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1. Introduction

Countries around the world are putting substantial effort into the development of wind
energy technologies. The ambitious wind energy goals put pressure on the wind energy
industry research and development to significantly enhance the current wind generation
capabilities in a short period of time and decrease the associated costs. This calls for trans-
formative concepts and designs (e.g., floating offshore wind turbines) that must be created
and analyzed with high-precision methods and tools. These include complex-geometry, 3D,
time-dependent, multi-physics predictive simulation methods and software that will play an
increasingly important role as the demand for wind energy grows.

Currently most wind-turbine aerodynamics and aeroelasticity simulations are per-
formed using low-fidelity methods, such as the Blade Element Momentum (BEM) theory
for the rotor aerodynamics employed in conjunction with simplified structural models of
the wind-turbine blades and tower (see, e.g., [1, 2]). These methods are very fast to im-
plement and execute. However, the cases involving unsteady flow, turbulence, 3D details
of the wind-turbine blade and tower geometry, and other similarly-important features, are
beyond their range of applicability.

To obtain high-fidelity predictive simulation results for wind turbines, 3D modeling is
essential. However, simulation of wind turbines at full scale engenders a number of chal-
lenges: The flow is fully turbulent, requiring highly accurate methods and increased grid
resolution. The presence of fluid boundary layers, where turbulence is created, complicates
the situation further. Wind-turbine blades are long and slender structures, with complex
distribution of material properties, for which the numerical approach must have good ap-
proximation properties and avoid locking. Wind-turbine simulations involve moving and
stationary components, and the fluid–structure coupling must be accurate, efficient and ro-
bust to preclude divergence of the computations. These explain the current, modest nature
of the state-of-the-art in wind-turbine simulations.

Fluid–structure interaction (FSI) simulations at full scale are essential for accurate mod-
eling of wind turbines. The motion and deformation of the wind-turbine blades depend on
the wind speed and air flow, and the air flow patterns depend on the motion and deforma-
tion of the blades. In order to simulate the coupled problem, the equations governing the air
flow and the blade motions and deformations need to be solved simultaneously, with proper
kinematic and dynamic conditions coupling the two physical systems. Without that the
modeling cannot be realistic: unsteady blade deformation affects aerodynamic efficiency
and noise generation, and response to wind gusts. Flutter analysis of large blades operating
in offshore environments is of great importance and cannot be accomplished without FSI.

In recent years, several attempts were made to address the above mentioned challenges
and to raise the fidelity and predictability levels of wind-turbine simulations. Standalone
aerodynamics simulations of wind-turbine configurations in 3D were reported in [3–8],
while standalone structural analyses of rotor blades of complex geometry and material com-
position, but under assumed wind-load conditions or wind-load conditions coming from
separate aerodynamic computations were reported in [9–14]. In the recent work of [15]
it was shown that coupled FSI modeling and simulation of wind turbines is important for
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accurately predicting their mechanical behavior at full scale.
We feel that in order to address the above mentioned challenges one should employ a

combination of numerical techniques, which are general, accurate, robust and efficient for
the targeted class of problems. Such techniques are summarized in what follows and are
described in greater detail in the body of this review paper.

Isogeometric Analysis (IGA), first introduced in [16] and further expanded on in [17–
28], is adopted as the geometry modeling and simulation framework for wind turbines
in some of the examples presented in this paper. We use the IGA based on NURBS
(non-uniform rational B-splines), which are more efficient than standard finite elements
for representing complex, smooth geometries, such as wind-turbine blades. The IGA was
successfully employed for computation of turbulent flows [29–34], nonlinear structures
[13,35–39], and FSI [40–43], and, in most cases, gave a clear advantage over standard low-
order finite elements in terms of solution accuracy per-degree-of-freedom. This is in part
attributable to the higher-order smoothness of the basis functions employed. Flows about
rotating components are naturally handled in an isogeometric framework because all conic
sections, and in particular, circular and cylindrical shapes, are represented exactly [44].

The blade structure is governed by the isogeometric rotation-free shell formulation with
the aid of the bending-strip method [13]. The method is appropriate for thin-shell structures
comprised of multiple C1- or higher-order continuous surface patches that are joined or
merged with continuity no greater than C0. The Kirchhoff–Love shell theory that relies
on higher-order continuity of the basis functions is employed in the patch interior as in
[39]. Although NURBS-based IGA is employed in this work, other discretizations such
as T-splines [23, 24] or subdivision surfaces [45–47], are perfectly suited for the proposed
structural modeling method.

In addition, an isogeometric representation of the analysis-suitable geometry may be
used to construct tetrahedral and hexahedral meshes for computations using the finite ele-
ment method (FEM). In this paper, we use such tetrahedral meshes for wind-turbine rotor
computation using the Arbitrary Lagrangian–Eulerian (ALE) [48] and Deforming-Spatial-
Domain/Stabilized Space–Time (DSD/SST) [49–53] versions of the Residual-Based Vari-
ational Multiscale (RBVMS) method [29, 54–56]. We call the ALE version [6, 42] “ALE-
VMS”, and the DSD/SST version [57] “DSD/SST-VMST”. We will use the acronym “ST-
VMS” (meaning “Space–Time VMS”) interchangeably with DSD/SST-VMST.

The ALE-VMS formulation originated from the RBVMS formulation of incompress-
ible turbulent flows proposed in [29] for stationary meshes, and may be thought of as an
extension of the RBVMS method to moving meshes. As such, it was presented for the
first time in [42] in the context of FSI. Although ALE-VMS gave reasonably good re-
sults for several important turbulent flows, it was evident in [29, 32] that to obtain accurate
results for wall-bounded turbulent flows the method required relatively fine resolution of
the boundary layers. This fact makes ALE-VMS a somewhat costly technology for full-
scale wall-bounded turbulent flows at high Reynolds numbers, which are characteristic
of the present application. For this reason, weakly-enforced essential boundary condition
formulation was introduced in [58], which significantly improved the performance of the
ALE-VMS formulation in the presence of unresolved boundary layers [30, 31, 34]. The
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weak boundary condition formulation may be thought of as an extension of Nitsche’s
method [59] to the Navier–Stokes equations of incompressible flows. Another interpre-
tation of the weak boundary condition formulation is that it is a discontinuous Galerkin
method (see, e.g., [60]), where the continuity of the basis functions is enforced everywhere
in the domain interior, but not at the domain boundary.

The DSD/SST formulation was introduced in [49–51] as a general-purpose interface-
tracking (moving-mesh) technique for flow computations involving moving boundaries
and interfaces, including FSI and flows with moving mechanical components. It is based
on the Streamline-Upwind/Petrov-Galerkin (SUPG) [61] and Pressure-Stabilizing/Petrov-
Galerkin (PSPG) [49, 62] stabilizations. It also includes the “LSIC” (least-squares on in-
compressibility constraint) stabilization. Some of the earliest FSI computations with the
DSD/SST formulation were reported in [63] for vortex-induced vibrations of a cylinder
and in [64] for flow-induced vibrations of a flexible, cantilevered pipe (1D structure with
3D flow). The DSD/SST formulation has been used extensively in 3D computations of
parachute FSI, starting with the 3D computations reported in [65–67] and evolving to com-
putations with direct coupling [68, 69]. New versions of the DSD/SST formulation intro-
duced in [53] are the core technologies of the Stabilized Space–Time FSI (SSTFSI) tech-
nique, which was also introduced in [53]. The SSTFSI technique, combined with a number
of special techniques [53,70–83], have been used in some of the most challenging parachute
FSI computations [72, 75, 78, 80, 82, 84, 85], and also in a good number of patient-specific
arterial FSI computations [74,76,77,79,81,83]. Computations with the SSTFSI technique
also received a substantial attention in research related to iterative solution of large linear
systems [86–90]. In application of the DSD/SST formulation to flows with moving me-
chanical components, the Shear–Slip Mesh Update Method (SSMUM) [91–93] has been
very instrumental. The SSMUM was first introduced for computation of flow around two
high-speed trains passing each other in a tunnel (see [91]). The challenge was to accurately
and efficiently update the meshes used in computations based on the DSD/SST formulation
and involving two objects in fast, linear relative motion. The idea behind the SSMUM was
to restrict the mesh moving and remeshing to a thin layer of elements between the objects
in relative motion. The mesh update at each time step can be accomplished by a “shear”
deformation of the elements in this layer, followed by a “slip” in node connectivities. The
slip in the node connectivities, to an extent, un-does the deformation of the elements and
results in elements with better shapes than those that were shear-deformed. Because the
remeshing consists of simply re-defining the node connectivities, both the projection errors
and the mesh generation cost are minimized. A few years after the high-speed train com-
putations, the SSMUM was implemented for objects in fast, rotational relative motion and
applied to computation of flow past a rotating propeller [92] and flow around a helicopter
with its rotor in motion [93].

The DSD/SST formulation was elevated in [57] to a new version with an advanced
turbulence model. This most recent DSD/SST formulation with the turbulence model is
a space–time version [57] of the RBVMS method [29, 54–56]. It was named in [57]
“DSD/SST-VMST” (i.e. the version with the VMS turbulence model), which is also called
“ST-VMS” in this paper. It was successfully tested on wind-turbine rotor aerodynamics
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in [7,94,95]. The original DSD/SST version was named in [57] “DSD/SST-SUPS” (i.e. the
version with the SUPG/PSPG stabilization).

In Section 2, we review the discrete formulations of aerodynamics equations employed
in this work, namely, the ALE-VMS and ST-VMS formulations. We also give the for-
mulation for weakly-enforced essential boundary conditions. In Section 3, we provide a
description of the wind-turbine rotor geometry modeling and summarize the aerodynam-
ics computations for the 5MW wind-turbine rotor defined in [2]. The results presented are
from reference [6] and include simulations using the NURBS-based ALE-VMS and FEM-
based ST-VMS formulations. In Section 4, we present the computational results from [96],
which make use of the FEM-based ALE-VMS formulation with weakly-enforced bound-
ary conditions. Here the aerodynamics simulations of the National Renewable Energy Lab
(NREL) Phase VI two-bladed rotor (see [97]) are performed to validate our computations
against an extensive set of experimental data available for this test case. In Section 5, we
review the structural mechanics formulation, which is based on the Kirchhoff–Love thin-
shell theory and the bending-strip method (see [13, 15, 39]). The FSI coupling is described
in Section 6, where we also provide a discussion of the mesh motion procedures employed
in the FSI simulations of the 5MW wind-turbine rotor reported in Section 7, which was
reported earlier in [15]. In Section 8, we present a method and algorithm for pre-bending
of wind-turbine blades, which was recently proposed in [14]. We draw conclusions in Sec-
tion 9.

2. ALE-VMS and ST-VMS Formulations of the Navier–Stokes Equations of
Incompressible Flows

2.1. Continuous problem

Let Ωt ∈ R
d, d = 2, 3, be the spatial domain of the aerodynamics problem with boundary

Γt at time t ∈ (0,T ). The subscript t indicates that the fluid mechanics spatial domain is
time-dependent. The Navier–Stokes equations of incompressible flows a in the ALE frame
may be written on Ωt and ∀t ∈ (0,T ) as

ρ

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇xu − f
)
−∇∇∇x ·σσσ = 0,

∇∇∇x · u = 0, (2.1)

where ρ, u, and f are the density, velocity and the external force, respectively, and the stress
tensor σσσ is defined as

σσσ (u, p) = −pI + 2µεεε (u) . (2.2)

Here p is the pressure, I is the identity tensor, µ is the dynamic viscosity, and εεε (u) is the
strain-rate tensor given by

εεε (u) =
1
2

(
∇∇∇xu +∇∇∇xuT

)
. (2.3)

aAlthough aerodynamic phenomena are generally described using the Navier–Stokes equations of compressible
flows, the incompressible-flow assumption is valid for the present application.
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In Eq. (2.1), the notation
∣∣∣∣
x̂

implies that the time derivative is taken with respect to a fixed
referential-domain spatial coordinates x̂, and û is the velocity of the fluid domain Ωt. The
spatial gradients are taken with respect to the spatial coordinates x of the current configu-
ration, and that is reflected in the subscript on the gradient operator.

2.2. ALE-VMS formulation

The ALE-VMS formulation of the continuum aerodynamics formulation is given as fol-
lows: find uh ∈ Sh

u and ph ∈ Sh
p, such that ∀wh ∈ Vh

u and ∀qh ∈ Vh
p:∫

Ωt

wh · ρ

(
∂uh

∂t

∣∣∣∣∣∣
x̂

+
(
uh − ûh

)
· ∇∇∇xuh − fh

)
dΩ +

∫
Ωt

εεε
(
wh

)
: σσσ

(
uh, ph

)
dΩ

−

∫
(Γt)h

wh · hh dΓ +

∫
Ωt

qh∇∇∇x · uh dΩ

+

Nel∑
e=1

∫
Ωe

t

τSUPS

((
uh − ûh

)
· ∇∇∇xwh +

∇∇∇xqh

ρ

)
· rM

(
uh, ph

)
dΩ

+

Nel∑
e=1

∫
Ωe

t

ρνLSIC∇∇∇x · whrC(uh, ph) dΩ

−

Nel∑
e=1

∫
Ωe

t

τSUPSwh ·
(
rM

(
uh, ph

)
· ∇∇∇xuh

)
dΩ

−

Nel∑
e=1

∫
Ωe

t

∇∇∇xwh

ρ
:
(
τSUPSrM

(
uh, ph

))
⊗

(
τSUPSrM

(
uh, ph

))
dΩ = 0. (2.4)

Here Ωt is divided into Nel individual spatial finite element subdomains denoted by Ωe
t .

The finite-dimensional trial function spaces Sh
u for the velocity and Sh

p for the pressure,
as well as the corresponding test function spaces Vh

u and Vh
p are assumed to be of equal

order. In Eq. (2.4), h is the natural boundary condition, (Γt)h is the part of the boundary
where we specify that natural boundary condition, ûh is the mesh velocity, and rM and rC

are the residuals of the momentum and continuity (incompressibility constraint) equations,
respectively, given by

rM(uh, ph) = ρ

(
∂uh

∂t

∣∣∣∣∣∣
x̂

+
(
uh − ûh

)
· ∇∇∇xuh − fh

)
−∇∇∇x ·σσσ

(
uh, ph

)
(2.5)

and

rC(uh, ph) = ∇∇∇x · uh. (2.6)

Also in Eq. (2.4), τSUPS and νLSIC are the stabilization parameters defined in [42] as

τSUPS =

(
4

∆t2 +
(
uh − ûh

)
·G

(
uh − ûh

)
+ CIν

2G : G
)−1/2

(2.7)

and

νLSIC = (trG τSUPS)−1 , (2.8)
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where

trG =

d∑
i=1

Gii (2.9)

is the trace of the element metric tensor G, ∆t is the time-step size, and CI is a positive
constant, independent of the mesh size, derived from an appropriate element-wise inverse
estimate (see, e.g., [98–100]).

Remark 1. The stabilization parameters τSUPS and νLSIC in the above equations originate
from stabilized finite element methods for fluid dynamics (see, e.g., [52, 61, 101–105]).
The notation “SUPS”, introduced in [57], indicates that there is a single stabilization pa-
rameter for the SUPG and PSPG stabilizations, instead of two separate parameters. The no-
tation “LSIC”, introduced in [104], denotes the stabilization based on least-squares on the
incompressibility constraint. The stabilization parameters were designed and studied ex-
tensively in the context of stabilized finite element formulations of linear model problems
of direct relevance to fluid mechanics. These model problems include advection–diffusion
and Stokes equations. The design of τSUPS and νLSIC is such that optimal convergence with
respect to the mesh size and polynomial order of discretization is attained for these cases
(see, e.g., [105] and references therein). Furthermore, enhanced stability for advection-
dominated flows and the ability to conveniently employ the same basis functions for veloc-
ity and pressure variables for incompressible flow are some of the attractive outcomes of
this method. More recently, the stabilization parameters were derived in the context of the
variational multiscale methods [54,106] and were interpreted as the appropriate averages of
the small-scale Green’s function, a key mathematical object in the theory of VMS methods
(see [56] for an elaboration).

Remark 2. The ALE-VMS formulation is a moving-mesh extension of the RBVMS tur-
bulence modeling technique proposed for stationary meshes in [29]. It was also presented
in [42] for moving meshes in the context of FSI. In [107] the authors derived a variant of
the ALE-VMS method in the context of residual-free bubbles [108]. Recently, a space–time
(DSD/SST) version of the RBVMS method was introduced in [57] for computations with
moving meshes (see next subsection).

2.3. ST-VMS formulation

In the DSD/SST method (see, e.g., [49–53, 57]), the finite element formulation is written
over a sequence of N space–time slabs Qn, where Qn is the slice of the space–time domain
between the time levels tn and tn+1 (see Figure 1). At each time step, the integrations are
performed over Qn. The space–time finite element interpolation functions are continuous
within a space–time slab, but discontinuous from one space–time slab to another. The nota-
tion (·)−n and (·)+

n will denote the function values at tn as approached from below and above.
Each Qn is decomposed into elements Qe

n, where e = 1, 2, . . . , (Nel)n. The subscript n used
with Nel is for the general case where the number of space–time elements may change from
one space–time slab to another. The essential and natural boundary conditions are enforced



September 2, 2014 0:12 WSPC/INSTRUCTION FILE M3AS-WTA

8 Y. Bazilevs, M.-C. Hsu, K. Takizawa, and T.E. Tezduyar

tn, Ωn

tn+1, Ωn+1

t

x

Qn Pn

(wh)−n

(wh)+n

(wh)−n+1

(uh)+n

(uh)−n

Qn−1

Qn

Qn+1

x1

x2

t

Fig. 1. Space–time slab in an abstract representation (left) and in a 2D context (right).

over (Pn)g and (Pn)h, the complementary subsets of the lateral boundary of the space–time
slab. The finite element trial function spaces Sh

u for velocity and Sh
p for pressure, and the

test function spacesVh
u andVh

p = Sh
p are defined by using, over Qn, first-order polynomials

in space and time. b

The ST (DSD/SST) version of the RBVMS method, first proposed in [57], is written as
follows: given (uh)−n , find uh ∈ Sh

u and ph ∈ Sh
p, such that ∀wh ∈ Vh

u and ∀qh ∈ Vh
p:∫

Qn

wh · ρ

(
∂uh

∂t
+∇∇∇ · (uh ⊗ uh) − fh

)
dQ +

∫
Qn

εεε(wh) : σσσ(uh, ph)dQ

−

∫
(Pn)h

wh · hhdP +

∫
Qn

qh∇∇∇ · uhdQ +

∫
Ωn

(wh)+
n · ρ

(
(uh)+

n − (uh)−n
)

dΩ

+

(Nel)n∑
e=1

∫
Qe

n

τSUPS

ρ

[
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
+∇∇∇qh

]
· rMdQ

+

(Nel)n∑
e=1

∫
Qe

n

ρνLSIC∇∇∇ · whrCdQ

+

(Nel)n∑
e=1

∫
Qe

n

τSUPSrM ·
(
∇∇∇wh

)
uhdQ

−

(Nel)n∑
e=1

∫
Qe

n

τ2
SUPS

ρ
rM ·

(
∇∇∇wh

)
rMdQ = 0. (2.10)

We call this “DSD/SST-VMST” (i.e. the version with the VMS turbulence model), and use
“ST-VMS” (meaning “Space–Time VMS”) interchangeably with DSD/SST-VMST.

bAlthough the trial and test function spaces for the ALE and ST formulations are different, in order to avoid
introducing unneeded extra notation, we use the same symbols to denote these objects in both cases.
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The stabilization parameters τSUPS and νLSIC can be calculated using the definitions given
by Eqs. (2.7)–(2.9). However, the definitions that are commonly employed in conjunction
with the DSD/SST formulation are those given in [52]:

τSUPS =

(
1

τ2
SUGN12

+
1

τ2
SUGN3

)− 1
2

, (2.11)

τSUGN12 =

 nen∑
a=1

∣∣∣∣∣∂Na

∂t
+ uh · ∇∇∇Na

∣∣∣∣∣
−1

, (2.12)

τSUGN3 =
h2

RGN

4ν
, (2.13)

hRGN = 2

 nen∑
a=1

|r · ∇∇∇Na|

−1

, (2.14)

r =
∇∇∇‖uh‖

‖ ∇∇∇‖uh‖ ‖
, (2.15)

and in [53]:

νLSIC = τSUPS ‖uh − ûh‖
2
, (2.16)

where nen is the number of (space–time) element nodes, and Na is the space–time shape
function associated with the space–time node a. As an alternative to the construction of
τSUPS as given by Eqs. (2.11)–(2.15), another option was introduced in [53]. In that option,
τSUPS is constructed based on separate definitions for the advection-dominated and transient-
dominated limits:

τSUPS =

(
1

τ2
SUGN1

+
1

τ2
SUGN2

+
1

τ2
SUGN3

)− 1
2

, (2.17)

τSUGN1 =

 nen∑
a=1

∣∣∣∣(uh − ûh
)
· ∇∇∇Na

∣∣∣∣−1

, (2.18)

τSUGN2 =
∆t
2
. (2.19)

It was noted in [53] that separating τSUGN12 into its advection- and transient-dominated com-
ponents as given by Eqs. (2.18)–(2.19) is equivalent to excluding the ∂Na

∂t

∣∣∣
ξξξ

part of ∂Na
∂t in

Eq. (2.12), making that the definition for τSUGN1, and accounting for ∂Na
∂t

∣∣∣
ξξξ

in the defini-

tion for τSUGN2 given by Eq. (2.19). Here ξξξ is the vector of element coordinates, and ∂
∂t

∣∣∣
ξξξ

is equivalent to ∂
∂t

∣∣∣
x̂. Both notations for the same partial derivative are kept in the interest

of backward compatibility with prior articles. For more ways of calculating τSUPS and νLSIC,
see [33, 52, 104, 109–121]. References [52, 117] also include the Discontinuity-Capturing
Directional Dissipation (DCDD) stabilization, which was introduced as an alternative to
the LSIC stabilization.

Remark 3. The 6th and 7th terms in Eq. (2.10) are the SUPG/PSPG and LSIC stabilization
terms, respectively. If we exclude the last two terms in Eq. (2.10), the formulation reduces
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to the original DSD/SST formulation (with the advection term retained in the conservation-
law form) under the conditions that τPSPG = τSUPG. This was named in [57] “DSD/SST-SUPS”
(i.e., the version with the SUPG/PSPG stabilization).

For completeness, we also provide here the DSD/SST-SUPS formulation (from [52]):
given (uh)−n , find uh ∈ Sh

u and ph ∈ Sh
p, such that ∀wh ∈ Vh

u and ∀qh ∈ Vh
p:∫

Qn

wh · ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ +

∫
Qn

εεε(wh) : σσσ(uh, ph)dQ

−

∫
(Pn)h

wh · hhdP +

∫
Qn

qh∇∇∇ · uhdQ +

∫
Ωn

(wh)+
n · ρ

(
(uh)+

n − (uh)−n
)

dΩ

+

(Nel)n∑
e=1

∫
Qe

n

1
ρ

[
τSUPGρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
+ τPSPG∇∇∇qh

]
· rMdQ

+

(Nel)n∑
e=1

∫
Qe

n

ρνLSIC∇∇∇ · whrCdQ = 0. (2.20)

Remark 4. One of the main differences between the ALE and DSD/SST forms of the VMS
method is that the DSD/SST formulation retains the fine-scale time derivative term ∂u′

∂t

∣∣∣
ξξξ
.

Dropping this term is called the “quasi-static” assumption (see [6] for the terminology).
This is the same as the WTSE option in the DSD/SST formulation (see Remark 2 of [53]).
We believe that this makes a significant difference, especially when the polynomial orders
in space or time are higher (see [57]).

Remark 5. With the function spaces defined in the paragraph preceding Eq. (2.10), for
each space–time slab velocity and pressure assume double unknown values at each spatial
node. One value corresponds to the lower end of the slab, and the other one the upper end.
In [53], the option of using double unknown values at a spatial node is called “DV” for
velocity and “DP” for pressure. In this case, as pointed out in [53], we use two integration
points over the time interval of the space–time slab, and this time-itegration option is called
“TIP2”. This version of the DSD/SST formulation, with the options set DV, DP and TIP2,
is called “DSD/SST-DP”.

2.4. Weakly-enforced essential boundary conditions

In this section we state the formulation of the weakly-enforced essential boundary con-
ditions. This was first proposed in [58] for the advection–diffusion equation and Navier–
Stokes equations of incompressible flows in an effort to improve the accuracy of stabilized
and multiscale formulations in the presence of unresolved boundary layers. In [30, 31, 34],
the method for the weakly-enforced boundary condition was further refined and studied
in a set of challenging wall-bounded turbulent flows. Here, we apply the method to the
aerodynamics of wind turbines at full spatial scale.

To account for the weak enforcement of the essential boundary conditions, we remove
them from the trial and test function sets Sh

u and Vh
u, and add the following terms to the
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left-hand-side of Eq. (2.4):

−

Neb∑
b=1

∫
Γb

t
⋂

(Γt)g

wh ·σσσ
(
uh, ph

)
n dΓ

−

Neb∑
b=1

∫
Γb

t
⋂

(Γt)g

(
2µεεε

(
wh

)
n + qhn

)
·
(
uh − gh

)
dΓ

−

Neb∑
b=1

∫
Γb

t
⋂

(Γt)−g
wh · ρ

((
uh − ûh

)
· n

) (
uh − gh

)
dΓ

+

Neb∑
b=1

∫
Γb

t
⋂

(Γt)g

τB
TAN

(
wh −

(
wh · n

)
n
)
·
((

uh − gh
)
−

((
uh − gh

)
· n

)
n
)

dΓ

+

Neb∑
b=1

∫
Γb

t
⋂

(Γt)g

τB
NOR

(
wh · n

) ((
uh − gh

)
· n

)
dΓ. (2.21)

Here (Γt)g is the part of the boundary where the velocity boundary condition g is set and
n is the unit normal vector. The boundary (Γt)g is decomposed into Neb surface elements
denoted by Γb

t , and (Γt)−g is defined as the “inflow” part of (Γt)g:

(Γt)−g =

{
x

∣∣∣∣ (uh − ûh
)
· n < 0, ∀x ⊂ (Γt)g

}
. (2.22)

If (Γt)g coincides with the moving wall (rigid or flexible), then g is the prescribed wall
velocity.

The term in the first line is the so-called consistency term. It is necessary to ensure that
the discrete formulation is identically satisfied by the exact solution of the Navier–Stokes
equations, which, in turn, has implications on the accuracy of the discrete formulation. Also
note that this term cancels with the contributions coming from the integration-by-parts of
the stress terms in Eq. (2.4), thus correctly removing traction boundary conditions from the
no-slip boundary. The term in the second line is the so-called adjoint consistency term. Its
role is less intuitive, as it ensures that the analytical solution of the adjoint equations, when
introduced in place of the linear momentum and continuity equation test functions, also
satisfies the discrete formulation. Adjoint consistency is linked to optimal convergence of
the discrete solution in lower-order norms (see, e.g., [60]). The term in the third line leads
to better satisfaction of the inflow boundary conditions. The last two terms are penalty-
like, in that they penalize the deviation of the discrete solution from its prescribed value
at the boundary. These terms are necessary to ensure the stability (or coercivity) of the
discrete formulation, which may be lost due to the introduction of the consistency and
adjoint consistency terms.

The weak boundary condition formulation is numerically stable if

τB
TAN = τB

NOR =
CB

I µ

hn
, (2.23)

where hn is the wall-normal element size, and CB
I is a sufficiently large positive constant

computed from an appropriate element-level inverse estimate (see, e.g., [98–100]). The
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constant CB
I depends on the space dimension d, the element type (tetrahedron, hexahedron,

etc.), and the polynomial order of the finite element approximation. For a linear tetrahedron,
it is sufficient to take 4.0 ≤ CB

I ≤ 8.0 to obtain a stable discrete solution. The wall-normal
element size may be computed from the element metric tensor:

hn = (n ·Gn)1/2. (2.24)

Remark 6. Rather than setting the no-slip boundary conditions exactly, the weak bound-
ary condition formulation gives the no-slip solution only in the limit as hn → 0. As a
result, coarse discretizations do not need to struggle to resolve the boundary layers; the
flow simply slips on the solid boundary. Because of this added flexibility, the weak bound-
ary condition enforcement tends to produce more accurate results on meshes that are too
coarse to capture the boundary layer solution. However, as the mesh is refined to capture
the boundary layer, the weak and strong boundary condition formulations produce nearly
identical results (see [30]).

Remark 7. Although the weak boundary condition formulation is also stable for very large
values of CB

I , we do not favor that. Large values of CB
I place a heavy penalization on the

no-slip condition, and the above mentioned flexibility of the method is lost together with
the associated accuracy benefits. We favor using a CB

I that is just large enough to guarantee
the stability of the discrete formulation.

Remark 8. In reference [30], a connection was identified between the weakly-enforced
boundary conditions and wall functions. The latter are commonly employed in conjunc-
tion with RANS formulations of turbulent flows (see, e.g., [122, 123]). In the case of wall
function formulation, a no-slip boundary condition is replaced with a tangential traction
boundary condition, where the traction direction is given by that of the local slip veloc-
ity, and the traction magnitude is computed by invoking the “law-of-the-wall”. This is an
empirical relationship between the flow speed and the normal distance to the wall, both
appropriately normalized (see, e.g., [122]). The penalty parameter τB

TAN may be defined as

τB
TAN =

ρu∗2

‖uh
TAN‖

, (2.25)

where uh
TAN =

((
uh − gh

)
−

((
uh − gh

)
· n

)
n
)

is the tangential slip velocity, and u∗ is the
so-called friction velocity, which, among other factors, depends on the magnitude of the
slip velocity, and is computed from the law-of-the-wall formula by nonlinear iterations. It
was shown in [30], however, that when the boundary layer mesh is fine enough, τB

TAN from
Eq. (2.25) is independent of the local flow solution, and reverts to the definition given by
Eq. (2.23). This fact is remarkable in that Eq. (2.23) is purely based on considerations of
numerical stability, while Eq. (2.25) derives from the physics of wall-bounded turbulent
flows. In our limited experience, both the “numerics-based” and “physics-based” defini-
tions of the penalty parameter τB

TAN give very similar results.



September 2, 2014 0:12 WSPC/INSTRUCTION FILE M3AS-WTA

ALE-VMS and ST-VMS Methods for Wind-Turbine Aerodynamics and FSI 13

3. Aerodynamic Simulations of a 5MW Wind-Turbine Rotor

In this section we begin with a careful definition of the 5MW wind-turbine rotor geometry.
We then present the NURBS-based and FEM-based simulations of the wind-turbine rotor.
In this section, we only present pure aerodynamic simulations. Structural and FSI modeling
and simulations will be presented in the later sections.

3.1. 5MW wind-turbine rotor geometry definition

RNodes (m) AeroTwst (◦) Chord (m) AeroCent (-) AeroOrig (-) Airfoil

2.0000 0.000 3.542 0.2500 0.50 Cylinder
2.8667 0.000 3.542 0.2500 0.50 Cylinder
5.6000 0.000 3.854 0.2218 0.44 Cylinder
8.3333 0.000 4.167 0.1883 0.38 Cylinder

11.7500 13.308 4.557 0.1465 0.30 DU40
15.8500 11.480 4.652 0.1250 0.25 DU35
19.9500 10.162 4.458 0.1250 0.25 DU35
24.0500 9.011 4.249 0.1250 0.25 DU30
28.1500 7.795 4.007 0.1250 0.25 DU25
32.2500 6.544 3.748 0.1250 0.25 DU25
36.3500 5.361 3.502 0.1250 0.25 DU21
40.4500 4.188 3.256 0.1250 0.25 DU21
44.5500 3.125 3.010 0.1250 0.25 NACA64
48.6500 2.310 2.764 0.1250 0.25 NACA64
52.7500 1.526 2.518 0.1250 0.25 NACA64
56.1667 0.863 2.313 0.1250 0.25 NACA64
58.9000 0.370 2.086 0.1250 0.25 NACA64
61.6333 0.106 1.419 0.1250 0.25 NACA64
62.9000 0.000 0.700 0.1250 0.25 NACA64

Table 1. Wind-turbine rotor geometry definition.

As a first step we construct a template for the structural model of the rotor. Here, the
structural model is limited to a surface (shell) representation of the wind-turbine blade,
the hub, and their attachment zone. The blade surface is assumed to be composed of a
collection of airfoil shapes that are lofted in the blade axis direction.

The geometry of the rotor blade is based on the NREL 5MW offshore baseline wind-
turbine described in [2]. The blade geometry data taken from the reference is summarized
in Table 1. A 61 m blade is attached to a hub with radius of 2 m, which gives the total rotor
radius of 63 m. The blade is composed of several airfoil types provided in the rightmost
column of the table. The first portion of the blade is a perfect cylinder. Further away from
the root the cylinder is smoothly blended into a series of DU (Delft University) airfoils. At
the 44.55 m location away from the root the NACA64 profile is used to define the blade
all the way to the tip (see Figure 2). The remaining parameters from Table 1 are defined
in Figure 2: “RNodes” is the distance from the rotor center to the airfoil cross-section in
the blade axis direction. “AeroTwst” is the twist angle for a given cross-section. The blades
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Fig. 2. Illustration of quantities from Table 1.

Fig. 3. Top view of a subset of the airfoil cross-sections illustrating blade twisting.

are twisted to enhance the aerodynamic performance. “Chord” is the chord length of the
airfoil. “AeroOrig” is the location of the aerodynamic center. For most of the blade airfoil
cross-sections, the aerodynamic center is taken at 25% of the chord length from the leading
edge. To accommodate the cylindrical shape at the root, the aerodynamic center is gradually
moved to 50% of the chord length. This is not reported in [2], but mentioned in [124].

Remark 9. There is some redundancy in the parameters given in Table 1. The variable
“AeroCent” is used as an input to FAST [1], which is the aerodynamics modeling software
that is typically used for wind-turbine rotor computations. FAST assumes that the blade-
pitch axis passes through each airfoil section at 25% chord length, and defines AeroCent −
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0.25 to be the fractional distance to the aerodynamic center from the blade-pitch axis along
the chordline, positive toward the trailing edge. Therefore, AeroOrig + (0.25 − AeroCent)
gives the location of where the blade-pitch axis passes through each airfoil cross-section.
Although for our purposes this added complexity is unnecessary, the same naming system
is used for backward compatibility with the referenced reports.

For each blade cross-section, we use quadratic NURBS to represent the 2D airfoil
shape. The weights of the NURBS functions are set to unity. The weights are adjusted near
the root to represent the circular cross-sections of the blade exactly. The cross-sections are
lofted in the blade axis direction, also using quadratic NURBS and unity weights. This
geometry modeling procedure produces a smooth rotor blade surface using a relatively
small number of input parameters, which is an advantage of the isogeometric representa-
tion. Figure 3 shows a top view of the blade in which the twisting of the cross-sections is
evident. Given the rotor blade surface description, the fluid-domain volume is constructed

(a) (b)

Fig. 4. (a) Volume NURBS mesh of the computational domain. (b) A planar cut to illustrate mesh grading toward
the rotor blade.

next. The blade surface is split into four patches of similar sizes, which we call the blade
surface patches. The splitting is done at the leading and trailing edges, as well as half-way
in between on both sides of the blade. The fluid domain near the blade is generated for each
one of the blade surface patches. As a final step, the fluid domain patches are merged such
that the outer boundary of the domain is a perfect cylinder.

For each of the blade surface patches, we create a 60◦ pie-shaped domain using a min-
imum required number of control points. The control points at the bottom of the patch are
moved to accommodate the shape of the rotor hub. As a next step, we perform knot in-
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sertion and move the new control points such that their locations coincide with those of
the blade surface patch. This generates an a-priori conforming discretization between the
volume fluid domain and the surface of the structural model, suitable for FSI analysis. Fi-
nally, the fluid domain is refined in all parametric directions for analysis. Figure 4a shows
the rotor surface mesh and one of the fluid-mesh subdomains adjacent to it. The remaining
fluid subdomains are generated in the same manner.

The resultant fluid NURBS mesh may be embedded into a larger domain for the pur-
poses of simulation. In this work we take this larger domain to also be a cylinder. For
computational efficiency, only one-third of the domain is modeled. The fluid volume mesh,
corresponding to one-third of the fluid domain, consists of 1,449,000 quadratic NURBS
elements (and a similar number of control points). The fluid mesh cross-section that also
shows the details of mesh refinement in the boundary layer is shown in Figure 4b. To carry

ul ur

pl pr 

Fig. 5. Rotationally-periodic boundary conditions.

out the simulations, rotationally-periodic boundary conditions must be imposed. Denoting
by uh

l and uh
r the discrete fluid velocities at the left and right boundary, respectively (see

Figure 5), and by ph
l and ph

r the corresponding pressures, we set

ph
l = ph

r , (3.1)

uh
l = R(2/3π) uh

r , (3.2)

where R(2/3π) is the rotation matrix evaluated at α = 2/3π. That is, while the pres-
sure degrees-of-freedom take on the same values, the fluid velocity degrees-of-freedom
are related through a linear transformation corresponding to a rotation by 2/3π radi-
ans. Note that the transformation matrix is independent of the current domain position.
Rotationally-periodic boundary conditions are implemented through standard master-slave
relationships. We note that rotationally-periodic boundary conditions were employed ear-
lier in [78, 80, 125] for parachute simulations.

We compute the aerodynamics of the wind-turbine rotor with prescribed speed using a
rotating mesh. The wind speed is uniform at 9 m/s and the rotor speed is 1.08 rad/s, giving
a tip speed ratio of 7.55 (see [126] for wind-turbine terminology). We use air properties at
standard sea-level conditions. The Reynolds number (based on the cord length at 3

4 R and
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the relative velocity there) is approximately 12 million. At the inflow boundary the velocity
is set to the wind velocity, at the outflow boundary the stress vector is set to zero, and at
the radial boundary the radial component of the velocity is set to zero. We start from a flow
field where the velocity is equal to the inflow velocity everywhere in the domain except on
the rotor surface, where the velocity matches the rotor velocity.

We carry out the computations at a constant time-step size of 4.67×10−4 s. Both
NURBS and tetrahedral FEM simulations of this setup are performed.

The chosen wind velocity and rotor speed correspond to one of the cases given in [2],
where the aerodynamics simulations were performed using FAST [1]. We note that FAST
is based on look-up tables for airfoil cross-sections, which give planar, steady-state lift and
drag data for a given wind speed and angle of attack. The effects of trailing edge turbulence,
hub, and tip are incorporated through empirical models. It was reported in [2] that at these
wind conditions and rotor speed, no blade pitching takes place and the rotor develops a
favorable aerodynamic torque (i.e., torque in the direction of the rotation) of 2500 kN m.
Although this value is used for comparison with our simulations, the exact match is not
expected, as our computational modeling is very different than the one in [2]. Nevertheless,
we feel that this value of the aerodynamic torque is close to what is expected in reality,
given the vast experience of NREL with wind-turbine rotor simulations employing FAST.

3.2. ALE-VMS simulations using NURBS-based isogeometric analysis

The computation is carried out on 240 cores on Ranger, a Sun Constellation Linux Cluster
at the Texas Advanced Computing Center [127] with 62,976 processing cores. Near the
blade surface, the size of the first element in the wall-normal direction is about 2 cm. The
GMRES search technique [128] is used with a block-diagonal preconditioner. Each nodal
block consists of a 3×3 and 1×1 matrices, corresponding to the discrete momentum and
continuity equations, respectively. The number of nonlinear iterations per time step is 4 and
the number of GMRES iterations is 200 for the first Newton iteration, 300 for the second,
and 400 for the third and fourth. Figure 6 shows the air speed at t = 0.8 s at 1 m behind the
rotor plane. Note the fine-grained turbulent features at the trailing edge of the blade, which
require enhanced mesh resolution for accurate representation. The fluid traction vectors
projected to the plane of rotation are shown in Figure 7. The traction vectors point in
the direction of rotation and grow in magnitude toward the blade tip, creating favorable
aerodynamic torque. However, at the blade tip the traction vectors rapidly decay to zero
and even change sign, which introduces a small amount of inefficiency. The time history
of the aerodynamic torque is shown in Figure 8, where the steady-state result from [2] is
also shown for reference. The figure shows that in less than 0.8 s the torque settles at a
statistically-stationary value of 2,670 kN m, which is within 6.4% of the reference. Given
the significant differences in the computational modeling approaches, the two values are
remarkably close. This result is encouraging in that 3D time-dependent simulation with a
manageable number of degrees of freedom and without any empiricism is able to predict
important quantities of interest for wind-turbine rotors simulated at full scale. This result
also gives us confidence that our procedures are accurate and may be applied to simulations
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Fig. 6. Air speed at t = 0.8 s.

Fig. 7. Fluid traction vectors at t = 0.8 s viewed from the back of the blade. The traction vectors, colored by
magnitude, are projected to the rotor plane and illustrate the mechanism by which the favorable aerodynamic
torque is created.

cases where 3D, time-dependent modeling is indispensable (e.g., simulation of wind gusts
or blade pitching).

Given the aerodynamic torque and the rotor speed, the power extracted from the wind
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Fig. 8. Time history of the aerodynamic torque. Statistically-stationary torque is attained in less than 0.8 s. The
reference steady-state result from NREL is also shown for comparison.

with these wind conditions (based on our simulations) is

P = T f θ̇ ≈ 2.88MW. (3.3)

According to the Betz law (see, e.g., [129]), the maximum power that a horizontal-axis
wind turbine is able to extract from the wind is

Pmax =
16
27

ρA‖uin‖
3

2
≈ 3.23MW, (3.4)

where A = πR2 is the cross-sectional area swept by the rotor, and ‖uin‖ is the inflow speed.
From this we conclude that the wind-turbine aerodynamic efficiency at the simulated wind
conditions is

P
Pmax

≈ 89%, (3.5)

which is quite high even for modern wind-turbine designs. The blade is segmented into 18
spanwise “patches” to investigate how the aerodynamic torque distribution varies along the
blade span. The patch-wise torque distribution is shown in Figure 9. The torque is nearly
zero in the cylindrical section of the blade. A favorable aerodynamic torque is created
on Patch 4 and its magnitude continues to increase until Patch 15. The torque magnitude
decreases rapidly after Patch 15, however, the torque remains favorable all the way to the
last patch.

The importance of 3D modeling and simulation is further illustrated in Figure 10, where
the axial component of the flow velocity is displayed at a blade cross-section located at
56 m above the rotor center. The magnitude of the axial velocity component exceeds 15 m/s
in the boundary layer, showing that 3D effects are important, especially in the regions of
the blade with the largest contribution to the aerodynamic torque.



September 2, 2014 0:12 WSPC/INSTRUCTION FILE M3AS-WTA

20 Y. Bazilevs, M.-C. Hsu, K. Takizawa, and T.E. Tezduyar

Patch

T
or
qu
e
(k
N

⋅m
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-20

0

20

40

60

80

100

120

Fig. 9. Patches along the blade (top) and the aerodynamic torque contribution from each patch (bottom) at t =

0.8 s.

Fig. 10. Axial flow velocity over the blade cross-section at 56 m at t = 0.8 s. The level of axial flow in the
boundary layer is significant, which illustrates the importance of 3D modeling.

3.3. Computations with the DSD/SST formulation using finite elements

We compute the same problem using the DSD/SST formulation with linear finite elements.
To generate the triangular mesh on the rotor surface, we started with a quadrilateral surface
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mesh generated by interpolating the NURBS geometry of the rotor at each knot intersec-
tion. We subdivided each quadrilateral element into triangles and then made minor modifi-
cations to improve the mesh quality near the hub. We use three different meshes: Mesh-2,
Mesh-3 and Mesh-4, with the surface mesh refined along the blade 2, 3 and 4 times, respec-
tively, compared to the finite element mesh used in [6]. The number of nodes and elements
for each blade surface mesh is shown in Table 2, and Figure 11 shows the surface mesh
for Mesh-4. For computational efficiency, rotational-periodicity [78, 80] is utilized so that

Fig. 11. Rotor surface mesh (Mesh-4).

the domain includes only one of three blades, as shown in Figure 12. The inflow, outflow

Fig. 12. Rotationally-periodic domain with wind-turbine blade shown in blue.

and radial boundaries lie 0.5R, 2R and 1.43R from the hub center, respectively. This can
be more easily seen in Figure 13, where the inflow, outflow, and radial boundaries are the
left, right and top edges, respectively, of the cut plane along the rotation axis. Each peri-
odic boundary contains 1,430 nodes and 2,697 triangles. Near the rotor surface, we have
22 layers of refined mesh with first-layer thickness of 1 cm and a progression factor of 1.1.
The boundary layer mesh at 3

4 R is shown in Figure 14. The number of nodes and elements
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Fig. 13. Cut plane of the fluid volume mesh along rotor axis (Mesh-4).

Fig. 14. Boundary layer mesh at 3
4 R.

Surface Volume
nn ne nn ne

Mesh-2 5,748 11,452 155,494 898,640
Mesh-3 7,552 15,060 205,855 1,195,452
Mesh-4 9,268 18,492 253,340 1,475,175

Table 2. Summary of the meshes. Here nn and ne are the number of nodes and elements.

for each volume mesh is shown in Table 2.
We compute the problem with the DSD/SST-DP-SUPS and DSD/SST-DP-VMST tech-

niques. The SUPS technique is used without the LSIC stabilization (i.e., νLSIC = 0), while
for the VMST technique νLSIC is defined according to Eq. (18) in Ref. [57], and is referred
to as “TGI”.

In solving the linear equation systems involved at every nonlinear iteration, the GM-
RES search technique [128] is used with a diagonal preconditioner. The computation is
carried out in a parallel computing environment, using PC clusters. The mesh is partitioned
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to enhance the parallel efficiency of the computations. Mesh partitioning is based on the
METIS algorithm [130]. The time-step size is 4.67×10−4 s. The number of nonlinear iter-
ations per time step is 3 with 30, 60 and 500 GMRES iterations for the first, second and
third nonlinear iterations, respectively.

Prior to the computations reported here, we performed a series of brief computations
with the DSD/SST-DP-SUPS technique, starting from a lower Reynolds number and grad-
ually reaching the actual Reynolds number. This solution is used as the initial condition
also for the computations with the DSD/SST-DP-VMST technique. The purpose is to gen-
erate a divergence-free and reasonable flow field at this Reynolds number. We note that it
was especially difficult with the VMST option to start from non-physical conditions, such
as setting all nodes except those on the blade to the inflow velocity.
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Fig. 15. The aerodynamic torque generated by a single blade. Comparison between different meshes with the
DSD/SST-DP-SUPS technique. Time history (top). The torque contribution from each patch at t = 1.0 s (bottom).

Figures 15–17 show the time history of the aerodynamic torque and the torque contri-
bution from each patch for a single blade at t = 1.0 s. The patches are defined as shown
in Figure 9. Figure 18 shows the pressure coefficient at t = 1.0 s for Patch 16 (at 0.90R),
which is a representative section of the blade. For most of the patches, the angle of attack
and Reynolds number do not vary much from one patch to another. For example, the angle
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Fig. 16. The aerodynamic torque generated by a single blade. Comparison between different meshes with the
DSD/SST-DP-VMST (TGI) technique. Time history (top). The torque contribution from each patch at t = 1.0 s
(bottom).

of attack and Reynolds number are 7.4◦ and 9.9×106 at 0.65R for Patch 12 (at 0.65R) and
7.6◦ and 9.6×106 for Patch 16 (at 0.90R).

Mesh refinement studies for both the SUPS and VMST techniques indicate good con-
vergence in the quantities of interest such as the aerodynamic torque and pressure coef-
ficient. The VMST results on the finest mesh give more or less the same value of the
aerodynamic torque as the ALE-VMS simulation using NURBS, which is taken as a refer-
ence solution for this study. The results of the SUPS technique are also very good, however
the torque is slightly under-predicted with respect to the VMST and NURBS-based ALE-
VMS simulation. Figure 18 indicates that smoother (i.e., more stable) pressure solution is
obtained with the VMST technique. We note that the main reason behind the higher VMST
torque is the wider low-pressure region on the upper surface of the NACA64 geometry, as
can be seen in the figure. The lower pressure indicates that the flow is attached; thus, the
VMST technique, for the level of mesh refinement presented here, is able to better represent
the turbulent boundary layer solution than the SUPS technique.
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Fig. 17. The aerodynamic torque generated by a single blade. Computed with different techniques using Mesh-4.
Time history (top). The torque contribution from each patch at t = 1.0 s (bottom). We note that the curve labeled
“ALE with NURBS” represents the aerodynamic torque data from the NURBS computation presented in the
previous section.

Radial Distance r Span Station Chord Length Twist Twist Axis Airfoil
(m) (r/5.029 m) (m) (degrees) (% chord) (-)

0.508 0.100 0.218 0.0 50 Cylinder
1.510 0.300 0.711 14.292 30 NREL S809
2.343 0.466 0.627 4.715 30 NREL S809
3.185 0.633 0.542 1.115 30 NREL S809
4.023 0.800 0.457 -0.381 30 NREL S809
4.780 0.950 0.381 -1.469 30 NREL S809
5.029 1.000 0.355 -1.815 30 NREL S809

Table 3. Selected cross-sectional data for NREL UAE Phase VI blade.

4. NREL Phase VI Wind-Turbine Rotor: Validation and the Role of
Weakly-Enforced Essential Boundary Conditions

The proposed method is applied to predict the aerodynamics of the Unsteady Aerody-
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−2.4 −0.7 1.0

(a) DSD/SST-DP-SUPS (b) DSD/SST-DP-VMST (TGI)

Fig. 18. Pressure coefficient at t = 1.0 s for Patch 16 (at 0.90R). Top: Mesh-2. Middle: Mesh-3. Bottom: Mesh-4.

namics Experiment (UAE) Phase VI two-bladed wind-turbine rotor [97] from NREL. In
this experiment, a two-bladed twisted and tapered 10.058 m diameter wind turbine, which
has a rated power of 19.8 kW, was tested in the NASA Ames 80 ft × 120 ft wind tunnel
in 2000 (see Figure 19). This is one of the most comprehensive, accurate, and reliable ex-
periments carried out on a full-scale wind turbine. This test case was also studied by many
computational researchers [3–5, 131–133] for the purposes of validating their simulations
and improving their ability to predict wind-turbine aerodynamic performance.

The Phase VI rotor geometry makes use of a single NREL S809 airfoil [97]. Selected
blade cross-section geometry data are summarized in Table 3. The detailed documentation
of the rotor configuration and its technical specifications are available in [97]. Two cases
from the experiment were selected for the validation study. The first case has a wind speed
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]
(a) (b)

Fig. 19. (a) UAE mounted in 80 ft × 120 ft test section. (b) UAE wake flow visualization in the field at the National
Wind Technology Center and in the wind tunnel at NASA Ames Research Center.

(a) (b)

Fig. 20. A 2D cut of the mesh (left) and the computational domain (right).

of 5 m/s and the second case 25 m/s. For both cases, we have upwind configuration, 0◦

yaw angle, 0◦ cone angle, blade tip pitch angle of 3◦, and rotational speed of 72 rpm.
The influence of the hub and tower on the rotor aerodynamics was neglected, which is a
fair approximation for an upwind turbine (see, e.g., [3]). The two cases we consider here
present very different flow conditions. For the 5 m/s case the flow is fully attached for the
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Fig. 21. A 2D blade cross-section at 0.8R illustrating the boundary layer mesh used in the computations, which is
relatively coarse. The size of the first element in the wall-normal direction is about 0.008 m.
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Fig. 22. The time history of the aerodynamic (low-speed shaft) torque for both weak and strong boundary con-
dition simulations at (a) 5 m/s and (b) 25 m/s. The results are compared to the NREL experimental data. Dashed
lines represent the standard deviation in the experimental data.

entire blade. On the contrary, the stall occurs in most part of the blade for the 25 m/s case
and the simulation is considered to be more challenging [8].

The mesh resolution and computational domain are shown in Figure 20. The rotor ra-
dius R is 5.029 m and the blade is assumed to be rigid. At the inflow boundary the wind
speed is set to either 5 m/s or 25 m/s. At the outflow boundary the traction vector is set
to zero. At the radial boundary the radial component of the velocity is set to zero. The air
density and viscosity are 1.23 kg/m3 and 1.78×10−5 kg/(m·s), respectively. The mesh is
comprised of 1,508,983 nodes and 8,494,182 linear tetrahedral elements. Figure 21 shows
a 2D blade cross-section at 0.8R to illustrate the type of mesh near the boundary. Near the
blade surface at 0.8R, the size of the first element in the wall-normal direction is about
0.008 m. No special boundary layer meshing was used in this study, in part to test the
ability of the ALE-VMS method to deal with coarse boundary layer meshes.
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(a) (b)

Fig. 23. Pressure, air speed contours, and streamlines at 0.8R for the 5 m/s case. (a) Weakly-enforced boundary
condition. (b) Strongly-enforced boundary condition.

The computations were carried out in a parallel computing environment on a Dell Clus-
ter at the Texas Advanced Computing Center (TACC) [127].The linear system is solved
using a block-diagonal preconditioned GMRES method [128, 134]. The time-step size is
0.0001 s. The number of nonlinear iterations per time step is 3, with 50 GMRES iterations
for the first and second nonlinear iterations, and 50 to 80 GMRES iterations for the third
nonlinear iteration, depending on the nonlinear convergence.

The time history of aerodynamic (low-speed shaft) torque is shown in Figure 22.
Good agreement in the aerodynamic torque is found between the weak-boundary-condition
simulations and experimental data for both flow conditions. However, the results for the
strongly-enforced boundary condition are not at all accurate.

Pressure, air speed contours, and streamlines at 0.8R for the 5 m/s and 25 m/s cases are
shown in Figures 23 and 24, respectively. Figure 23a shows the weak-boundary-condition
prediction of the air flow for the 5 m/s case. The flow is fully attached, and the torque
is correctly predicted. However, the strong-boundary-condition simulation predicts flow
separation at the trailing edge (see Figure 23b). The blade stalls and, as a result, the torque is
under-predicted by 126% (see Figure 22a). For the 25 m/s case, small differences are found
in the pressure contours and air flow patterns between the weak- and strong-boundary-
condition computations. This is due to the fact that the flow is already separated at the
edges, the entire airfoil is stalled, and the boundary layer resolution is not so important
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(a) (b)

Fig. 24. Pressure, air speed contours, and streamlines at 0.8R for the 25 m/s case. (a) Weakly-enforced boundary
condition. (b) Strongly-enforced boundary condition.

for these type of flow conditions. In this case, the weak boundary condition again correctly
predicts the torque, while the strong boundary condition under-predicts the torque, but only
by 11% (see Figure 22b).

These results are not surprising. For strongly-enforced boundary conditions, the coarse
boundary layer discretization gives rise to artificially “thick” boundary layers, which retard
the flow and lead to non-physical aerodynamics, such as premature flow separation. In
the case of weakly-enforced boundary conditions, the flow is allowed to slip on the solid
surface without forming these undesired thick boundary layers. Of course, with sufficient
boundary layer mesh refinement, both approaches will capture the boundary layer, and the
strongly-enforced boundary condition will also produce the correct result (see [30]).

Figure 25 shows the pressure coefficient at 0.466R, 0.633R, and 0.8R for the 5 m/s and
25 m/s cases. The predicted values (using the weak boundary condition) are plotted against
the experimental data. Very good agreement is likewise achieved for both attached and
separated flow conditions at different radial locations.

Figure 26 shows the flow visualization (isosurfaces of air speed) for the 5 m/s case. The
tip vortex generated by the blade is carried downstream of the rotor with little decay. The
figure also shows the pressure contours on the rotor surface.
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Fig. 25. Pressure coefficients at 0.466R, 0.633R, and 0.8R for (a) 5 m/s and (b) 25 m/s. The predicted values (using
the weak boundary condition) are plotted against the NREL experimental data.

5. Governing Equations of Structural Mechanics: Isogeometric
Kirchhoff–Love Composite Shell and the Bending-Strip Method

5.1. Kirchhoff–Love shell

In this section we follow the developments of [13, 15, 39] and present the governing equa-
tions of the Kirchhoff–Love shell theory. The theory is appropriate for thin-shell structures
and requires no rotational degrees of freedom. The variational formulation of a Kirchhoff–
Love shell is based on the principle of virtual work expressed as

δW = δWint + δWext = 0 , (5.1)
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Fig. 26. Isosurfaces of air speed at an instant for the 5 m/s case. The tip vortex generated by the blade is carried
downstream of the rotor with little decay. The figure also shows the pressure contours on the rotor surface.

where W, Wint, and Wext denote the total, internal, and external work, respectively, and δ
denotes a variation with respect to the virtual displacement variables δd, that is

δW =
∂W
∂d

δd . (5.2)

The internal virtual work is defined by (see, e.g., [135])

δWint = −

∫
Ωs

0

(δE : S) dΩ , (5.3)

where Ωs
0 is the shell volume in the reference configuration (the total Lagrangian approach

is adopted in this work), E is the Green–Lagrange strain tensor, δE is its variation with
respect to virtual displacements δd, and S is the energetically conjugate second Piola–
Kirchhoff stress tensor.

In the case of shells, the 3D continuum description is reduced to that of the shell mid-
surface, and the transverse normal stress is neglected. Furthermore, the Kirchhoff–Love
theory assumes that the shell director remains normal to its middle surface during the de-
formation, which implies that the transverse shear strains are zero. As a result, only in-plane
stress and strain tensors are considered, and the indices α = 1, 2 and β = 1, 2 are employed
to denote their components. We denote by Γs

0 the shell midsurface in the undeformed ref-
erence configuration, hth is the (variable) shell thickness, and ξ3 ∈ [−0.5hth, 0.5hth] is the
through-thickness coordinate.

We introduce the following standard shell kinematic quantities and relationships
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(see [39, 136] for more details):

Eαβ = εαβ + ξ3καβ, (5.4)

εαβ =
1
2

(
gα · gβ −Gα ·Gβ

)
, (5.5)

καβ = −
∂gα
∂ξβ
· g3 − (−

∂Gα

∂ξβ
·G3), (5.6)

gα =
∂x
∂ξα

, (5.7)

Gα =
∂X
∂ξα

, (5.8)

g3 =
g1 × g2

‖g1 × g2‖
, (5.9)

G3 =
G1 ×G2

‖G1 ×G2‖
, (5.10)

Gα = (Gα ·Gβ)−1Gβ. (5.11)

Here, Eαβ, εαβ, and καβ are the contravariant components of the in-plane Green–Lagrange
strain, membrane strain, and curvature tensors, respectively. The spatial coordinates of the
shell midsurface in the current and reference configurations are x = x(ξ1, ξ2) and X =

X(ξ1, ξ2), parameterized by ξ1 and ξ2. The covariant surface basis vectors in the current
and reference configurations are gα and Gα. The unit outward normal vectors to the shell
midsurface in the current and reference configurations are g3 and G3. The contravariant
surface basis vectors in the reference configuration are denoted by Gα.

We select the local Cartesian basis vectors as follows:

e1 =
G1

‖G1‖
, (5.12)

e2 =
G2 − (G2 · e1)e1

‖G2 − (G2 · e1)e1‖
, (5.13)

that is, the first local basis vector is the normalized first covariant basis vector in the ref-
erence configuration. The local Cartesian basis vectors eα are used in expressing a consti-
tutive relationship for the shell. Because the local basis is orthonormal, we make no dis-
tinction between covariant and contravariant quantities, which are expressed with respect
to it.

With the above definitions, we calculate the components of the Green–Lagrange strain
tensor and its variation in the local coordinate system as

Eαβ = εαβ + ξ3καβ, (5.14)

δEαβ = δεαβ + ξ3δκαβ, (5.15)

εαβ = εγδ(Gγ · eα)(Gδ · eβ), (5.16)

καβ = κγδ(Gγ · eα)(Gδ · eβ), (5.17)

δεαβ = δεγδ(Gγ · eα)(Gδ · eβ), (5.18)

δκαβ = δκγδ(Gγ · eα)(Gδ · eβ). (5.19)
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The variations δεγδ and δκγδ may be computed directly by taking the variational derivatives
of the expressions given by Eqs. (5.5) and (5.6) with respect to the displacement vector.

We define the vectors of membrane strain and curvature components in the local coor-
dinate system as

εεε =


ε11

ε22

ε12

 (5.20)

and

κκκ =


κ11

κ22

κ12

 , (5.21)

together with a Green–Lagrange strain vector

E = εεε + ξ3κκκ. (5.22)

We assume St. Venant–Kirchhoff material law and write the following stress–strain rela-
tionship in the local coordinate system:

S = C E, (5.23)

where S is a vector of components of the second Piola–Kirchhoff stress tensor in the local
coordinate system, and C is a constitutive material matrix, which is symmetric. Introducing
Eqs. (5.22) and (5.23) into the expression for the internal virtual work given by Eq. (5.3),
we obtain

δWint = −

∫
Ωs

0

δE · S dΩ (5.24)

= −

∫
Γs

0

(∫
hth

δE · C E dξ3

)
dΓ (5.25)

= −

∫
Γs

0

δεεε ·

((∫
hth

C dξ3

)
εεε +

(∫
hth

ξ3C dξ3

)
κκκ

)
dΓ

−

∫
Γs

0

δκκκ ·

((∫
hth

ξ3C dξ3

)
εεε +

(∫
hth

ξ3
2C dξ3

)
κκκ

)
dΓ. (5.26)

For a general orthotropic material,

Cort =



E1

(1 − ν12ν21)
ν21E1

(1 − ν12ν21)
0

ν12E2

(1 − ν12ν21)
E2

(1 − ν12ν21)
0

0 0 G12


. (5.27)

In Eq. (5.27), E1 and E2 are the Young’s moduli in the directions defined by the local basis
vectors, ν12 and ν21 are the Poisson ratios, G12 is the shear modulus, and ν21E1 = ν12E2
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Fig. 27. Schematic of a composite laminate.

to ensure the symmetry of the constitutive material matrix Cort. In the case of an isotropic
material, E1 = E2 = E, ν21 = ν12 = ν, and G12 = E/(2(1 + ν)).

In the case of composite materials, which are used in the manufacturing of modern
wind-turbine blades, we assume that the structure is composed of a set of plies, each mod-
eled as an orthotropic material. We use the classical laminated-plate theory [137], and
homogenize the material through-thickness constitutive behavior for a given composite ply
layout. Let k denotes the kth ply (or lamina) and let n be the total number of plies (see
Figure 27). We assume each ply has the same thickness hth/n. Pre-integrating through the
shell thickness in Eq. (5.26), the extensional stiffness A, coupling stiffness B, and bending
stiffness D are given by

A =

∫
hth

C dξ3 =
hth

n

n∑
k=1

Ck, (5.28)

B =

∫
hth

ξ3C dξ3 =
h2

th

n2

n∑
k=1

Ck

(
k −

n
2
−

1
2

)
, (5.29)

D =

∫
hth

ξ3
2C dξ3 =

h3
th

n3

n∑
k=1

Ck

(k − n
2
−

1
2

)2

+
1

12

 , (5.30)

where

Ck = TT (φk) Cort T(φk), (5.31)

T(φ) =


cos2 φ sin2 φ sin φ cos φ
sin2 φ cos2 φ − sin φ cos φ

−2 sin φ cos φ 2 sin φ cos φ cos2 φ − sin2 φ

 . (5.32)

In the above equations, φ is the fiber orientation angle in each ply, Eq. (5.31) transforms
Cort from the principal material coordinates to the laminate coordinates (defined by the
local Cartesian basis) for each ply, and Ck is constant within each ply.
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With the above definitions, the expression for the internal virtual work for a composite
shell may now be compactly written as

δWint = −

∫
Γs

0

δεεε ·
(
Aεεε + Bκκκ

)
dΓ −

∫
Γs

0

δκκκ ·
(
Bεεε + Dκκκ

)
dΓ. (5.33)

Remark 10. Setting n = 1 and Ck = Cort in Eqs. (5.28)–(5.30), we get B = 0 and

A = hthCort, (5.34)

D =
h3

th

12
Cort, (5.35)

which are the classical membrane and bending stiffnesses for an orthotropic shell.

5.2. The bending-strip method and a complete variational statement of the
structural mechanics problem
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Fig. 28. Schematic of the bending-strip method.

The expression for of the internal virtual work given by Eq. (5.33) is only meaningful
when the shell midsurface is described using a smooth geometrical mapping. In the case
when the regularity of the mapping reduces to the C0 level, the terms involving the cur-
vature tensors, which rely on the second derivatives of the geometrical mapping, lead to
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non-integrable singularities, and the formulation may not be used as is. However, for com-
plex structures, the geometry definition often requires that the continuity of the geometrical
mapping is reduced to the C0 level (think of a trailing edge of an airfoil or an I-beam, the
latter being a non-manifold surface).

In [13], a method was prosed to handle complex multi-patch shell structures in the
context of the rotation-free Kirchhoff–Love theory, called the “bending-strip method” c.
The main idea behind the method, illustrated in Figure 28, consists of the following. It
is assumed that the shell structure is comprised of smooth subdomains, such as NURBS
patches, that are joined with C0-continuity. In addition, thin strips of fictitious material,
also modeled as surface NURBS patches, are placed at patch intersections. The triples of
control points at the patch interface, consisting of a shared control point and one on each
side, are extracted and used as a control mesh for the bending strips. The parametric domain
of each bending strip consists of one quadratic element in the direction transverse to the
interface and, for simplicity and computational efficiency, of as many linear elements as
necessary to accommodate all the control points along the length of the strip. The material
is assumed to have zero mass, zero membrane stiffness, and non-zero bending stiffness only
in the direction transverse to the interface. The transverse direction may be obtained using
the local basis construction given by Eqs. (5.12) and (5.13), however, other options may be
explored.

Let Γs
0 and Γs

t denote the structure midsurface in the reference and deformed config-
urations, respectively, and let Γb

0 denote the bending-strip domain, where Γb
0 is a union of

the bending-strip patch subdomains. Let Sh
d andVh

d denote the discrete trial and test func-
tion spaces for the structural problem. We seek the displacement of the shell midsurface
dh ∈ Sh

d, such that ∀ δdh ∈ Vh
d:∫

Γs
t

δdh · ρhth

(
∂2dh

∂t2

∣∣∣∣∣∣
X
− fh

)
dΓ

+

∫
Γs

0

δεεεh
·
(
Aεεεh

+ Bκκκh
)

dΓ

+

∫
Γs

0

δκκκh
·
(
Bεεεh

+ Dκκκh
)

dΓ

+

∫
Γb

0

δκκκh
· Dbκκκh dΓ −

∫
(Γs

t )h

δdh · hh dΓ = 0. (5.36)

In the above, the superscript h denotes all the discrete quantities, ρ is the structural mass
density in the deformed configuration, f is the body force (e.g. gravity), and h is the pre-
scribed surface traction on (Γs

t )h. The terms on the first line of Eq. (5.36) represent the
inertial and body forces. The terms on the second and third lines were derived in the pre-
vious section. The term

∫
Γb

0
δκκκh
· Dbκκκh dΓ is penalty-like, and represents the contribution of

cThe method in its current form was developed and implemented at the University of California, San Diego, when
J. Kiendl, at the time a PhD student in the group of K.-U. Bletzinger at the Technical University of Munich, was
visiting the research group of Y. Bazilevs. The method has similarities with the concept of “continuity patches”,
introduced by K.-U. Bletzinger and collaborators in [138].
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the bending strips to the structural formulation given by Eq. (5.36). Here Db is the bending
stiffness of the strips:

Db =
h3

th

12
Cb, (5.37)

where

Cb =


Es 0 0
0 0 0
0 0 0

 , (5.38)

and Es is the scalar bending-strip stiffness, typically chosen as a multiple of the local
Young’s modulus of the shell. This design of the material constitutive matrix ensures that
the bending strips add no extra stiffness to the structure. They only penalize the change in
the angle during the deformation between the triples of control points at the patch interface.
The stiffness Es must be high enough so that the change in angle is within an acceptable
tolerance. However, if Es is chosen too high, the global stiffness matrix becomes badly
conditioned, which may lead to divergence in the computations.

(a)

(b)

Fig. 29. NREL 5MW offshore baseline wind-turbine rotor blade model. (a) Blade thickness. (b) Bending strips.
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The following illustrates the use of the bending-strip method applied to the construction
of the structural model of the wind-turbine blade. A symmetric fiberglass/epoxy composite
with [±45/0/902/03]s lay-up, which enhances flap-wise and edge-wise stiffness, is consid-
ered for the rotor blade material. The 0◦ fiber points in the direction of a tangent vector
to the airfoil cross-section curve. The orthotropic elastic moduli for each ply are given in
Table 4. For simplicity, the entire blade is assumed to have the same lay-up. The resulting
A, B, and D matrices from Eqs. (5.28)–(5.30) are

A = hth


26.315 4.221 0
4.221 18.581 0

0 0 5.571

 × 109 (N/m) , (5.39)

B = 0, (5.40)

D = h3
th


1.727 0.545 0.053
0.545 1.627 0.053
0.053 0.053 0.658

 × 109 (N·m) . (5.41)

The total laminate thickness distribution is shown in Figure 29a. The blade shell model
together with the bending strips covering the regions of C0-continuity is shown in Figure
29b. The FSI simulations with this blade model will be presented in the sequel. Further

E1 (GPa) E2 (GPa) G12 (GPa) ν12 ρ (g/cm3)
39 8.6 3.8 0.28 2.1

Table 4. Material properties of a unidirectional E-glass/epoxy composite.

examples of calculations using the bending-strip method, which include verification and
validation, and the possibility of using the approach for simple coupling of solids and shells,
may be found in [13].

Remark 11. Because of the structure of the bending-strip term in Eq. (5.36), the method
may be interpreted as a physically-motivated penalty formulation.

Remark 12. In IGA, the possibility to employ smooth surface descriptions directly in anal-
ysis has led to the development of new shell element formulations. Besides the references
cited in this section, the reader is referred to [38, 45–47, 139] for relevant work on shells.
We would also like to note that references [45–47] predate the development of IGA.

5.3. Time integration of the structural mechanics equations

In the case of wind-turbine rotors, the structural motions are dominated by the rotation
of the blades around the hub axis. In [15], the authors proposed to take advantage of this
fact and modify a class of standard time integration techniques to exactly account for the
rotational part of the structural motion.
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For this, as a first step, it is useful to decompose the structural displacement d into its
rotation and deflection components as

d = dθ + dd. (5.42)

The rotational component of the displacement may be computed as

dθ = (R(θ) − I) (X − X0) , (5.43)

where X are the coordinates of the structure reference configuration, X0 is a fixed point,
θ is the time-dependent angle of rotation, R(θ) is the rotation matrix, and I is the identity
matrix. We specialize to the case of rotation about the z-axis, which gives

R(θ) =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (5.44)

The total structural velocity and acceleration may be computed as

∂d
∂t

= ḋ = ḋθ + ḋd = Ṙ(θ)(X − X0) + ḋd, (5.45)

∂2d
∂t2 = d̈ = d̈θ + d̈d = R̈(θ)(X − X0) + d̈d, (5.46)

where

Ṙ(θ) =


− sin θ − cos θ 0
cos θ − sin θ 0

0 0 0

 θ̇, (5.47)

R̈(θ) =


− cos θ sin θ 0
− sin θ − cos θ 0

0 0 0

 θ̇2 +


− sin θ − cos θ 0
cos θ − sin θ 0

0 0 0

 θ̈. (5.48)

We repeat this decomposition at the discrete level, where we operate directly on the nodal
or control-point displacement degrees of freedom. For this, we let U, U̇, and Ü be the
vectors of nodal or control point displacements, velocities, and accelerations, respectively.
We set

U = Uθ + Ud, (5.49)

U̇ = U̇θ + U̇d, (5.50)

Ü = Üθ + Üd, (5.51)

where Uθ, U̇θ, and Üθ are given by

Uθ = (R(θ) − I) (X − X0), (5.52)

U̇θ = Ṙ(θ)(X − X0), (5.53)

Üθ = R̈(θ)(X − X0). (5.54)

The above Eqs. (5.52)–(5.54) present an exact relationship between the nodal or control
point displacements, velocities, and accelerations corresponding to the rotational motion.
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To relate the deflection degrees of freedom between time levels tn and tn+1, we make use of
the standard Newmark formulas (see e.g., [140]):

U̇n+1
d = U̇n

d + ∆t
(
(1 − γ)Ün

d + γÜn+1
d

)
, (5.55)

Un+1
d = Un

d + ∆tU̇n
d +

∆t2

2

(
(1 − 2β)Ün

d + 2βÜn+1
d

)
, (5.56)

where γ and β are the time integration parameters chosen to maintain second-order accu-
racy and unconditional stability of the method.

Combining exact rotations given by Eqs. (5.52)–(5.54) and time-discrete deflections
given by Eqs. (5.55)–(5.56), we obtain the following modified Newmark formulas for the
total discrete solution:

U̇n+1 =
{
Ṙn+1 −

[
Ṙn + ∆t

(
(1 − γ)R̈n + γR̈n+1

)]}
(X − X0)

+ U̇n + ∆t
(
(1 − γ)Ün + γÜn+1

)
, (5.57)

Un+1 =

{
Rn+1 −

[
Rn + ∆tṘn +

∆t2

2

(
(1 − 2β)R̈n + 2βR̈n+1

)]}
(X − X0)

+ Un + ∆tU̇n +
∆t2

2

(
(1 − 2β)Ün + 2βÜn+1

)
. (5.58)

We employ Eqs. (5.57)–(5.58), in conjunction with the generalized-alpha method of [141],
for the time discretization of the structure.

Remark 13. In the case of no rotation, for which R is an identity, Eqs. (5.57)–(5.58) reduce
to the standard Newmark formulas. In the case of no deflection, pure rotation is likewise
recovered.

6. FSI Coupling and Aerodynamics Mesh Update

In this section we briefly summarize our FSI coupling procedures for wind-turbine simula-
tions. The fluid and structural equations are integrated in time using the generalized-alpha
method. In the case of the structure, the modified Newmark formulas given by Eqs. (5.57)–
(5.58) are employed to enhance the accuracy of the time integration procedures in the
presence of large rotation. Within each time step, the coupled equations are solved using
an inexact Newton approach. For every Newton iteration the following steps are performed.
1. We obtain the fluid solution increment holding the structure and mesh fixed. 2. We up-
date the fluid solution, compute the aerodynamic force on the structure and compute the
structural solution increment. The aerodynamic force at control points or nodes is com-
puted using the conservative definition (see, e.g., [142,143] for the importance of using the
conservative definitions of fluxes near essential boundaries and in coupled problems). 3.
We update the structural solution and use elastic mesh motion to update the fluid domain
velocity and position. We note that only the deflection part of the mesh motion is computed
using linear elastostatics, while the rotation part is computed exactly. This three-step itera-
tion is repeated until convergence to an appropriately coupled discrete solution is achieved.
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The proposed approach, also referred to as “block-iterative coupling” (see [53, 68, 69] for
the terminology), is stable because the wind-turbine blades are relatively heavy structures.

Remark 14. For this coupling strategy the fluid and structural meshes may or may not
be conforming. In the case of conforming meshes, the conservative nodal or control-point
traction vector from the fluid side is applied directly at the nodes or control points of the
structure, while the structural nodal or control-point kinematic data is applied directly to
the nodes or control points of the fluid. When the fluid and structural meshes are non-
conforming, additional projection of the traction and kinematic data is necessary before
they are transferred to the neighboring subdomain. In this paper we only present conform-
ing mesh simulations.

We conclude this section with the discussion of a special technique we devised in [15]
to update the kinematics (position and velocity) of the fluid mesh. Typically, one employes
the equations of linear elastostatics subject to dynamic boundary conditions coming from
the structural displacement to update the position and velocity of the fluid mesh (see, for
example, the elasticity-based mesh-moving method introduced in [144, 145]). In the case
of wind turbines, which are dominated by rotation, this may not be a preferred procedure
due to the fact that the linear elastostatics operator does not vanish on large rotational mo-
tions. This, in turn, may lead to the loss of the fluid mesh quality if one plans to simulate
the FSI problem for many revolutions of the wind-turbine rotor. As a result, for the present
application, we modify our fluid mesh motion strategy as follows. We take advantage of
the fact that the structural displacement vector is already decomposed into the rotation and
deflection parts. As a result, as the increment of the structural displacement is computed,
we extract the deflection part, apply the elasticity-based mesh-moving method [144, 145]
to computation of just the deflection part of the mesh displacement, rotate the (deformed)
mesh from the previous time level to the current time, and add the mesh deflection incre-
ment to obtain its current position. For a precise mathematical formulation of this procedure
see [15].

Remark 15. For a variety of other mesh update strategies the reader is referred to [94,146,
147].

7. FSI Simulations of a 5MW Wind-Turbine Rotor

The wind-turbine rotor is simulated at prescribed steady inlet wind velocity of 11.4 m/s
and rotor angular velocity of 12.1 rpm. This setup corresponds to one of the cases reported
in [2]. The dimensions of the problem domain and the NURBS mesh employed are the
same as in Section 3. The time-step size is 0.0003 s. The structural model of the wind-
turbine blade is described in Section 5. A rigid rotor under the same wind and rotor speed
conditions is simulated for comparison.

Rotationally-periodic boundary conditions for the fluid are imposed in order to reduce
the computational cost (see Figure 5). However, because the rotor blades are subject to
gravity forces, a fully rotationally-periodic structural solution is not expected in this case.
Nevertheless, we feel that the use of rotationally-periodic boundary conditions for the fluid



September 2, 2014 0:12 WSPC/INSTRUCTION FILE M3AS-WTA

ALE-VMS and ST-VMS Methods for Wind-Turbine Aerodynamics and FSI 43

Fig. 30. Isosurfaces of air speed at an instant during the simulation, showing that the flow exhibits complex
behavior. The tip vortex is advected downstream of the rotor with very little decay.

domain is justified due to the fact that the fluid periodic boundaries are located sufficiently
far away from the structure and are not expected to affect the structural response.

Isosurfaces of air speed at an instant during the simulation are shown in Figure 30.
Note that, for visualization purposes the rotationally-periodic 120◦ domain was merged
into a full 360◦ domain. Fine-grained turbulent structures are generated at the trailing edge
of the blade along its entire length. The vortex forming at the tip of the blades is advected
downstream of the rotor with little decay. There is also high-intensity turbulence in the
blade aerodynamic zone, which is a segment of the blade where the cylindrical root rapidly
transitions to a thin airfoil shape. This suggests that the blade trailing edge in this location
is subjected to high-frequency loads that are fatiguing the blade.

Figure 31 shows the isocontours of relative wind speed at a 30 m radial cut at different
instants during the simulation. For every snapshot the blade is rotated to the reference
configuration to better illustrate the deflection part of the motion. The blade deflection is
quite significant. On the pressure side, the air flow boundary layer is attached to the blade
for the entire cord length. On the suction side, the flow detaches near the trailing edge and
transitions to turbulence.

The aerodynamic torque (for a single blade) is plotted in Figure 32 for both rigid-
and flexible-blade simulations. Both cases compare favorably to the data reported in [2]
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(a) t = 0.7 s (b) t = 1.2 s

(c) t = 2.0 s (d) t = 5.0 s

Fig. 31. Isocontours of relative wind speed at a 30 m radial cut at different instants superposed on the moving
blade. The air flow is fully attached on the pressure side of the blade and separates on the suction side. The flow
separation point varies as the blade moves under the action of the wind, inertial, and gravitational forces.

for this setup obtained using FAST [1]. Note that the aerodynamic torque for the flexible
blade exhibits low-magnitude, high-frequency oscillations, while the rigid-blade torque is
smooth. To better understand this behavior, we examine the twisting motion of the wind-
turbine blade about its axis. Time histories of the twist angle at four different cross-sections
are shown in Figure 33. The twist angle increases with distance from the root and reaches
almost 2◦ near the tip in the early stages of the simulation. However, starting at t = 1.2 s,
when the blade tip reaches its lowest vertical position, the magnitude of the twist angle is
reduced significantly. The reversal of the gravity vector with respect to the lift direction
clearly affects the edge-wise bending and twisting behavior of the blade. The blade twist
angle undergoes high frequency oscillations, which are in part driven by the trailing-edge
vortex shedding and turbulence. Local oscillations in the twist angle lead to the temporal
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Fig. 32. Time history of the aerodynamic torque. Both rigid- and flexible-rotor results are plotted. The reference
steady-state result from NREL is also shown for comparison.
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Fig. 33. Time histories of the twist angle at four cross-sections along the blade axis.

fluctuations in the aerodynamic torque.

8. Pre-Bending of the Wind-Turbine Blades

The rotor blades of a wind turbine need to be designed such that they do not strike the tower
as the rotor turns in strong winds. This may be accomplished with blade pre-bending. In
this case, the blades are manufactured to flex toward the wind when the rotor is mounted on
the tower. Once the blades are exposed to the wind, and the rotor starts turning, the blades
are straightened to achieve their design shape. This situation is graphically illustrated in
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Wind No wind Wind No wind 

(a) Without pre-bending (b) With pre-bending 

Fig. 34. Using pre-bent blades to ensure tower clearance and rotor operation in its design configuration.

Figure 34. Besides tower clearance, pre-bending of the blades engenders additional ben-
efits. For example, the blades need not be quite as rigid because the amount of allowable
deflection is greater. This makes it possible to use less material overall, and fewer processed
materials, resulting in lighter and more economical blades. Pre-bending of the blades also
results in a more compact nacelle design. During operation, the pre-bent blades straighten
to their designed configuration, which is typically optimized for best possible aerodynamic
performance.

Given the above advantages, it is important that one is able to determine the correct
pre-bent shape given the blade structural and aerodynamic design, and the wind-turbine
operating conditions (i.e., wind and rotor speeds). In [14], we proposed a method that
makes use of standalone computational fluid and structural mechanics procedures to ob-
tain a pre-bent shape of the wind-turbine blades. The main idea consists of performing an
aerodynamics simulation of a rigidly-rotating rotor to obtain the aerodynamic load acting
on the blade. Given the aerodynamic and inertial loads acting in the design configuration, a
stress-free pre-bent blade configuration is found using a simple iterative procedure that re-
quires a sequence of structural mechanics simulations. Note that in the proposed approach
the aerodynamic and structural computations are decoupled, which avoids the challenges
involved in solving the coupled FSI problem. In this section, we summarize the method
and show the supporting computations. We follow the developments of [14].
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8.1. Problem statement and the pre-bending algorithm

We begin with the statement of virtual work for the structure from Eq. (5.36), where only
the stress terms are left on the left-hand-side: find the displacement of the shell midsurface
dh ∈ Sh

d, such that for ∀ δdh ∈ Vh
d:∫

Γs
0

δεεεh
·
(
Aεεεh

+ Bκκκh
)

dΓ

+

∫
Γs

0

δκκκh
·
(
Bεεεh

+ Dκκκh
)

dΓ

+

∫
Γb

0

δκκκh
· Dbκκκh dΓ = −

∫
Γs

t

δdh · ρhth

(
∂2dh

∂t2

∣∣∣∣∣∣
X
− fh

)
dΓ +

∫
(Γs

t )h

δdh · hh dΓ. (8.1)

Although the virtual work equations hold true, the problem setup is unusual in that the
stress-free reference configuration Γs

0 is unknown and the final configuration Γs
t is given.

The formulation given by Eq. (8.1) is a form of the inverse deformation problem, whose
general formulation and treatment was proposed in [148], and further analyzed and studied
computationally in [149]. In these references, the focus was placed on developing the right
kinematic and stress measures for the inverse deformation problem. Here we develop a
simple algorithm for the solution of the inverse deformation equations with application to
wind-turbine blades.

We assume that the rotor spins around its axis at a constant angular speed and that the
inflow wind conditions do not change. With this setup, the blade is subjected to a constant-
in-time centripetal force density (per unit volume) given by

ρ
∂2dh

∂t2

∣∣∣∣∣∣
X

= ρωωω × (ωωω × (x − x0)) , (8.2)

where the coordinate system of the current configuration is assumed to rotate with the
blade, ωωω is the vector of angular velocities, and x0 is a fixed point. The centripetal force
density per unit volume may be directly computed as

ρωωω ×ωωω × (x − x0) =


−ρxθ̇2

−ρyθ̇2

0

 , (8.3)

where we assume that the coordinate system of the blade is chosen such that the y-axis is
aligned with the blade axis, and the blade rotates around the z-axis with a constant angular
speed θ̇.

The time-averaged aerodynamics traction vector hh in Eq. (8.1) may be obtained from a
separate aerodynamics computation of a rigidly-spinning rotor using the methods described
in the earlier sections. (see [77] for the computation of time-averaged traction vector for
moving boundary simulations.)

In [14], we proposed the following two-stage iterative approach to solve the variational
equations (8.1) for the shell midsurface displacement, which, in turn, gives the stress-free
reference configuration.
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Initialization: We initialize the unknown reference configuration to coincide with the cur-
rent configuration, that is,

Γs
0 = Γs

t , (8.4)

which implies

dh = 0. (8.5)

Step 1: Given the reference configuration Γs
0, we solve the standard nonlinear structural

problem: find the structural displacement dh ∈ Sh
d relative to Γs

0, such that ∀ δdh ∈ Vh
d:∫

Γs
0

δεεεh
·
(
Aεεεh

+ Bκκκh
)

dΓ

+

∫
Γs

0

δκκκh
·
(
Bεεεh

+ Dκκκh
)

dΓ

+

∫
Γb

0

δκκκh
· Dbκκκh dΓ = −

∫
Γs

t

δdh · (ρhthωωω × (ωωω × (x − x0))) dΓ +

∫
(Γs

t )h

δdh · hh dΓ, (8.6)

Standard Newton–Raphson iteration is employed in this work to compute the solution of
the nonlinear structural problem given by Eq. (8.6).

Step 2: Given the displacement solution dh from Step 1, we update the reference con-
figuration as

Γs
0 = {X | X = x − dh, ∀x ∈ Γs

t }, (8.7)

and return to Step 1 using dh as the initial data.

Steps 1–2 are repeated until convergence, that is, until dh satisfies Eq. (8.6).

The above algorithm is based on the idea of computing negative increments of the dis-
placement, or increments of the displacement away from the current configuration, until
the reference configuration is found. The mathematical justification for this approach may
be found in the appendix of [14]. In what follows, we will illustrate the good performance
of the proposed algorithm on a full-scale wind-turbine blade subject to realistic wind and
inertial loads.

8.2. Pre-bending results for the NREL 5MW wind-turbine blade

The same blade design and wind conditions as in the previous section are taken for the pre-
bending computations presented here. Figure 35 shows the tip displacement convergence
of the iterative pre-bending algorithm. After a few (5–6) iterations of the two-step pre-
bending algorithm the tip exhibits no further visible displacements, and the computation
is stopped after a total of 15 iterations. Figure 36 shows the initial and the final stress-free
blade shapes. As expected, the blade bends into the wind. The tip deflection is predicted to
be 5.61 m.
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Fig. 35. Blade tip displacement convergence as a function of the iteration number.

We examine the stress distribution in the composite plies of the blade skin. For each ply
we compute the Cauchy stress tensor components with respect to the local Cartesian basis
that is aligned with the material axes. The first basis vector points in the direction of the
fiber and the second in the direction of the matrix, which is orthogonal to the fiber direction
(see Eqs. (5.12) and (5.13)). The maximum values of the tensile (σt), compressive (σc),
and in-plane shear stresses are computed for each ply. The highest ratio of the predicted
Cauchy stress and the composite strength, i.e, σt

2/σ
t,u
2 , occurs for the tensile stress in the

direction of the matrix material. Although the ratio does not exceed 0.6, which means the
predicted stress is below the composite failure strength, we feel this value is somewhat
high. In the rest of the stress components the ratios are significantly lower. Figure 37 shows
the distribution of σ2 in the 0◦ ply number 14, which has the highest ratio of σt

2/σ
t,u
2 . The

pressure side of the blade is in tension, while the suction side of the blade is in compression
as expected. However, the level of the tensile stress is not very far from the tensile failure
strength, which suggests that stronger matrix material may be desirable for this blade de-
sign.

9. Conclusions

In this review paper we presented our computational procedures, which include both aero-
dynamics and FSI techniques, for the simulation of wind-turbine rotors at full scale. We ap-
plied these computational procedures to the simulation of the NREL Phase VI two-bladed
rotor and the NREL 5MW rotor. We validated our aerodynamics procedures using the ex-
perimental results for the Phase IV rotor. The use of weakly-enforced essential boundary
conditions was critical in obtaining accurate results when using a coarse boundary layer
mesh. Furthermore, no “tuning” of the turbulence model was necessary as the same mul-
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Fig. 36. Left: rotor design configuration. Middle: rotor pre-bent configuration. Right: rotor blade design and pre-
bent configurations superposed.

tiscale formulation was able to correctly represent both the fully-attached and detached
turbulent boundary layers.

The DSD/SST formulation and its VMS version were compared in the aerodynamics
computations of the 5MW rotor. It was found that the VMS version produces more accurate
results for the aerodynamic torque than the original DSD/SST formulation, suggesting that
the VMS version is capable of better representing the turbulent boundary layer.

In the case of FSI simulations, the structure is governed by the rotation-free Kirchhoff–
Love shell theory, complemented with the bending-strip method. The fluid and structure
are strongly coupled at the interface. The strong coupling was in part facilitated by the
fact that the structure has only displacement degrees of freedom. The coupled system was
solved in a block-iterative fashion, which is robust enough for the present application due
to the relatively high structural mass of the wind-turbine blades.

For wind-turbine rotors the structural motion is dominated by rotation about the hori-
zontal axis. For this we found it advantageous for overall accuracy of the computations to
separate the structural displacement into rotation and deflection parts. With this decompo-
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Fig. 37. Normal stress distribution in the direction of the matrix material for the 0◦ ply number 14. Top: pressure
side. Bottom: suction side.

sition, we modified the time integration formulas to treat the rotation part of the structural
motion exactly. The decomposition of the structural displacement also yields a more effec-
tive mesh-moving computation, where only the deflection part of the fluid-mesh motion is
computed with the elasticity-based mesh-moving method. The rotational part of the mesh
motion is calculated exactly.

We performed the FSI simulation of the NREL 5MW offshore baseline wind-turbine
rotor. The rotor blades were modeled as symmetric composite laminates homogenized in
the through-thickness direction. The computation yielded good prediction of the aerody-
namic torque and blade-tip deflection.

We proposed a pre-bending algorithm, which is based on separate aerodynamics and
structural mechanics computations and performs well for full-scale wind-turbine blades.
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