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Abstract

This work formulates frictionless contact between solid bodies in terms of a repulsive potential
energy term and illustrates how numerical integration of the resulting forces is computationally
similar to the “pinball algorithm” proposed and studied by Belytschko and collaborators in the
1990s. We thereby arrive at a numerical approach that has both the theoretical advantages of a
potential-based formulation and the algorithmic simplicity, computational efficiency, and geomet-
rical versatility of pinball contact. The singular nature of the contact potential requires a specialized
nonlinear solver and an adaptive time stepping scheme to ensure reliable convergence of implicit
dynamic calculations. We illustrate the effectiveness of this numerical method by simulating sev-
eral benchmark problems and the structural mechanics of the right atrioventricular (tricuspid) heart
valve. Atrioventricular valve closure involves contact between every combination of shell surfaces,
edges of shells, and cables, but our formulation handles all contact scenarios in a unified manner.
We take advantage of this versatility to demonstrate the effects of chordal rupture on tricuspid valve
coaptation behavior.
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1. Introduction

The atrioventricular heart valves (i.e., the mitral and tricuspid valves) are structures in the
heart that permit blood flow from the atria into the ventricles during diastole, as the heart relaxes.
They then block blood from being pumped back out when the heart contracts, during systole. The
semilunar valves (i.e., the aortic and pulmonary valves) play the opposite role, permitting blood to
be pumped out of the ventricles, into the aorta and pulmonary artery, during systole, and preventing
backflow into the ventricles during diastole.

The semilunar valves function in a relatively simple way: each one consists of three (or oc-
casionally two) cup-like leaflets (cusps), attached to the sides of its respective artery. The convex
sides of the leaflets face the ventricles, so that the leaflets fill up in reaction to backflow. When
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this happens, the convex sides of the leaflets contact one another, blocking flow. The mechanism
of the atrioventricular valves is much more complicated. They are generally considered to have
several distinct leaflets, but, in reality, these leaflets form contiguous sheets of tissue. These con-
tiguous structures crumple up against themselves during systole to block off the channels between
the ventricles and the atria. In as much as 3% of the human population [1], parts of an atrioventric-
ular valve may even prolapse into the atrium. The atrioventricular valves’ mechanics are further
complicated by a web-like network of tendons—the chordae tendineae, or “heart strings”—which
tether the leaflets to the inside of the ventricles.

Computer simulations of the mechanics of heart valves play an increasingly important role in
research into treatments for valvular heart disease. The need for and history of such simulations
are reviewed in [2, 3]. As one might imagine, the treatment of contact mechanics is a major
concern in these computations and proves to be especially difficult in the case of atrioventricular
valves. Our previous work on aortic valve simulations [4–7] pointed out that to “avoid stagnation
in pathological configurations, we typically select the resolution of the nonlinear algebraic solution
by choosing a fixed number of iterations rather than a percentage by which the residual must be
reduced” [4, page 1028]. Subsequent autopsies of poorly-converged steps indicated that contact
forces were to blame for these “pathological configurations”.

Similar disclaimers can be found in other literature on aortic valve analysis. For example, to
ensure completion of forward solves in an inverse modeling procedure, Aggarwal and Sacks [8]
adhered to the following policy for terminating augmented Lagrangian iteration for contact: “After
10 augment iterations, the solution at current load was assumed to be converged irrespective of the
gap and Lagrange multiplier values, and simulation was continued onto the next time step” [8, page
917]. It is clear that simulation of even the relatively simple contact of the aortic valve is fraught
with difficulties. This has led some authors to instead apply brute-force explicit solution procedures
that do not require solving a nonlinear algebraic problem at each step. However, Morganti et
al. [9] reported that converging an explicit computation to a qualitatively-accurate configuration
of a closed valve using standard finite elements in the thoroughly-optimized commercial code LS-
DYNA [10] required more than 550 hours [9, Table 2] (i.e., more than 20 days). While the cited
study indicates that using LS-DYNA’s isogeometric analysis capabilities in place of finite elements
provided enormous improvements over that figure, the coarsest isogeometric computation still
required a time step of 2.3 × 10−7 s [9, Table 2], which is several orders of magnitude smaller than
the time step used for fluid–structure interaction (FSI) simulations in [4].

In light of these difficulties with aortic valve simulations, the outlook appears bleak for
properly-converged implicit simulation of the more complicated atrioventricular valves, especially
if one intends to study pathological configurations, such as prolapse, or incorporate FSI. Some
example analyses of normal mitral valve structural mechanics using ABAQUS [11] can be found
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in [12–14]. Lee et al. [13, Section 10.4.3] indicate that “implicit dynamic analysis with automatic
time stepping” was feasible in some cases, but the same authors note in [14, Section 2.6] that ex-
plicit dynamics using a time step of 10−6 s and mass scaling (as only the quasi-static limit was of
interest) proved to be “a more general computational framework for future extensions, such as in
vivo modeling and surgical simulations” [14, page 1287]. It is our experience that, even with the
best commercial off-the-shelf software, some degree of case-by-case troubleshooting is frequently
needed to solve complex contact problems using implicit methods. In the case of atrioventricular
valve analysis, preprocessing and troubleshooting labor may be magnified by the involvement of
contact between different combinations of 2D surfaces (leaflets) and 1D curves (representing the
chordae tendineae and/or the edges of leaflets). Analysis methods that treat these different contact
scenarios as separate cases are not only difficult to implement, but also often require additional pre-
processing effort by the end user, to identify contact surfaces and curves, specify types of contact,
and set a variety of options for each case (often by trial-and-error).

To approach the challenging problem of atrioventricular valve dynamics in a way that can be
directly combined with the fluid–structure interaction (FSI) analysis methods of [4–7], which treat
structural mechanics implicitly, we develop a novel contact formulation that builds on the concept
of using repulsive forces that derive from a potential, as studied by Sauer and De Lorenzis [15].
We modify this framework to use volume rather than surface potentials, which can be applied to
lower-dimensional objects (e.g., shells or cables) by multiplying surface or contour integrals over
those objects with factors of thickness or cross-sectional area. This eliminates the need for spe-
cial cases to handle contacts between objects of different co-dimensions to physical space. We
discretize the integrals to compute contact potential energy using direct numerical quadrature (as
applied to the case of electrostatic repulsion in [15, Section 5.3]), resulting in an n-body problem
to determine contact forces. In general, this would require a Barnes–Hut [16] or fast multipole
[17] approximation for computational efficiency. However, we simplify the n-body problem by
using a compactly-supported potential with a limited range, so that each quadrature point interacts
with only a handful of neighbors.1 The geometry of the contacting bodies is thus approximated
by a union of spherical potential supports, intersections of which are penalized in the potential en-
ergy functional for the system. The resulting discrete problem is similar in structure to that solved
by the “pinball algorithm” proposed in Belytschko and Neal [20], but we use a different penalty
function to apply forces to intersecting pinballs (i.e., supports of potential functions centered at
quadrature points). Another related approach to contact was developed earlier by Sauer [21], mo-
tivated by coarse-graining of inter-atomic potentials, but, in the present work, we do not attempt

1Another interesting approach to avoiding nonlocal interactions is to store contact potential energy as elastic po-
tential energy of a fictitious material filling the void between objects [18, 19].

4



to derive contact forces from any more basic physical principles; our choice of penalty function
is motivated by calculations indicating the minimal level of singularity needed to prevent intersec-
tion of contacting bodies. We find that this potential-based contact formulation, combined with a
specialized globalization strategy for nonlinear solution using Newton’s method and an adaptive
time stepping technique, provides a reliable way to solve complicated contact problems with shell
and cable structures, including atrioventricular valve dynamics.

The remainder of this paper is structured as follows. The formulation of the contact potential
energy is detailed in Section 2, and its implementation using numerical quadrature is discussed in
Section 3. The generic structural dynamics problem used for exposition in these sections is then
specialized to the dynamics of a thin shell coupled to cables in Section 4. The contact formulation
is tested in the context of this problem using several benchmarks. The right atrioventricular (i.e.,
tricuspid) valve is then modeled as an instance of this thin shell and cable problem in Section
5. Both normal and pathological tricuspid valve dynamics are successfully simulated. Section 6
summarizes our findings and discusses several other possible applications and extensions of the
developed techniques.

2. Volume potentials for contact

To treat contact between objects of various co-dimensions to physical space, we first consider
the case of solid bodies of co-dimension zero, then scale by factors of thickness and cross-sectional
area to adapt the theory to thin shells of co-dimension one and cables of co-dimension two. We
adopt this approach, in contrast to the surface potential framework of Sauer and De Lorenzis [15],
for maximal geometric versatility. While the use of a surface potential allows for analytical simpli-
fication in the case of smooth surfaces [15, Appendix A], it requires additional information about
the surface geometry. Formulation in terms of a volume potential permits contact to be modeled
between objects represented by clouds of quadrature points, requiring no special treatment for
contact between structures of arbitrary co-dimensions, with corners, edges, and other features that
would complicate traditional contact algorithms. Further, volume potential based contact is com-
patible with meshfree discretizations that allow new surfaces to emerge spontaneously, through
material rupture (e.g., the semi-Lagrangian reproducing kernel particle method (RKPM) [22]). It
might be construed as a disadvantage that volume potentials result in a thin layer of body forces, as
opposed to a true surface traction, but this force field could easily be integrated in the direction or-
thogonal to the surface as a post-processing step if surface tractions are desired. Alternatively, for
bodies with well-defined surface parameterizations and no possibility of rupture, contact surfaces
could be treated like structures of co-dimension one, by introducing a thickness length scale.

For simplicity of exposition, we assume, initially, that contact occurs between two disjoint
bodies. The extension to multiple bodies is straightforward. The extension to self-contact is for-
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mulated in Section 2.2. The contact potential energy of two bodies with reference configurations
Ω1

0 and Ω2
0 is given by

Ec =

∫
Ω2

0

∫
Ω1

0

φ (r12) dX1dX2 , (1)

where Xi ∈ Ωi
0 and

r12 = ‖(X2 + y (X2)) − (X1 + y (X1))‖`2 = ‖r12‖`2 , (2)

in which y is a displacement field defined over Ω1
0 ∪ Ω2

0 and ‖v‖`p =
(∑d

i=1 |vi|
p
) 1

p for v ∈ Rd and
p ≥ 1. To allow objects of nonzero co-dimension to simultaneously contact other objects from any
direction, we must strongly enforce non-penetration of objects. This requires that Ec → ∞ as the
distance between ∂Ω1

t and ∂Ω2
t approaches zero.

Remark 1. This potential energy term models frictionless contact. The absence of frictional ef-
fects is clear, as the formulation does not introduce any dissipative mechanisms. For bodies with
smooth boundaries, and with typical choices of φ, one expects the resulting contact forces to be
approximately normal to the boundaries. A detailed explanation of how tangential force contri-
butions cancel is provided by Sauer and De Lorenzis [15, Appendix A] for the case of surface
potentials. The cited article also comments briefly on how potential-based contact can be extended
to include friction.

Remark 2. Enforcement of a gap between objects may also be useful in conjunction with im-
mersed discretization schemes, in which the motion of a Lagrangian solid is derived from a veloc-
ity field represented on an Eulerian background mesh, either directly (e.g., [23, 24]), or through
the computation of some coupling traction (e.g., [4, 25]). For example, in the standard material
point method [24], a single continuous Eulerian velocity field represents the structure’s motion, so
sliding contact proves difficult unless material points from different parts of the structure are pre-
vented from coming within a background mesh dependent distance of one another. In the setting
of immersed FSI, Kadapa et al. [26] report that stable simulation of fluid–rigid-body interaction
using an immersed approach based on Nitsche’s method requires that the rigid bodies maintain a
background mesh dependent distance between one another. The enforcement of a gap between
immersed representations of structural components may seem to be at odds with the oft-touted
advantage of immersed discretizations in representing topology changes. However, if gap width is
tuned to match the size of elements in the background discretization, then it is, by construction, in-
sufficient to resolve any spurious flow of material. (Thus, in a strange twist of irony, the numerical
methods most capable of representing topology change tend to require it the least strictly.)

2.1. Selection of a potential

For computational tractability, we require that potentials have a finite range. To enforce non-
penetration, we also clearly need φ(r) → ∞ as r → 0. However, too weak a singularity might
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Figure 1: Notation for the integral used to show that p ≥ 4 is sufficient for the z-component of force on ω1 to diverge.

still permit interpenetration of objects. For instance, consider a finite-thickness slab of electrically-
charged material (i.e., φ(r) ∼ 1/r): a simple application of Gauss’s theorem shows that the resulting
electric field perpendicular to the slab never diverges, so that another charged object might tunnel
through this slab with a finite amount of work (cf. [15, Section 3, Example 11, Remark 1]). To
determine a sufficient strength of singularity for φ, let us consider smooth (or, at small scales,
essentially flat) surfaces of Ω1 and Ω2 in contact. Our goal in designing φ is for the total repulsive
force in the normal direction acting on ω1 ⊂ Ω1, as illustrated in Figure 1, to diverge.

Let us assume that, for r less than some O(1) length scale, the potential has the form

φ(r) ∼
1

rp−1 (for r sufficiently small). (3)

As mentioned above, the obvious inadequacy of electrostatic repulsion for contact modeling leads
us to the assumption that p > 2. The z-component of the force on ω1 can be bounded from below
as follows:

Fz &

∫
ω1

(∫
ωx

−φ′(D) cos θ dξξξ
)

dx , (4)

where the integration variables x and ξξξ have the axial and radial coordinates (r, z) and (ρ, ζ) respec-
tively, as shown in Figure 1, and D and θ depend on the integration variables x and ξξξ via

D =
√
ρ2 + (z + ζ)2 (5)

and
cos θ = (z + ζ)/

√
ρ2 + (z + ζ)2 . (6)

This is only a lower bound because it neglects additional repulsive forces on x ∈ Ω1 due to Ω2 \ωx.
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Integrating first over ωx, we get∫
ωx

φ′(D) cos θ dξξξ ∼
∫ H

0

∫ R

0

2πρ(z + ζ)(
D2) p+1

2

dρdζ (7)

=

∫ H

0

−
(

p+1
2 − 1

)−1
π(z + ζ)(

D2) p+1
2 −1

∣∣∣∣∣∣∣∣
R

0

 dζ (8)

=

∫ H

0

 C1(z + ζ)(
(z + ζ)2) p+1

2 −1
+ C2

 dζ (9)

=


C3 log

(
(z + ζ)2

)
+ C4 p = 3

−
C5(

(z + ζ)2) p+1
2 −2

+ C6 p ∈ (2,∞) \ {3}

∣∣∣∣∣∣∣∣∣
H

0

(10)

=

 −C3 log
(
z2

)
+ C7 p = 3

C8z3−p + C9 p ∈ (2,∞) \ {3}
, (11)

where Ci are (possibly non-constant) finite coefficients and terms whose precise values are not
important to the question of whether or not Fz is infinite. Integrating next over ω1, we obtain

Fz &

∫
ω1

 −C3 log
(
z2
)

+ C7 p = 3

C8z3−p + C9 p ∈ (2,∞) \ {3}

 dx (12)

= πR2
∫ H

0

 −C3 log
(
z2
)

+ C7 p = 3

C8z3−p + C9 p ∈ (2,∞) \ {3}

 dz . (13)

To ensure that this lower bound diverges, we need to take p ≥ 4. To have the desired asymptotic
behavior in the limit of r12 → 0 while maintaining a smooth but compactly-supported force field,
we propose to model contact with the following force–separation law:

− φ′ (r12) =


kc

(r12)p − c2 r12 < rin

c1 (r12 − rout)2 rin ≤ r12 < rout

0 otherwise

. (14)

where rin and rout are length scales governing the support of the potential function, and kc is a
dimensional constant. As discussed above, we assume p ≥ 4, to enforce non-penetration. The
scalars c1 and c2 are uniquely determined by smoothness and continuity constraints:

c1 =
pkc

2 (rout − rin) rp+1
in

(15)
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Figure 2: The function (14) with kc = 1, p = 4, rin = 1, and rout = 2.

and
c2 =

kc

rp
in

− c1 (rin − rout)2 . (16)

An instance of this force law is illustrated in Figure 2.
As alluded previously, the extension of this concept to structures of nonzero co-dimension is

accomplished by essentially performing one-point quadrature in the degenerated direction(s), to
obtain surface, line, or point potentials, scaled by appropriate length, area, or volume factors. The
conditions for non-penetration of potentials integrated on lower-dimensional geometries may be
less severe. For instance, as shown in [15, Appendix A], the force field due to a less-singular
1/r2 potential integrated over a smooth surface is sufficient to produce divergent repulsive forces.
The even milder electrostatic 1/r potential of an infinite line of charge can easily be shown, using
Gauss’s theorem, to result in an electric field that diverges as one approaches the wire. However,
these results are not robust for surfaces and curves with edges and endpoints, as often encountered
in practical examples.

2.2. Extension to self-contact

In many cases of practical interest, there is no clear way to partition a structure into distinct
parts that may contact one another; a body must be capable of contacting itself. To accomplish
this, we consider all solid parts to be a single body with reference configuration Ω0 and modify the
potential energy of contact to be

Ec =

∫
Ω0\BRself (X1)

∫
Ω0

φ (r12) dX1dX2 , (17)

where BRself(X1) is the Euclidean ball of radius Rself around X1 and r12 is defined as before, but with
both X1 and X2 in Ω0. The radius Rself must be selected in a problem-dependent way. It is clearly
bounded below by the range of the contact potential, but, in general, must be somewhat larger, to
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prevent material compression from being identified as self-contact. If chosen too large, however,
it might fail to identify some instances of self-contact.

3. Numerical implementation

In this section, we consider various aspects of implementing the proposed approach in finite
element simulations. For simplicity, we consider a generic structural dynamics problem on the
time interval (0,T ). A specific example will be formulated in Section 5. The generic problem we
consider in this section is: Find displacement y ∈ Sy such that for all test functions z ∈ Vy

B(y, z) + DzEc(y) = F(z) , (18)

where the forms B and F encapsulate the non-contact-related physics of the problem, Sy and Vy

are displacement trial and test function spaces, and Dz is a functional derivative in direction z.
Restricting y and z to yh and zh in finite-dimensional spaces Sh

y and Vh
y results in a finite element

semi-discretization of the first term on the left-hand side of (18). We focus in this section on the
discretization of the second term, which generates the contact forces.

We propose to compute the double integral in the definition of Ec numerically, using the same
collection of quadrature points for each layer of integration. This results in a discrete Np-body
problem:

Ec (y) ≈
Np∑
i=1

 Np∑
j=1

 wiw jφ
(
ri j

)
Ri j > Rself

0 otherwise


 , (19)

where Np is the number of quadrature points,

ri j =
∥∥∥∥(Xi + y (Xi)) −

(
X j + y

(
X j

))∥∥∥∥
`2

, (20)

Ri j =
∥∥∥Xi − X j

∥∥∥
`2 , (21)

Xi is the ith quadrature point and wi is its weight. The weights {wi} are assumed to include any addi-
tional length, area, or volume factors needed to convert surface, line, or point quadrature rules into
volume quadrature. In this way, there is no difference in treatment between various co-dimensions
of structural components when computing contact forces.

To ensure that the singular behavior is recovered as the distance between bodies shrinks all
the way to zero, one would need to employ an adaptive quadrature rule; otherwise, a point from
Ω2 could slip in between two points on the surface of Ω1 with a finite amount of work, making
it possible for Ω2 to tunnel through Ω1, due to quadrature errors. Alternatively, one can prevent
tunneling of objects through one another with a fixed quadrature rule by including an impenetrable
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Figure 3: Suppose that quadrature points XA and XB from body Ω1 are constrained to slide along the dashed line and
coupled by an elastic force, represented by the blue spring. Even with rmin > 0 and initially-overlapping regions of
infinite penalty for points XA and XB, the contacting point XC from Ω2 can drive them apart if pushed with sufficient
force.

core of infinite potential in the force–separation law. Consider the following modified force law:

− φ̃′ (r12) =

 ∞ r < 0
−φ′(r) otherwise

, (22)

where r = r12 − rmin and φ′ is as defined in (14). The support of the modified potential is of radius
rmin + rout. (A procedure to avoid states of infinite energy during iterative nonlinear minimization
of energy is given in Section 3.4.) If the zones of infinite potential about quadrature points in a
body overlap, then the body is essentially impenetrable. For elastic bodies, tunneling is still tech-
nically possible, as adjacent points may be stretched apart, as illustrated schematically in Figure 3,
but this would likely involve stresses well beyond the ultimate strength of most practical materi-
als. We have nevertheless been able to produce this behavior by mashing objects together under
displacement control. A similar concern is illustrated in [21, Figure 5.7].

3.1. Searching for interacting pairs of points

Due to the limited range of φ, the forces in the Np-body problem (19) can be evaluated effi-
ciently. Assuming that the spatial number density of points is bounded below, there are only O(Np)
nonzero terms in the double summation (19). We can avoid considering unnecessary pairs of points
by sorting all of the quadrature points into the cells of a uniform grid, of cell size greater than or
equal to the range rout + rmin of the potential. Then we only need to consider interactions between
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one point and others in the same or adjacent grid cells.
To describe the algorithm used precisely, we introduce some notation. Let the number of grid

cells be Nc. These cells are a collection of disjoint subsets of Rd denoted {ωi}
Nc
i=1 and cover the

entire deformed configuration of the solid. The locations of the quadrature points in the current
configuration are {xi}

Np

i=1. We assume, as is especially true in the case of structures with nonzero co-
dimension, that, while Nc may be very large, the vast majority of these grid cells are unoccupied at
any given time. Thus operations of cost Θ(Nc)2 (such as iterating over all elements of {ωi}) should
be avoided. Aside from allocating memory for the grid cells while initializing the data structure,
operations to re-sort the points {xi} into new cells as the structure deforms should only iterate
over occupied cells, of which there can be at most Np. Operations of cost Θ(Np) are necessarily
acceptable; otherwise, it would be impossible to apply the contact forces, regardless of how they
are computed.

We now introduce the necessary data structures for our algorithm:

• L is an array of Np integers. This will be used to store linked lists of indexes of quadrature
points. Because points fall within unique grid cells, these lists can all fit within a single array
of size Np. The storage and traversal of these lists is clarified below.

• S is a stack of integers. This is used to keep track of the indexes of occupied grid cells. S is
initialized to be empty.

• O is an array of Nc Boolean variables. O(i)3 indicates whether or not grid cell i is occupied.
O is initialized to false once, when it is first allocated, costing Θ(Nc) operations.

• H is an array of Nc integers. If O(i) is true, then H(i) indicates the head of a linked list of
indexes of points from the set {x j} contained in grid cell ωi. The array H is initialized to zero
once, when it is first allocated, costing Θ(Nc) operations.

The procedure for sorting elements of {xi} into grid cells {ωi} after the structure changes its config-
uration can be divided into two phases: purge the data structures of information about the previous
configuration, then populate the data structures with information about the new configuration. The
first phase, purging, is accomplished through the following steps:

1. Set the list L to zero. (Cost: Θ(Np), because L is of size Np.)

2. While S is not empty, pop index i from S , then set O(i) to false and H(i) to zero. (Cost:
O(Np), because at most Np cells can be occupied by Np points, assuming each is in a unique
cell.)

2Asymptotic notation in this section follows standard computer science conventions. See, e.g., [27].
3Note that, in the present document, this is distinguished from “big O” asymptotic notation by font.
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The second phase is accomplished by doing the following for each element xk of the set {xi}:

1. Identify the index i such that xk ∈ ωi. This can be accomplished in O(1) time, because the
{ω j} are elements of a uniform grid.

2. If O(i) is false, set it to true and push i onto the stack S . (If O(i) is already true, do not
redundantly push i.) This step also has cost O(1).

3. Update the linked list of points within this cell:

(a) Store the old head of the linked list: h0 ← H(i).

(b) Set xk’s index as the new head: H(i)← k.

(c) Connect the new head to the linked list: L(k)← h0.

These steps cost O(1) time.

The cost of updating the data structures to reflect a change in the configuration of the structure is
therefore Θ(Np). Once the data structures have been populated by the above algorithm, the list of
points from {x j} contained in an occupied cell ωi can be traversed by looking at the point xi1 , where
i1 = H(i), then looking at xi2 , where i2 = L(i1), and so on, until L(in) = 0, indicating the end of the
list.4 If we assume that the points {xi} are distributed such that the number falling within any cell
is O(1), then the cost of computing forces between all points in a cell and any adjacent occupied
cells is O(1).

Remark 3. If the memory cost of storing H and O is prohibitive, random subsets of {ωi} can be
mapped to bins of a hash table, through some nontrivial hash function mapping the cell index range
{1, . . . ,Nc} onto a smaller range {1, . . . ,NH}, with NH < Nc. However, increasing the load factor
(Np/NH) in this way comes at the cost of possibly computing moderately more zero forces between
out-of-range pairs of points. We have not found it necessary to use hash functions other than the
identity map in our computations, as memory was never a limiting factor.

3.2. Comparison with the pinball algorithm

As mentioned in Section 1, the fully-discrete penalization energy (19) can be construed as a
variant of the pinball algorithm proposed by Belytschko and Neal in [20]. The idea of the pinball
approach is to approximate the geometry of a structure by a collection of balls, referred to as
“pinballs”, for the purposes of collision detection. Overlap of pinballs from different contacting
bodies is then penalized, to prevent structures from intersecting one another. A refinement of

4This structure is inspired by the cluster maps used in FAT file systems.
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this approach by Belytschko and Yeh, called the “splitting pinball method” [28, 29], tested for
collisions using a hierarchical approach, such that, if two pinballs are detected as overlapping,
each of them is split into a collection of finer pinballs (which may themselves be split, and so on,
up to some user-defined recursion depth), to better approximate the underlying structural geometry.

Despite its simplicity and intuitive appeal, the pinball method remains relatively obscure today.
It is, however, implemented in several actively-maintained production codes for explicit dynamics,
such as EUROPLEXUS [30] and LS-DYNA [10]. According to the LS-DYNA manual [31], the
original pinball method is “not recommended and is included only for back compatibility” [31,
page 11-64], but the splitting variant [28, 29], added fairly recently in LS-DYNA R7.1, “is rec-
ommended when modeling complex contacts” [31, page 11-65]. Approaches with some similar
features to the pinball algorithm have been developed independently for use in meshfree meth-
ods, where it is natural to consider the structure geometry as a collection of spheres and use these
spheres to detect collisions. An example of such a method would be the kernel contact approach
proposed by Guan et al. [22, Section 4].

We may view each quadrature point in our discrete formulation as a pinball of radius (rout +

rmin)/2. The original paper on the pinball method [20] includes a separate definition of the surface
normal vector at each pinball, but, in the later splitting approach, “The penalty force is always
exerted in the direction between pinball centers, which enables the method to handle edge-to-
surface, surface-to-surface and edge-to-edge contact” [29, page 382], which is more similar to
what is done in the potential-based formulation of this paper. If we reinterpret the pinball approach
as a quadrature scheme for a distributed contact force, the splitting variant is essentially adaptive
quadrature.

3.3. Linearization of pairwise interactions

The interaction energy of two quadrature points at material positions X1 and X2 (separated by
more than Rself at time zero) can be written as

e12 = Cφ (r12) , (23)

where the scalar C accounts for quadrature weights of the two points. The contribution of this pair
of points to the variational problem (18) is

Dze12 =
d
dε

e12(y + εz)
∣∣∣∣∣
ε=0

= Cφ′ (r12) r̂12 · (z2 − z1) , (24)
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where r̂12 = r12/‖r12‖`2 and zi = z (Xi). The linearization of this virtual work (needed to resolve
static or dynamic equilibrium via Newton–Raphson iteration) is the Hessian

D∆y (Dze12) =
d
dε

(Dze12) (y + ε∆y)
∣∣∣∣∣
ε=0

(25)

= Cφ′′ (r12) (∆y2 − ∆y1) (r̂12 ⊗ r̂12) (z2 − z1)

+ C
φ′ (r12)

r12
(∆y2 − ∆y1) (I − r̂12 ⊗ r̂12) (z2 − z1) , (26)

where I is the identity map and ∆yi = ∆y (Xi).

3.4. Solution algorithm

The singular nature of the contact potential warrants special care in the time stepping and non-
linear algebraic solution procedures for discretized instances of our generic problem (18). We find
that reliably obtaining “fire and forget” robustness in computations using our proposed formula-
tion requires a combination of adaptive time stepping and modifications to Newton’s method for
nonlinear solution within each time step. For generality, we spell out our solution algorithm for
use with the modified potential (22); the potential (14) can be recovered by taking rmin → 0.

Let us suppose that the generic problem (18) represents nonlinear elasticity in the Lagrangian
description. Then we write

B(y, z) = ρ0ÿ + A1(y, z) + A2(ẏ, z) . (27)

If we discretize in time using the generalized-α procedure, (18) yields the following problem within
each time step: Given yn, ẏn, and ÿn, find yn+1 such that, for all z,

R(yn+1, z) =

∫
Ω0

ρ0ÿn+αm · z dΩ + A1
(
yn+α f , z

)
+ A2(ẏn+α f , z) + DzEc

(
yn+α f

)
− F(z) = 0 , (28)

where ρ0 is the mass density in the reference configuration Ω0 and ÿn+αm , ẏn+α f , and yn+α f are the
“α-level” acceleration, velocity, and displacement (interpolating between the n and n+1 level data),
which can be expressed in terms of the unknown function yn+1 and the data from the previous time
step. The velocity and acceleration ẏn+1 and ÿn+1 are also defined in terms of yn+1 and n-level quan-
tities, thus providing all data needed for the subsequent step; full formulas are given in [32], using
the same notation. In this work, we restrict the selection of generalized-α parameters to the one-
parameter family of methods detailed in [32], where the parameter ρ∞ ∈ [0, 1] controls the spectral
radius of the amplification matrix in the high-frequency limit. If we pose the problem (28) over
finite dimensional test and trial spaces, with the test space spanned by the basis {N1, . . . ,NNDOF},
we get a nonlinear algebraic problem for NDOF unknown coefficients. For mild instances of the
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problem, starting from good initial guesses, this can be resolved using Newton iteration. In our
notation, the standard Newton iteration procedure would begin with yn+1

0 and, at the kth iteration
would execute: Find ∆yk, such that for all A ∈ {1, . . . ,NDOF},

D∆ykR
(
yn+1

k ,NA

)
= −R

(
yn+1

k ,NA

)
, (29)

then set
yn+1

k+1 = yn+1
k + ∆yk . (30)

The iteration continues until
‖Rk‖`2∥∥∥Fk

0

∥∥∥
`2

≤ ε , (31)

or until some divergence criterion is encountered, where

[Rk]A = R
(
yn+1

k ,NA

)
, (32)

Fk
0 ∈ R

NDOF is a reference force vector, and ε > 0 is a dimensionless tolerance. The best choice of
Fk

0 is problem-dependent; a common choice for static problems or problems with prescribed loads
in all time steps is to set its components equal to the external force form F applied to each basis
function of the test space.

Newton iteration is only locally convergent, meaning that, if yn+1
0 is too far from a fixed point,

the iteration may fail to converge. One way to increase the radius of convergence is to use a line
search, which modifies (30) to

yn+1
k+1 = yn+1

k + αrelax∆yk , (33)

where the scalar αrelax is selected to minimize ‖Rk+1‖`2 . Solving for αrelax generally requires re-
peated assembly of the residual vector, to execute a 1D minimization scheme. A cheaper alter-
native is to compute αrelax in a heuristic way, with the goal that ‖Rk+1‖`2 is never “too big”. We
have developed a heuristic algorithm for computing αrelax that is tailored to our contact potential
formulation and pinball-style discretization.

In our nonlinear solution approach, we assume that the initial guess for the Newton iteration
is yn+1

0 = yn. Such a “same-displacement” predictor is not typically considered ideal for dynamic
problems, but it prevents the iteration from beginning in a configuration with extreme or infinite
contact forces. Then, in each iteration, we compute the relaxation parameter αrelax as follows:

1. Initialize αrelax ← 1 and F ← 0.

2. While F = 0,

(a) Identify tentative n + 1 and n + α f level displacement fields using the current value of
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αrelax and the formula (33).

(b) If one or both of these tentative configurations leads to an infinite potential (i.e., there
are quadrature points closer together than rmin), then reduce αrelax by half: αrelax ←

αrelax/2. Otherwise, set F = 1.

(c) If there exist a pair of quadrature points in the tentative n+1 level configuration that are
closer together than fsingularrin + rmin and the maximum nodal displacement magnitude
∆ymax of the increment αrelax∆yk is greater than fmax∆yrout, reduce αrelax further:

αrelax ← min
{
αrelax, fmax∆yrout/∆ymax

}
. (34)

This step prevents iterates from rapidly escaping the modified Newton method’s radius
of convergence if the iteration wanders into a region of extremely large contact forces.
The dimensionless parameters fsingular ≥ 0 and fmax∆y > 0 are user-defined.

In principle, if this step alters αrelax, we should re-set F ← 0, to check again for the
error state of an infinite potential. However, this possibility is extremely unlikely and
does not justify the extra computational cost. We omit this precaution in practice, and
have never encountered the error state in computations.

With empirically-selected fmax∆y and fsingular, this heuristic method of limiting the Newton in-
crement size can make the nonlinear iteration much more robust. However, the iteration is still
prone to stagnation or divergence when the time step size is too large. To remedy this problem,
we adopt an adaptive scheme for time step selection. Much of the existing literature on adaptive
time stepping is focused on improving accuracy. Typical criteria for reducing or increasing time
step size are based on comparing the solutions obtained from higher and lower order schemes, to
estimate the level of error in the current time step. (See, e.g., [33, Algorithm 1].) However, the
application of such a criterion presupposes that the algebraic problem at the current time step is
sufficiently tractable to obtain the high- and low-order solutions. For contact problems, this may
not be a safe assumption. We follow the alternate philosophy of reducing the time step only when
it is necessary to permit progress of the simulation and coarsening if the nonlinear problem is re-
solved with few iterations. This is based on the assumption that a prescribed maximum time step
provides sufficient accuracy, and adaptivity is applied strictly for solubility purposes. One might
also attempt to combine accuracy-based and progress-based criteria, but we have not investigated
this possibility in detail. Our adaptive time stepping scheme has the following free parameters:

• ∆tmax: The maximum time step.

• Icoarsen: A number of nonlinear solver iterations indicating rapid convergence and suggesting
that the time step is unnecessarily small.
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If the nonlinear solver diverges, ∆t ← ∆t/2 and the time step is recomputed. If the nonlinear solver
converges in a number of iterations less than or equal to Icoarsen and the index i that the time step
would have had if the entire computation was performed with step size ∆t satisfies mod(i, 2) = 0,
then ∆t ← min{2∆t,∆tmax}. The constraint that i must be even to coarsen ensures that there always
exists a sub-sequence of time steps at times 0,∆tmax, 2∆tmax, . . ., which is convenient for post-
processing and visualization purposes.

The performance of the adaptive time stepping scheme hinges critically on the choice of diver-
gence criterion in the nonlinear solver. The simplest choice is to enforce a maximum number of
steps. However, this may prove wasteful in comparison with monitoring the nonlinear residual’s
progress and aborting the iteration if it fails to decrease by a sufficient amount. An overly-eager
divergence test, on the other hand, may shrink the time step excessively. To balance these two
concerns, we introduce two additional free parameters, to define the divergence test in the Newton
iteration:

• 0 < fprogress < 1: The fraction by which the residual must reduce between iterations.

• Icheck > 1: The nonlinear iteration index after which we check for divergence.

• Imax > 1: The absolute maximum number of iterations allowed.

Divergence of the nonlinear iteration at step k is thus signalled by the condition(k > 1) ∧

‖Rk‖`2∥∥∥Fk
0

∥∥∥
`2

> fprogress
‖Rk−1‖`2∥∥∥Fk−1

0

∥∥∥
`2

 ∧ (
‖Rk‖`2 > fprogress ‖Rk−1‖`2

)
∧ (k ≥ Icheck)

 ∨ (k > Imax) .

(35)
The term

(
‖Rk‖`2 > fprogress ‖Rk−1‖`2

)
is only necessary if the reference force vector Fk

0 actually
depends on k.

Remark 4. It may sound reasonable to simply set Icheck = 2 and demand monotonic progress.
However, in contact problems, we often observe an increase in the nonlinear residual from k = 1
to k = 2, as new contacts initiate. If Icheck = 2, then a pathological pattern of refinement may be
triggered, in which contact occurs at k = 2, the step is flagged as divergent, the time step is halved,
one smaller step converges, then, on the next step, contact occurs at k = 2, the step is flagged,
and so on, resulting in a demonstration of Zeno’s paradox. We therefore recommend selecting
Icheck ≥ 3.

3.5. Summary of parameters

We have introduced a number of free parameters in the specification of the potential, φ, and our
solution algorithm. This section lists these parameters and comments on their qualitative effects.
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• Parameters of the potential function:

– p is dimensionless and determines the strength of the singularity in the potential. To
ensure non-penetration, it should be chosen ≥ 4. Excessive singularity may make
computations less tractable, and we primarily use p = 4.

– kc has dimensions of MLp−5T−2 and scales the overall stiffness of the potential. Larger
values may require smaller time steps.

– rin is the length scale over which the singular part of the potential acts and rout − rin is
the distance over which the polynomial part of the potential acts. Reducing rout toward
zero will approach a classical contact constraint, but will also make the contact forces
stiffer, requiring smaller time steps to resolve impact events.

– rmin is the radius within which the potential goes to infinity. In problems with high
contact pressures, it may be helpful to set this so that quadrature points are spaced
more closely than rmin.

• Parameters of the solution algorithm:

– fsingular ≥ 0 is dimensionless and determines what fraction of the singular part of the
potential function’s domain (rmin < r12 < rin) generates sufficiently-rapidly-varying
forces to warrant prophylactic relaxation of the nonlinear iteration. Larger values may
slow down the nonlinear iteration, but may also prevent divergence and subsequent
time step refinement.

– fmax∆y > 0 is dimensionless and determines the maximum allowable nodal displace-
ment of a nonlinear solution increment, as a fraction of rout, when relaxation is deemed
necessary based on the choice of fsingular. Smaller values slow down the nonlinear iter-
ation, but may prevent divergence and subsequent time step refinement.

– ∆tmax is the maximum allowed time step size and should be selected to ensure sufficient
time resolution, as the dynamic time stepping algorithm of Section 3.4 is based only on
ease or difficulty of nonlinear solution, not time accuracy of the solution.

– Icoarsen is an integer indicating what number of nonlinear iterations suggest that the time
step is unnecessarily small. Smaller values of Icoarsen make coarsening less likely, and
may lead to overly-conservative time step sizes. However, larger values may lead to
false positives, in which the time step is coarsened, the nonlinear solution diverges, and
the time step is refined again. Such false positives also result in unnecessary computa-
tion.
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– 0 < fprogress < 1 indicates a fraction by which the nonlinear residual must be reduced
between nonlinear iterations for the solution process to be viewed as making progress.
Selecting this too large may permit long, slowly-converging nonlinear solves in situa-
tions where it might be more efficient to simply take more time steps. Setting this too
small results in excessive temporal refinement.

– Icheck > 1 is an integer indicating how many iterations to take before testing for diver-
gence or stagnation with fprogress. Its selection is discussed in Remark 4.

– Imax is an integer indicating the absolute maximum number of iterations allowed in a
nonlinear solution process. Given reasonable choices of fprogress and Icheck, this can be
set quite large, or even infinite with little impact on performance.

Determination of more precise, quantitative guidelines for parameter selection is deferred to future
studies.

4. Specialization to isogeometric analysis of shell and cable structures

In this section, we fill in the details of a particular case of the generic problem (18) considered
earlier. To be able to model atrioventricular valves, we need to devise a coupled problem consisting
of shell structure and cable subproblems. We specify this problem by defining

B(y, z) =Bsh
(
ysh, zsh

)
+ Bca (yca, zca)

+

Nλ∑
i=1

λλλi ·
(
zsh

(
Xλ,sh

i

)
− zca

(
Xλ,ca

i

))
+

Nλ∑
i=1

δλλλi ·
(
ysh

(
Xλ,sh

i

)
− yca

(
Xλ,ca

i

))
, (36)

where we consider the test and trial functions to be tuples

y = {ysh, yca, λλλ1, . . . λλλNλ
} ∈ Ssh

y × S
ca
y × R

d × . . . × Rd = Sy (37)

and
z = {zsh, zca, δλλλ1, . . . δλλλNλ

} ∈ Vsh
y ×V

ca
y × R

d × . . . × Rd = Vy . (38)

We likewise define
F(z) = Fsh

(
zsh

)
+ Fca (zca) . (39)

In the above notation, symbols superscripted with “sh” are associated with the shell structure sub-
problem and symbols superscripted “ca” are associated with the cable subproblem. (Point evalua-
tions of “y” and “z” in the contact energy formulation above are understood to employ whichever
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solution component is relevant.) Each vector λλλi is a Lagrange multiplier to enforce matching dis-
placements of the material point Xλ,sh

i on the shell structure and point Xλ,ca
i on the cable structure,

the latter typically being an endpoint of an individual cable. We formulate the constraint in this
way to more naturally accommodate non-conforming discretizations, in which the displacement of
the shell structure at Xλ,sh

i is not controlled by a single vector-valued unknown (e.g., the displace-
ment of a “node” in traditional finite element analysis, which could simply be shared between the
cable and shell subproblems in a conforming discretization). For computational convenience, we
approximate these Lagrange multipliers using penalty forces, i.e.,

λλλi ≈ β
sh–ca

(
ysh

(
Xλ,sh

i

)
− yca

(
Xλ,ca

i

))
, (40)

where βsh–ca > 0 is a penalty parameter. We thereby replace B with

Bpen(y, z) =Bsh
(
ysh, zsh

)
+ Bca (yca, zca)

+

Nλ∑
i=1

βsh–ca
(
ysh

(
Xλ,sh

i

)
− yca

(
Xλ,ca

i

))
·
(
zsh

(
Xλ,sh

i

)
− zca

(
Xλ,ca

i

))
. (41)

In general, one might estimate appropriate values for βsh–ca from problem data and mesh element
size, using dimensional analysis. In this work, we simply select an effective value of βsh–ca based
on numerical experiments, as we are primarily focused on a specific class of problems.

4.1. Shell structure subproblem

The shell subproblem forms Bsh and Fsh are defined and discretized as in [34]. Breifly, the
shell structure is modeled using Kirchhoff–Love thin shell assumptions, with an arbitrary hyper-
elastic constitutive model. The thin shell problem in terms of displacement demands at least H2

regularity of the test and trial spaces; to satisfy this requirement in a standard Bubnov–Galerkin
discretization, we use smooth spline function spaces to represent the geometry and displacement
in an isogeometric fashion. Smooth isogeometric surface discretizations are also known to im-
prove performance in contact problems [35–37]. In particular, we solve for a displacement y of the
current midsurface configuration Γt from its reference configuration Γ0 and let

Bsh
(
w, ysh

)
=

∫
Γ0

w · hthρ0ÿsh dΓ +

∫
Γ0

∫ hth/2

−hth/2
δE : S dξ3dΓ +

∫
Γ0

w ·Cshhthρ0ẏsh dΓ (42)

and
Fsh (w) =

∫
Γ0

w · ρ0hthf dΓ +

∫
Γt

w · hnet dΓ , (43)
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where ρ0 is the mass density in the reference configuration, hth is the shell thickness, S is the
second Piola–Kirchhoff stress, E is the Green–Lagrange strain, δE is its functional derivative in
the direction w, Csh is a mass damping coefficient, f is the prescribed body force, and hnet is the
sum of the tractions prescribed on the two sides of the shell structure. The Green–Lagrange strain
is determined from y according to the kinematic assumptions of Kirchhoff–Love shell theory, as
detailed in [34]. In the examples of this paper, we determine S using a variety of hyperelastic
constitutive models, which we specify in the sequel.

4.2. Cable subproblem

Our definitions of the forms Bca and Fca are based on the isogeometric bending-stabilized cable
formulation of Raknes et al. [38]. The cited work uses kinematic assumptions to express the
mechanics of the cable in terms of a 1D middle curve, parameterized by coordinate ξ1. Let points
in the reference configuration S 0 of this curve be parameterized X

(
ξ1

)
and points in the deformed

configuration S t be parameterized x
(
ξ1

)
, such that x

(
ξ1

)
= φ

(
X

(
ξ1

))
, where φ : S 0 → S t is the

motion of the deforming curve. The displacement yca : S 0 → R
d is then given by

yca
(
X

(
ξ1

))
= x

(
ξ1

)
− X

(
ξ1

)
. (44)

Covariant and contravariant basis vectors for the reference configuration are

G1 =
∂X
∂ξ1 and G1 =

G1

‖G1‖`2
. (45)

Because of the small thickness of the cables in our target applications, we omit bending terms
present in formulation of [38] and define

Bca(w, yca) =

∫
S 0

w · A0ρ0ÿca dS +

∫
S 0

δε EcaA0‖G1‖4
`2ε dS +

∫
S 0

w ·CcaA0ρ0ẏca dS (46)

and
Fca(w) =

∫
S 0

w · A0ρ0f0 dS −
∫

S t

w · h dS , (47)

where
ε =

1
2

(
∂x
∂ξ1 ·

∂x
∂ξ1 −

∂X
∂ξ1 ·

∂X
∂ξ1

)
(48)

is the extensional strain,

δε =
∂w
∂ξ1 ·

∂x
∂ξ1 (49)

is its functional derivative in the direction w, ρ0 is the mass density (per unit volume) in the refer-
ence configuration, f0 is a body force in the reference configuration, h is a traction (per unit length)
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in the current configuration, A0 is the cable’s cross-sectional area in the reference configuration,
the Young’s modulus, Eca, determines the tensile stiffness of the cable, and the mass damping co-
efficient Cca provides dissipation. The use of a Young’s modulus to determine stiffness is based on
the assumption of a St. Venant–Kirchhoff material model. The justification for this assumption in
the context of modeling chordae tendineae is discussed in Section 5.2.2.

4.3. Quadrature of contact energy

For all computations in this paper, we numerically-integrate the contact force form DzEc (yn+α f )

in (18) with the same collection of quadrature points used to integrate the weak forms of the shell
and cable subproblems. This choice is not necessary, and, in cases where shell and cable elements
are substantially larger than the length scale parameter rout in the contact potential formulation, it
may be a poor choice, as it would lead to either unnecessary over-integration of structural mechan-
ics, or inaccurate under-integration of contact forces.

4.4. Numerical testing

We now use several benchmark problems to demonstrate the properties of the proposed contact
method. For the examples in this section, we model the shell structure as a St. Venant–Kirchhoff

material, i.e., S = �E, where� is the fourth-order isotropic elasticity tensor determined by Young’s
modulus E and Poisson’s ratio ν.

4.4.1. Sphere and plate subjected to gravitational force

The first test problem involves two shell structures: a sphere (of radius 0.125) and a thin circular
plate (of radius 0.35), initially positioned as shown in Figure 4. A zero-displacement boundary
condition is applied to the edge of the circular plate, and both the sphere and plate are subject to
gravitational force and damping until a static equilibrium configuration is reached. The material
parameters of both shell structures are E = 2.1 × 105 and ν = 0.3. The plate has density ρ0 = 1
and thickness hth = 0.003. The sphere is made heavier and more resistant to bending by setting
ρ0 = 10 and hth = 0.03. Gravitational acceleration is set to 980.665. The parameters used to define
the contact potential are p = 4, kc = 1.0, rin/(rout − rmin) = 0.5, rmin/rout = 0.5, and rout = 0.01.

The midsurfaces of these shells can be represented exactly using bivariate cubic T-splines [39],
allowing an isogeometric discretization. Three T-spline meshes, denoted as M0, M1 and M2,
are used in this study. M1 is a global h-refinement of M0, and M2 is an h-refinement of M1.
M0, M1 and M2 contain a total of 690, 1565 and 5180 Bézier elements, respectively. The Bézier
elements of M1 is shown in Figure 4. The T-spline meshes are generated by the Autodesk T-Splines
Plug-in [40] for Rhinoceros [41]. Problems are considered to have reached a static equilibrium
configuration when the `∞ norm of the vector of changes in x3-direction displacement unknowns
between two time steps is smaller than 10−8. A representative numerical solution is shown in
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Figure 4: The Bézier elements of the T-spline sphere–plate model. (The sphere is a hollow shell structure.)

Figure 5: The steady state of the sphere–plate interaction subject to gravitational force.
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Figure 6: Results of mesh independence study of the sphere–plate interaction subject to gravitational force.

Figure 5. Figure 6a shows the vertical slice cutting through the center of the model, qualitatively
demonstrating convergence of the displacement fields.

To show that quantities of interest associated with contact will converge with mesh refinement,
we look at the convergence of the area of the contact region. In our target application of heart
valve analysis, area of the contact region, or, the coaptation area (CA), is an important quantitative
measure of how effective a valve is at blocking flow [9]. We calculate the CA by integrating the
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surface area over all Gauss points with nonzero contact forces.5 Figure 6b shows CA as a function
of the number of Bézier elements in the model. The relative error in CA satisfies the convergence
criterion |CA1 − CA2| < 0.01 CA2, where CAi is the CA on mesh Mi.

4.4.2. Sphere–plate impact

It is clear that a spatial semi-discretization of the problem (18) will conserve energy exactly
(assuming that B and F derive from potentials, e.g., B from hyperelasticity and F from gravity).
To demonstrate that this property can be recovered to a high degree of accuracy in fully discrete
solutions, we use a benchmark proposed by Cirak and West [42] and later studied by Vouga et
al. [43]. To study energy conservation, we integrate in time with the implicit midpoint rule, which
is symplectic [44, Theorem VI.3.5], and can be obtained as a special case of generalized-α inte-
gration, with ρ∞ = 1 (i.e., no high-frequency dissipation).

The problem specification is reproduced from [42]. The problem uses the same T-spline mesh
M1 as shown in Figure 4, but the sphere and the plate are both free to move. The sphere and the
plate initially travel toward one another with a relative velocity of 100. Both objects are modeled
as Kirchhoff–Love thin shells of thickness hth = 0.0035. The initial mass density of the shell
structures is ρ0 = 0.0785. The constitutive parameters of the sphere and plate are E = 2.1 × 105

and ν = 0.3, as in Section 4.4.1. The parameters used to define the contact potential are p = 4,
kc = 10.0, rin/(rout − rmin) = 0.7, rmin/rout = 0.5, and rout = 0.003.

The maximum time step size is set to ∆tmax = 10−6. Adaptive time stepping is never triggered
for this problem using that time step, even for very small nonlinear convergence tolerances, so
∆t = ∆tmax in all steps. Several snapshots of the displacement solution are rendered in Figure 7.
The kinetic, elastic, contact, and total energies are plotted as functions of time in Figure 8. It is
clear that total energy is conserved well. The small proportion of total energy stored as contact
potential energy is consistent with the contact potential approximating a workless constraint.

Remark 5. This benchmark is quite mild from the perspective of nonlinear solution, and the prob-
lem can be converged with even larger time steps. However, using too large a time step results in
significant energy errors. Energy errors can be induced at the current time step by shrinking the
contact length scale rout or increasing the penalty scaling parameter kc (but conservation is still,
of course, recovered under refinement in time). Even when using a symplectic integrator, one
must use sufficient resolution in time to obtain the oft-cited long-time (near) energy conservation
of such methods.6 A way to consistently achieve conservation without tuning of the time step or

5Tacit in this definition of CA is the assumption that rout is small relative to the overall length scale of the structure
geometry. If rout were large relative to the structure, the entire surface of the structure would carry contact forces, and
convergence of CA would be trivial.

6It is possible to conserve energy exactly [44, Section IV.4], but this can actually disrupt the good qualitative

25



(a) t = 0.0015

(b) t = 0.002

(c) t = 0.0025

Figure 7: Snapshots of the sphere–plate impact problem at several time frames.
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Figure 8: The history of the kinetic, elastic, contact, and total energies for the sphere–plate impact problem.

parameters might be to introduce an additional accuracy-based criterion for time step adaptation,
as discussed in Section 3.4, but we have not investigated that possibility thoroughly.

behavior of symplectic integration that is frequently (and perhaps misleadingly) attributed to good long-time energy
conservation [44, Example IV.4.4].
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Figure 9: The reef knot problem setup. Black lines indicate the Bézier elements of the reef knot B-spline surface. This
is the stress-free configuration of the ribbons.

4.4.3. Reef knot

To demonstrate the ability of the proposed approach to handle two-sided self-contact of thin
structures with free edges, we introduce a benchmark inspired by the similar reef knot example
of [43, Section 8.4]. Two thin 58 cm × 2 cm rectangular ribbons, which consist of 1980 cubic
B-spline elements, are positioned as a loosened reef knot. We constrain the ends of the ribbons to
move only in the x-direction. To tighten the knot, we prescribe tractions of hnet = ±(104 dyn/cm2)e1

on the regions colored gray in Figure 9. The area of each gray region is 3.2395 cm2, yielding a
force (F) with magnitude of 3.2395 × 104 dyn acting on each end of the ribbon. The Young’s
modulus of the ribbons is E = 1 × 108 dyn/cm2, the Poisson’s ratio is ν = 0.4, the thickness
is 0.004 cm, and the mass density is 1 g/cm3. The parameters defining the contact potential are
p = 4, kc = 1.0 × 107 cmp−5s−2g, rin/(rout − rmin) = 0.7, rmin/rout = 0.7, and rout = 0.1 cm. A
damping traction of −(10 cm−2s−1g)ẏ is applied to the shell structure midsurface throughout the
analysis.

Figure 10 shows two snapshot of the reef knot tying simulation at t = 0.08 s and t = 0.4 s.
Intersections of the ribbon midsurfaces with a planar slice illustrate the two-sided self-contact of
thin structures with free edges. Adaptive time step size over the history of the simulation is shown
in Figure 11. It clearly shows that the adaptive subdivision of time step size is triggered when
the contact comes into effect. More nonlinear iterations are needed to address the nonlinearity
introduced by the numerical contact. As the simulation approaches steady state, the time step size
are coarsen until the ∆tmax is recovered.

5. Application to isogeometric analysis of atrioventricular valve dynamics

We now demonstrate the proposed contact methodology, and its integration with isogeometric
shell and cable formulations, in the context of a specific application: the structural dynamics of
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(a) t = 0.08 s (b) t = 0.4 s

Figure 10: Results with cross-sectional slices.
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Figure 11: Time step size and number of nonlinear iterations at each time step of the knot-tying simulation.

the right atrioventricular valve, also referred to as the tricuspid valve. To focus on issues related to
contact, we consider a pure structural mechanics problem, in which the surrounding blood flow is
modeled by a pressure load on the valve leaflets and mass-proportional damping.

5.1. Geometrical modeling

We construct an idealized tricuspid valve geometry based on a combination of the model shown
in [45] and segmented micro-CT images of porcine tricuspid valves from C.-H. Lee’s lab. The
leaflets and chordae are described geometrically by cubic B-spline surfaces and curves. A number
of studies have previously found such spline surfaces and curves to be convenient representations
of atrioventricular leaflet and chordae geometries extracted from imaging data [14, 46, 47]. The
Bézier element meshes of these spline structures are shown in Figure 12. The cross-sectional area
of the chordae is about 0.00171 cm2 [45, 48], yielding a chordae radius of 0.023 cm. The leaflet
thickness is 0.0396 cm [45, Table 1].

To demonstrate the capability of the proposed contact methods, we also consider a modification
of the geometry described above. We model the atrioventricular valve pathology of prolapse,
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leaflet

Figure 12: The B-spline surface and elements of the tricuspid valve leaflet and the B-spline chordae.

by severing the chordae highlighted in blue in Figure 12. This pathology is common in the left
atrioventricular valve [49], but may also occur in the right side of the heart [50]. Prolapse of
atrioventricular valves tends to cause regurgitation (i.e., flow of blood back into the atrium) during
systole [1].

5.2. Material modeling

Accurate modeling of tricuspid valve structural mechanics requires careful attention to the
constitutive modeling of the leaflet tissue. The extreme nonlinearity of a realistic soft tissue model
also serves to test the robustness of the solution algorithm developed in Section 3.4.

5.2.1. Leaflets

To model the leaflet tissue, we assume that the material is incompressible and the second Piola–
Kirchhoff stress, S, is computed from the Green–Lagrange strain, E, using an isotropic Fung-type
material model, in which the extracellular matrix and fiber stiffness contributions are modeled by
neo-Hookean and exponential terms, respectively. Specifically,

S = 2
∂ψel

∂C
− pC−1 , (50)

where
ψel =

c0

2
(I1 − 3) +

c1

2

(
ec2(I1−3)2

− 1
)

, (51)

and
∂ψel

∂C
=

1
2

(
c0 + 2c1c2(I1 − 3)ec2(I1−3)2)

I . (52)
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In the above, C = 2E + I is the right Cauchy–Green tensor, p is a Lagrange multiplier enforcing
incompressibility7, and c0, c1, and c2 are material parameters. For the tricuspid valve, we use
c0 = 10 kPa, c1 = 0.209 kPa, and c2 = 9.046. (c1 and c2 are obtained from [45, Table 2].) The
leaflet mass density is 1 g/cm3.

Remark 6. The exponential term in (51) leads to nonlinearities that are especially difficult to
resolve. We improve the robustness of our nonlinear solution procedure by assembling the tangent
operator D(·)R(yn+1

k ,NA) (cf. Section 3.4) with a larger value of c0. This requires more iterations,
but does not change the converged solution and makes the iterative procedure more robust. In the
simulation of valve dynamics, we increase the c0 of the tangent operator to 200 kPa.

Remark 7. Native valve tissue is typically anisotropic, due to collagen fibers being oriented in
a preferred direction. Material anisotropy is easily handled by Kirchhoff–Love shell formulations
[51–53], but obtaining collagen fiber orientation data, incorporating it into an adequate constitutive
model, and calibrating the parameters of that model are challenging research topics outside the
scope of the present work, which is primarily focused on contact mechanics.

5.2.2. Chordae

As mentioned in Section 4.2, we restrict the cable material to a simple St. Venant–Kirchhoff

model. The St. Venant–Kirchhoff model is typically a poor choice for the stress–strain relation of
biological soft tissue about its true reference configuration. However, it can be justified in the case
of modeling the tensile response of chordae tendineae, if the reference configuration of the cable
is understood to have already been stretched through the chordae’s soft “pre-transition” regime,
in which most of the collagen fibers remain slackened and contribute no tensile stiffness. The
Young’s modulus of the cable model is then selected to approximate the stiffer “post-transition”
regime, in which most of the collagen fibers are recruited. Pre- and post-transition stiffness values
for porcine mitral chordae were calculated by fitting ex vivo experimental data in [54, Table 1]. The
cited work found that the pre-transition stiffness is several orders of magnitude smaller than the
post-transition stiffness. Based on this data, we follow [55] and [56] in neglecting pre-transition
stiffness and considering the stress-free reference configuration of the chordae to include tensile
strain up to the transition point. For our model of the tricuspid valve, we select a moderately higher
effective post-transition stiffness of Eca = 4 × 108 dyn/cm2, in recognition of the fact that tricuspid
chordae are typically stiffer [48] than the mitral chordae considered in the cited studies.

7For shell analysis, one can use the plane stress condition, S 33 = 0, to analytically determine the Lagrangian
multiplier p (see Kiendl et al. [34, Section 5.1] for details).
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5.3. Boundary conditions

Contact in the atrioventricular valves is primarily a concern during systole, when these valves
are closed. We simulate valve closure by applying a pressure follower load to the ventricular side
of the leaflets. The pressure load as a function of time is

p = (25 mmHg)

 t/T t < T

1 otherwise
, (53)

where the ramp-up time scale T is set to T = 0.005 s. The magnitude after time T is representative
of normal tricuspid valve pressure gradients during systole [57]. Loss of energy to the surround-
ing blood is modeled with mass damping, in both the leaflets and the chordae. The damping
coefficients Csh and Cca are both 2000 s−1. The shell structure subproblem is subject to a pinned
boundary condition at the annulus. The connections of the chordae to the papillary muscles are
subject to strongly-enforced homogeneous Dirichlet boundary conditions on displacement.

5.4. Computational setup

The B-spline surface and curves defining the leaflet and chordal geometry are directly used as
an isogeometric computational model. The leaflets consist of 1540 cubic B-spline elements and the
chordae contain 373 cubic B-spline elements. The pinned boundary condition at the valve annulus
is enforced strongly in the discrete model by fixing the first row of control points. Adaptive time
stepping is used with a maximum time step size of ∆tmax = 10−4 s. The parameters defining the
contact potential are p = 4, kc = 1.0 × 106 cmp−5s−2g, rin/(rout − rmin) = 0.7, rmin/rout = 0.2, and
rout = 0.05 cm.

5.5. Results

The closing behavior of the model with intact chordae is illustrated through a series of snap-
shots in Figure 13. The complex folding of the valve leaflets is clearly outside the scope of ge-
ometries like [4, Figure 20] for which our earlier contact approach was designed, but the potential-
based method remains effective. While the closed configuration exhibits creases separating three
general “leaflets” (to which the tricuspid valve owes its name), the divisions between these parts of
the shell structure are not clear-cut, and self-contact is essential. Figure 14 visualizes the pinballs
(Gauss points) on the chordae that are involved in contact. The shell–cable contact and the cable–
cable contact are clearly shown. The steady-state configuration shown in Figure 13f is compared,
in Figures 15 and 16, with the steady-state configuration resulting from removal of chordae teth-
ering the anterior leaflet. The valve with ruptured chordae clearly exhibits prolapse of the anterior
leaflet. The large, visible gap between the leaflets in the prolapsed case clearly illustrates that this
pathological condition is associated with regurgitation.
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(a) t = 0.005 s (b) t = 0.007 s (c) t = 0.01 s

(d) t = 0.02 s (e) t = 0.03 s (f) Steady state

Figure 13: A series of snapshots illustrating the closing behavior of the tricuspid valve with intact chordae. Color
indicates maximum in-plane eigenvalues of E (MIPE) on the atrial side of the leaflets.

Figure 14: Cable pinballs with nonzero contact forces are highlighted in red, illustrating shell–cable and cable–cable
contact. (Recall that pinballs near one another in the reference configuration do not interact.)

Remark 8. The sharp curvature near the free edge of the prolapsed anterior leaflet (visible in Fig-
ures 15 and 16) is likely an artifact of our use of a pressure follower load on the ventricular side of
the leaflet. This potentially-unphysical solution feature highlights the importance of incorporating
fluid–structure interaction into atrioventricular valve prolapse models, as we plan to do in future
studies.
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(a) Normal coaptation (b) Leaflet prolapse

Prolapse
Normal

(c) Comparison

Figure 15: Comparison of coaptation in normal and prolapsing valves.

(a) Normal (b) Leaflet prolapse

Figure 16: Comparison of MIPE contours in normal and prolapsing valves.

6. Conclusion

The contact procedures that we developed in [4, Section 5.2] for isogeometric and immerso-
geometric analysis of aortic valves are not suitable for analysis of the more complicated atrioven-
tricular valves. To develop a more versatile formulation, we build on the ideas outlined in [15]
and find that, for a particular choice of quadrature and a potential function of limited range, one
obtains a discrete scheme with some similarities to the pinball algorithm [20]. Singularities in our
new formulation require specialized nonlinear solution and time stepping procedures for reliable
convergence. The main limitation of the present study is the need for an ad hoc selection of param-
eters defining both the contact potential and the solution algorithm. In future extensions, we plan
to develop a more principled procedure for selecting parameters. This will reduce computational
cost, by avoiding unnecessary refinement in time and/or damping of the nonlinear iteration.

This will enable future immersogeometric fluid–structure interaction (FSI) simulations of atri-
oventricular valves using the technologies described in this paper for the structural subproblem. As
mentioned in Remark 2, we consider the contact methodology discussed in this paper especially
well suited for use in conjunction with immersed numerical approaches. However, additional
research is required to determine how best to combine the nonlinear solution and adaptive time
stepping algorithms described in Section 3.4 with existing FSI solution procedures.
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The versatile formulation developed in this paper could also be applied to other challenging
problems. The demonstrated effectiveness of our formulation for shell-against-shell contact looks
promising in the context of studying damage resulting from impacts against thin composite struc-
tures, which some of us have recently become interested in [58]. The formulation’s compatibility
with point cloud geometry descriptions also leads us to consider applying it to meshfree discretiza-
tions of structures fragmenting after blast loading [59, 60], but the use of an unbounded potential
function in explicit computations may lead to difficulties, warranting modifications to the present
framework, such as reverting to a non-singular force–separation law.
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