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Abstract. The purpose of this study is to enhance the stability properties of our recently-
developed numerical method [D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A.
Aggarwal, Y. Bazilevs, M.S. Sacks, T.J.R. Hughes, “An immersogeometric variational
framework for fluid–structure interaction: Application to bioprosthetic heart valves”,
Comput. Methods Appl. Mech. Engrg., 284 (2015) 1005–1053] for immersing spline-
based representations of shell structures into unsteady viscous incompressible flows.
In the cited work, we formulated the fluid–structure interaction (FSI) problem using
an augmented Lagrangian to enforce kinematic constraints. We discretized this La-
grangian as a set of collocated constraints, at quadrature points of the surface integra-
tion rule for the immersed interface. Because the density of quadrature points is not
controlled relative to the fluid discretization, the resulting semi-discrete problem may
be over-constrained. Semi-implicit time integration circumvents this difficulty in the
fully-discrete scheme. If this time-stepping algorithm is applied to fluid–structure sys-
tems that approach steady solutions, though, we find that spatially-oscillating modes
of the Lagrange multiplier field can grow over time. In the present work, we stabilize
the semi-implicit integration scheme to prevent potential divergence of the multiplier
field as time goes to infinity. This stabilized time integration may also be applied in
pseudo-time within each time step, giving rise to a fully implicit solution method. We
discuss the theoretical implications of this stabilization scheme for several simplified
model problems, then demonstrate its practical efficacy through numerical examples.
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1 Introduction

The problem of thin elastic structures undergoing large, unsteady deformations while
immersed in incompressible fluid has become a prominent research topic in the com-
putational fluid–structure interaction (FSI) community. Practical instances of this prob-
lem include parachutes [1–8], insect flight [9–11], and the valves that direct blood flow
through the heart [12–27]. The last topic—heart valve FSI—is currently very active: many
of the cited works were published within the past several years. This intense interest is
not surprising in light of the immediate practical benefits to be reaped from an improved
understanding of the dynamics of both native and prosthetic heart valves.

Hundreds of thousands of diseased heart valves are surgically repaired or replaced
by prostheses every year [28, 29]. The most popular type of prosthetic device is one that
mimics native heart valves, consisting of thin, flexible leaflets that are pushed open by
flow in one direction and pushed closed by flow in the other direction. These biomimetic
devices avoid the blood damage that can be caused by mechanical prostheses consist-
ing of rigid parts [28, 29]. To capture critical properties of soft tissue, the prostheses are
often themselves composed of biologically derived materials and are hence called bio-
prosthetic heart valves. The durability of these valves is limited, however, and they often
need to be replaced again after 10–15 years due to degradation following from repeated
loading [28–30]. Attempts to design more durable prostheses would benefit from un-
derstanding the stresses that drive this degradation process. Computational methods of
structural analysis have yielded some insights into the mechanics of prosthetic valves
and the organs they are modeled after [31–47], but such approaches typically approxi-
mate the effect of the fluid crudely, as a uniform pressure applied to each of the valve
leaflets. The goal of studies on computational heart valve FSI, such as those cited earlier,
is to account for the effect of the fluid more accurately.

In our earlier work on heart valve FSI, we developed a computational method for
fluid–thin structure interaction that was initially described by Kamensky et al. [27]. For
reasons explained in the cited reference, we developed a non-boundary-fitted method for
FSI, in which a shell structure mesh of the heart valve leaflets moves independently of a
fluid background mesh. The method was later used by Hsu et al. [26] in conjunction with
an arbitrary Lagrangian–Eulerian (ALE) approach [48–50] as a hybrid FSI method—a
special case of the fluid–solid interface-tracking/interface-capturing technique (FSITICT)
[51, 52]—to study the effect of arterial compliance on valve dynamics.

The thin shell structure in this work is discretized isogeometrically, using non-uniform
rational B-spline (NURBS) basis functions [53] to represent both the geometry and the dis-
placement solution of the structure. Hughes et al. [54] introduced isogeometric analysis
(IGA) as a paradigm for expediting the tedious process of generating analysis meshes
from design geometries. Aside from its potential to eliminate unnecessary labor from the
design-through-analysis pipeline [55, 56], IGA has attracted a great deal of attention due
to the improvements in solution quality that follow from incorporation of exact design
geometry and smooth basis functions into engineering analysis [57–60]. Faithful repre-
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sentations of smooth boundaries and interfaces are advantageous in the analysis of fluid
mechanics [54, 61–63] and sliding contact problems [64–66], both of which are important
to the dynamics of heart valves. Further, the use of smooth, spline-based analysis so-
lution spaces can eliminate rotational degrees of freedom from thin-shell formulations,
leading to simple, efficient, and robust methods for shell structure analysis [67–70].

Hughes et al. [54, page 4139] originally conceived IGA as a unification of isoparamet-
ric finite element analysis and spline-based geometrical design, as reflected through its
name. An alternative means of incorporating geometry directly into analysis is to capture
the geometry on an unfitted background mesh [55,71–73]. We introduced the term immer-
sogeometric analysis in Kamensky et al. [27] to identify this emerging trend, and applied
it to our methods for coupling isogeometric structure discretizations to fluid solutions
approximated on unfitted background meshes.

In our earlier work [27], we coupled the fluid and structure through an augmented
Lagrangian, integrated over the immersed interface, which we then discretized in space
as a set of collocated constraints. We briefly reiterate these developments in Section 2 of
the current paper. In Section 3, we modify the solution algorithm proposed by Kamensky
et al. [27] to improve the stability of the discrete Lagrange multiplier field in the long-time
limit. We relate this modification to the stabilization technique of Barbosa and Hughes
[74] and discuss its theoretical consequences for several model problems of interest. In
Section 4, we demonstrate the effects of our modified algorithm using a 2D model of a
heart valve. In Section 5, we draw conclusions.

2 Augmented Lagrangian formulation for fluid–thin structure
interaction

We start with the augmented Lagrangian framework for FSI introduced by Bazilevs et
al. [75]. Consider space–time regions Q1 and Q2 (subsets of Rd+1, where d is the num-
ber of spatial dimensions), occupied by incompressible Newtonian fluid and elastic solid
respectively. Now define time-varying spatial domains for the fluid and structure sub-
problems: (Ωi)t ={(x1,. . .,xd+1)∈Qi|xd+1 = t}, for i∈{1,2}. Let (Γi)t be the boundary of
(Ωi)t. (Ω1)t and (Ω2)t meet at a shared fluid–structure interface, (ΓI)t. Let u1 denote the
fluid’s velocity and p denote its pressure. Let y denote the structure’s displacement from
some reference configuration, (Ω2)0, and u2≡ ẏ denote the velocity of the structure. We
enforce the fluid–structure kinematic constraint that u1=u2 on (ΓI)t using the augmented
Lagrangian

∫
(ΓI)t

λλλ·(u1−u2) dΓ+
1
2

∫
(ΓI)t

β|u1−u2|2 dΓ , (2.1)

where λλλ is a Lagrange multiplier and β≥ 0 is a penalty parameter. The resulting varia-
tional problem is: Find u1∈Su, p∈Sp, y∈Sd, and λλλ∈S` such that, for all test functions
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w1∈Vu, q∈Vp, w2∈Vd, and δλλλ∈V`

B1({w1,q},{u1,p};û)−F1({w1,q})+
∫
(ΓI)t

w1 ·λλλ dΓ+
∫
(ΓI)t

w1 ·β(u1−u2) dΓ = 0 , (2.2)

B2(w2,y)−F2(w2)−
∫
(ΓI)t

w2 ·λλλ dΓ−
∫
(ΓI)t

w2 ·β(u1−u2) dΓ = 0 , (2.3)∫
(ΓI)t

δλλλ·(u1−u2) dΓ = 0 , (2.4)

where Su, Sp, Sd, and S` are the function spaces for the fluid velocity, fluid pressure,
structural displacement, and Lagrange multiplier solutions, respectively, and Vu, Vp, Vd,
and V` are the corresponding weighting function spaces. B1, B2, F1, and F2 are the semi-
linear forms and linear functionals corresponding to the (weak) fluid and structural dy-
namics problems. These are defined as

B1({w,q},{u,p};û)=
∫
(Ω1)t

w·ρ1

(
∂u
∂t

∣∣∣∣
x̂
+(u−û)·∇∇∇u

)
dΩ

+
∫
(Ω1)t

εεε(w) :σσσ1 dΩ+
∫
(Ω1)t

q∇∇∇·u dΩ , (2.5)

F1({w,q})=
∫
(Ω1)t

w·ρ1f1 dΩ+
∫
(Γ1h)t

w·h1 dΓ , (2.6)

B2(w,y)=
∫
(Ω2)t

w·ρ2
∂2y
∂t2

∣∣∣∣
X

dΩ+
∫
(Ω2)t

εεε(w) :σσσ2 dΩ , (2.7)

F2(w)=
∫
(Ω2)t

w·ρ2f2 dΩ+
∫
(Γ2h)t

w·h2 dΓ , (2.8)

where, for i∈{1,2}, ρi is the mass density in (Ωi)t, σσσi is the Cauchy stress, fi is a prescribed
body force, and hi is a prescribed traction on (Γih)t⊂∂(Ωi)t. εεε(·) is the symmetric gradient
operator, viz. 1

2 (∇∇∇(·)+(∇∇∇(·))T). We assume that (Ω1)t deforms from some reference
configuration, (Ω1)0, according to the velocity field û, which need not equal u1. ∂(·)/∂t|x̂
indicates time differentiation with respect to a fixed point x̂ from (Ω1)0, while ∂(·)/∂t|X
indicates time differentiation with respect to a fixed material point, X. In this work, we
assume that the fluid is Newtonian: σσσ1=−pI+2µεεε(u1), where µ is the dynamic viscosity.

In the case of a thin structure that is modeled geometrically as a surface of codimen-
sion one to (Ω1)t (i.e. a 2D surface for d= 3 or a plane curve for d= 2), we replace the
integration over (ΓI)t with an integral over the codimension one surface, which we refer
to simply as Γt. For reasons expounded by Kamensky et al. [27], we eliminate the La-
grange multipliers for the tangential portion of the kinematic constraint, leaving them to
be enforced by penalty only, and proceed with a scalar multiplier, λ, which enforces the
no-penetration portion of the constraint. This yields the following variational problem
for thin structure FSI: Find u1∈Su, p∈Sp, y∈Sd, and λ∈S` such that, for all test functions
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w1∈Vu, q∈Vp, w2∈Vd, and δλ∈V`,

B1({w1,q},{u1,p};û)−F1({w1,q})+
∫

Γt

w1 ·(λn2) dΓ+
∫

Γt

w1 ·β(u1−u2) dΓ = 0, (2.9)

B2(w2,y)−F2(w2)−
∫

Γt

w2 ·(λn2) dΓ−
∫

Γt

w2 ·β(u1−u2) dΓ = 0, (2.10)∫
Γt

δλn2 ·(u1−u2) dΓ = 0, (2.11)

where n2 is the normal to Γt. A formally consistent formulation could be arrived at by
including terms to account for the jump in fluid viscous stresses across Γt (cf. Nitsche’s
method [76–79] and related means of weakly enforcing Dirichlet boundary conditions
in fluid flow problems [80–83]), but, for discretizations considered in the present work,
this jump will always be zero in the approximate solution, and has been omitted from
Eqs. (2.9)–(2.11) for simplicity. Based on the relation between the augmented Lagrangian
formulation with Nitsche’s method, as explained by Bazilevs et al. [75], the penalty pa-
rameter should scale like

β∼ µ

h
, (2.12)

where h has dimensions of length and is a measure of fluid mesh element size. The non-
dimensional constant of proportionality is usually considered to be bounded below by
element-wise inverse estimates [84–86], but, when Nitsche’s method is degenerated into
a pure penalty method, this is no longer a strict requirement for stability.

2.1 Semi-discrete formulation of the fluid subproblem

Galerkin’s method is unstable when applied directly to the fluid subproblem Eq. (2.9).
It is well known that, when advective phenomena dominate diffusion, the solution can
become highly oscillatory [87, 88], and the usable combinations of discrete velocity and
pressure approximation spaces are restricted by inf-sup stability considerations [89]. Fur-
ther, there would be no turbulence model, and high Reynolds number flows would need
to be resolved at viscous length scales. The issues of stability and turbulence model-
ing are simultaneously addressed by the variational multiscale (VMS) method [90] of
Bazilevs et al. [91]. In short, it substitutes an ansatz for subgrid velocities and pressures
into the weak fluid subproblem. This ansatz is consistent with the strong form of the
Navier–Stokes equations, so that the resulting formulation smoothly transitions to direct
numerical simulation as the approximation spaces are refined.

To define the mesh-dependent VMS formulation, we introduce a collection of disjoint
fluid elements {Ωe} such that Ω1 =∪eΩe. {Ωe}, Ω1, and Γ remain time-dependent, but
we drop the subscript t to simplify notation. We introduce a superscript h to indicate
association with discrete spaces defined over these elements. The mesh {Ωe} deforms
with velocity ûh. Let V h

u and V h
p be discrete velocity and pressure spaces defined over



6

{Ωe}. We pose the semi-discrete VMS fluid subproblem: Find uh
1 ∈V h

u and ph∈V h
p such

that, for all wh
1∈V h

u and qh∈V h
p ,

BVMS
1 ({wh

1,qh},{uh
1,ph};ûh)−FVMS

1 ({wh
1,qh})

+
∫

Γt

wh
1 ·(λn2) dΓ+

∫
Γt

wh
1 ·β(uh

1−u2) dΓ = 0 , (2.13)

where

BVMS
1 ({w,q},{u,p};û)=

∫
(Ω1)t

w·ρ1

(
∂u
∂t

∣∣∣∣
x̂
+(u−û)·∇∇∇u

)
dΩ

+
∫
(Ω1)t

εεε(w) :σσσ1 dΩ+
∫
(Ω1)t

q∇∇∇·u dΩ

−∑
e

∫
Ωe

(
(u−û)·∇∇∇w+

∇∇∇q
ρ1

)
·u′ dΩ

−∑
e

∫
Ωe

p′∇∇∇·w dΩ

+∑
e

∫
Ωe

w·(u′ ·∇∇∇u) dΩ

−∑
e

∫
Ωe

∇∇∇w
ρ1

:
(
u′⊗u′

)
dΩ

+∑
e

∫
Ωe

(
u′ ·∇∇∇w

)
τ ·
(
u′ ·∇∇∇u

)
dΩ , (2.14)

and

FVMS
1 ({w,q})=F1({w,q}) . (2.15)

The forms BVMS
1 (·,·) and FVMS

1 (·) are the VMS semi-discrete counterparts of B1 and F1. u′

is the fine scale velocity ansatz,

u′=−τM

(
ρ1

(
∂u
∂t

∣∣∣∣
x̂
+(u−û)·∇∇∇u−f

)
−∇∇∇·σσσ1

)
, (2.16)

and p′ is the fine scale pressure,

p′=−ρ1τC∇∇∇·u . (2.17)

These clearly correspond to residuals of the strong momentum and continuity equations
forming the incompressible Navier–Stokes system. The stabilization parameters τM, τC,
and τ are defined as

τM=

(
s

(
4

∆t2 +(u−û)·G(u−û)+CI

(
µ

ρ1

)2

G : G

))−1/2

, (2.18)

τC=(τMtrG)−1 , (2.19)

τ=
(
u′ ·Gu′

)−1/2 , (2.20)
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where ∆t is a timescale associated with the as-yet-unspecified temporal discretization, CI
is a dimensionless positive constant derived from element-wise inverse estimates [84,86],
and G generalizes the element diameter “h” to physical elements mapped through x(ξξξ)
from a parametric parent element:

Gij =
d

∑
k=1

∂ξk

∂xi

∂ξk

∂xj
. (2.21)

The factor s in the definition of τM is a dimensionless quantity that is allowed to vary in
space. In most of Ω1, s= 1, but, in an O(h) neighborhood of Γ, s= sshell≥ 1. This factor
was introduced by Kamensky et al. [27] to improve mass conservation near the immersed
structure.

Remark 2.1. The τ term of BVMS
1 is not derived from VMS analysis; it is an extra term,

introduced by Taylor et al. [92], to provide stabilizing dissipation near steep solution
gradients.

The stabilized VMS formulation can be used with many different choices of V h
u and

V h
p . It is not limited to special inf-sup stable combinations of velocity and pressure spaces.

For the computations of this paper, we use an “equal order” discretization scheme, in
which the same scalar discrete space is used for pressure and each Cartesian component
of velocity. This scalar space is spanned by NURBS (or B-spline) basis functions defined
on d-variate parametric knot spaces. Piegl and Tiller [53] provide detailed discussion on
the construction and properties of such spaces and Hughes et al. [54] review the essential
components in the context of IGA.

2.2 Semi-discrete formulation of the thin structure subproblem

This section specializes the definitions of B2 and F2 from Eq. (2.10) to thin structures. We
assume that the configuration of (Ω2)t is uniquely determined by Γt and define B2 and
F2 as

B2(w,y)=
∫

Γt

w·ρ2hth
∂2y
∂t

∣∣∣∣
X

dΓ+
∫

Γ0

∫ hth/2

−hth/2
δE : S dξ3dΓ (2.22)

and
F2(w)=

∫
Γt

w·ρ2hthf dΓ+
∫

Γt

w·hnet dΓ , (2.23)

where hth is the thickness of the shell, ξ3 is a through-thickness coordinate, and we have
referred the elasticity term to the reference configuration, (Ω2)0. E is the Green–Lagrange
strain tensor, δE is its variation, and S is the second Piola–Kirchhoff stress tensor [93]. In
the last term of F2, we have summed the prescribed tractions on the two sides of Γt:
hnet =h(ξ3 =−hth/2)+h(ξ3 =+hth/2). Following Kiendl [69, Section 3.2], we simplify
E using kinematic assumptions and define S through a St. Venant–Kirchhoff material
model, S = C : E, where C is an isotropic rank-four elasticity tensor, determined by a
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Young’s modulus, E, and Poisson ratio, ν. The integral with respect to ξ3 can then be per-
formed analytically [69, Eqs. (3.38) and (3.39)]. The resulting formulation [69, Eq. (3.47)]
invokes second derivatives of displacement with respect to mid-surface coordinates. To
directly apply Galerkin’s method, we therefore need a C1-continuous basis. Again fol-
lowing Kiendl [69, Chapter 5], we satisfy this requirement by using NURBS basis func-
tions to represent displacement.

To handle structural self-contact (such as closing heart valve leaflets), we use the
penalty method described by Kamensky et al. [27, Section 5.2]. In summary (and with a
slight change of notation), sliding contact inequality constraints are collocated at quadra-
ture points of the structure mid-surface and enforced by opposing pairs of penalty forces.
These forces have magnitude

w



kc

2hc
(d+hc)2 , d∈ (−hc,0)

kchc

2
+kcd , d≥0

0 , otherwise

, (2.24)

where w is the weight of the quadrature point at which the constraint is collocated, d is
the (signed) depth of penetration, kc is the contact penalty parameter, and hc is the length
over which activation of penalty forces is smoothed, to improve nonlinear convergence.
Penetrations of |d|> cc are ignored, where cc≥ hc is a cutoff to avoid spurious non-local
contact. Weighting the penalty forces by a quadrature rule ensures that parallel plates
will always experience a uniform pressure.

2.3 Spatial discretization of the FSI constraints

To numerically perform the integrals over Γt, we introduce a quadrature rule on Γt that
consists of a summation over Gaussian quadrature rules on disjoint elements of Γt. In all
computations from this paper, these quadrature rules are the same ones used to integrate
the structure subproblem formulated in Section 2.2, but this coincidence is not necessary.
We recommend that the size of the surface quadrature elements be bounded above by
some measure of the fluid mesh element size, although this is not strictly enforced by the
formulation.

The integration of the penalty terms is then straightforward: uh
2 may be evaluated

directly at the surface quadrature point, and the parameterization of the fluid element
containing the quadrature point’s spatial location may be inverted to obtain parametric
coordinates at which to evaluate uh

1. The number of fluid elements in which this para-
metric inversion must be attempted for each quadrature point can be greatly reduced by
using techniques from computational geometry. Some problems may benefit from split-
ting the penalty force into normal and tangential components, which may be weighted
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separately [75]. This is accomplished by replacing

β
(

uh
1−uh

2

)
(2.25)

with (
τB

NOR−τB
TAN

)((
uh

1−uh
2

)
·n2

)
n2+τB

TAN

(
uh

1−uh
2

)
, (2.26)

where τB
NOR and τB

TAN are the normal and tangential penalties.

Remark 2.2. Recall that Eq. (2.12) is merely a lower bound on these penalties. It is not en-
tirely satisfactory for τB

NOR to be proportional to µ, since this implies that penalization of
fluid penetration through the structure will vanish in the inviscid limit. In the numerical
examples of this paper, we proceed with τB

NOR∼µ/h, which is effective for low to mod-
erate Reynolds numbers. We anticipate that some other means of selecting τB

NOR would
be necessary for Re� 1 if we wish to avoid a situation in which users must carefully
choose the non-dimensional penalty constant through numerical experiments, but the
development of a precise formula applicable to singularly perturbed problems is beyond
the scope of the present work.

To integrate the multiplier term, we must have a way of evaluating the multiplier
field at quadrature points of Γt. To this end, we simply introduce a scalar unknown at
each surface quadrature point, which is interpreted as the value of λ at that point. This
corresponds to collocation of the no-penetration constraint at the quadrature points.

3 Fully-discrete formulation

In this section, we complete the discretization by specifying a time-marching procedure.
We will compute approximate solutions at a countable set of time levels, indexed by n
and separated in time by steps of size ∆t. Suppose that, at time level n, the discrete
fluid velocity is defined by a vector of coefficients Un, the fluid acceleration by U̇n, the
fluid pressure by Pn, and the structure displacement, velocity, and acceleration by Yn,
Ẏn, and Ÿn, respectively. We refer to the multiplier at time level n as λn, considering it
a function defined over Γt, with the understanding that it is represented discretely as a
set of samples at quadrature points. Considering the solution variables at time level n
known, we first construct a system of equations for all (n+1)-level unknowns, excluding
λn+1, which we initially set equal to λn:

Res
(

Un+α f ,U̇n+αm ,Yn+α f ,Ẏn+α f ,Ÿn+αm ,Pn+1,λn+1
)
=0 , (3.1)

Un+1=Un+∆t
(
(1−γ)U̇n+γU̇n+1

)
, (3.2)

U̇n+αm = U̇n+αm

(
U̇n+1−U̇n

)
, (3.3)

Un+α f =Un+α f

(
Un+1−Un

)
, (3.4)
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Yn+1=Yn+∆tẎn+
∆t2

2

(
(1−2β)Ÿn+2βŸn+1

)
, (3.5)

Ẏn+1= Ẏn+∆t
(
(1−γ)Ÿn+γŸn+1

)
, (3.6)

Ÿn+αm = Ÿn+αm

(
Ÿn+1−Ÿn

)
, (3.7)

Ẏn+α f = Ẏn+α f

(
Ẏn+1−Ẏn

)
, (3.8)

Yn+α f =Yn+α f

(
Yn+1−Yn

)
, (3.9)

where αm, α f , β, and γ are parameters of the time integration scheme. The function
Res(. . .) is the nonlinear residual corresponding to the discretization of Eqs. (2.9) and
(2.10). Note that this does not include the FSI kinematic constraint equation (2.11), which,
because λn+1 is held fixed, would lead to an ill-posed system with more equations than
unknowns. While the multiplier is considered fixed in this problem, the penalty terms
are still treated implicitly. We solve this penalty-coupled problem by block iteration, as
described by Kamensky et al. [27, Section 4.6]. The formulas (3.1)–(3.9) are based on the
generalized-α method of time integration [94]. Following Bazilevs et al. [95, Section 4.4],
we work within a subset of generalized-α methods, parameterized by as single scalar,
ρ∞∈ [0,1], which controls numerical damping and defines the four free parameters as

αm =
1
2

(
3−ρ∞

1+ρ∞

)
, (3.10)

α f =
1

1+ρ∞
, (3.11)

γ=
1
2
+αm−α f , (3.12)

β=
1
4
(
1+αm+α f

)2 . (3.13)

For all computations in this paper, we use ρ∞ =0.5. For a discussion of the effects of this
parameter on stabilized finite element computations of unsteady Navier–Stokes, see the
work of Jansen et al. [96].

Remark 3.1. A more canonical implementation of the generalized-α scheme might intro-
duce

λn+α f =λn+α f

(
λn+1−λn

)
(3.14)

and
Pn+α f =Pn+α f

(
Pn+1−Pn

)
(3.15)

for use in Eq. (3.1), but the formulation has no time derivatives of the corresponding
fields,† and their α-level coefficients would be uniquely determined by the fully-discrete

†In Section 3.2, we reinterpret the algorithm developed in this section as taking a time derivative of λ, but
we consider this to be a post hoc interpretation of the discrete scheme for stability analysis, not a statement
of the formulation itself.
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formulation, leaving Eqs. (3.14) and (3.15) as post-processing steps for the (n+1)-level
unknowns. We follow Bazilevs et al. [91] in simply renaming these α-level unknowns to
(n+1)-level unknowns. This has no effect on the values of the fluid velocity and structure
displacement coefficients and essentially translates the pressure and multiplier solutions
by a fraction of ∆t in time.

Because Eqs. (3.1)–(3.9) do not include the constraint given by Eq. (2.11), the α-level
constraint residual

Rn+α =

((
uh

1

)n+α f
−
(

uh
2

)n+α f
)
·nn+α f

2 (3.16)

is not necessarily zero on Γt+α f . In Eq. (3.16),
(
uh

1

)n+α f is the fluid velocity defined by

coefficients Un+α f ,
(
uh

2
)n+α f is the structure velocity defined by coefficients Ẏn+α f , and

n
n+α f
2 is the normal to Γt+α f , as determined by the displacement coefficients Yn+α f .

If Rn+α = 0, then the normal component of the α-level penalty force, τB
NORRn+α, will

be zero and the normal α-level fluid–structure force will be due only to the Lagrange
multiplier, λn+1. This motivates the explicit update

λn+1←λn+1+τB
NORRn+α , (3.17)

in which λn+1 is set equal to the α-level fluid–structure forcing. Eqs. (3.1)–(3.9) are of
course no longer satisfied with the updated λn+1, but we may attempt to iterate the steps

1. Solve Eqs. (3.1)–(3.9) with λn+1 fixed.

2. Upate λn+1 by Eq. (3.17).

until ‖Rn+α‖L2(Γt) is converged to some tolerance. As explained by Kamensky et al. [27,
Section 4.2.1], this iteration corresponds to the classic augmented Lagrangian algorithm
of Hestenes [97] and Powell [98], which is an implicit variant of the well-known Uzawa
iteration [99, 100] for solving saddle point problems. In the present case, though, the
convergence criterion of ‖Rn+α‖L2(Γt)< ε is too strict to arrive at a nontrivial solution; it
effectively demands pointwise constraint satisfaction between the non-matching discrete
velocity spaces of the fluid and structure. Kamensky et al. [27] found accordingly that the
iteration did not typically converge, but circumvented this difficulty by truncating to a
single pass, leading to the semi-implicit time marching scheme of first solving Eqs. (3.1)–
(3.9) with λn+1=λn, then updating λn+1 by Eq. (3.17) and continuing directly to the next
time step. This time splitting approach proved effective for transient problems, but may
be expected to run into difficulties in problems that approach steady solutions.

In the present work, we alter the discrete constraint residual to be

Rn+α =

((
uh

1

)n+α f
−
(

uh
2

)n+α f
)
·nn+α f

2 −
(

r
τB

NOR

)
λn+1 , (3.18)
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where r≥0 is a parameter. If τB
NOR is considered to scale inversely with h, as in Eq. (2.12),

this adds some O(h) leeway into the convergence criterion for the constraint equation.
If we consider λn+1 in Eq. (3.18) to be the updated multiplier on the left side of the as-
signment in Eq. (3.17), then the update given by Eq. (3.17) becomes implicit, but it may
trivially be recast into the explicit form

λn+1←
λn+1+τB

NOR

((
uh

1

)n+α f−
(
uh

2
)n+α f

)
·nn+α f

2

1+r
. (3.19)

This reduces to our earlier algorithm when r=0. In the continuous problem, the modifica-
tion to the constraint residual corresponds to a stabilized formulation of Eqs. (2.9)–(2.11),
in which the constraint equation (2.11) is repaced by

∫
Γt

δλ

((
uh

1−uh
2

)
·n2−

(
r
β

)
λ

)
dΓ = 0 . (3.20)

Eq. (3.20) represents a degenerate case of Barbosa–Hughes stabilization [74,101]. It could
be rendered formally consistent with the exact solution by subtracting the pressure jump
across Γt from λ in the stabilization term, but, in the present case, the pressure jump in
the discrete solution is zero and we have simply omitted it from Eq. (3.20). Section 3.1
provides some insight into the effects of this de facto consistency error.

Although stabilization affords the possibility of fully-implicit time integration, which
is typically recommended for complex FSI problems [102], semi-implicit integration pro-
cedures can greatly reduce computational cost. In the present work, we generalize our
earlier semi-implicit scheme to use the stabilized update formula (3.19). In Section 3.2, we
show that the generalized semi-implicit scheme is stable (in an energetic sense) when ap-
plied to simplified linear model problems, even when r=0, in contrast to “staggered” or
“loosely coupled” FSI methods which are notoriously unstable, especially when the fluid
is incompressible [103], prompting widespread preference for implicit methods. Our ear-
lier computations [26, 27] and the numerical examples in Section 4 of this paper indicate
that the energy stability results extrapolate well to the fully nonlinear FSI problem. The
use of r>0 allows for robustness even when energy is continuously added to the system,
as through an inhomogeneous boundary condition.

3.1 Analysis of plug flow

To get a rough intuition of how the stabilization introduced in Section 3 affects solutions,
we introduce the simple model of plug flow through a blocked tube: a rigid barrier cuts
across a channel filled with a fluid that we assume, a priori, to have a single velocity, ue1,
that is constant across space, but may vary with time. To allow nonzero velocity solutions
with this kinematic assumption, we apply slip boundary conditions on the channel walls.
This is illustrated in Figure 1.
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Figure 1: Plug flow through a tube, blocked by a barrier. In the exact solution, u must be
zero, but weak enforcement techniques can allow leakage.

3.1.1 Leakage

Suppose that the ends of the channel are subject to pressures P1 and P2, which define
the pressure drop, ∆P = P1−P2. Suppose also, for now, that the Lagrange multiplier
field takes on a single constant value across the barrier. Then the steady state solution
of the semi-implicit time integration procedure described in Section 3 will reduce to the
conditions

1. Steadiness: λn+1 =λn. We define this constant value to be λ∞, and it must satisfy
λ∞ =

(
λ∞+τB

NORu
)

/(1+r).

2. Equilibrium: λ+τB
NORu=∆P; the multiplier and penalty must balance the pressure

drop to preclude acceleration of the fluid plug.

It follows that the leakage, u, is given by

u=
r∆P

τB
NOR(1+r)

, (3.21)

which asymptotes to inverse scaling with the penalty parameter as r→∞ and to zero as
r→ 0. For a fixed nonzero value of r, we then have that leakage converges to zero with
refinement at the same rate as it would for a pure penalty method, but, if we consider r
to be an adjustable parameter, we may scale the leakage down to arbitrarily small levels
without impacting the solvability of the discrete problem at each time step (because r
appears only in the explicit multiplier update).

3.1.2 Spurious modes of λ

If we allow λ to vary across the cross-section of the pipe, it is immediately clear that there
are many choices which could satisfy the equilibrium condition. Any λ with

∫
Γ λ dΓ=0
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could be added to an existing solution and corresponds to a “spurious mode” of the La-
grange multiplier field. Such modes will exist for richer fluid approximation spaces as
well. Any λ that is L2-orthogonal to the discrete space of fluid–structure velocity differ-
ences will constitute such a spurious mode. Our solution algorithm explicitly constructs
the multiplier approximation as a linear combination of discrete fluid–structure velocity
differences, and is therefore, in principle, immune to such spurious modes. In practice,
though, we find that the multiplier field can develop oscillations that are nearly orthog-
onal to the space of velocity differences. Without stabilization, they may become quite
large, as demonstrated by the numerical experiments of Section 4. The analysis of Section
3.2 indicates that these oscillations may be viewed as storing energy, which can later be
unleashed into the fluid and structure sub-problems; if oscillations in λ grow to extreme
magnitudes, the subsequent release of energy could be catastrophic.

3.1.3 Conflicting boundary conditions

If a Dirichlet condition is applied to the plug flow, constraining u to have some nonzero
value, then, when r=0, λ will clearly diverge as t→∞. This corresponds, of course, to an
ill-posed problem with contradictory boundary conditions, but such situations may be
approached in practice, if, for instance, the structure is forced into a fluid element whose
nodes are subject to Dirichlet boundary conditions. When r > 0, the semi-implicit time
integration remains robust in this extreme limit: assuming again that λ takes on a single
value across the barrier, the steadiness condition, λ∞=

(
λ∞+τB

NORu
)

/(1+r) implies that
λ stabilizes at a value of τB

NORu/r as t→∞.

3.2 Energy analysis of the semi-implicit scheme

To assess the stability of the semi-implicit time integration scheme, we relate it to a fully-
implicit integration of a surrogate problem. Kamensky et al. [27, Section 4.2.1] made such
a comparison earlier, for the case of r=0, showing that the semi-implicit update algorithm
for the multiplier was equivalent to replacing the multiplier and penalty forces by an
implicitly treated forcing due to a field λ satisfying the auxiliary differential equation λ̇=(
τB

NOR/∆t
)(

uh
1−uh

2
)
·n2, integrated with the backward Euler algorithm at each material

point of the structure mid-surface. For r≥ 0, we can straightforwardly generalize this
surrogate problem to have a fluid–structure forcing (1+r)λ, with λ satisfying

λ̇=
(

τB
NOR/∆t

)(
uh

1−uh
2

)
·n2−(r/∆t)λ (3.22)

at each material point of the structure mid-surface. Discretizing (3.22) using the backward
Euler method, we obtain

λn+1−λn

∆t
=
(

τB
NOR/∆t

)((
uh

1

)n+α f
−
(

uh
2

)n+α f
)
·n2−(r/∆t)λn+1 , (3.23)
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where we recall Remark 3.1, which explains how we consider the (n+1)-level multi-
plier unknowns to be coincident in time with the (n+α f )-level velocities. Multiplying
Eq. (3.23) by ∆t and rearranging terms, we recover the explicit update formula

λn+1=
λn+τB

NOR

((
uh

1

)n+α f−
(
uh

2
)n+α f

)
·n2

1+r
, (3.24)

which is equivalent to Eq. (3.19) in the case of the semi-implicit algorithm. Multiplying
Eq. (3.24) by (1+r), we see that the α-level fluid–structure pressure in the semi-implicit
scheme,

λn+τB
NOR

((
uh

1

)n+α f
−
(

uh
2

)n+α f
)
·n2 , (3.25)

is equal to (1+r)λn+1, which is the (n+1)-level fluid–structure pressure in our implicitly-
integrated surrogate problem. The semi-implicit algorithm is therefore equivalent to fully
implicit integration of a surrogate problem in which the fluid–structure pressure is (1+
r)λ and λ solves Eq. (3.22).

The inverse dependence of the coefficients of Eq. (3.22) on ∆t interferes with con-
vergence analysis. We do not claim that the semi-implicit scheme computes a λ that
accurately solves Eq. (3.22). We introduce Eq. (3.22) as a device to study stability. An
unconditionally stable time integration scheme will inherit the stability properties of the
underlying time-continuous problem for all time steps, including those that happen to
be related to the coefficients of the continuous problem.

To investigate the stability of this surrogate semidiscrete problem, we now consider
its application to the simplified model of a linearized fluid problem (e.g. unsteady Stokes
or Oseen flow) interacting with a small-deformation elastodynamic thin structure prob-
lem. We anticipate that the following discussion could extend to the nonlinear setting
by invoking the linear stability of the VMS formulation with grad-div stabilization [104,
Chapter 3]. We pose the fluid subproblem on Ω1 and the structure subproblem on the
codimension-one surface Γ⊂Ω1. Ω1 and Γ are assumed to be independent of time, in
keeping with the restriction to small deformation theory. We assume that the fluid sub-
problem is of the form: Find a semidiscrete velocity and pressure pair

{
uh

1,ph}∈Vh
u×Vh

p

such that, ∀
{

wh
1,qh}∈V h

u×Vh
p ,(

ρ1∂tuh
1,wh

1

)
L2(Ω1)

+b1

({
uh

1,ph
}

,
{

wh
1,qh

})
= f1

({
wh

1,qh
})

, (3.26)

where we assume that the solution
{

uh
1,ph} exists and that b1

({
uh

1,ph},
{

uh
1,ph})≥ 0.

The second assumption would follow immediately from coercivity of b1(·,·), but it does
not, in general, require coercivity. It will be satisfied, for instance, by Galerkin’s method
applied to Stokes flow, or Oseen flow with homogeneous Dirichlet boundary conditions
on ∂Ω1. We employ the superscript (·)h to emphasize that results hold after discretizing
in space, but we do not rely in any way on V h

(·) having finite dimension. Inserting the
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solution as a test function,

∂t

(
1
2

ρ1

∥∥∥uh
1

∥∥∥2

L2(Ω1)

)
= f1

({
uh

1,ph
})
−b1

({
uh

1,ph
}

,
{

uh
1,ph

})
≤ f1

({
uh

1,ph
})

. (3.27)

Suppose that

f1

({
wh

1,qh
})

=−(1+r)
∫

Γ
λ
(

wh
1 ·n
)

dΓ . (3.28)

Then we may interpret inequality (3.27) as saying that the rate of change in kinetic energy
of the semi-discrete solution uh

1 is bounded by the rate of work done by the surface force
−(1+r)λn.

Likewise define the structure subproblem as: Find a displacement yh∈Vh
y such that,

∀wh
2∈V h

y , (
ρ2∂2

t yh,wh
2

)
L2(Γ)

+a2(yh,wh
2)+b2

(
∂tyh,wh

2

)
= f2

(
wh

2

)
, (3.29)

where we again assume that the problem is well-posed, a2(·,·) is a bilinear symmetric
positive-definite form providing elasticity, and b2(·,·) is a damping form that satisfies
b2(∂tyh,∂tyh)≥0. Let

f2

(
wh

2

)
=(1+r)

∫
Γ

λ
(

wh
2 ·n
)

dΓ , (3.30)

where λ is the same quantity used in defining f1(·). Define the semidiscrete potential
energy as

Ψh =
1
2

a2

(
yh,yh

)
. (3.31)

Mild regularity assumptions on a2(·,·) and yh imply the time derivative product rule

∂ta2

(
yh,yh

)
= a2

(
∂tyh,yh

)
+a2

(
yh,∂tyh

)
=2a2

(
yh,∂tyh

)
. (3.32)

Inserting uh
2≡∂tyh as the test function wh

2 in the structure subproblem, we then find that
the rate of change of combined kinetic and potential energy in the structure subproblem
is bounded by interface power:

∂t

(
1
2

ρ2

∥∥∥uh
2

∥∥∥2

L2(Γ)
+Ψh

)
≤ (1+r)

∫
Γ

λ
(

uh
2 ·n
)

dΓ . (3.33)

Suppose that, at each point x∈Γ, the interface pressure (1+r)λ(x,t) is determined by
solving the differential equation

∂tλ(x,t)= k
(

uh
1(x,t)−uh

2(x,t)
)
·n(x)−cλ(x,t) , (3.34)
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where k=τB
NOR/∆t, c=r/∆t, and n is the normal to Γ. Then, defining u≡

(
uh

1−uh
2
)
·n and

multiplying by the integrating factor ect,

ect (∂tλ)+cectλ= kuect (3.35)

⇒ ∂t
(
ectλ

)
= kuect (3.36)

⇒ ectλ= k
∫ t

0
uecτdτ (3.37)

⇒ λ= e−ctk
∫ t

0
uecτdτ , (3.38)

where we have assumed that λ= 0 at time t= 0. The net work per unit area done after
time t by the multiplier on the combined fluid–structure system is given by

w(t)=−(1+r)
∫ t

0
λ(x,τ)u(x,τ) dτ

=−(1+r)k
∫ t

0
u(x,τ)

{
e−cτ

∫ τ

0
u(x,T)ecT dT

}
dτ . (3.39)

Define
g(τ)≡ e−cτ

∫ τ

0
uecT dT . (3.40)

Then

∂τg=−ce−cτ
∫ τ

0
uecT dT+e−cτuecτ (3.41)

=−ce−cτ
∫ τ

0
uecT dT+u , (3.42)

and

g∂τg=−c
(

e−cτ
∫ τ

0
uecT dT

)2

+ue−cτ
∫ τ

0
uecT dT . (3.43)

Then

w(t)=−(1+r)k
∫ t

0

{
g∂tg+c

(
e−cτ

∫ τ

0
uecT dT

)2
}

(3.44)

=−(1+r)k

{∫ t

0

1
2

∂τ

(
g2) dτ+

∫ t

0

(
c
(

e−cτ
∫ τ

0
uecT dT

)2
)

dτ

}
(3.45)

≤−(1+r)
1
2

kg2≤0 . (3.46)

Integrating inequalities (3.27) and (3.33) with respect to time, we see that the sum of
the kinetic energy of the fluid–structure system and the potential energy of the structure
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changes by at most
∫

Γ w(x,t) dx, which is non-positive. The combined energy is there-
fore bounded by its initial value. The non-negativity of the kinetic and potential energy
functionals implies that they remain individually bounded for all time. The semidiscrete
coupled problem therefore has an L2-stable fluid velocity solution and a structure dis-
placement solution with bounded internal energy.

The above discussion does not specify a discretization of the field λ. Assuming C0-
continuous discrete fluid velocity and structure displacement spaces, the surface integra-
tion measure dΓ could be replaced by a weighted sum of Dirac measures, corresponding
to the (inexact) quadrature rule described in Section 2.3, and these energy stability results
would remain true. Penalization of velocity difference, which we use to enforce no-slip
constraints on thin structures, is purely dissipative and may be included in b1(·,·) and
b2(·,·) without violating the relaxed coercivity conditions on these forms.

Consider the special case of r=0 (⇐⇒ c=0). This stability analysis still holds. The
quantity g becomes the time integral of fluid–structure velocity difference and may be
construed as a fluid–structure displacement. Then the multiplier field acts like a Hookean
spring, storing energy 1

2 kg2 per unit area. This makes clear why it is undesirable to have
large oscillations develop in λ, even if steady-state fluid and structure solutions typically
remain accurate. A change in boundary conditions could cause energy that has slowly
accumulated in λ to be suddenly released back into the fluid and structure subproblems.

Based on this analyis, one might consider altering the formulation for large displace-
ments to integrate the penalty term in the reference configuration, so that the “energy”
stored by the multipliers cannot be magnified arbitrarily by in-plane stretching of Γt.
However, this is unlikely to lead to significant energy build-ups outside of highly con-
trived cases and we prefer to ensure that the strength of boundary condition enforcement
is independent of how stretched or compressed the structure is: the behavior of the fluid
problem should be independent of the structure’s reference configuration. Further, it may
be beneficial to scale the penalty parameter inversely with local measures of background
mesh size, when the background mesh is highly nonuniform. While such a scaling would
be energetically inconsistent, it may help to reduce the growth of oscillating modes of the
multiplier field.

4 Numerical example: a 2D valve

In this section, we look at the performance of our stabilized semi-implicit time integra-
tion technique by applying it to a 2D valve, subjected to various boundary conditions.
Kamensky et al. [27] investigated the accuracy of the unstabilized semi-implicit scheme
with r = 0 using a similar FSI problem, based on a benchmark proposed by Hesch et
al. [105] and later studied by Gil et al. [106] and Wick [52]. The present study is prin-
cipally concerned with stability rather than accuracy; we refer the reader to our earlier
study [27] to see the qualitative convergence of the fluid and structure solutions to a
body-fitted reference computation under spatial and temporal refinement.
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Figure 2: The geometry of the 2D valve problem. (Not to scale.)

4.1 Problem description

The 2D valve model that we study consists of two cantilevered quarter-circular beams
attached to the walls of a 2 cm wide and 8 cm long channel filled with incompressible
fluid. Figure 2 provides the complete geometry of the problem. The beams are governed
by the Kirchhoff–Love shell theory for isotropic St. Venant–Kirchhoff materials described
in Section 2.2, which reduces to a beam theory when deformations are constrained to
two space dimensions.‡ The fluid has density ρ1 = 1 g/mL and viscosity µ=3 cP. These
properties mimic those of human blood [107, 108]. We choose the thickness of the beams
to be similar to that of an aortic valve leaflet, hth = 0.04 cm [37], and use a Poisson ratio
of ν=0.4 to approximate incompressibility. Values of the Young’s modulus vary between
computations and are specified in later sections. The top and bottom of the fluid domain
have no-slip and no-penetration boundary conditions. The left side of the fluid domain
is nominally the inflow and the right side is nominally the outflow. These distinctions are
based on the flow direction in which the valve is biased, but, when the nominal inflow
and outflow faces are subjected to Neumann boundary conditions, it is possible that fluid
may flow into or out of either of these sections of the boundary.

4.2 Steady flow

We first consider the case of a prescribed parabolic flow profile at the inflow boundary.
This profile is given by

u1|inflow=

15


0 t<0
t/(1 s) , 0≤ t<0.1 s
0.1 , otherwise

( y
1 cm

)(
2−
( y

1 cm

))
cm/s

e1 . (4.1)

‡The effective “beam” stiffness of a bending plate is E/(1−ν2) rather than E as in the classic Euler–Bernoulli
theory.
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This profile is represented exactly using the quadratic B-spline shape functions. Taking
the characteristic length scale to be the width of the channel and the characteristic veloc-
ity to be the peak of the inflow profile at y=1 cm and t>0.1 s, the Reynolds number for
this flow is 100. We deliberately select it to be much slower than ejection through a heart
valve, to ensure that the fluid–structure system approaches a steady solution as t→∞,
rather than developing a periodic or turbulent solution. We assign the beams compos-
ing the valve a Young’s modulus of E = 105 dyn/cm2. This value is selected to ensure
significant structural deformation in this flow regime.

To study the effect of the stabilization parameter, r, and the mesh size, h, on this
problem, we introduce a hierarchy of three fluid meshes, M1, M2, and M3, consisting of
32×128 (h=0.0625 cm), 64×256 (h=0.03125 cm), and 128×512 (h=0.015625 cm) quadratic
B-spline elements, respectively. We employ a single discretization of the beams, which
divides each of the quarter-circular arcs into 64 quadratic NURBS elements. The NURBS
elements are capable of exactly representing the circular geometry at any resolution [53].
As suggested by Eq. (2.12), we assign the penalties τB

NOR and τB
TAN according to the for-

mula
τB

NOR=τB
TAN=Cµ/h , (4.2)

with C = 102. To ensure that the time step has a fixed proportionality to the element
advective time scale (see Bazilevs et al. [91, page 181]), we assign time step sizes using
the formula

∆t=
h

6.25 cm/s
. (4.3)

We compute solutions for M1–M3 using the semi-implicit time integration scheme de-
scribed in Section 3, with r=1, r=0.1, and r=0 (no stabilization).

The L2(Γt)-norm of λ is shown as a function of time for each case in Figure 3. We can
see that both refinement and increased r reduce the norm at which λ reaches a steady
value. While it might seem that multiplier fields differing greatly in L2 norm would pro-
duce wildly different fluid velocity fields and/or structure deformation solutions, this is
not the case. Figure 4 compares the structure deformation and velocity fields for r = 1,
r = 0.1, and r = 0 at time t = 10 s on M1–M3. The corresponding Lagrange multiplier
force fields on the structure are plotted in Figure 5. We see that the difference in L2 norm
between the multiplier fields is due to oscillatory modes that have very little influence
on the steady-state fluid and structure solutions. As pointed out in Section 3.2, though,
these modes carry potential energy, and should not be allowed to grow ad infinitum, as
they appear to in the case of r= 0. This growth is not contradictory to the energy anal-
ysis of Section 3.2. The inhomogeneous essential boundary condition on the inflow face
does work on the system, feeding it energy that was not present in the initial condition.
Evidently, this energy can accumulate in the multiplier field. While the accumulation
of excess stored energy in the multiplier field has clear disadvantages, selecting r large
enough to completely eliminate oscillations may result in unacceptable leakage through
structures, as demonstrated in the following section. For a fixed value of r, both leak-
age and oscillation may be reduced through refinement, but, in practice, we recommend
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Figure 3: The L2 norms of the Lagrange multiplier field as functions of time for steady
flow through the 2D valve, with (a) r=1; (b) r=0.1. Note the difference in scale from (a);
(c) r=0, i.e. no stabilization. Note that they do not reach steady values in this case.

tuning r to obtain the best quality solution within the constraints of available time and
computational resources.

The fact that ‖λ‖L2 during the transient stage of the computations with r=0 increases
with refinement does not indicate that refinement harms the stability of the semi-implicit
scheme. In fact, as we approach the exact solution, we cannot expect the L2(Γt) norm of
the pressure jump to converge; for viscous incompressible flow around the edge of a thin
plate, the pressure distribution on the plate is not necessarily square-integrable. A fa-
mous example is Hasimoto’s solution of Stokes flow through an aperture [109, Eq. (4.8)].
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r=1 r=0.1 r=0

M1

M2

M3

Figure 4: Comparisons of structure deformation and fluid velocity magnitude fields at
time t = 10 s, computed on M3, with different stabilization parameters. Color scale: 0
(blue) to 3.4 cm/s (red).

The energy analysis of Section 3.2 suggests that the L2 norm of λ is a natural choice for
investigating semi-discrete stability, but it should not be used in assessing convergence
with spatial refinement. We can see from Figure 3(c) the rate of growth of oscillations in
the steady state decreases with refinement, indicating greater stability on finer meshes.

4.3 Convergence to a hydrostatic solution during closure

We now consider the case of the 2D valve’s closure when subjected to Neumann bound-
ary conditions. Because a 2D model cannot accurately represent the mechanics of a 3D
shell structure, we must make the beams significantly stiffer than the soft tissues ap-
pearing in native or bioprosthetic heart valves, to prevent the 2D valve from prolapsing
when subjected to realistic pressure differences. We therefore use a Young’s modulus of
E=7×109 dyn/cm2 in this example. Contact between the leaflets is an essential aspect of
valve closure. For the computations in this section, we use parameters kc=108 dyn/cm3,
cc=0.1 cm, and hc=0.01 cm in the penalty method described in Section 2.2. At the inflow,
we apply a zero-traction boundary condition and, at the outflow, we apply the following
time-dependent pressure:

Pout(t)=


0 , t≤0
1000

( t
1 s

)
, 0< t<0.1 s

100 , otherwise

 mmHg. (4.4)
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r=1 r=0.1 r=0

M1

M2

M3

Figure 5: The forces on the structure due to the Lagrange multiplier field in the solutions
from Figure 4.

This approximates the pressure difference across a closed heart valve in the physiological
setting [110]. Recall from the blocked plug flow model Section 3.1 that, as the system ap-
proaches a steady solution, we expect some leakage for r>0 that, as r→0, will be propor-
tional to r and inversely proportional to τB

NOR. This is complicated somewhat in practice,
because constraint violation is not the only source of apparent leakage: as demonstrated
by Kamensky et al. [27, Section 4.4], approximation error in the pressure can lead to vi-
olation of the continuity equation, which leads, in turn, to “leakage” through the valve,
even when the fluid and structure velocities match. For the computations in this section,
we set sshell=108 to diminish this source of leakage such that it is small enough to clearly
distinguish the effect of r.

We employ the fluid mesh M1 and structure meshes defined in the previous section.
We reduce the time step by a factor of 10 to improve nonlinear convergence and increase
penalties by a factor of 1000 to more strongly enforce the no-penetration condition. For
the computations of this section,

∆t=
h

62.5 cm/s
and τB

NOR=τB
TAN=Cµ/h , (4.5)
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Figure 6: Volumetric flow rate through the closing valve as a function of time, for different
values of r.

with C = 105. We compute solutions with r = ∞ (velocity penalization), r = 1, r = 0.1,
and r= 0. Figure 6 shows the volumetric flow through the outflow face as a function of
time for each value of r. Approximate asymptotic values of the steady-state flow rate are
given in Table 1, along with the crude estimates based on Eq. (3.21) from the plug flow
model of Section 3.1. The plug flow model consistently underestimates leakage, due to
the imperfect local mass conservation mentioned above. The L2 norms of λ for each finite
value of r are given as functions of time in Figure 7. For r= 0, the asymptotic value§ of
‖λ‖L2 approximately matches the rough estimate of

√
A(∆P)2 for A equal to the surface

area of the beams and ∆P=100 mmHg. Figure 8 compares the solutions at time t=0.35
s for r=1 and r=0. We can see that the structure deformations and fluid pressure fields
are nearly indistinguishable, but the solution with r=1 has a more stable multiplier field
at the expense of spurious flow in what should be a hydrostatic solution.

Remark 4.1. The increase of C to 105 in the definition of τB
(·) for the closed valve computa-

tions is largely for the benefit of computations with r>0. While exploring the parameter
space, we found that wide ranges of C produced reasonable results with r= 0 (and, we
presume, would be effective with r�1), but smaller values of C led to large flow rates for
r≥0.1. Significant inflow through Neumann boundary conditions is unstable and prone
to “backflow divergence”. This instability can be avoided in practical computations by
including backflow stabilization [111], as reviewed by Esmaily-Moghadam et al. [112]
and applied in our 3D valve simulations [26, 27], but we have not included any such sta-
bilization in the present work, to avoid complicating the analogy to the plug flow model

§If the simulation is continued for a much longer period, it becomes clear that ‖λ‖2
L2 grows, but at a much

slower rate (relative to |λ|) than in the case of the open valve; on the time scale of ∼ 0.5 s, it effectively
flatlines.
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r computed leakage (mL/s) plug flow estimate (mL/s)
∞ -7.1 -5.6
1 -3.7 -2.8

0.1 -0.9 -0.5
0 -0.3 0

Table 1: Steady volumetric flux (assuming 1 cm depth) through the closed 2D valve for
different values of r, alongside the values estimated from the plug flow model of Section
3.1, which neglects leakage due to spurious volume loss.
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Figure 7: L2(Γt) norm of λ on closing valve as a function of time, for finite values of r.
(For r=∞, it will be zero ∀t.)

of Section 3.1.

Remark 4.2. The skeptical reader may suspect that the oscillation in volumetric flow rate
is a spurious phenomenon, due to the damped spring interpretation of the multiplier
forcing. However, the characteristic frequency of the fluid mass attached to the multiplier
“spring” is much higher and the oscillation’s presence in the penalty solution with r=∞
rules out this hypothesis altogether. The oscillation is the reverberation of the water
hammer on the closed elastic valve. We observed a similar effect in our simulations of
a 3D valve and provided an electronic–hydraulic analogy [113] to the familiar transient
response of a series RLC circuit [27, Figure 29].

Remark 4.3. Notice in Figure 8 that, for r=1, large vortices form on the concave sides of
the leaflets. These are features of the steady solution (which should be hydrostatic). A
closer examination of the flow field shows that the upper vortex is counterclockwise and
the lower is clockwise. These vortices are fed by flow between themselves and the walls,
which is permitted by leakage through the portions of the leaflets closer to the walls. The
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Velocity magnitude Pressure Multiplier

r=1

r=0

Figure 8: Velocity, pressure, and multiplier solutions at t=0.35 s for the closed valve with
r=1 and r=0. See Remark 4.3 for discussion on the velocity fields. Velocity color scale: 0
(blue) to 24 cm/s (red). Pressure color scale: -20000 dyn/cm2 (blue) to 150000 dyn/cm2

(red).

velocity magnitude in the vortices is significantly larger than that of the flow through the
leaflets, which underscores the importance of preventing unphysical leakage to obtaining
reasonable solutions.

5 Conclusion

We find that, on problems with non-hydrostatic steady solutions, the semi-implicit time
integration scheme proposed for unsteady fluid–thin structure interaction by Kamensky
et al. [27] (and reiterated in Section 3 of this paper) may lead to oscillatory Lagrange
multiplier fields that grow in L2 norm over time. Section 3 introduces a family of stabi-
lized time integration schemes parameterized by r∈ [0,∞], which represents a trade-off
between stability and strength of constraint enforcement. For r=0, we recover the orig-
inal semi-implicit integration scheme, which can enforce constraints very strongly, but
leads to oscillatory multiplier fields that, in some computations, may grow over time.
For r = ∞, we obtain a penalty method in which the Lagrange multiplier field is zero,
but some problems require impractically large penalty values to obtain satisfactory con-
straint enforcement. For intermediate values, one may use the rules of thumb given in
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Section 3.1 to anticipate the strength of constraint enforcement and potential growth of
the Lagrange multiplier field.

In practice, oscillatory multiplier fields lead to reasonable fluid and structure solu-
tions, as evidenced by Figures 4 and 5, and by our earlier simulations using r=0 [26, 27].
Based on the findings of this study, we recommend to favor constraint enforcement over
stable multiplier approximation by choosing r significantly smaller than one. This will
capture the critical solution features of the fluid and structure subproblems on coarser
meshes, but still prevents the Lagrange multipliers from growing to infinity in the long-
time limit, as they may with r = 0, even in the extreme case of a structure held rigidly
against a contradictory fluid Dirichlet boundary condition (Section 3.1.3). We also ob-
served, as noted in Remark 4.1, that smaller values of r reduce the sensitivity of the fluid
and structure solutions to the choice of penalty parameter. For r�1, we suggest to view
the multiplier field as an intermediate by-product of the constraint enforcement rather
than a solution variable, since its point values may be grossly in error. If point values of
the pressure jump across a thin structure are needed, it may be possible to post-process
the oscillatory multiplier field with smoothing procedures, similar to those applied to os-
cillatory pressures resulting from penalty formulations of incompressible solid and fluid
mechanics [114]. We might also consider inserting such a spatial smoothing step into the
semi-implicit integration loop.
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multi-body contact: Application to aortic valves. Computer Methods in Applied Mechanics
and Engineering, 198:3603–3612, 2009.

[19] I. Borazjani, L. Ge, and F. Sotiropoulos. High-resolution fluid–structure interaction simu-
lations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Annals of
Biomedical Engineering, 38(2):326–344, 2010.



29

[20] R. van Loon. Towards computational modelling of aortic stenosis. International Journal for
Numerical Methods in Biomedical Engineering, 26:405–420, 2010.

[21] S. C. Shadden, M. Astorino, and J.-F. Gerbeau. Computational analysis of an aortic valve
jet with Lagrangian coherent structures. Chaos, 20:017512, 2010.

[22] B. E. Griffith. Immersed boundary model of aortic heart valve dynamics with physiological
driving and loading conditions. International Journal for Numerical Methods in Biomedical
Engineering, 28(3):317–345, 2012.

[23] F. Sturla, E. Votta, M. Stevanella, C. A. Conti, and A. Redaelli. Impact of modeling fluid–
structure interaction in the computational analysis of aortic root biomechanics. Medical
Engineering and Physics, 35:1721–1730, 2013.

[24] I. Borazjani. Fluid–structure interaction, immersed boundary-finite element method simu-
lations of bio-prosthetic heart valves. Computer Methods in Applied Mechanics and Engineer-
ing, 257:103–116, 2013.

[25] E. Votta, T. B. Le, M. Stevanella, L. Fusini, E. G. Caiani, A. Redaelli, and F. Sotiropoulos.
Toward patient-specific simulations of cardiac valves State-of-the-art and future directions.
Journal of Biomechanics, 46:217–228, 2013.

[26] M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. Fluid–structure
interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation.
Computational Mechanics, 54:1055–1071, 2014.

[27] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks,
and T. J. R. Hughes. An immersogeometric variational framework for fluid–structure in-
teraction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics
and Engineering, 284:1005–1053, 2015.

[28] F. J. Schoen and R. J. Levy. Calcification of tissue heart valve substitutes: progress toward
understanding and prevention. Ann. Thorac. Surg., 79(3):1072–1080, 2005.

[29] P. Pibarot and J. G. Dumesnil. Prosthetic heart valves: selection of the optimal prosthesis
and long-term management. Circulation, 119(7):1034–1048, 2009.

[30] R. F. Siddiqui, J. R. Abraham, and J. Butany. Bioprosthetic heart valves: modes of failure.
Histopathology, 55:135–144, 2009.

[31] M. S. Hamid, H. N. Sabbah, and P. D. Stein. Finite element evaluation of stresses on closed
leaflets of bioprosthetic heart valves with flexible stents. Finite Elements in Analysis and
Design, 1(3):213–225, 1985.

[32] M. S. Hamid, H. N. Sabbah, and P. D. Stein. Influence of stent height upon stresses on the
cusps of closed bioprosthetic valves. Journal of Biomechanics, 19(9):759–769, 1986.

[33] E. P. Rousseau, A. A. van Steenhoven, and J. D. Janssen. A mechanical analysis of the closed
Hancock heart valve prosthesis. Journal of Biomechanics, 21(7):545–562, 1988.

[34] K. B. Chandran, S. H. Kim, and G. Han. Stress distribution on the cusps of a polyurethane
trileaflet heart valve prosthesis in the closed position. Journal of Biomechanics, 24(6):385–395,
1991.

[35] M. M. Black, I. C. Howard, X. Huang, and E. A. Patterson. A three-dimensional analysis of
a bioprosthetic heart valve. Journal of Biomechanics, 24(9):793–801, 1991.

[36] E. A. Patterson, I. C. Howard, and M. A. Thornton. A comparative study of linear and
nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle.
J Med Eng Technol, 20(3):95–108, 1996.

[37] J. Li, X. Y. Luo, and Z. B. Kuang. A nonlinear anisotropic model for porcine aortic heart
valves. Journal of Biomechanics, 34(10):1279–1289, 2001.

[38] V. C. Sripathi, R. K. Kumar, and K. R. Balakrishnan. Further insights into normal aortic



30

valve function: role of a compliant aortic root on leaflet opening and valve orifice area.
Ann. Thorac. Surg., 77(3):844–851, 2004.

[39] W. Sun, A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under
quasi-static loading. Journal of Biomechanical Engineering, 127(6):905–914, 2005.

[40] H. Kim, J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation pericardial biopros-
thetic heart valve function. Journal of Biomechanical Engineering, 128:717–724, 2006.

[41] H. Kim, J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart
valves using a stress resultant shell model. Annals of Biomedical Engineering, 36(2):262–275,
2008.

[42] F. Auricchio, M. Conti, S. Morganti, and P. Totaro. A computational tool to support
pre-operative planning of stentless aortic valve implant. Medical Engineering and Physics,
33(10):1183–1192, 2011.

[43] P. E. Hammer, M. S. Sacks, P. J. Del Nido, and R. D. Howe. Mass-spring model for simula-
tion of heart valve tissue mechanical behavior. Annals of Biomedical Engineering, 39(6):1668–
1679, 2011.

[44] F. Auricchio, M. Conti, S. Morganti, and A. Reali. Simulation of transcatheter aortic valve
implantation: a patient-specific finite element approach. Computer Methods in Biomechanics
and Biomedical Engineering, 17(12):1347–1357, 2013.

[45] R. Fan, A. S. Bayoumi, P. Chen, C. M. Hobson, W. R. Wagner, J. E. Mayer Jr., and M. S. Sacks.
Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement.
Journal of Biomechanics, 46:662–669, 2013.

[46] F. Auricchio, M. Conti, A. Ferrara, S. Morganti, and A. Reali. Patient-specific simulation
of a stentless aortic valve implant: the impact of fibres on leaflet performance. Computer
Methods in Biomechanics and Biomedical Engineering, 17(3):277–285, 2014.

[47] S. Morganti, F. Auricchio, D. J. Benson, F. I. Gambarin, S. Hartmann, T. J. R. Hughes, and
A. Reali. Patient-specific isogeometric structural analysis of aortic valve closure. Computer
Methods in Applied Mechanics and Engineering, 284:508–520, 2015.

[48] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian finite element
formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and
Engineering, 29:329–349, 1981.

[49] J. Donea, S. Giuliani, and J. P. Halleux. An arbitrary Lagrangian–Eulerian finite element
method for transient dynamic fluid–structure interactions. Computer Methods in Applied
Mechanics and Engineering, 33:689–723, 1982.

[50] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian–
Eulerian methods. In Encyclopedia of Computational Mechanics, Volume 3: Fluids, chapter 14.
John Wiley & Sons, 2004.

[51] T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher. Space–time fi-
nite element computation of complex fluid–structure interactions. International Journal for
Numerical Methods in Fluids, 64:1201–1218, 2010.

[52] T. Wick. Flapping and contact FSI computations with the fluid–solid interface-
tracking/interface-capturing technique and mesh adaptivity. Computational Mechanics,
53(1):29–43, 2014.

[53] L. Piegl and W. Tiller. The NURBS Book (Monographs in Visual Communication), 2nd ed.
Springer-Verlag, New York, 1997.

[54] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and
Engineering, 194:4135–4195, 2005.



31
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sis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures.
Computer Methods in Applied Mechanics and Engineering, 284:401–457, 2015.

[57] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes. Isogeometric analysis of structural
vibrations. Computer Methods in Applied Mechanics and Engineering, 195:5257–5297, 2006.

[58] J. A. Cottrell, T. J. R. Hughes, and A. Reali. Studies of refinement and continuity in isogeo-
metric structural analysis. Computer Methods in Applied Mechanics and Engineering, 196:4160–
4183, 2007.

[59] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of
CAD and FEA. Wiley, Chichester, 2009.

[60] D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes. Isogeometric shell analysis: The
Reissner–Mindlin shell. Computer Methods in Applied Mechanics and Engineering, 199:276–
289, 2010.

[61] Y. Bazilevs and T. J. R. Hughes. NURBS-based isogeometric analysis for the computation
of flows about rotating components. Computational Mechanics, 43:143–150, 2008.

[62] Y. Bazilevs and I. Akkerman. Large eddy simulation of turbulent Taylor–Couette flow
using isogeometric analysis and the residual–based variational multiscale method. Journal
of Computational Physics, 229:3402–3414, 2010.

[63] J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the
unsteady Navier–Stokes equations. Journal of Computational Physics, 241:141–167, 2013.
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