and temperature, and
W = [wp w wT]T denote the test function vector of their respective test functions. The problem
can be stated as follows: find Yh ∈ Sh such that for all Wh ∈ Vh,

BC
(
Wh,Yh

)
− FC

(
Wh

)
= 0 , (13)

where

BC
(
Wh,Yh

)
=

∫
Ωphys

Wh ·
(
A0Yh

,t + Aadv\p
i Yh

,i + Asp
i Yh

,i

)
dΩ

−

∫
Ωphys

Wh
,i ·

(
Ap

i Yh −Ki jYh
, j

)
dΩ

+
∑

e

∫
Ωe

phys

((
Ai + Asp

i

)T
Wh
,i

)
·
(
A−1

0 τ̂ττSUPG

)
Res

(
Yh

)
dΩ

7

+
∑

e

∫
Ωe

phys

Wh
,i ·

(
κ̂CDCA0

)
Yh
,i dΩ, (14)

and

FC
(
Wh

)
=

∫
Ω

Wh · S dΩ +
∫
ΓH

Wh ·H dΓ. (15)

In the above, A’s and Ki j are the Euler Jacobian matrices and the diffusivity matrix, respectively,
whose specific definitions can be found in Appendix A. Note that the superscript h for A’s and Ki j

are dropped for the clarity of notation, even though they are evaluated in the discrete space. H
contains the prescribed fluid traction and heat flux boundary conditions, and ΓH is the subset of Γ
where H is specified. Res is the residual of the compressible-flow equations defined as

Res
(
Yh

)
= A0Yh

,t +
(
Ai + Asp

i

)
Yh
,i −

(
Ki jYh

, j

)
,i
− S . (16)

The stabilization matrix τ̂ττSUPG is defined as

τ̂ττSUPG =

(Ct

∆t2 I +Gi j

(
Âi + Âsp

i

) (
Â j + Âsp

j

)
+CIGi jGklK̂ikK̂l j

)− 1
2

. (17)

Note that in Eq (17), the identity matrix I is (d + 2) × (d + 2), and the notation ˆ(·) on top of
the matrices indicates that they are evaluated based on the governing equations using conservation
variables. The term associated with κ̂CDC in Eq. (14) is a DC operator, where the DC stabilization
parameter is given by

κ̂CDC = CC
DC

(
Gi jUh

,i
TÃ−1

0 Uh
, j

)− 1
2
(
Res(Yh)

TÃ−1
0 Res(Yh)

) 1
2 . (18)

In the above, CC
DC is a O(1) positive constant (CC

DC = 0.5 in this work), and Ã−1
0 is the inverse of

the zeroth Euler Jacobian of the transformation between the conservation and entropy variables
(see Rajanna et al. [82, Appendix A]). Equation (18) is an extension of the δ91 definition designed
by Tezduyar and colleagues [58, 83], where only the convective part of the full residual operator
Res(Yh) was employed. While the SUPG terms provide the necessary stability across a wide range
of Reynolds numbers, the DC operator provides the necessary additional dissipation in the shock
regions. Finally, the compressible-flow version of the weak-boundary-condition formulation is
added to the weak form:

BC
(
Wh,Yh

)
− FC

(
Wh

)
−

∑
b

∫
Γb∩ΓD

u

wh ·
(
−phn +

(
λ∇ · uh

)
n + 2µεεε(uh)n

)
dΓ

−
∑

b

∫
Γb∩ΓD

u

(
ρhwh

pn + γ̃
((
λ∇ · wh

)
n + 2µεεε(wh)n

))
·
(
uh − uD

)
dΓ

−
∑

b

∫
Γb∩Γ

D,−
u

wh · ρh
(
uh · n

) (
uh − uD

)
dΓ

8

+
∑

b

∫
Γb∩ΓD

u

wh · τC
µ (uh − uD) dΓ +

∑
b

∫
Γb∩ΓD

u

(
wh · n

)
τC
λ

((
uh − uD

)
· n

)
dΓ

−
∑

b

∫
Γb∩ΓD

T

wh
T κ∇T h · n dΓ −

∑
b

∫
Γb∩ΓD

T

γ̃ κ∇wh
T · n

(
T h − TD

)
dΓ

−
∑

b

∫
Γb∩Γ

D,−
T

wh
T ρ

hcv

(
uh · n

) (
T h − TD

)
dΓ +

∑
b

∫
Γb∩ΓD

T

wh
T τ

C
κ (T h − TD) dΓ = 0 , (19)

where λ is the second coefficient of viscosity (λ = −2µ/3 based on Stokes’ hypothesis), and τC
µ ,

τC
λ , and τC

κ are the stabilization parameters of Nitsche’s method. In this work, the compressible gas
is assumed to be calorically perfect and the specific heats at constant volume and constant pressure
can be defined as cv = R/(γ−1) and cp = γR/(γ−1), respectively, where R is the ideal gas constant
and γ is the heat capacity ratio. The pressure, density, and temperature are related through the ideal
gas equation of state, p = ρRT . In addition, thermal conductivity can be calculated by κ = cpµ/Pr,
where Pr is the Prandtl number.

2.1.3. Stabilization parameter selection for weak boundary conditions
Eqs. (12) and (19) can be either the symmetric or non-symmetric form of Nitsche’s method, de-

pending on the value of γ̃ being selected as 1 or −1, respectively. The symmetric Nitsche method
provides excellent accuracy and robustness when the stabilization parameters are properly esti-
mated, which sometimes requires the solution of a local eigenvalue problem [84–88]. However,
the arbitrarily intersected elements in immersed methods make obtaining accurate solutions to
the eigenvalue problem challenging. An intuitive way to circumvent this difficulty is to use a
uniform value that can be determined by a trial-and-error approach to simultaneously satisfy the
requirements for numerical stability and conditioning of the system matrix [1, 2]. Some deli-
cately designed algorithms have been proposed for the local selection of stabilization parameters
in intersected elements [86, 89] and for preconditioning of the linear system [90–92]. However,
even with the added algorithmic complexity, careful estimations of τ’s do not necessarily result
in improved accuracy in L2 errors when compared with the uniform-valued stabilization parame-
ters [53]. Therefore, in our IMGA CFD for incompressible flows, we set τIC

µ = 103 and τIC
κ = cτIC

µ

to take advantage of this most straightforward but effective strategy.
Our previous numerical experiments suggest that, compared with incompressible flows, IMGA

CFD for compressible flows is more sensitive to the oscillations around immersed boundaries
caused by the uniform, large-value stabilization parameters. With this observation, the non-
symmetric Nitsche type weak boundary condition operator [16, 53, 93–96] becomes an attractive
alternative. The non-symmetric Nitsche formulation can be parameter-free [97–101], or with a
stabilization added to reduce the oscillations near interfaces and to improve the L2 accuracy [102–
105]. Since the stabilization parameter in this case is not required to be larger than a specific
lower-bound value to ensure stability, the estimation of the parameter becomes much simpler. In
addition, the value of stabilization does not need to be very large, so it is less likely to over-
shadow the consistency term. Inspired by Wu et al. [27], we scale the stabilization parameters as
τC
µ = τ

C
λ = 4ρhe

n/∆t and τC
κ = cvτ

C
µ for compressible-flow IMGA with non-symmetric Nitsche-type

weak boundary conditions. Note that here he
n = (n · Gn)−1/2 is calculated from the full element,

which greatly simplifies the evaluation in intersected elements.

9

Figure 2: Adaptive quadrature of mesh cells cut by the point cloud object boundary. Black points define the
object’s point cloud, green points are (inactive) quadrature points inside of the object, and the pink points
are (active) quadrature points outside of the object. Two levels of subdivisions are shown here.

2.2. Adaptive quadrature near point cloud surface
Accurate numerical integration over the physical domain Ωphys with the presence of intersected

elements is crucial for obtaining accurate simulation results in immersogeometric flow analysis.
This is achieved in this paper via a subdivision-based adaptive quadrature rule in the context of
the tetrahedral finite cell method [2]. Without changing the original background elements that
support the basis functions, the method adaptively refines the quadrature distributions to create an
aggregation of quadrature points in the vicinity of the immersed boundary. We refer to the elements
used for generating adaptive quadrature rules as cells to avoid confusion with elements used for
constructing basis functions. An intersected cell is recursively split into sub-cells until the sub-cell
is completely inside Ωphys or Ωfict, or when the subdivision reaches a prescribed refinement level.
Standard quadrature rules are applied to determine the set of quadrature points and weights within
the sub-cells.

For clarity of visualization, Figure 2 shows an illustration of the method in 2D based on adap-
tive sub-cells for triangles. The adaptive quadrature scheme needs two phases of point membership
classification: the first classification is performed on the cell vertices to determine whether this cell
is intersected, and the second classification is performed on the quadrature points to determine
whether they should be active (inside Ωphys) or inactive (inside Ωfict). In the context of point cloud
surface representation, a point membership classification method based on winding number will
be presented in Section 3.3. For more details on the adaptive quadrature algorithms, see Xu et al.
[2, Section 3.2].

3. Point cloud processing

Before we extend the IMGA for point cloud representation, we begin with a few notations
for representing the point cloud and its associated differential quantities. A solid geometry is
represented as a smooth manifold S isometrically embedded in the Euclidean space Rd, and the
boundary surface of the solid geometry is represented as Γ (interacting with the domainΩ). A point
cloud P ⊂ Γ could be defined as a set of points sampled from the boundary surface, i.e. P = {p ∈

10

Γ}. We assume that Γ is 2-manifold (to ensure that S is solid) and piecewise smooth (for estimating
the normals and curvatures). Further, P is sampled randomly from Γ, with the number of points
denoted by |P|. For performing IMGA using point clouds, we present the following methods for
(i) estimating the normal or the orientation of each point in the point cloud, (ii) enforcing Dirichlet
boundary conditions, and (iii) performing point membership classification for any given domain
point with respect to the boundary surface represented by point clouds for adaptive quadrature
computations.

3.1. Normal computation
The raw point cloudP does not contain any information of the orientation (or the normal vector

for each point in the point cloud). We estimate the normals from the raw (unoriented) point cloud
by constructing a local surface proxy for each point and then estimating the normals for the surface
proxy as illustrated in Figure 3. For constructing this surface, we first identify the neighborhood
of each point. For a given query point pi ∈ P, where i ∈ [1, |P|], we define the neighborhood Ni to
be the k-nearest neighbors of the point in the set P. For fitting the local surface for each point pi,
we first transform all the neighboring points, q ∈ Ni, to a local coordinate system with the origin
at pi. Considering the points lie in R3, we now define a height function for f (x, y):

f (x, y) = JB,n(x, y) + O
(
||(x, y)|| n+1

)
, (20)

with

JB,n(x, y) =
n∑

r=0

HB,r(x, y), HB,r(x, y) =
r∑

j=0

Br− j, jxr− jy j. (21)

Here, B(·,·) are different constants for a n-degree surface fit for the height function, z = f (x, y).
The neighboring points are fit with this height function by minimizing objective function
of

∑k
l=0 (f (xl, yl) − zl)2. To simplify this problem, we write it in matrix representation,

where the objective function is to minimize ||MB − Z||2. Here, M is the Vandermonde
matrix

[
1, xl, yl, x2

l , . . . , xlyn−1
l , y

n
l

]
l=1,...,k

and B is the matrix with constants of the surface fit[
B0,0, B0,1, B1,0, . . . , B1,n−1

]
. We then find the solution to the linear system MB = Z, which is

equivalent to fitting the best-fit surface. The guarantee for the existence of a unique solution and
the accuracy of the solution to B as O(hn− j+1) are proven in Cazals and Pouget [106]. Once the
solution for B is obtained, the normal can be computed as follows:

n =
(
−B1,0,−B0,1, 1

)√
1 + B2

1,0 + B2
0,1

. (22)

Note that when fitting a surface, we use a different and simpler approach by constructing a
covariance matrix C, which can be defined as:

C =


q1 − p̄
q2 − p̄
...

qk − p̄


T 

q1 − p̄
q2 − p̄
...

qk − p̄

 . (23)

11

Neighboring points, 𝑁𝑖

𝑃𝑖

Delaunay triangulation of 𝑁𝑖

Voronoi area for 𝑃𝑖

Figure 3: Estimation of the normal and Jacobian determinant for each point on the surface. The image on the
left shows the estimation of normals. First, we identify the k-nearest neighbors for each point. Then we fit a
local surface using the neighbors, and the computed normal of the local surface is considered as the normal
for that corresponding point. On the right, we show the estimation of the area (Jacobian) corresponding to
each point. Using the k-nearest neighbors computed earlier, we first use Delaunay triangulation to obtain
the local triangulation surrounding the query point. Then using the barycentric coordinates, we compute the
Voronoi area corresponding to each point.

Here, p̄ represents the centroid of the neighboring points cluster Ni. We can estimate the normal
vector for the plane at point pi by computing the eigenvalues and eigenvectors of the covariance
matrix C. The normal is defined as the eigenvector corresponding to the smallest eigenvalue [107].
Since the eigenvector corresponding to the smallest eigenvalue is also a principal component for
the point cloud, this method is also known as principal component analysis (PCA)-based normal
estimation.

Note that the method above does not guarantee that the calculated normals consistently point
inward or outward with respect to the point cloud geometry. For a given point, we construct a
minimum spanning tree consisting of the nearest neighbors and flip the calculated normal vector if
its orientation is inconsistent with the neighbors [107].

While the PCA-based normal estimation performs well (using plane fitting), for better accuracy,
we can fit a quadratic surface to obtain better curvature and smoothness [106, 108] (also commonly
known as 2-jet fitting, or simply, jet fitting). In this paper, we compare both methods (PCA and jet
fitting) to understand the advantages and disadvantages of both methods.

3.2. Point cloud surface integration rules
To weakly enforce the Dirichlet boundary conditions on ΓD, we first discretize the bound-

ary surface into elements. We then compute the weak-boundary-condition (or Nitsche) terms in
Eq. (12) using the points of the point cloud and their corresponding Jacobian for each discrete
element of the surface. For a point cloud represented using P, we do not need any additional
discretization, and hence we consider each point pi ∈ P as a surface element2 and its associated
(single) quadrature point for performing the integration of the Nitsche terms over ΓD. However,
computing the Jacobian determinant for each quadrature point for performing the integration is not
straightforward. While the surface area or the Jacobian determinant is not defined in a strict sense

2In this work, a surface element is represented by a point of the point cloud, which we sometimes refer to as a point
cloud element.

12

for a point-cloud-based representation, we define an effective surface area ai for each point in the
point cloud (i.e., point area or Voronoi area). This area can be associated with the geodesic Voronoi
area of the point pi on the boundary surface Γ. For some point cloud acquisition processes, this
is already available from the sensors [109], and for others, this can be approximated as shown in
Belkin et al. [110] and Barill et al. [111]. Similar to the approach used for computing the normals
of the point cloud, we construct a local neighborhood for each point pi ∈ P to obtain the geodesic
Voronoi area ai as shown in Figure 3b.

The complete process can be detailed in three steps: (i) For each point pi in the set of point
cloud P, we compute the neighborhood Ni to be the k-nearest neighbors. (ii) Using each set of
neighborhood points Ni, we perform Delaunay triangulation to result in a local surface Ti. (iii) The
dual graph of a Voronoi diagram Vi is the Delaunay triangulation Ti. Therefore, computing the
Voronoi area of pi can be easily performed by taking the contribution area of each triangle in Ti to
ai. Once we obtain the area ai corresponding to each quadrature point, we can integrate and obtain
the weak-boundary-condition terms in Eq. (12).

3.3. Point membership classification
For IMGA, the attribution of a given point q in the domain Ω to the physical domain Ωphys or

fictitious domain Ωfict is fundamental. In other words, we would have to determine if the point q
is inside the solid S or outside it. Traditional B-rep CAD representations perform inside–outside
testing by using ray-intersection-based methods. However, these approaches assume that the sur-
face Γ representing the boundary of solid S is 2-manifold and watertight. When the CAD ge-
ometry is represented using a non-watertight surface representation or badly oriented normals,
the ray-intersection-based methods fail to determine the membership correctly. Particularly, ray-
intersection-based methods do not work for representations such as point clouds (which are non-
manifold).

There has been recent work on defining inside–outside tests for arbitrary non-manifold geome-
tries such as triangle soups and point clouds using generalized winding numbers [111, 112]. The
winding number w(q,Γ) ∈ R can be computed as:

w(q,Γ) =
1

4π

∫
Γ

dA. (24)

Here, A refers to the total solid angle subtended by Γ on q, dA refers to the differential solid angle
subtended by each element of Γ on q. We then project the surface onto a unit sphere to obtain the
surface integral and further simplify it for a discrete point cloud represented by P as follows:

w(q,Γ) =
1

4π

∫
Γ

dA =
∫
Γ

(x − q) · n
4π||x − q||3

dA =
|P|∑
i=1

ai
(pi − q) · ni

||pi − q||3
. (25)

pi, ni, and ai refer to the point coordinates, the normal, and the geodesic Voronoi area, respectively,
for the ith point in the point cloud P. Although the winding number is defined as a real number, for
a 2-manifold, watertight representation of the geometry, the possible winding number value at any
given point q ∈ R3 are positive integers. Further, if the surface does not have self-intersections, the

13

Figure 4: Illustration of winding number for (a) a manifold representation of a circle and (b) a non-manifold
representation of a circle. The circle is centered at (0.0, 0.0) and with a radius of 0.5. The non-manifold
point cloud shown on the right is represented using 1000 points.

winding number is in the binary set of {0, 1}. In other words, for any point q ∈ R3:

w(q,Γ) =

1 q ∈ Ωphys

0 q < Ωphys
. (26)

However, in the case of a non-manifold boundary representation such as a point cloud representa-
tion P, the winding number w(q,Γ) is still zero for all q < Ωphys with a continuous value between 0
and s+1, where s is the number of self-intersections of the surface Γ. We illustrate how the winding
number field for a non-manifold and manifold boundary representation differs in Figure 4. There-
fore, for attribution of a given point q to be inside or outside of Ωphys, we threshold the winding
number at 0.5, and any point with a smaller winding number is considered outside the physical
domain, Ωphys.

4. Validation

4.1. Validation of geometric quantities
Before performing IMGA using point clouds, we first validate the estimated geometric quanti-

ties to understand their accuracy in representing the geometry. We consider three different geome-
tries represented by point clouds for our study: (i) an icosahedron-based sampling of a sphere; (ii)
a randomly sampled sphere; and (iii) a Fandisk model (a benchmark CAD geometry) containing
sharp and smooth features [113].

4.1.1. Validation on icosphere and randomly sampled sphere
While our proposed method for estimating the geometric quantities required for IMGA works

independent of the point sampling, for the first study, we consider the case of an icosphere. An
icosphere is a set of points obtained by tessellating an icosahedron inscribed inside a sphere of
unit radius [114]. Icosphere provides an ideal set of points sampled on a sphere such that there
is a uniform distance between the points lying on the sphere. This geometric setup provides an
ideal example for understanding the behavior of different parameters used to estimate geometric
quantities. A more realistic geometry is a randomly sampled point cloud. We randomly generate

14

0.0 0.5 1.0
Deviation 1e 11

102

103

104

N
um

be
r o

f p
oi

nt
s

Figure 5: The x, y, and z components of the normals estimated from 163,842 points sampled from an
icosphere and the histogram of the deviation in the estimated normals (right).

0 1 2
Deviation 1e 10

101

103

N
um

be
r o

f p
oi

nt
s

Figure 6: The x, y, and z components of the normals estimated from 200,000 randomly sampled points and
the histogram of the deviation in the estimated normals (right).

points on a sphere by generating a set of random points and then projecting them to the sphere
by dividing each point by its distance to the sphere center. Using this method, we can obtain an
arbitrarily large number of points on the spherical surface.

For some methods used for acquiring the point cloud, the normal information is not available.
Hence, we estimate the normals using the 2-jet fitting (mentioned above) for the point cloud. It
takes 4.06 s to estimate normals for 163,842 points on the icosphere. Figure 5 shows the visual-
ization of the estimated normals for the icosphere. Here, we visualize the three components of
the normal vector individually. We observe that each normal component is aligned with the corre-
sponding primary axes. A similar visualization for a randomly sampled sphere with 200,000 points
is shown in Figure 6.

We also compute the deviation between the estimated and theoretical spherical normals. The
theoretical normal of a given point on a unit sphere can be calculated by normalizing the vec-
tor from the sphere center to the point. The deviation is computed by subtracting the dot
product between the estimated normal vector nesti and the theoretical normal vector ntheo from
unity (1 − ntheo · nesti). The maximum deviation in estimating the normals for 163,842 points is
1.15 × 10−11. A similar behavior can be observed for 200,000 randomly sampled in Figure 6 with
a slightly larger deviation of 2.00 × 10−10.

Since the method for normal estimation relies on the local geometry, naturally, this deviation
reduces with the number of points used to represent the geometry (hence capturing more intricate

15

Figure 7: Trends of deviation in normal estimation (left) and area estimation (right) with the increase in the
number of points.

0 20 40 60 80 100
Number of neighbors

10 12

10 9

10 6

10 3

100

D
ev

ia
tio

n

Icosphere
Random

0 20 40 60 80 100
Number of neighbors

10 4

10 3

10 2

10 1

100

D
ev

ia
tio

n

Icosphere
Random

Figure 8: Trends of deviation in normal estimation (left) and area estimation (right) with the increase in the
number of neighboring points used for estimation.

features of the geometry). In Figure 7, we compare the mean deviation in normal estimation and
deviation in total area estimation. For normal estimation, we use 1 − ntheo · nesti for estimating the
deviation at each point and then use the mean deviation for comparison. However, we compare
the sum of each point area for area estimation. The analytical value of the surface area of a sphere
is used as the baseline for comparing the deviation. We see a linear trend for deviation of the
geometric quantities with the increase in the number of points on the log scale. Also, the difference
in mean deviation of normals obtained from the icosphere and randomly sampled sphere reduces
with an increase in the number of points. The total area deviation for randomly sampled points is
almost similar to the icosphere.

Another parameter affecting the estimation of geometric quantities is the number of neighbors
used to estimate them. Figure 8 shows the trend in the mean deviation of the estimated normals
and the deviation in the estimated total surface area of the point cloud for different numbers of
neighbors. The deviation is the minimum with an optimal number of neighbors (empirically close
to 18–20 neighboring points, subject to change based on the number of points in the point cloud)
and remains almost constant with a slight increase in the mean deviation of the estimated normals.
This increase in deviation with an increase in the number of neighbors is because of adding more

16

0 1 2 3 4
Deviation 1e 6

102

103

104
N

um
be

r o
f p

oi
nt

s

Icosphere, Jet Fitting
Icosphere, Plane Fitting

0 2 4 6
Deviation 1e 5

100

101

102

103

104

N
um

be
r o

f p
oi

nt
s

Random, Jet Fitting
Random, Plane Fitting

Figure 9: Trends in the histogram of deviation in normals estimation from PCA-based estimation and 2-jet-
based fitting for icosphere (left) and randomly sampled sphere (right).

points that do not meaningfully contribute to the normal estimation. While a similar behavior is
observed in normal estimation for a randomly sampled number of points, we also observe that
random sampling increases the optimal number of neighbors to account for non-uniform distances
between the points, specifically in point area estimation.

Another parameter to study is the degree of the surface used for fitting from the nearest neigh-
bors. Recall that the linear plane fitting is equivalent to PCA-based fitting and is faster than the
jet-fitting approach. While in terms of speed, the PCA-based plane fitting takes 0.79 s for normal
estimation (compared to 4.06 s for 2-jet fitting), there is a difference of an order of magnitude in
the estimation of the normals and consequently even in the area estimation. Figure 9 shows the
histogram of deviation in normals estimation for icosphere and randomly sampled points using
both PCA and 2-jet fitting. While there is a significant difference in the computational time and
the deviation, the maximum deviation in the estimation is still less than 10−4, and hence is still a
viable method for estimating the quantities for IMGA. Both methods, with appropriately chosen
neighbors and point cloud density, have very little deviation for the sphere.

4.1.2. Validation of normals estimation on a point cloud sampled from the Fandisk model
As mentioned above, the normal estimation depends on the nearest neighbors for a given point.

This means there could be significant deviation when the geometry has sharp edges or very fine
features. To test this, we use a benchmark CAD model (Fandisk model, shown in Figure 10a).
The Fandisk model consists of smooth and sharp features, thus enabling us to test the robustness
of the normal and area estimation methods. While the experiments elucidated above can also be
performed for the Fandisk model, we show just a few key results that provide insights for brevity.

We use the normals computed from the triangle faces of the benchmark CAD model to set
a baseline for the normal vectors. This baseline preserves sharp features since the normals are
completely different for adjacent triangles. However, such sharp features cannot be replicated
using point clouds due to a lack of connectivity information. In Figure 10b, we show the histogram
of deviations in normal estimation. While most points have very little deviations, about 20% of
the total points have some significant deviation. We visualize the deviations of the normals at each
point on the surface in Figure 10c. While most of the points at the center of each face have minimal

17

(a)

0.0 0.1 0.2
Deviation

100

101

102

103

104

105

N
um

be
r o

f p
oi

nt
s

(b) (c)

Figure 10: Normal estimation on Fandisk model. (a) Surface representation of Fandisk model. (b) Variation
of the maximum deviation in estimation of normals with the number of nearest neighbors used for fitting the
surface. (c) Visualization of deviations of the normals at each point on the surface.

X

(a)

X

(b)

Figure 11: Line-cuts of winding number along the x axis for a sphere with (a) a different number of points
in the point cloud, and (b) with an increase in the noise for the sampled point cloud.

deviation, all the points near the edges show significant normal deviation, which is expected. Note
that the deviation of 0.30 (the maximum deviation for a point) refers to a deviation of 45◦ between
the two normal vectors, the average direction between perpendicular planes.

4.1.3. Validation of winding number computation
Since the winding number is a scalar field, we analyze the behavior by plotting the winding

number at one point along the x axis. The ideal winding number for a sphere looks similar to the
line-cut representing 163, 842 points as shown in Figure 11a. The winding number at x < −0.5
and x > 0.5 for a sphere centered around origin with a diameter 1.0 is 0, and 1 for −0.5 ≤ x ≤ 0.5.
When fewer points are sampled, the dipole moments (see Barill et al. [111] for a detailed discussion
on dipole moments) do not cancel in the local region around the boundary, which leads to local
self-intersections. However, we can resolve a watertight geometry without local self-intersections
by using 0.5 as a threshold to classify a given point to be within the geometry.

18

0 10 20 30 40
% Noise

0.00

0.05

0.10

0.15

0.20
M

ea
n

N
or

m
al

 D
ev

ia
tio

n

(a)

0 10 20 30 40
% Noise

0

1

2

3

To
ta

l A
re

a
D

ev
ia

tio
n

(b)

Figure 12: The degradation in the normal estimation and Voronoi area estimation with increasing variance
of noise.

(a) (b) (c) (d) (e)

Figure 13: Rendering of spheres obtained from reconstructed using winding number from (a) 0%, (b) 10%,
(c) 20%, (d) 30%, and (e) 40% Gaussian noise in the point cloud.

4.1.4. Robustness to noise
Often point clouds acquired from actual sensors have significant noise associated with them.

While understanding the efficacy of noise removal approaches is not in the scope of this paper,
we still would like to ensure that the proposed method is robust to noise. To understand the effect
of noise, we add a specified Gaussian noise at each point. Figure 12 shows the increase in the
deviation with an increase in the % noise added to the original point cloud. To see how this affects
the geometric reconstruction, we obtain line cuts of the winding number as earlier in Figure 11b.
As would be expected, adding more noise makes the reconstruction non-manifold. Figure 13 shows
the renderings of the reconstructed surface mesh of the sphere. With the increase in noise, many
dimples are created on the surface that could change the aerodynamics of the shape; nevertheless,
the shapes generated are all 2-manifold and watertight.

4.2. Incompressible flow around a point cloud sphere
We perform mesh convergence and validation studies using icosphere point clouds representing

spheres. We create an icosphere by subdividing the faces of an icosahedron and projecting the
resulting nodes onto the enclosing sphere. Though the icosphere does not achieve an ideal pattern
of equilateral triangles, the generated geometry is equivalent to a well-defined 2-manifold surface
mesh. From this tessellated icosphere, points are spawned at the center of each triangle element
and collected into a point cloud. We begin with a description of the problem setup and background
meshes used for the convergence studies and validations.

19

10

10

10
20

Lateral wall

(no penetration)

2.5 10

5

1.25 6

2.5 d=1

Outer box

Outer

refinement box Inner

refinement box

Figure 14: Computational domain for the icosphere flow validations. The outer frame bounds the fluid do-
main, enclosing an outer refinement region, which itself encloses an inner refinement region. The icosphere
point cloud resides at the origin.

4.2.1. Problem setup
We follow the flow around a sphere study undertaken by Xu et al. [2] with the same domain di-

mensions and very similar background meshes. Note that the problem is non-dimensional, and the
icosphere has a diameter of one. The computational domain, boundary conditions, and immersed
icosphere are shown in Figure 14. A uniform inflow velocity of one in the x-direction is set at
the inlet, and the no-penetration condition is set at the lateral walls, both enforced strongly. The
outflow boundary is traction free. The no-slip condition is enforced weakly on the sphere point
cloud using the methods described in the previous sections. The density of the fluid is set to one,
and the Reynolds number (Re = µ−1) is defined as the inverse of the viscosity. Non-dimensional
mesh settings used for this problem are summarized in Table 1. IM0, IM1, and IM2 are immerso-
geometric tetrahedral meshes of increasing mesh density. Note that IM2 has a comparable mesh
resolution to the boundary-fitted mesh BM2 used in Xu et al. [2], which we use as a reference. We
consider Re = 100, 300 and 3700 in this study, and the time step sizes in the simulations are set to
1.0 × 10−2, 1.0 × 10−3 and 1.0 × 10−3, respectively.

As point clouds lack continuous surfaces to recursively refine surface quadrature points, a
certain spatial density of point cloud relative to the background mesh’s cut element size is required
to prevent flow leakage. Hsu et al. [7] recommends a maximum ratio of 2 between the sizes
of a tessellated surface element and the volume element cut by it. Before conducting validation
studies, we derive an analogous ratio for point clouds with an icosphere geometry. This is found
by converging flow quantities with increasingly dense point clouds on a fixed background mesh,
specifically IM0.

4.2.2. Point cloud convergence with fixed mesh
We simulate flow over six different densities of point clouds on IM0 for Re = 100, 300, and

3700. The coarsest geometry has an average point spacing equal to about five times the cut element
size, while the finest geometry has a point spacing of approximately 1/6 of IM0’s cut element size.

20

Table 1: Element sizes in tetrahedral meshes for simulating flow around a sphere.

Mesh No. of elements Cut element Inner region Outer region Base domain
IM0 304,330 0.020 0.20 0.8/

√
2 1.2

IM1 1,833,434 0.010 0.10 0.4/
√

2 1.0
IM2 9,041,302 0.005 0.05 0.2/

√
2 0.8

BM2 [2] 8,519,435 0.005 0.05 0.2/
√

2 0.8

Table 2: Point cloud convergence for flow around a sphere with adaptive quadrature level 2 (AQ2) on
background mesh IM0. Blank values indicate divergent solutions as a result of insufficient point cloud
density.

Points
Re = 100 Re = 300 Re = 3700

CD L/d CD S t CD S t
642 3.531 1.627
2562 1.404 1.092 1.104 0.105
10,242 1.087 0.982 0.690 0.125 0.643 0.062
40,962 1.094 0.973 0.676 0.144 0.419 0.093
163,842 1.094 0.973 0.676 0.144 0.419 0.093
655,362 1.094 0.973 0.676 0.144 0.419 0.093

This tabulation aims to find the point cloud density at which our measured flow heuristics gain
independence from point spacing. In Table 2, drag coefficient (CD) and recirculation length (L/d)
are listed for the steady-state Re = 100 solutions, whereas we report time-averaged drag coefficient
(CD) and Strouhal number (S t) for vortex shedding cases of the two other Reynolds numbers. The
drag coefficient is computed as CD = 2FD/(ρU2A), where FD is the drag force, ρ is the fluid density,
U is the inflow speed, and A is the frontal area of the sphere. The drag force is evaluated using
the variationally consistent conservative definition of traction [2, 115]. The recirculation bubble
length is computed as L/d, where d is the diameter of the sphere, and L is the length from the rear
end of the sphere to the point where the velocity in x-direction changes sign. The Strouhal number
is computed as S t = f d/U, where f is the frequency of vortex shedding.

As Re increases, we observe an increase in the minimum point cloud density required to achieve
stable flow solutions. As indicated by the blank cells in Table 2, the coarsest point clouds exhibit
divergent solutions at higher Reynolds numbers, even with small time step sizes. As Re increases,
it becomes more necessary that each cut element encloses at least one icosphere point so that each
cut element adequately “feels” the forcing contribution from the immersed point cloud to prevent
flow leakage.

The results in Table 2 show that convergence is consistently achieved when using a point cloud
of 40,962 points. This density translates to an average point spacing valued at about 2/3 of IM0’s
cut element size. This agrees with the spatial density recommendations of Xu et al. [2], as this
point cloud is the coarsest permutation that maintains a point cloud spacing smaller than IM0’s cut
element size. In subsequent simulations, we prescribe a point cloud density that ensures at least
one point per cut element.

21

Table 3: Convergence study for flow around a sphere at Re = 100 with different mesh densities and adaptive
quadrature levels.

Mesh
CD L/d

IM0 IM1 IM2 IM0 IM1 IM2
AQ0 0.927 0.960 0.988 1.010 0.848 0.857
AQ1 1.078 1.080 1.092 0.997 0.846 0.859
AQ2 1.094 1.091 1.092 0.982 0.853 0.858
AQ3 1.094 1.091 1.092 0.973 0.854 0.858

BM2 [2] 1.093 0.857

Table 4: Convergence study for flow around a sphere at Re = 300 with different mesh densities and adaptive
quadrature levels.

Mesh
CD S t

IM0 IM1 IM2 IM0 IM1 IM2
AQ0 0.602 0.620 0.649 0.139 0.144 0.139
AQ1 0.675 0.643 0.657 0.144 0.139 0.136
AQ2 0.677 0.658 0.662 0.142 0.136 0.135
AQ3 0.676 0.659 0.662 0.144 0.135 0.135

BM2 [2] 0.661 0.135

Table 5: Convergence study for flow around a sphere at Re = 3700 with different mesh densities and adaptive
quadrature levels. BF denotes the boundary-fitted solution from Xu et al. [2].

Mesh
CD S t

IM0 IM1 IM2 IM0 IM1 IM2
AQ0 0.562 0.468 0.399 0.083 0.164 0.219
AQ1 0.516 0.407 0.395 0.089 0.163 0.218
AQ2 0.419 0.402 0.394 0.093 0.160 0.218

BF [2] 0.393 0.217

4.2.3. Mesh convergence and flow validation
Here, we perform convergence studies on mesh density and adaptive quadrature level and val-

idate the flow quantities of interest at Re = 100, 300, and 3700 against those reported in Xu et al.
[2]. The adaptive quadrature refinement cases are denoted as AQ followed by the level number.
One icosphere cloud, with its average point spacing less than the cut element size of the finest
mesh IM2, is used in all simulations in this section. The same flow qualities as in Section 4.2.2 are
evaluated and the results are shown in Tables 3–5. For all cases, the convergence under adaptive
quadrature refinement is clearly shown.

For Re = 100 and 300, data obtained above and including IM1 and AQ2 refinement levels are in
excellent agreement with the reference values (BM2) reported in Xu et al. [2]. The results clearly
show mesh convergence and demonstrate the importance of capturing the point cloud geometry in

22

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120 140 160 180
θ [°]

Boundary-fitted method
Immersogeometric AQ0
Immersogeometric AQ1
Immersogeometric AQ2

ҧ 𝐶 𝑝

(a) (b)

Figure 15: (a) Time-averaged pressure coefficient along the upper crown line of the sphere obtained using
IM2 with different AQ levels. Immersogeometric results are compared against the reference boundary-fitted
result [2]. (b) Velocity magnitude contour on a planar cut around the sphere.

cut cells when integrating the background elements. For Re = 3700, the results show that IM2 is
essential to obtaining accurate solutions. For this configuration and flow condition, there occurs a
laminar flow separation near the equator of the sphere and a transition to turbulence in the wake
of the object [116]. Compared to the drag coefficient, the Strouhal number appears particularly
sensitive to mesh density, unable to reach a closer value until IM2. In Figure 15, the time-averaged
pressure coefficient (Cp) along the sphere’s upper crown line is plotted for the IM2 case. θ = 0◦

corresponds to the stagnation point and θ = 180◦ is the trailing point of the sphere. AQ0 shows
oscillatory behavior in Cp, signifying that further refined quadrature points are required in cut
elements. AQ1 remedies the oscillation but largely follows the same pressure coefficient curve
as AQ0. Finally, AQ2 produces a result that is in excellent agreement with the boundary-fitted
reference [2]. It should be noted that the refinement levels, solution accuracy, and convergence
behavior presented in this section are in full agreement with those in Xu et al. [2].

4.3. Buoyancy-driven flow
After the validation of isothermal fluid flow, we validate the thermal IMGA by simulating

buoyancy-driven flows. Following the problem of natural convection in an enclosure with a heated
sphere investigated by Yoon et al. [117], a static spherical boundary is situated within a sealed
cubical enclosure filled with air, as shown in Figure 16. Buoyant flow is driven by a temperature
differential between the sphere and the enclosure walls. This case is chosen as it requires simulation
of heat transfer involving immersed Dirichlet boundaries and accurate resolution and application
of buoyant forces on fluids. The sphere’s boundary, with a non-dimensional radius of R = 0.2,
is immersed within the cubical simulation mesh. This cube has non-dimensional edge lengths of
1, with the coordinate system at the domain’s center and coordinate axes parallel to the domain’s
edges. The gravity acts in the −z direction. All boundaries are treated as no-slip walls. A high
temperature Th = 1 is applied on the sphere, while a low temperature Tc = 0 is applied on the cube
domain surfaces. The normalized temperature can be defined as Θ = (T − Tc)/(Th − Tc).

We simulate two cases at Rayleigh number Ra = 1000 with δ = 0 and δ = 0.25. Rayleigh
number is defined as Ra = gβL3(Th − Tc)/(να), where g = 1 is the gravitational acceleration, β =
1 is the thermal expansion coefficient, L = 1 is the length of the enclosure, ν is the kinematic
viscosity, and α is the thermal diffusivity. δ refers to the z coordinate of the sphere where x = 0

23

L
=

 1

R = 0.2

L L

Figure 16: Computational domain for the problem of natural convection in a sealed cube enclosure with a
heated sphere. The red line indicates where Nusselt number is plotted to compare against reference data.

Table 6: Non-dimensional element size settings of each simulation mesh for buoyancy-driven flow valida-
tion.

Mesh Cut elements Base elements
Coarse 0.020 0.040
Medium 0.010 0.020
Fine 0.005 0.010

and y = 0. For both cases, the Prandtl number, Pr = ν/α, of air is used (Pr = 0.7). With
the aforementioned problem setup, one can adjust the value of ν or α to achieve the desired Ra
number. Three meshes are tested with each of the two δ cases, with non-dimensional element sizes
listed in Table 6. The mesh sizes on the cube domain surfaces and near the immersed sphere are
the “base elements” and “cut elements” sizes, respectively, and a smooth transition is achieved in
the space between the boundaries. A time step size of 5.0 × 10−3 is used in all simulations.

For each of the six simulation case permutations, the Nusselt number (Nu) is calculated at the
top surface of the enclosure, referring to the wall perpendicular to the z-axis located at z = 0.5. The
Nusselt number can be calculated by Nu = ∇Θ · n, where n is the unit normal vector to the wall.
In Figure 17, we plot this value along a line between (0.0, 0.0, 0.5) and (0.5, 0.0, 0.5) and compare
our results with the reference values reported by Yoon et al. [117].

In the case of δ = 0, for the most part, even the coarse mesh is sufficient in reproducing
the temperature gradient curve. All meshes accurately simulate boundary values relative to the
reference solution. Unsurprisingly, the coarse mesh produces some notable solution oscillations.
Grid independence is apparent after the medium mesh, where the medium and fine meshes improve
the solution accuracy and track the reference data to a strong degree. Similarly, all three meshes
with δ = 0.25 produce comparable solutions near the edge of the top surface. The coarse mesh
solution noticeably deviates from the reference solution at the center of the top surface. Again,

24

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5

N
u

𝑥

Reference
Coarse
Medium
Fine

0

4

8

12

16

20

0 0.1 0.2 0.3 0.4 0.5

N
u

𝑥

Reference
Coarse
Medium
Fine

Figure 17: Nusselt number along the centerline of the top surface of the sealed enclosure for δ = 0 (left) and
for δ = 0.25 (right).

(a) (b)

Figure 18: (a) Point cloud representation of the torpedo-shaped body. (b) IM0 mesh with a zoom on the
region near the point cloud representation of a torpedo-shaped body.

the coarse mesh exhibits some oscillations throughout the solution, whereas the medium and fine
meshes are successful in reproducing the reference curve.

4.4. Compressible flow over a torpedo-shaped body
In this section, we simulate laminar flow around a torpedo-shaped body represented by the

point cloud data in both the subsonic and supersonic regimes. The dimension of the geometry
and the computational domain can be found in Wang et al. [8]. The point cloud representation
of the torpedo-shaped body is shown in Figure 18a. To perform the simulation at subsonic speed
of M = 0.8, the inflow quantities are set to p = 1.1161, ∥u∥ = 1.0, and T = 3.8713 × 10−3.
The dynamic viscosity µ is set to a constant value of 0.01. For the supersonic case of M = 2.0, the
inflow quantities are set to p = 0.1786, ∥u∥ = 1.0, and T = 6.1941×10−4. The dynamic viscosity is
determined from Sutherland’s law: µ = (C1T

3
2)/(T + S), where S = 1.406 × 10−4 and C1 = 0.906.

For both the subsonic and supersonic cases, no-penetration and zero-heat flux boundary conditions
are enforced on all the lateral boundaries of the domain. The outlet boundary is set to have the same
total traction as the inlet. On the point cloud object, the velocity is set to zero, and the temperature
is set as the stagnation temperature determined by TD = (1 + 0.5(γ − 1)M2)T ; both conditions are

25

(a) (b)

-0.5 -0.2 0.1 0.4 0.7 1
-1

-0.5

0

0.5

1

1.5

Figure 19: (a) Mach number contours for the subsonic flow (M = 0.8) around a torpedo-shaped body. (b)
Pressure coefficient along the upper crown line of the torpedo-shaped body as a function of the streamwise
coordinate.

(a) (b)

-0.5 -0.2 0.1 0.4 0.7 1
-0.4

0

0.4

0.8

1.2

1.6

2

Figure 20: (a) Mach number contours for the supersonic flow (M = 2.0) around a torpedo-shaped body. (b)
Pressure coefficient along the upper crown line of the torpedo-shaped body as a function of the streamwise
coordinate.

enforced weakly. The heat capacity ratio γ is 1.4, the ideal gas constant R = 288.293, and the
Prandtl number Pr is 0.72. Note that all quantities are dimensionless.

We perform a mesh refinement study to assess the performance of the compressible-flow point-
cloud IMGA formulation. Simulations are carried out on three meshes named IM0, IM1, and IM2,
from coarser mesh to finer mesh, respectively (see Wang et al. [8] for the notation and statistics
of these meshes). To illustrate the mesh design, we plot a planar cut through the center of the
coarsest mesh IM0 in Figure 18b. The simulations are performed using a time step size of 0.005
until a steady state is reached. Figure 19a and Figure 20a show the Mach number contour plots
computed on IM2 for the subsonic and supersonic cases, respectively. The pressure coefficient
distributions along the upper crown line of the torpedo-shaped body as a function of the streamwise

26

coordinate for different meshes for the subsonic and supersonic cases are plotted in Figure 19b and
Figure 20b, respectively. The pressure coefficient results are also compared with the boundary-
fitted computations using a comparable mesh resolution for both cases. The results demonstrate
that IM1 and IM2 meshes produce converged solutions and show excellent agreement with the
boundary-fitted computations. They are also in excellent agreement with those reported in Xu et al.
[16]. Note that a two-level recursive adaptive quadrature rule is employed to faithfully capture the
immersed geometry and produce an essentially converged solution.

5. Flow over an industrial vehicle

Extending upon the practical application of IMGA to industrial geometry in B-reps and tes-
sellated formats [2, 7, 8, 16], we demonstrate the compatibility of this method with remarkably
detailed geometry in a point cloud format. The workflow for computational analysis of an indus-
trial product design typically begins with a B-rep CAD model representing an industrial object to
be manufactured. This B-rep model primarily exists for purposes other than CFD, meaning that
the geometry is often unsuitable for boundary-fitted analysis. Significant effort is invested to either
“clean up” the existing B-rep or create a surrogate version with limited complexity and airtight
topology. Only then may boundary-fitted mesh generation begin, accompanied by its own set of
difficulties. Hsu et al. [7] and Wang et al. [8] subverted these computational analysis roadblocks
using IMGA on an agricultural tractor and a tractor-trailer truck in trimmed NURBS and analytic
surface formats. Compared to the tractor and truck, the geometry of this demonstration is unique
in that it is overwhelmingly composed of finite-thickness shells, one type of topology targeted by
CAD cleanup operations.

The geometry in this demonstration represents a medium-sized construction vehicle: a John
Deere 544K Wheel Loader. Given that this is a low-speed utility vehicle, there is little concern
for aerodynamic forces experienced by the vehicle, which is contrary to common vehicular CFD
analysis, like that of a tractor-trailer truck. For this type of vehicle in an actual product analysis
application, fluid simulation seeks to forecast how components, especially the engine and elec-
tronics, remain within thermal constraints throughout their continuous operation. Physics-coupled
simulations are particularly useful to predict temperatures that the key components of the vehicle
experience. Regarding the 544K demonstration that we subsequently exhibit, fluid flow similarly
transpires within this low-speed incompressible flow regime, though we purposely avoid boundary
conditions expressing resemblance to conditions within the operating range of the real-life vehicle.
In this section, we demonstrate the utility of point-cloud IMGA applied to an industrial analysis
workflow.

The generality of the point cloud format affords flexibility regarding the types of CAD for-
mats that can be analyzed. The as-manufactured analysis advantage of point-cloud IMGA is fully
realized with the virtualization of physical objects, but true as-designed analysis still presents
worthwhile advantages over conventional analysis of simplified geometries. Lacking a practical
3D scan, we begin with the comprehensive CAD assembly used by Deere & Company for design
and manufacturing purposes. This B-rep is ill-suited for boundary-fitted analysis as it is non-
manifold with gaps, intersections, and collocations. Instead of converting it to watertight NURBS,
analytic, or tessellated surfaces, the assembly is sampled into points with normal vectors and area
scalars as in Figure 21 in a matter of minutes. A significant amount of manual labor is saved by
circumventing the geometry simplification process typically required for boundary-fitted analysis

27

Figure 21: Translation of John Deere 544K construction vehicle’s surface representation to point cloud
format. (Left) Translucent surfaces exposing complex details within the vehicle. (Right) Sampling of surface
representation into points, each point colored by its scalar area.

of such complex geometry. All impermeable features within the vehicle are retained; in the ab-
sence of support for sub-scale porosity, this preliminary demonstration omits porous screens and
radiators. It should be noted that all parameters utilized to simulate the 544K are unrepresentative
of reality, and presented simulation results make no claims regarding the performance of the actual
product as it exists physically. This exercise demonstrates point-cloud IMGA’s compatibility with
multiphysics simulation using complex point clouds.

5.1. Geometric pre-processing accuracy
The vehicle’s point cloud is discretized by sampling its B-rep surface model. We begin with

a 0.025 m spacing between points, which returns a total of 4,041,875 point cloud elements. This
operation filters small geometric features, automating an otherwise intensive manual task. Similar
to the icosphere, sampling of the surface geometry provides normal vectors and area scalars as
analytical values to compare the quality of pre-processing approximations. Point spacing is de-
creased to produce three more point clouds with greater element populations of 8,135,975 points,
11,855,474 points, and 27,937,410 points. Normals estimation is performed using 4 neighboring
points, and a box plot of each point cloud’s collection of normal vector deviations is displayed in
Figure 22.

Here, the performance of jet-fitting resembles the normal estimation on the Fandisk. A de-
viation of two indicates flipped normals, suggesting that the point cloud with 4 million elements
contains an excess of incorrectly aligned normal vectors. Cazals and Pouget [106] point out that
the ambiguity of normal vectors on flat surfaces is a weakness of normal vector calculation in its
current form. Using a larger number of neighboring points for the normal estimation increases
the error, which we theorize is due to the ubiquity of thin plates in this geometry. As the number

28

4 8 12 28
Number of points

D
ev

ia
ti

on

2.00

1.50

1.00

0.50

0.00

1e6

Figure 22: Box plot of the deviation of calculated normals against analytical normal vectors of the John
Deere 544K. The same procedure is performed on four point clouds of the 544K with varying point density.

of neighbors increases for a point on a thin plate, points on one side of the plate are grouped with
points on the other side, malevolently affecting calculations for points on both sides. As the density
of the point cloud increases, a point on one side of a plate is more likely to be in a neighborhood
exclusively with points also on the same side of the plate. As will be discussed later, we find that
the two coarsest point clouds are too sparse to produce reliable normals for stable flow simulations
of John Deere 544K using point-cloud IMGA. The vehicle point cloud with 12 million elements,
which has an average distance of 0.00625 m between points, is therefore used for the subsequent
studies.

5.2. Problem setup
Figure 23 visualizes a mid-plane clip of the domain mesh along with the boundary condition

setup. A uniform flow velocity of 5.8 m/s is applied at the inlet, and the outlet is traction free. A
slip velocity of 5.8 m/s is applied on the stationary ground boundary to produce the ground effect
of a forward-moving vehicle in a stationary fluid domain. No-penetration conditions are applied
on the top and lateral walls. The wheels of the construction vehicle are modeled as rotating no-slip
walls, with the angular velocity matching the tire surface velocity with the floor’s slip velocity at
their common interface. The fan located rearward of the vehicle is modeled similarly and rotates
at 600 RPM to draw air out of the engine compartment. All other elements of the point cloud are
treated as stationary no-slip walls. These no-slip velocity boundary conditions are weakly enforced
on the vehicle’s point cloud.

In this incompressible airflow simulation, we use standard properties of air at atmo-
spheric pressure and temperature T = 20 ◦C. The density is 1.204 kg/m3, the dynamic vis-
cosity is 1.825 kg/(m s), the specific heat is 1007 J/(kg K), and the thermal conductivity is
0.02514 W/(m K). Points belonging to the engine, transmission, and axles are weakly enforced
to a temperature of T = 100 ◦C. For all other elements of the vehicle point clouds, zero-heat flux
thermal conditions are assumed. The domain is initialized with an ambient temperature of 20 ◦C,
which is also applied strongly at the inlet as a reference. Zero-heat flux conditions are prescribed
on all other surfaces of the fluid domain. The time step size for the simulation is ∆t = 1.0 × 105.

29

14

Inlet
||u|| = 5.8 m/s
T = 20 ˚C

No penetration

Zero heat flux

Slip velocity of 5.8 m/s

Zero heat flux

Traction free
Zero heat flux

Figure 23: Mesh refinement, domain dimensions (in meters), and boundary conditions for the flow analysis
of John Deere 544K driving forwards.

5.3. Immersed mesh generation
Only in rare cases is an open-source meshing tool such as Gmsh [118] suitable for boundary-

fitted volume meshing of production-ready product assemblies. However, owing to the topological
simplicity of generating a parallelepiped volume mesh, notable examples of open-source mesh
generation software typically provide more than enough features to set up an IMGA simulation
case such as this example. Here, the functionalities accessed through Gmsh allow us to create
the simulation domain in a streamlined manner. 2D and 3D element size parameters help control
mesh density in the flow regions of interest. For targeted refinement of tetrahedra near the John
Deere 544K point cloud, Gmsh’s “Attractor” field trivializes the import of point coordinates to
define smooth refinement regions surrounding every point cloud element. Continuing the theme
of open-source workflow, sampling discrete points from CAD surfaces is similarly straightforward
with Open CASCADE [119] and freely available Python packages libigl [120] and trimesh [121].

Visible in Figure 23, the meshing strategy includes two rectangular prism refinement regions
with the “outer” region completely enclosing the “inner” region, and elements adjacent to the floor
have element size equal to that of the “inner” region’s elements. A spherical refinement zone
originates from each point cloud element of the coarsest case (∼4 million points), prescribing a
tetrahedral element size of 0.025 m to comfortably retain an average of at least one point cloud
element per volume boundary element. This heuristic ratio is chosen to negate leakage of physical
domain flow into the quiescent fictitious domain, based on the study conducted in Section 4.2. The
size of the elements that contain (cut cells) or are near the point cloud is 0.025 m. The element
size in the inner refinement zone and close to the floor is 0.1 m. The element sizes in the outer
refinement zone and in the far field are 0.4 m and 1.0 m, respectively. Including both the physical
and fictitious domains, the immersed mesh consists of 19,803,968 tetrahedral elements. A large
majority of elements within the interior compartment must be refined, which increases the overall
element count.

30

As mentioned earlier, the average distance between the points sampled on the B-rep model for
the coarsest case is 0.025 m. Point spacing is decreased to produce three more point clouds with
denser point distributions. For IMGA flow simulations, we observe that the estimated normals on
the two coarsest point clouds are not sufficiently accurate to produce stable flow solutions, even
though they satisfy the one-point-per-element criterion defined earlier. In the evaluation of weak-
boundary-condition formulation, oscillatory normals can lead to significant instability. We find
that the point cloud with 12 million points, which has an average spacing between points to be
around 0.00625 m, has enough accuracy in the normal estimation and can produce a stable flow
solution for our demonstration purposes. It should be noted again that requiring higher point cloud
density here is not due to the point-cloud IMGA formulation but because of the need to obtain
better normals estimation.

The parallelization strategy proposed by Hsu et al. [122] is employed for the IMGA simula-
tions presented in this paper. In this strategy, the problem mesh is partitioned into subdomains
by balancing the number of elements in each partition; each subdomain is then assigned to a pro-
cessing core. However, this approach can sometimes create a highly unbalanced distribution of
quadrature points in each partition since quadrature points aggregate in the cut elements due to the
use of adaptive quadrature. In this work, we use the strategy proposed by Xu et al. [16] and weigh
each element by the number of quadrature points it contains. This is then used as the metric in the
graph/mesh partitioning package METIS [123] for determining mesh partitions by balancing the
summation of user-defined weights. This approach produces a more balanced computational load
on each processing core.

5.4. Simulation results
We solve for the airflow around the construction vehicle with the aforementioned boundary

conditions and mesh. In this section, we observe an instantaneous snapshot of the flow solution. We
focus on the velocity field, confirming that external airflow conforms to the immersed boundaries
constructing the outer shell of the vehicle. We also look further inside the vehicle, especially in the
engine compartment, to reveal the treatment of complex thin shell boundaries by inside–outside
testing based on winding number. The latter portion of this section examines the vehicle interior,
focusing on heat conduction and convection in the flow temperature field.

As is expected at Re = 3 × 106, external flow is fully turbulent across the vehicle. Figure 24
shows the visualization of the instantaneous vortical structures colored by the velocity magnitude
of turbulent flow around the John Deere 544K. The construction vehicle is visualized using a point
cloud that was used to directly perform immersogeometric fluid flow and heat transfer analysis.
To distinguish internal airflow from external airflow in subsequent visualizations, we substitute
the surface CAD model in place of the point cloud utilized for simulation. Figure 25 shows that
the front bucket attachment forces the brunt of flow movement, simulating a recirculation bubble
above and downstream of the bucket. The driver cabin appears to direct some flow into the lower
engine compartment, whereas flow over the top of the cabin immediately separates and heightens
the large wake region behind the 544K. Thicker boundary layers are apparent at the rear of the
vehicle due to the adverse pressure gradients present there. Finally, the fan extracts air from the
engine compartment and adds axial flow to the turbulent wake.

Looking at another sample of the same velocity field snapshot in Figure 26, the rotating wheel
boundary conditions are evident. The surface velocity of each wheel’s contact patch is equal to
the freestream velocity, applied as a weak boundary condition to elements containing pertinent

31

Figure 24: Visualization of the instantaneous vortical structures of turbulent flow around the John Deere
544K colored by the velocity magnitude. The point cloud representation of the vehicle is used directly to
perform IMGA.

elements of the point cloud. The tires create minor recirculation bubbles downstream, but vortex
shedding appears to be deterred by the presence of mudguards. We see another dimension of
flow movement by the front bucket attachment to the degree that the vehicle’s entire width is
engulfed by the bucket’s wake region. From this angle of the velocity field slice, the fan shows
a greater level of flow extraction and interacts with the weak vortex street trailing the vehicle.
Moving onto the interior compartment in Figure 27, we feature the same velocity field sample as
in Figure 25 but with 2D slicing of the 544K and visualization of individual mesh elements. The
bulk of airflow enters the interior section through the gap between the cabin and the hydraulic
assembly. We observe moving air in the inner region, desirable for convecting heat away from
critical components into the colder ambient air.

We conclude this solution analysis by looking at the temperature field in Figure 28, which is
purely demonstrative of point-cloud IMGA’s heat transfer capabilities and unrepresentative of the
real-life vehicle’s actual performance. A temperature boundary condition of value T = 100 ◦C is
weakly imposed on points belonging to the front axle hub, electronics housing, transmission case,
rear axle hub, and engine. The long diagonal plate above the front axle hub impedes heat convec-
tion in that direction. As expected, the group of components in the primary engine compartment
emits a greater heat load into the vehicle’s wake region. The fan extracts high-temperature air that
mixes with cooler air around the extremities of the compartment, pushing this air into the vehicle’s
wake. Again, the plates above the engine demonstrate heat conduction without air penetration
across the boundaries.

32

Figure 25: Planar slice of the velocity field down the vehicle’s center line.

Figure 26: Slice of the velocity field on a plane parallel to the ground.

6. Conclusions

We have presented a new method for immersogeometric fluid flow and heat transfer analysis
that directly uses point cloud representation of objects. Analogous to previous work using analytic
surface equations to generate surface Gaussian quadrature points, our method here repurposes
point cloud elements into quadrature points. We employed computationally cheaper methods of
normal vector and area generation using spatially local neighbors of points, proving that the results
are appreciably accurate compared to full surface reconstruction. Prominent difficulties associated
with geometry cleanup are avoided entirely, and the point cloud format trivializes immersed mesh

33

Figure 27: Planar slice of both the normalized velocity field and John Deere 544K along the vehicle’s center
line. The velocity magnitude is normalized by the freestream velocity.

Figure 28: Planar slice of both the temperature field (T , in ◦C) and John Deere 544K along the vehicle’s
center line.

generation using even basic meshing codes. Simulation results obtained using immersogeometric
point clouds are in excellent agreement with reference solutions. Our method is painlessly applied
to perform flow analysis of an incredibly complex industrial geometry, a large construction vehicle,
incorporating moving point clouds and thermal fluid boundary conditions to demonstrate the utility
of point-cloud IMGA in commercial and industrial applications.

Acknowledgments

J. Khristy was partly supported by Deere & Company as a part-time employee. M.-C. Hsu was
partially supported by the National Heart, Lung, and Blood Institute of the National Institutes of

34

Health under Award No. R01HL129077. A. Krishnamurthy was partially supported by the NSF
Grant Nos. LEAP-HI-2053760 and OAC-1750865. This support is gratefully acknowledged. We
also thank the Texas Advanced Computing Center (TACC) at The University of Texas at Austin
for providing high-performance computing resources that contributed to the results presented in
this paper.

Appendix A. Definitions of Euler Jacobian and diffusivity matrices

In this appendix, we use the strong form of governing equations of compressible flows in 3D
space to illustrate the definitions of Euler Jacobian and diffusivity matrices. The solution variables
of compressible flows can be written using conservation variables U or pressure-primitive variables
Y, defined as

U =


ρ
ρu1

ρu2

ρu3

ρe

 , and Y =


p
u1

u2

u3

T

 , (A.1)

where ρ is the density, ui is the ith velocity component, i = 1, ..., d with d = 3 here being the
space dimension, e is the specific internal energy, p is the pressure, and T is the temperature. The
pressure, density, and temperature are related through the ideal gas equation of state, p = ρRT ,
where R is the ideal gas constant. Furthermore, we assume a calorically perfect gas in this work
and define the specific internal energy as e = cvT , where cv = R/(γ − 1) is the specific heat at
constant volume, and γ is the heat capacity ratio. The governing equations of compressible flows
can then be written as

U,t + Fadv
i,i + Fsp − Fdiff

i,i − S = 0, (A.2)

where Fadv
i and Fdiff

i are the vectors of convective and diffusive fluxes, respectively, defined as

Fadv
i =


ρui

ρuiu1

ρuiu2

ρuiu3

ρuie

 +


0
pδ1i

pδ2i

pδ3i

0

 , and Fdiff
i =


0
τ1i

τ2i

τ3i

−qi

 . (A.3)

Fsp is the contribution of stress–power in the energy equation, defined as

Fsp =


0
0
0
0

pui,i − τi ju j,i

 , (A.4)

35

and S is the source term. In Eqs. (A.3)–(A.4), δi j is the Kronecker delta, and τi j and qi are the
viscous stress and heat flux, respectively, given by

τi j = λuk,kδi j + µ
(
ui, j + u j,i

)
, (A.5)

qi = −κT,i , (A.6)

where µ is the dynamic viscosity, λ is the second coefficient of viscosity (λ = −2µ/3 based on
Stokes’ hypothesis), and κ is the thermal conductivity. We further split the convective flux into
Fadv

i = Fadv\p
i + Fp

i , where Fadv\p
i and Fp

i are the first and second terms, respectively, on the right-
hand side of Fadv

i ’s definition in Eq. (A.3).
With these preliminaries being defined, the Euler Jacobian and diffusivity matrices can be

defined as follows: Âi =
∂Fadv

i

∂U
, Âsp

i is such that Âsp
i U,i = Fsp, K̂i j is such that K̂i jU, j = Fdiff

i ,

A0 =
∂U
∂Y

, Ai =
∂Fadv

i

∂Y
=
∂Fadv

i

∂U
∂U
∂Y
= ÂiA0, Asp

i is such that Asp
i Y,i = Fsp, and Ki j is such

that Ki jY, j = Fdiff
i . Based on the splitting of Fadv

i into Fadv\p
i and Fp

i , we can further split Ai as
Ai = Aadv\p

i + Ap
i to separate the pressure term from the convective flux. Detailed expressions for

the matrices appearing in the quasi-linear forms can be found in Appendix A of Xu et al. [40].

References

[1] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S.
Sacks, T. J. R. Hughes, An immersogeometric variational framework for fluid–structure
interaction: Application to bioprosthetic heart valves, Computer Methods in Applied Me-
chanics and Engineering 284 (2015) 1005–1053.

[2] F. Xu, D. Schillinger, D. Kamensky, V. Varduhn, C. Wang, M.-C. Hsu, The tetrahedral
finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex
geometries, Computers & Fluids 141 (2016) 135–154.

[3] D. L. Marcum, J. A. Gaither, Unstructured grid generation for aerospace applications, in:
M. D. Salas, W. K. Anderson (Eds.), Computational Aerosciences in the 21st Century, vol-
ume 8, Springer Netherlands, 2000, pp. 189–209.

[4] Z. J. Wang, K. Srinivasan, An adaptive Cartesian grid generation method for ‘Dirty’ geom-
etry, International Journal for Numerical Methods in Fluids 39 (2002) 703–717.

[5] M. W. Beall, J. Walsh, M. S. Shephard, A comparison of techniques for geometry access
related to mesh generation, Engineering with Computers 20 (2004) 210–221.

[6] Y. K. Lee, C. K. Lim, H. Ghazialam, H. Vardhan, E. Eklund, Surface mesh generation for
dirty geometries by the Cartesian shrink-wrapping technique, Engineering with Computers
26 (2010) 377–390.

[7] M.-C. Hsu, C. Wang, F. Xu, A. J. Herrema, A. Krishnamurthy, Direct immersogeometric
fluid flow analysis using B-rep CAD models, Computer Aided Geometric Design 43 (2016)
143–158.

[8] C. Wang, F. Xu, M.-C. Hsu, A. Krishnamurthy, Rapid B-rep model preprocessing for im-
mersogeometric analysis using analytic surfaces, Computer Aided Geometric Design 52–53
(2017) 190–204.

36

[9] F. Xu, C. Wang, K. Hong, Y. Liu, Immersogeometric thermal analysis of flows inside
buildings with reconfigurable components, Journal of Thermal Analysis and Calorimetry
143 (2021) 4107–4117.

[10] V. Varduhn, M.-C. Hsu, M. Ruess, D. Schillinger, The tetrahedral finite cell method: Higher-
order immersogeometric analysis on adaptive non-boundary-fitted meshes, International
Journal for Numerical Methods in Engineering 107 (2016) 1054–1079.

[11] S. Xu, F. Xu, A. Kommajosula, M.-C. Hsu, B. Ganapathysubramanian, Immersogeometric
analysis of moving objects in incompressible flows, Computers & Fluids 189 (2019) 24–33.

[12] S. Xu, B. Gao, A. Lofquist, M. Fernando, M.-C. Hsu, H. Sundar, B. Ganapathysubramanian,
An octree-based immersogeometric approach for modeling inertial migration of particles in
channels, Computers & Fluids 214 (2021) 104764.

[13] Q. Zhu, F. Xu, S. Xu, M.-C. Hsu, J. Yan, An immersogeometric formulation for free-surface
flows with application to marine engineering problems, Computer Methods in Applied
Mechanics and Engineering 361 (2020) 112748.

[14] K. Saurabh, B. Gao, M. Fernando, S. Xu, M. A. Khanwale, B. Khara, M.-C. Hsu, A. Krish-
namurthy, H. Sundar, B. Ganapathysubramanian, Industrial scale Large Eddy Simulations
with adaptive octree meshes using immersogeometric analysis, Computers & Mathematics
with Applications 97 (2021) 28–44.

[15] K. Saurabh, M. Ishii, M. Fernando, B. Gao, K. Tan, M.-C. Hsu, A. Krishnamurthy, H. Sun-
dar, B. Ganapathysubramanian, Scalable adaptive PDE solvers in arbitrary domains, in:
Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’21, Association for Computing Machinery, New York, NY,
USA, 2021, pp. 1–15.

[16] F. Xu, Y. Bazilevs, M.-C. Hsu, Immersogeometric analysis of compressible flows with
application to aerodynamic simulation of rotorcraft, Mathematical Models and Methods in
Applied Sciences 29 (2019) 905–938.

[17] T. Hoang, C. V. Verhoosel, C.-Z. Qin, F. Auricchio, A. Reali, E. H. van Brummelen,
Skeleton-stabilized immersogeometric analysis for incompressible viscous flow problems,
Computer Methods in Applied Mechanics and Engineering 344 (2019) 421–450.

[18] M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks, T. J. R. Hughes, Fluid–structure in-
teraction analysis of bioprosthetic heart valves: Significance of arterial wall deformation,
Computational Mechanics 54 (2014) 1055–1071.

[19] M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. H. Wu, J. Mineroff, A. Reali,
Y. Bazilevs, M. S. Sacks, Dynamic and fluid–structure interaction simulations of biopros-
thetic heart valves using parametric design with T-splines and Fung-type material models,
Computational Mechanics 55 (2015) 1211–1225.

[20] D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, T. J. R. Hughes, Immerso-
geometric cardiovascular fluid–structure interaction analysis with divergence-conforming
B-splines, Computer Methods in Applied Mechanics and Engineering 314 (2017) 408–472.

[21] D. Kamensky, J. A. Evans, M.-C. Hsu, Y. Bazilevs, Projection-based stabilization of in-
terface lagrange multipliers in immersogeometric fluid–thin structure interaction analysis,
with application to heart valve modeling, Computers & Mathematics with Applications 74
(2017) 2068–2088.

37

[22] F. Xu, S. Morganti, R. Zakerzadeh, D. Kamensky, F. Auricchio, A. Reali, T. J. R. Hughes,
M. S. Sacks, M.-C. Hsu, A framework for designing patient-specific bioprosthetic heart
valves using immersogeometric fluid–structure interaction analysis, International Journal
for Numerical Methods in Biomedical Engineering 34 (2018) e2938.

[23] M. C. H. Wu, H. M. Muchowski, E. L. Johnson, M. R. Rajanna, M.-C. Hsu, Immersogeo-
metric fluid–structure interaction modeling and simulation of transcatheter aortic valve re-
placement, Computer Methods in Applied Mechanics and Engineering 357 (2019) 112556.

[24] E. L. Johnson, M. C. H. Wu, F. Xu, N. M. Wiese, M. R. Rajanna, A. J. Herrema, B. Ganapa-
thysubramanian, T. J. R. Hughes, M. S. Sacks, M.-C. Hsu, Thinner biological tissues induce
leaflet flutter in aortic heart valve replacements, Proceedings of the National Academy of
Sciences 117 (2020) 19007–19016.

[25] F. Xu, E. L. Johnson, C. Wang, A. Jafari, C.-H. Yang, M. S. Sacks, A. Krishnamurthy,
M.-C. Hsu, Computational investigation of left ventricular hemodynamics following bio-
prosthetic aortic and mitral valve replacement, Mechanics Research Communications 112
(2021) 103604.

[26] E. L. Johnson, M. R. Rajanna, C.-H. Yang, M.-C. Hsu, Effects of membrane and flexural
stiffnesses on aortic valve dynamics: Identifying the mechanics of leaflet flutter in thinner
biological tissues, Forces in Mechanics 6 (2022) 100053.

[27] M. C. H. Wu, D. Kamensky, C. Wang, A. J. Herrema, F. Xu, M. S. Pigazzini, A. Verma,
A. L. Marsden, Y. Bazilevs, M.-C. Hsu, Optimizing fluid–structure interaction systems with
immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting
gear, Computer Methods in Applied Mechanics and Engineering 316 (2017) 668–693.

[28] D. Kamensky, Open-source immersogeometric analysis of fluid–structure interaction using
FEniCS and tIGAr, Computers & Mathematics with Applications 81 (2021) 634–648.

[29] G. E. Neighbor, H. Zhao, M. Saraeian, M.-C. Hsu, D. Kamensky, Leveraging code gen-
eration for transparent immersogeometric fluid–structure interaction analysis on deforming
domains, Engineering with Computers (2022). Accepted.

[30] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A. Levine,
A. Sharf, C. T. Silva, A survey of surface reconstruction from point clouds, Computer
Graphics Forum 36 (2017) 301–329.

[31] A. Balu, S. Sarkar, B. Ganapathysubramanian, A. Krishnamurthy, Physics-aware machine
learning surrogates for real-time manufacturing digital twin, Manufacturing Letters 34
(2022) 71–74.

[32] C. Rausch, R. Lu, S. Talebi, C. Haas, Deploying 3D scanning based geometric digital
twins during fabrication and assembly in offsite manufacturing, International Journal of
Construction Management (2021). https://doi.org/10.1080/15623599.2021.1896942.

[33] A. K. Ghosh, A. S. Ullah, R. Teti, A. Kubo, Developing sensor signal-based digital twins for
intelligent machine tools, Journal of Industrial Information Integration 24 (2021) 100242.

[34] B. Jafari, A. Khaloo, D. Lattanzi, Deformation tracking in 3D point clouds via statistical
sampling of direct cloud-to-cloud distances, Journal of Nondestructive Evaluation 36 (2017)
65.

[35] L. Kudela, S. Kollmannsberger, U. Almac, E. Rank, Direct structural analysis of domains
defined by point clouds, Computer Methods in Applied Mechanics and Engineering 358

38

https://doi.org/10.1080/15623599.2021.1896942

(2020) 112581.
[36] Y. Bazilevs, T. J. R. Hughes, Weak imposition of Dirichlet boundary conditions in fluid

mechanics, Computers & Fluids 36 (2007) 12–26.
[37] S. Xu, B. Gao, M.-C. Hsu, B. Ganapathysubramanian, A residual-based variational mul-

tiscale method with weak imposition of boundary conditions for buoyancy-driven flows,
Computer Methods in Applied Mechanics and Engineering 352 (2019) 345–368.

[38] Y. Bazilevs, V. M. Calo, J. A. Cottrel, T. J. R. Hughes, A. Reali, G. Scovazzi, Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompressible
flows, Computer Methods in Applied Mechanics and Engineering 197 (2007) 173–201.

[39] K. Takizawa, T. E. Tezduyar, T. Kuraishi, Multiscale space–time methods for thermo-fluid
analysis of a ground vehicle and its tires, Mathematical Models and Methods in Applied
Sciences 25 (2015) 2227–2255.

[40] F. Xu, G. Moutsanidis, D. Kamensky, M.-C. Hsu, M. Murugan, A. Ghoshal, Y. Bazilevs,
Compressible flows on moving domains: Stabilized methods, weakly enforced essential
boundary conditions, sliding interfaces, and application to gas-turbine modeling, Computers
& Fluids 158 (2017) 201–220.

[41] D. Codoni, G. Moutsanidis, M.-C. Hsu, Y. Bazilevs, C. Johansen, A. Korobenko, Stabilized
methods for high-speed compressible flows: toward hypersonic simulations, Computational
Mechanics 67 (2021) 785–809.

[42] M. R. Rajanna, E. L. Johnson, D. Codoni, A. Korobenko, Y. Bazilevs, N. Liu, J. Lua,
N. Phan, M.-C. Hsu, Finite element methodology for modeling aircraft aerodynamics: de-
velopment, simulation, and validation, Computational Mechanics 70 (2022) 549–563.

[43] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung
von Teilräumen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg 36 (1971) 9–15.

[44] A. Düster, J. Parvizian, Z. Yang, E. Rank, The finite cell method for three-dimensional
problems of solid mechanics, Computer Methods in Applied Mechanics and Engineering
197 (2008) 3768–3782.

[45] D. Schillinger, M. Ruess, The Finite Cell Method: A review in the context of higher-order
structural analysis of CAD and image-based geometric models, Archives of Computational
Methods in Engineering 22 (2015) 391–455.

[46] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element
Method, Cambridge University Press, Sweden, 1987.

[47] S. C. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd ed.,
Springer, Berlin, 2002.

[48] F. Xu, S. Xu, U. Passe, B. Ganapathysubramanian, Computational study of natural venti-
lation in a sustainable building with complex geometry, Sustainable Energy Technologies
and Assessments 45 (2021) 101153.

[49] Y. Bazilevs, C. Michler, V. M. Calo, T. J. R. Hughes, Weak Dirichlet boundary conditions for
wall-bounded turbulent flows, Computer Methods in Applied Mechanics and Engineering
196 (2007) 4853–4862.

[50] Y. Bazilevs, C. Michler, V. M. Calo, T. J. R. Hughes, Isogeometric variational multiscale

39

modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on
unstretched meshes, Computer Methods in Applied Mechanics and Engineering 199 (2010)
780–790.

[51] Y. Bazilevs, A. Korobenko, J. Yan, A. Pal, S. M. I. Gohari, S. Sarkar, ALE–VMS formu-
lation for stratified turbulent incompressible flows with applications, Mathematical Models
and Methods in Applied Sciences 25 (2015) 2349–2375.

[52] K. Takizawa, T. E. Tezduyar, T. Kuraishi, S. Tabata, H. Takagi, Computational thermo-fluid
analysis of a disk brake, Computational Mechanics 57 (2016) 965–977.

[53] D. Schillinger, I. Harari, M.-C. Hsu, D. Kamensky, S. K. F. Stoter, Y. Yu, Y. Zhao, The
non-symmetric Nitsche method for the parameter-free imposition of weak boundary and
coupling conditions in immersed finite elements, Computer Methods in Applied Mechanics
and Engineering 309 (2016) 625–652.

[54] M.-C. Hsu, I. Akkerman, Y. Bazilevs, Wind turbine aerodynamics using ALE–VMS: Vali-
dation and the role of weakly enforced boundary conditions, Computational Mechanics 50
(2012) 499–511.

[55] A. N. Brooks, T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convec-
tion dominated flows with particular emphasis on the incompressible Navier–Stokes equa-
tions, Computer Methods in Applied Mechanics and Engineering 32 (1982) 199–259.

[56] T. J. R. Hughes, T. E. Tezduyar, Finite element methods for first-order hyperbolic sys-
tems with particular emphasis on the compressible Euler equations, Computer Methods in
Applied Mechanics and Engineering 45 (1984) 217–284.

[57] F. Shakib, T. J. R. Hughes, Z. Johan, A new finite element formulation for computational
fluid dynamics: X. The compressible euler and navier-stokes equations, Comput. Methods
Appl. Mech. and Engrg. 89 (1991) 141–219.

[58] G. J. Le Beau, S. E. Ray, S. K. Aliabadi, T. E. Tezduyar, SUPG finite element computation
of compressible flows with the entropy and conservation variables formulations, Computer
Methods in Applied Mechanics and Engineering 104 (1993) 397–422.

[59] S. K. Aliabadi, T. E. Tezduyar, Space–time finite element computation of compressible
flows involving moving boundaries and interfaces, Computer Methods in Applied Mechan-
ics and Engineering 107 (1993) 209–223.

[60] G. Hauke, T. J. R. Hughes, A unified approach to compressible and incompressible flows,
Computer Methods in Applied Mechanics and Engineering 113 (1994) 389–396.

[61] T. E. Tezduyar, S. K. Aliabadi, M. Behr, S. Mittal, Massively parallel finite element simula-
tion of compressible and incompressible flows, Computer Methods in Applied Mechanics
and Engineering 119 (1994) 157–177.

[62] G. P. Wren, S. E. Ray, S. K. Aliabadi, T. E. Tezduyar, Space–time finite element computation
of compressible flows between moving components, International Journal for Numerical
Methods in Fluids 21 (1995) 981–991.

[63] G. P. Wren, S. E. Ray, S. K. Aliabadi, T. E. Tezduyar, Simulation of flow problems with
moving mechanical components, fluid–structure interactions and two-fluid interfaces, Inter-
national Journal for Numerical Methods in Fluids 24 (1997) 1433–1448.

[64] S. Mittal, T. Tezduyar, A unified finite element formulation for compressible and incom-
pressible flows using augumented conservation variables., Computer Methods in Applied

40

Mechanics and Engineering 161 (1998) 229–243.
[65] S. E. Ray, T. E. Tezduyar, Fluid–object interactions in interior ballistics, Computer Methods

in Applied Mechanics and Engineering 190 (2000) 363–372.
[66] G. Hauke, Simple stabilizing matrices for the computation of compressible flows in primi-

tive variables, Computer Methods in Applied Mechanics and Engineering 190 (2001) 6881–
6893.

[67] T. J. R. Hughes, G. Scovazzi, T. E. Tezduyar, Stabilized methods for compressible flows,
Journal of Scientific Computing 43 (2010) 343–368.

[68] K. Takizawa, T. E. Tezduyar, T. Kanai, Porosity models and computational methods for
compressible-flow aerodynamics of parachutes with geometric porosity, Mathematical
Models and Methods in Applied Sciences 27 (2017) 771–806.

[69] T. Kanai, K. Takizawa, T. E. Tezduyar, T. Tanaka, A. Hartmann, Compressible-flow
geometric-porosity modeling and spacecraft parachute computation with isogeometric dis-
cretization, Computational Mechanics 63 (2019) 301–321.

[70] T. E. Tezduyar, Y. J. Park, Discontinuity capturing finite element formulations for nonlin-
ear convection-diffusion-reaction equations, Computer Methods in Applied Mechanics and
Engineering 59 (1986) 307–325.

[71] T. J. R. Hughes, M. Mallet, A. Mizukami, A new finite element formulation for compu-
tational fluid dynamics: II. Beyond SUPG, Computer Methods in Applied Mechanics and
Engineering 54 (1986) 341–355.

[72] T. J. R. Hughes, M. Mallet, A new finite element formulation for computational fluid dy-
namics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive
systems, Computer Methods in Applied Mechanics and Engineering 58 (1986) 329–339.

[73] R. C. Almeida, A. C. Galeão, An adaptive Petrov–Galerkin formulation for the compress-
ible euler and Navier–Stokes equations, Computer Methods in Applied Mechanics and
Engineering 129 (1996) 157–176.

[74] G. Hauke, T. J. R. Hughes, A comparative study of different sets of variables for solving
compressible and incompressible flows, Computer Methods in Applied Mechanics and
Engineering 153 (1998) 1–44.

[75] T. E. Tezduyar, M. Senga, Stabilization and shock-capturing parameters in SUPG formula-
tion of compressible flows, Computer Methods in Applied Mechanics and Engineering 195
(2006) 1621–1632.

[76] T. E. Tezduyar, M. Senga, D. Vicker, Computation of inviscid supersonic flows around
cylinders and spheres with the SUPG formulation and YZβ shock-capturing, Computational
Mechanics 38 (2006) 469–481.

[77] T. E. Tezduyar, M. Senga, SUPG finite element computation of inviscid supersonic flows
with YZβ shock-capturing, Computers & Fluids 36 (2007) 147–159.

[78] F. Rispoli, R. Saavedra, A. Corsini, T. E. Tezduyar, Computation of inviscid compressible
flows with the V-SGS stabilization and YZβ shock-capturing, International Journal for
Numerical Methods in Fluids 54 (2007) 695–706.

[79] F. Rispoli, R. Saavedra, F. Menichini, T. E. Tezduyar, Computation of inviscid supersonic
flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing,

41

Journal of Applied Mechanics 76 (2009) 021209.
[80] F. Rispoli, G. Delibra, P. Venturini, A. Corsini, R. Saavedra, T. E. Tezduyar, Particle tracking

and particle–shock interaction in compressible-flow computations with the V-SGS stabiliza-
tion and YZβ shock-capturing, Computational Mechanics 55 (2015) 1201–1209.

[81] K. Takizawa, T. E. Tezduyar, Y. Otoguro, Stabilization and discontinuity-capturing parame-
ters for space–time flow computations with finite element and isogeometric discretizations,
Computational Mechanics 62 (2018) 1169–1186.

[82] M. R. Rajanna, E. L. Johnson, N. Liu, A. Korobenko, Y. Bazilevs, M.-C. Hsu, Fluid–
structure interaction modeling with nonmatching interface discretizations for compressible
flow problems: computational framework and validation study, Mathematical Models and
Methods in Applied Sciences (2022). https://doi.org/10.1142/S0218202522500592.

[83] G. J. Le Beau, T. E. Tezduyar, Finite element computation of compressible flows with the
SUPG formulation, in: Advances in Finite Element Analysis in Fluid Dynamics, FED-
Vol.123, ASME, New York, 1991, pp. 21–27.

[84] A. Embar, J. Dolbow, I. Harari, Imposing Dirichlet boundary conditions with Nitsche’s
method and spline-based finite elements, International Journal for Numerical Methods in
Engineering 83 (2010) 877–898.

[85] M. Ruess, D. Schillinger, A. I. Özcan, E. Rank, Weak coupling for isogeometric analy-
sis of non-matching and trimmed multi-patch geometries, Computer Methods in Applied
Mechanics and Engineering 269 (2014) 46–731.

[86] W. Jiang, C. Annavarapu, J. E. Dolbow, I. Harari, A robust Nitsche’s formulation for in-
terface problems with spline-based finite elements, International Journal for Numerical
Methods in Engineering 104 (2015) 676–696.

[87] F. de Prenter, C. Lehrenfeld, A. Massing, A note on the stability parameter in Nitsche’s
method for unfitted boundary value problems, Computers & Mathematics with Applications
75 (2018) 4322–4336.

[88] S. C. Divi, P. H. van Zuijlen, T. Hoang, F. de Prenter, F. Auricchio, A. Reali, E. H. van
Brummelen, C. V. Verhoosel, Residual-based error estimation and adaptivity for stabilized
immersed isogeometric analysis using truncated hierarchical B-splines, Journal of Mechan-
ics 38 (2022) 204–237.

[89] I. Harari, E. Grosu, A unified approach for embedded boundary conditions for fourth-order
elliptic problems, International Journal for Numerical Methods in Engineering 104 (2015)
655–675.

[90] F. de Prenter, C. V. Verhoosel, G. J. van Zwieten, E. H. van Brummelen, Condition num-
ber analysis and preconditioning of the finite cell method, Computer Methods in Applied
Mechanics and Engineering 316 (2017) 297–327.

[91] F. de Prenter, C. V. Verhoosel, E. H. van Brummelen, Preconditioning immersed isogeomet-
ric finite element methods with application to flow problems, Computer Methods in Applied
Mechanics and Engineering 348 (2019) 604–631.

[92] F. de Prenter, C. V. Verhoosel, E. H. van Brummelen, J. A. Evans, C. Messe, J. Benzaken,
K. Maute, Multigrid solvers for immersed finite element methods and immersed isogeomet-
ric analysis, Computational Mechanics 65 (2020) 807–838.

[93] J. T. Oden, I. Babuška, C. E. Baumann, A discontinuous hp finite element method for

42

https://doi.org/10.1142/S0218202522500592

diffusion problems, Journal of Computational Physics 146 (1998) 491–519.
[94] B. Riviere, M. F. Wheeler, V. Girault, A priori error estimates for finite element meth-

ods based on discontinuous approximation spaces for elliptic problems, SIAM Journal of
Numerical Analysis 39(3) (2001) 902–931.

[95] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified analysis of Discontinuous
Galerkin methods for elliptic problems, SIAM Journal of Numerical Analysis 39 (2002)
1749–1779.

[96] R. Hartmann, Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations,
SIAM Journal on Numerical Analysis 45 (2007) 2671–2696.

[97] C. E. Baumann, J. T. Oden, A discontinuous hp finite element method for convection–
diffusion problems, Computer Methods in Applied Mechanics and Engineering 175 (1999)
311–341.

[98] C. E. Baumann, J. T. Oden, A discontinuous hp finite element method for the Euler and
Navier–Stokes equations, International Journal for Numerical Methods in Fluids 31 (1999)
79–95.

[99] E. Burman, A penalty-free nonsymmetric Nitsche-type method for the weak imposition of
boundary conditions, SIAM Journal on Numerical Analysis 50 (2012) 1959–1981.

[100] T. Boiveau, E. Burman, A penalty-free Nitsche method for the weak imposition of bound-
ary conditions in compressible and incompressible elasticity, IMA Journal of Numerical
Analysis 36 (2016) 770–795.

[101] W. G. Dettmer, C. Kadapa, D. Perić, A stabilised immersed boundary method on hierarchi-
cal B-spline grids, Computer Methods in Applied Mechanics and Engineering 311 (2016)
415–437.

[102] H. Atkins, C.-W. Shu, Analysis of the discontinuous Galerkin method applied to the
diffusion operator, in: 14th Computational Fluid Dynamics Conference, 1999, p. 3306.
https://doi.org/10.2514/6.1999-3306.

[103] R. M. Kirby, G. E. Karniadakis, Selecting the numerical flux in discontinuous Galerkin
methods for diffusion problems, Journal of Scientific Computing 22 (2005) 385–411.

[104] F. Heimann, C. Engwer, O. Ippisch, P. Bastian, An unfitted interior penalty discontinuous
Galerkin method for incompressible Navier–Stokes two-phase flow, International Journal
for Numerical Methods in Fluids 71 (2013) 269–293.

[105] Y. Guo, M. Ruess, D. Schillinger, A parameter-free variational coupling approach for
trimmed isogeometric thin shells, Computational Mechanics 59 (2017) 693–715.

[106] F. Cazals, M. Pouget, Estimating differential quantities using polynomial fitting of osculat-
ing jets, Computer Aided Geometric Design 22 (2005) 121–146.

[107] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface reconstruction from
unorganized points, in: Proceedings of the 19th annual conference on Computer graphics
and interactive techniques, 1992, pp. 71–78.

[108] F. Cazals, M. Pouget, Algorithm 889: Jet_fitting_3:—a generic C++ package for estimating
the differential properties on sampled surfaces via polynomial fitting, ACM Transactions on
Mathematical Software 35 (2008) 24.

[109] S. Fuhrmann, M. Goesele, Floating scale surface reconstruction, ACM Transactions on

43

https://doi.org/10.2514/6.1999-3306

Graphics 33 (2014) 46.
[110] M. Belkin, J. Sun, Y. Wang, Constructing Laplace operator from point clouds in Rd, in: Pro-

ceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’09, Society for Industrial and Applied Mathematics, USA, 2009, p. 1031–1040.

[111] G. Barill, N. G. Dickson, R. Schmidt, D. I. W. Levin, A. Jacobson, Fast winding numbers
for soups and clouds, ACM Transactions on Graphics 37 (2018) 43.

[112] A. Jacobson, L. Kavan, O. Sorkine-Hornung, Robust inside-outside segmentation using
generalized winding numbers, ACM Transactions on Graphics 32 (2013) 33.

[113] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer,
W. Stuetzle, Piecewise smooth surface reconstruction, in: Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques, Association for Computing
Machinery, New York, NY, USA, 1994, p. 295–302.

[114] A. Kahler, Creating an icosphere mesh in code, 2009. http://blog.andreaskahler.com/2009/
06/creating-icosphere-mesh-in-code.html.

[115] Y. Bazilevs, I. Akkerman, Large eddy simulation of turbulent Taylor–Couette flow us-
ing isogeometric analysis and the residual-based variational multiscale method, Journal of
Computational Physics 229 (2010) 3402–3414.

[116] I. Rodriguez, R. Borell, O. Lehmkuhl, C. D. Perez Segarra, A. Oliva, Direct numerical
simulation of the flow over a sphere at Re = 3700, Journal of Fluid Mechanics 679 (2011)
263–287.

[117] H. S. Yoon, D. H. Yu, M. Y. Ha, Y. G. Park, Three-dimensional natural convection in an
enclosure with a sphere at different vertical locations, International Journal of Heat and
Mass Transfer 53 (2010) 3143–3155.

[118] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-
and post-processing facilities, International Journal for Numerical Methods in Engineering
79 (2009) 1309–1331.

[119] E. M. Datavision, Open CASCADE, http://www.opencascade.com, 2001.
[120] S. Koch, T. Schneider, F. Williams, D. Panozzo, Geometric computing with Python, in:

ACM SIGGRAPH 2019 Courses (SIGGRAPH ’19), Association for Computing Machinery,
New York, NY, USA, 2019, pp. 1–45. Article 11.

[121] Dawson-Haggerty, et al., Trimesh, 2019. URL: https://trimsh.org/.
[122] M.-C. Hsu, I. Akkerman, Y. Bazilevs, High-performance computing of wind turbine aero-

dynamics using isogeometric analysis, Computers & Fluids 49 (2011) 93–100.
[123] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular

graphs, SIAM Journal of Scientific Computing 20 (1998) 359–392.

44

http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
https://trimsh.org/

	Introduction
	Immersogeometric analysis
	Mathematical formulation
	Variational multiscale formulation of the incompressible thermal fluid flow
	Compressible flow formulation
	Stabilization parameter selection for weak boundary conditions

	Adaptive quadrature near point cloud surface

	Point cloud processing
	Normal computation
	Point cloud surface integration rules
	Point membership classification

	Validation
	Validation of geometric quantities
	Validation on icosphere and randomly sampled sphere
	Validation of normals estimation on a point cloud sampled from the Fandisk model
	Validation of winding number computation
	Robustness to noise

	Incompressible flow around a point cloud sphere
	Problem setup
	Point cloud convergence with fixed mesh
	Mesh convergence and flow validation

	Buoyancy-driven flow
	Compressible flow over a torpedo-shaped body

	Flow over an industrial vehicle
	Geometric pre-processing accuracy
	Problem setup
	Immersed mesh generation
	Simulation results

	Conclusions
	Definitions of Euler Jacobian and diffusivity matrices

