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Abstract

In this two-part article we present a collection of numerical methods combined into
a single framework, which has the potential for a successful application to wind
turbine rotor modeling and simulation. In Part 1 of this article we focus on: 1.
The basics of geometry modeling and analysis-suitable geometry construction for
wind turbine rotors; 2. The fluid mechanics formulation and its suitability and
accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating
rigid body. In Part 2 we focus on the structural discretization for wind turbine
blades and the details of the fluid–structure interaction computational procedures.
The methods developed are applied to the simulation of the NREL 5MW offshore
baseline wind turbine rotor. The simulations are performed at realistic wind velocity
and rotor speed conditions and at full spatial scale. Validation against published data
is presented and possibilities of the newly developed computational framework are
illustrated on several examples.

Keywords: wind turbine rotor, wind turbine blades, fluid–structure interaction,
geometry modeling, isogeometric analysis, NURBS, rotating turbulent flow,
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1. Introduction

Countries in Europe and Asia are putting substantial effort behind the develop-
ment of wind energy technologies. Currently in the EU, 50 GW of electricity comes
from the on-land and 1 GW from offshore wind turbines. The EU target is to raise
the on-land production to 130 GW and offshore to 50 GW by 2020. The latter fig-
ure represents a fifty-fold increase, which will require a significant investment and
engineering effort. The US Government recently established the objective that wind
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power should supply 25% of the US energy needs by 2025. Achieving this objec-
tive will require nearly a 1200% increase in wind power capacity (from 25 GW to
305 GW). We believe that in order to achieve this goal, the US must also invest
significant resources in the development of offshore wind turbines. We also believe
that leading-edge wind energy research and development, which includes advanced
simulation, will be essential in meeting this goal.

The present cost for wind energy is nonetheless strongly dominated by rising
operations and maintenance costs over the current 20-year design lifetime of the
system [1]. Although the design lifetime is 20 years, a typical wind turbine fails
2.6 times during the first 10 years, usually within the gearbox, generator and ro-
tor assembly, and the rotor assembly has been identified as the top opportunity for
major advancement in design and performance improvements [2]. While wind tur-
bine rotor failures occur due to a variety of reasons, fatigue failure of the wind
turbine blades due to their everyday operation is recognized as one of the major
causes. However, the industry is currently unable to predict these failure mecha-
nisms, which leads to the unscheduled downtime, expensive maintenance and re-
duced capacity.

In offshore environments the winds are typically stronger and are more sus-
tained than inland, providing a more reliable source of energy. This in part explains
the attraction to offshore designs. However, offshore wind turbines are exposed to
harsh environments and must be designed to reliably sustain increased wind loads.
Increased wind speeds also imply that the blades of much larger diameter (120 m
– 190 m) must be designed and built for better performance. These are signifi-
cant engineering challenges that must be addressed through advanced research and
development, which also involves large-scale advanced simulation.

The current practice in wind turbine simulation makes use of steady (time-
independent), 2D lumped-parameter aerodynamic models for airfoil cross-sections
that are coupled with 1D beam-type structures to evaluate wind turbine blade de-
signs and, specifically, their aerodynamic performance. These models are simple
to implement and fast to execute, which makes them attractive for industrial appli-
cations, especially if they are routinely used as part of the design cycle. However,
due to the steady nature of the flow conditions and the lack of real 3D geometry and
physics, these models are unable to adequately represent the system response to
time-dependent phenomena, such as wind gusts, or phenomena attributable to com-
plex blade geometry and material composition, such as flow separation and reat-
tachment and detailed blade deformations and stress distributions. It is precisely
these more extreme events that cause gearbox and blade failures and significantly
reduce the life cycle of wind turbines, leading to premature maintenance and repair
and, as a result, to increased cost of wind energy. A more fundamental problem with
these simple models is their non-hierarchical nature: it is virtually not possible to
enhance them with features necessary for predicting more extreme events or richer
physics without going to a more advanced modeling framework all together.

In this work we propose to introduce a paradigm shift in wind turbine model-
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ing and simulation by developing 3D, complex geometry, time-dependent, multi-
physics modeling procedures for wind turbine fluid–structure interaction (FSI). In
particular, we focus on predicting wind turbine blade–air flow interaction phenom-
ena for real wind turbines, operating under real wind conditions, and at full design
scale. The particular focus on turbine blades is motivated by the fact that improved
blade efficiency directly translates to lower cost of wind energy conversion. How-
ever, full-scale 3D FSI simulations of wind turbines engender a set of challenges.
The air flow Reynolds number is on the order of 107 − 108, which is challenging
in terms of both flow modeling and simulation. This Reynolds number necessitates
the use of fine grids, good quality basis functions, and large-scale high-performance
computing. Wind turbine blades are long and slender structures that are made of
several structural components with complex distribution of material properties, re-
quiring both advanced computational model generation and simulation methods.
The numerical approach for structural mechanics must have good accuracy and
avoid locking. The latter is typical of thin structures [3]. Wind turbine blades
are manufactured using multi-layer composite materials that also require appropri-
ate numerical treatment. The numerical simulations simultaneously involve moving
and stationary components, which must be handled correctly. The fluid–structure
coupling must be efficient and robust to preclude divergence of the computations.
Some of these challenges will be addressed in this work.

Isogeometric Analysis, first introduced in [4] and further expanded on in [5–16],
is adopted as the geometry modeling and simulation framework for wind turbines.
It is particularly well suited for this application for the following reasons. We use
NURBS (non-uniform rational B-splines), the most developed basis function tech-
nology for isogeometric analysis. NURBS are more efficient than standard finite
elements for representing complex, smooth geometrical shapes, such as wind tur-
bine blades. Because the geometry and solution fields are represented using the
same functional description, the integration of geometry modeling with structural
design and computational analysis is greatly simplified. Isogeometric analysis was
successfully employed for computation of turbulent flows [17–22], nonlinear struc-
tures [23–28] and FSI [29–32]. In most cases, isogeometric analysis gave a clear ad-
vantage over standard low-order finite elements in terms of solution per-degree-of-
freedom accuracy, which is in part attributable to the higher-order smoothness of the
basis functions employed. Flows about rotating components are naturally handled
in an isogeometric framework because all conic sections, and, in particular, circular
and cylindrical shapes are represented exactly [33]. In addition, an isogeometric
representation of the analysis-suitable geometry may be used to construct tetrahe-
dral and hexahedral meshes for computations using finite elements. In this paper,
we use such tetrahedral meshes for wind turbine computation with the Deforming-
Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation [34–38].

The DSD/SST formulation was introduced in [34–36] as a general-purpose
interface-tracking (moving-mesh) technique for flow computations involving mov-
ing boundaries and interfaces, including FSI and flows with moving mechani-
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cal components. Some of earliest FSI computations with the DSD/SST formula-
tion were reported in [39] for vortex-induced vibrations of a cylinder and in [40]
for flow-induced vibrations of a flexible, cantilevered pipe (1D structure with 3D
flow). The DSD/SST formulation has been used extensively in 3D computations of
parachute FSI, starting with the 3D computations reported in [41–43] and evolving
to computations with direct coupling [44, 45]. New versions of the DSD/SST for-
mulation introduced in [38] are the core technologies of the stabilized space–time
FSI (SSTFSI) technique, which was also introduced in [38]. The SSTFSI technique,
combined with a number of special techniques [38, 46–56], have been used in some
of the most challenging parachute FSI computations [48, 51, 54, 56, 57], and also
in a good number of patient-specific arterial FSI computations [50, 52, 53, 55]. In
application of the DSD/SST formulation to flows with moving mechanical com-
ponents, the Shear–Slip Mesh Update Method (SSMUM) [58–60] has been very
instrumental. The SSMUM was first introduced for computation of flow around
two high-speed trains passing each other in a tunnel (see [58]). The challenge was
to accurately and efficiently update the meshes used in computations based on the
DSD/SST formulation and involving two objects in fast, linear relative motion. The
idea behind the SSMUM was to restrict the mesh moving and remeshing to a thin
layer of elements between the objects in relative motion. The mesh update at each
time step can be accomplished by a “shear” deformation of the elements in this
layer, followed by a “slip” in node connectivities. The slip in the node connectivi-
ties, to an extent, un-does the deformation of the elements and results in elements
with better shapes than those that were shear-deformed. Because the remeshing
consists of simply re-defining the node connectivities, both the projection errors
and the mesh generation cost are minimized. A few years after the high-speed train
computations, the SSMUM was implemented for objects in fast, rotational relative
motion and applied to computation of flow past a rotating propeller [59] and flow
around a helicopter with its rotor in motion [60].

Part 1 of this paper, which focuses on geometry modeling and aerodynamics of
wind turbines, is outlined as follows. In Section 2, we describe a template-based
method for creating an analysis-suitable NURBS geometry for FSI simulation of
wind turbine rotors. We apply the method developed to construct the NREL 5MW
offshore baseline wind turbine rotor given in [61]. In Section 3, we develop the
residual-based variational multiscale formulation of the Navier–Stokes equations
of incompressible flow on a moving domain. We develop a generalization of the
quasi-static fine scale assumption to the moving domain case, which leads to a semi-
discrete formulation that globally conserves linear momentum. In Section 4, we
perform a partial validation of the proposed computational method on a turbulent
Taylor–Couette flow. In Section 5, we formulate a coupled problem, which involves
incompressible flow with a rigidly rotating body. Rotationally-periodic boundary
conditions, which allow us to take advantage of the problem symmetry for better
computational efficiency, are also described. To assess the accuracy of the numerical
method, the NREL 5MW offshore baseline wind turbine rotor is simulated using
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prescribed inflow wind conditions and rotor speed. The NURBS-based simulation
results compare favorably to the reference data from [61]. A coupled simulation for
the case of high inflow wind speed and free rotation, which corresponds to the case
of rotor over-spinning in the case of the control system failure, is also performed to
illustrate the possibilities of the proposed computational procedures. In Section 6,
we draw conclusions and outline future research directions.

2. Analysis-Suitable Geometry Construction for Wind Turbine Rotors

We propose a template-based wind turbine geometry modeling approach that
makes use of volumetric NURBS. The method entails construction of one or more
(small number of) template geometries of wind turbine designs. The templates in-
clude and closely approximate the geometry of the rotor blades and hub (nacelle),
and the flow domain around. The template geometry is then deformed to the actual
geometry of the wind turbine by appropriately minimizing the error between them.
Once the model is generated, an analysis-ready geometry is produced with user
control over mesh refinement and domain partitioning for efficient parallel process-
ing. The advantage of this approach is that it can be specialized and optimized for
a particular class of geometries. For example, a template-based geometry modeling
approach was developed and successfully employed for NURBS modeling and FSI
simulation of vascular blood flow with patient-specific data in [29].

2.1. Wind turbine rotor blade and hub geometry construction
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Figure 1: Airfoil cross-sections used in the design of the wind turbine rotor blades.

As a first step we construct a template for the structural model of the rotor.
In this paper, the structural model is limited to a surface (shell) representation of
the wind turbine blade, the hub, and their attachment zone. The blade surface is
assumed to be composed of a collection of airfoil shapes that are lofted in the blade
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RNodes (m) AeroTwst (◦) Chord (m) AeroCent (-) AeroOrig (-) Airfoil
2.0000 0.000 3.542 0.2500 0.50 Cylinder
2.8667 0.000 3.542 0.2500 0.50 Cylinder
5.6000 0.000 3.854 0.2218 0.44 Cylinder
8.3333 0.000 4.167 0.1883 0.38 Cylinder

11.7500 13.308 4.557 0.1465 0.30 DU40
15.8500 11.480 4.652 0.1250 0.25 DU35
19.9500 10.162 4.458 0.1250 0.25 DU35
24.0500 9.011 4.249 0.1250 0.25 DU30
28.1500 7.795 4.007 0.1250 0.25 DU25
32.2500 6.544 3.748 0.1250 0.25 DU25
36.3500 5.361 3.502 0.1250 0.25 DU21
40.4500 4.188 3.256 0.1250 0.25 DU21
44.5500 3.125 3.010 0.1250 0.25 NACA64
48.6500 2.310 2.764 0.1250 0.25 NACA64
52.7500 1.526 2.518 0.1250 0.25 NACA64
56.1667 0.863 2.313 0.1250 0.25 NACA64
58.9000 0.370 2.086 0.1250 0.25 NACA64
61.6333 0.106 1.419 0.1250 0.25 NACA64
62.9000 0.000 0.700 0.1250 0.25 NACA64

Table 1: Wind turbine rotor geometry definition from [61].

axis direction. Other structural components, such as shear webs and spar caps [62]
will be added to our template in the subsequent work.

The geometry of the rotor blade considered in this work is based on the NREL
5MW offshore baseline wind turbine described in [61]. The blade geometry data
taken from the reference is summarized in Table 1. A 61 m blade is attached to a
hub with radius of 2 m, which gives the total rotor radius of 63 m. The blade is
composed of several airfoil types provided in the rightmost column of the table.
The first portion of the blade is a perfect cylinder. Further away from the root the
cylinder is smoothly blended into a series of DU (Delft University) airfoils. At
the 44.55 m location away from the root the NACA64 profile is used to define the
blade all the way to the tip (see Figure 2). The remaining parameters from Table 1
are defined in Figure 2: “RNodes” is the distance from the rotor center to the airfoil
cross-section in the blade axis direction. “AeroTwst” is the twist angle for a given
cross-section. The blades are twisted to enhance the aerodynamic performance.
“Chord” is the chord length of the airfoil. “AeroOrig” is the location of the
aerodynamic center. For most of the blade airfoil cross-sections, the aerodynamic
center is taken at 25% of the chord length from the leading edge. To accommodate
the cylindrical shape at the root, the aerodynamic center is gradually moved to 50%
of the chord length. This is not reported in [61], but mentioned in [63].
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Figure 2: Illustration of quantities from Table 1.

Remark: There is some redundancy in the parameters given in Table 1. The
variable “AeroCent” is used as an input to FAST [64], which is the aerodynamics
modeling software that is typically used for wind turbine rotor computations. FAST
is based on look-up tables and provides blade cross-section steady-state lift and
drag forces given the airfoil type, relative wind speed, and angle of attack. The
effects of the hub, trailing edge turbulence, and blade tip are modeled using em-
pirical relationships. FAST assumes that the blade-pitch axis passes through each
airfoil section at 25% chord length, and defines AeroCent−0.25 to be the fractional
distance to the aerodynamic center from the blade-pitch axis along the chordline,
positive toward the trailing edge. Therefore, AeroOrig + (0.25 − AeroCent) gives
the location of where the blade-pitch axis passes through each airfoil cross-section.
Although for our purposes this added complexity is unnecessary, the same naming
system is used for backward compatibility with the reference reports.

For each blade cross-section we use quadratic NURBS to represent the 2D air-
foil shape. The weights of the NURBS functions are set to unity. The weights
are adjusted near the root to represent the circular cross-sections of the blade ex-
actly. The cross-sections are lofted in the blade axis direction, also using quadratic
NURBS and unity weights. This geometry modeling procedure produces a smooth
rotor blade surface using a relatively small number of input parameters, which is
an advantage of the isogeometric representation. The final shape of the blade along
with the airfoil cross-sections is shown in Figure 3a. Figure 3b shows a top view of
the blade in which the twisting of the cross-sections is evident.

2.2. Volumetric NURBS
Given the rotor blade surface description, the surrounding fluid domain volume

is constructed next. The blade surface is split into four patches of similar size, which
we call the blade surface patches. The splitting is done at the leading and trailing

7



(a)

(b)

Figure 3: (a) Airfloil cross-sections superposed on the wind turbine blade. (b) Top view of a subset
of the airfoil cross-sections illustrating blade twisting.

edges, as well as half-way in between on both sides of the blade. The volumetric
fluid domain near the blade is generated for each one of the blade surface patches.
As a final step, the fluid domain patches are merged such that the outer boundary of
the fluid domain is a perfect cylinder.

For each of the blade surface patches we create a 60◦ pie-shaped domain using a
minimum required number of control points. The control points at the bottom of the
patch are moved to accommodate the shape of the rotor hub (see Figure 4a). As a
next step, we perform knot insertion and move the new control points such that their
locations coincide with those of the blade surface patch. See Figure 4b and Figure
4c for knot insertion and control point re-positioning, respectively. This generates
an a-priori conforming discretization between the volumetric fluid domain and the
surface of the structural model, suitable for FSI analysis. Finally, the fluid domain
is refined in all parametric directions for analysis. Figure 4d shows the rotor surface
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mesh and one of the fluid mesh subdomains adjacent to it. The remaining fluid
subdomains are generated in the same manner.

The resultant fluid NURBS mesh may be embedded into a larger domain for
the purposes of simulation. In this work we take this larger domain to also be a
cylinder. For computational efficiency, only one-third of the domain is modeled.
The fluid volume mesh, corresponding to one-third of the fluid domain, consists of
1,449,000 quadratic NURBS elements (and a similar number of control points) and
is shown in Figure 5a. The fluid mesh cross-section that also shows the details of
mesh refinement in the boundary layer is shown in Figure 5b. The wind turbine
rotor surface model and outer cylindrical domain of the three-blade configuration
are shown in Figure 6. Mesh refinement was concentrated near the wind turbine
blade surface. No special attention was paid to mesh design in the outer regions of
the computational domain.

Remark: We note that the template-based nature of the proposed approach
and a relatively small number of input parameters for model building allow one to
alter the wind turbine rotor models with minimal effort.

3. Navier–Stokes Equations of Incompressible Flow and Residual-Based Tur-
bulence Modeling for Moving Domains

3.1. The weak formulation
In what follows, Ω ⊂ Rd, d = 2, 3 denotes the spatial domain occupied by the

fluid at the current time and Γ = ∂Ω is its boundary. Let V and W denote the
infinite-dimensional trial solution and weighting function spaces, respectively, and
let (·, ·)Ω denote the L2-inner product over Ω. The weak form of the Navier–Stokes
equations of incompressible flow over a moving domain is stated as follows: find
the velocity-pressure pair {v, p} ∈ V such that for all momentum and continuity
weighting functions {w, q} ∈ W,

B({w, q}, {v, p}) − (w, ρ f )Ω = 0, (1)

where

B({w, q}, {v, p}) =

(
w, ρ

∂v
∂t

)
Ω

+ (w, ρ(v − v̂) · ∇v)Ω + (q,∇ · v)Ω

− (∇ · w, p)Ω + (∇sw, 2µ∇sv)Ω . (2)

In the above, v̂ is the fluid domain velocity, µ is the kinematic viscosity, ρ is the
density, and

∇sv =
1
2

(∇v + ∇vT ) (3)
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is the symmetric gradient of the particle velocity field. Equation (1) is a weak
form corresponding to the Arbitrary Lagrangian–Eulerian (ALE) formulation of the
Navier–Stokes equations and the time derivative in the first term on the right-hand-
side of Eq. (2) is taken with respect to a fixed spatial coordinate in the reference
configuration. In the absence of the fluid domain motion, the above formulation
reverts to a standard incompressible flow formulation on a stationary domain.

Direct replacement of the infinite-dimensional spaces V andW by their finite
dimensional counterparts leads to the Galerkin formulation, which is unstable for
advection-dominated flow and for the choice of equal-order velocity–pressure dis-
cretization. In what follows, we make use of the variational multiscale method (see,
e.g., [65, 66]) to generate a stable and accurate discrete formulation over a moving
domain that is suitable for equal-order velocity–pressure discretization.

3.2. Residual-based variational multiscale (RBVMS) formulation of flow over a
moving domain

Following the developments in [17], the trial solution and weighting function
spaces are split into coarse and fine scales as

{v, p} ={vh, ph} + {v′, p′}, (4)

{w, q} ={wh, qh} + {w′, q′}. (5)

In the above, the superscript h denotes resolved coarse scales represented by the fi-
nite element or isogeometric discretization. The primed quantities correspond to the
unresolved scales and will be modeled. The above decomposition of the weighting
functions leads to two variational sub-problems:

B({wh, qh}, {vh, ph} + {v′, p′}) − (wh, ρ f )Ω =0, ∀{wh, qh} ∈ Wh, (6)

B({w′, q′}, {vh, ph} + {v′, p′}) − (w′, ρ f )Ω =0, ∀{w′, q′} ∈ W′, (7)

where Wh is the finite-dimensional space of finite element or isogeometric func-
tions and W′ is an infinite dimensional space of the unresolved fine scales. We
proceed as in [17] and model the fine-scale velocity and pressure as being propor-
tional to the strong form of the Navier–Stokes partial differential equation residual

v′ = −τM rM({vh, ph}), (8)

p′ = −τCrC(vh), (9)

rM({v, p}) = ρ
∂v
∂t

+ ρ(v − v̂) · ∇v + ∇p − µ∆v − ρ f , (10)

rC(v) = ∇ · v. (11)

The parameters τM and τC in the above equations originate from stabilized finite
element methods for fluid dynamics (see, e.g., [34, 37, 67–74]) and are referred
to as stabilization parameters. Recently, they were interpreted as the appropriate
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averages of the small-scale Green’s function, which is a key mathematical object
in the theory of variational multiscale methods (see [75] for an elaboration). We
note that in this paper the stabilization parameters are defined in a form where they
have the units of time divided by density, instead of the units of time, which is more
typical.

To generate the numerical method, v′ and p′ in Eqs. (8) and (9) are inserted di-
rectly into the coarse-scale equations given by Eq. (6). To simplify the formulation,
two assumptions are typically employed: 1) the fine scales are orthogonal to the
coarse scales with respect to the inner-product generated by the viscous term; and
2) the fine scales are quasi-static. The latter condition is expressed as

∂v′

∂t
= 0. (12)

In this work, we would like to illustrate that the quasi-static assumption on the fine
scales takes on a different form in the case of a moving fluid domain. In particular,
we postulate the following generalized quasi-static condition on the fine scales

∂Ĵv′

∂t
= 0, (13)

where Ĵ is the determinant Jacobian of the mapping from the referential to the spa-
tial domain in the ALE framework (see, e.g., [31]), and the time derivative is taken
with respect to the fixed referential coordinate. Differentiating the product and re-
arranging terms, gives

∂v′

∂t
= −(∇ · v̂)v′. (14)

Note that in the case of divergence-free fluid domain motions (e.g., stationary or
rotating domains), the above definition reverts to the original quasi-static subgrid
scale assumption.

Examining the influence of the fine scales in the time derivative and convective
terms, we obtain(

wh, ρ
∂(vh + v′)

∂t

)
Ω

=

(
wh, ρ

∂vh

∂t

)
Ω

−
(
wh, ρ(∇ · v̂)v′

)
Ω
, (15)

and (
wh, ρ(vh + v′ − v̂) · ∇(vh + v′)

)
Ω

=
(
wh, ρ(vh + v′ − v̂) · ∇vh

)
Ω

−
(
∇wh, ρv′ ⊗ (vh + v′ − v̂)

)
Ω

−
(
wh, ρ∇ · (vh + v′ − v̂)v′

)
Ω
, (16)
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respectively. Assuming incompressibility of the particle velocity field (i.e., ∇ · (vh +

v′) = 0) and rearranging the terms in Eq. (16), we obtain(
wh, ρ(vh + v′ − v̂) · ∇(vh + v′)

)
Ω

=
(
wh, ρ(vh − v̂) · ∇vh

)
Ω

−
(
∇wh, ρv′ ⊗ (vh − v̂)

)
Ω

+
(
wh, ρv′ · ∇vh

)
Ω

−
(
∇wh, ρv′ ⊗ v′

)
Ω

+
(
wh, ρ(∇ · v̂)v′

)
Ω
. (17)

The above development leads to the following semi-discrete variational formu-
lation: find {vh, ph} ∈ Vh, vh = g on Γg, such that ∀{wh, qh} ∈ Vh, wh = 0 on Γg,

B({wh, qh}, {vh, ph}) + Bvms({wh, qh}, {vh, ph}) − (wh, ρ f )Ω = 0, (18)

where the modeled subgrid-scale terms in Bvms are

Bvms({w, q}, {v, p}) = (∇w, ρτM rM({v, p}) ⊗ (v − v̂))Ω

+ (∇ · w, τC∇ · v)Ω

− (w, ρτM rM({v, p}) · ∇v)Ω

− (∇w, ρτM rM({v, p}) ⊗ τM rM({v, p}))Ω

+ (∇q, τM rM({v, p}))Ω , (19)

and the integrals are taken element-wise.

Remark: Comparing Eqs. (15) and (17) we note that the last term on the
right-hand-side of Eq. (17) cancels that of Eq. (15). This leads to the discrete
formulation given by Eq. (18) that globally conserves linear momentum (see [31]
for a derivation). This would not be the case if the quasi-static assumption given by
Eq. (12) is employed.

Remark: The above discrete formulation may be augmented with weakly-
enforced Dirichlet boundary conditions [76] to enhance solution accuracy in the
presence of unresolved boundary layers.

Remark: A similar approach for deriving the multiscale formulation of the
Navier–Stokes equations on a moving domain was presented in [77]. However, a
quasi-static fine scale assumption given by Eq. (12) was used instead of Eq. (14).

4. Application to Turbulent Rotating Flow: Taylor–Couette Flow at Re = 8000

We simulate the turbulent Taylor–Couette flow, which is a flow between two
concentric cylinders. We feel that this test case is relevant to wind turbines, because
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the flow exhibits several complex features in common with the present application,
such as rotation, curved walls, boundary layers, and highly complex time-dependent
evolution of the velocity and pressure fields, all of which are challenging to com-
pute. At the same time, much is known about this problem experimentally (see,
e.g., [78]), and numerically (see, e.g., [22, 79–83]), which makes this test case a
very good candidate for verification and validation of numerical formulations for
turbulent fluid flow.

One of the bigger challenges involved in simulation of rotating turbulent flow
is turbulence modeling. Eddy-viscosity models rely on the continuous energy cas-
cade, i.e., the continuous energy transfer from low to high modes in the turbulent
flow (see, e.g., [84]). However, as explained in [85], in the presence of high ro-
tation rates the energy cascade is arrested. This renders most well-accepted eddy-
viscosity models inconsistent in the rotation dominated regime. The advantage of
the present turbulence modeling approach is that the unresolved scales are modeled
using the variational multiscale methodology, and the explicit use of eddy viscosi-
ties is avoided all together. As a result, the present approach is not likely to suffer
from the shortcomings of eddy-viscosity-based turbulence models for flows with
high rotation rates.

The problem setup is as follows. The inner cylinder rotates at a constant angular
velocity, while the outer cylinder is stationary (see Figure 7a). Periodic boundary
conditions are imposed in the axial direction, and no-slip boundary conditions are
applied at the cylinder surfaces. The no-slip conditions are imposed weakly using
the methodology presented in [19]. The Reynolds number of the flow based on
the speed of the inner cylinder and the gap between the cylinders is Re = Uθ(R1 −

R0)ρ/µ = 8000. The fluid density is set to ρ = 1, the dynamic viscosity is set to
µ = 1/8000, the inner and outer radii are set to R0 = 1 and R1 = 2, respectively, and
the inner cylinder wall speed is set to Uθ = 1. Due to the rotational symmetry of
the problem geometry, the simulations are performed over a stationary domain. The
results of our simulation are compared with the DNS of [86], where this test case
was computed using 256 Fourier modes in the axial direction and 400 9th-order
spectral finite elements in the remaining directions. This is the highest Reynolds
number DNS available for this flow. For an overview of spectral finite elements
applied to fluid dynamics, see, for example, [87].

We solve the problem on meshes consisting of linear finite elements and
quadratic NURBS. The quadratic NURBS give exact representation of the geome-
try, while linear FEM only approximates it. However, the geometry approximation
improves with refinement. We deliberately sacrifice the boundary layer resolution
by using uniform meshes in all directions, including the wall-normal. Our goal is
to see the performance of the proposed method in the case of unresolved bound-
ary layers and rotational dominance, as well as to assess the accuracy benefits of
the NURBS-based approach relative to standard FEM for this challenging situation.
We note that two of the authors have successfully computed this test case using
quadratic NURBS with boundary layer refinement in [22].
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The simulation is started using a linear laminar profile of the azimuthal velocity.
After transition to turbulence, the flow is advanced in time until the solution reaches
a statistically-stationary state. Figure 7b shows the isosurfaces of a scalar quantity
Q, which is defined as

Q = Ω : Ω − ∇svh : ∇svh, (20)

where Ω = 1
2 (∇vh − ∇vhT ) is the skew-symmetric part of the velocity gradient. Q is

designed to be an objective quantity for identifying vortical features in the turbulent
flow (see, e.g., [88]). The figure illustrates the complexity of the turbulent flow and
the high demand on the numerical method to adequately represent it.

Flow statistics are given in the form of mean azimuthal velocity and angular
momentum, both as functions of the radial coordinate. The velocity data is collected
at mesh knots, rotated to the cylindrical coordinate system, and ensemble-averaged
over the periodic directions and time.

Figure 8 shows mean azimuthal velocity results and compares linear FEM and
quadratic NURBS. Linear elements give a reasonable approximation of the mean
flow, especially considering the few degrees of freedom employed and no bound-
ary layer resolution. The quadratic NURBS, which use nearly the same number
of degrees of freedom as linear elements, produces results of remarkable accuracy.
Even with the coarse mesh, for which the boundary layer lies completely within the
first element in the wall-normal direction, the mean velocity curve nearly interpo-
lates the DNS. The same conclusions hold for the mean angular momentum results
shown in Figure 9.

This problem illustrates that the variational multiscale method in conjunction
with NURBS-based isogeometric analysis can deliver very accurate results for ro-
tating turbulent flow. In what follows, we apply the proposed method to wind tur-
bine simulation. We are cognizant of the fact that the Reynolds number in the case
of wind turbines is orders of magnitude higher than for the test case considered
in this section. Hence, the results presented in this section constitute only partial
validation of the proposed computational method.

5. Wind Turbine Simulations

5.1. Coupling of a rigid rotor with incompressible flow
In this section we present the formulation of the coupled problem that involves

incompressible fluid and a rigid body that undergoes rotational motion. We spe-
cialize the formulation to the case of a wind turbine rotor whose axis of rotation
coincides with the z-direction. We denote by θ the angle of rotation of the wind
turbine rotor about the z-axis from the reference configuration. The rotor angular
velocity and acceleration are found by differentiating θ with respect to time, and are
denoted by θ̇ and θ̈, respectively. The coupled problem amounts to finding the triple
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{vh, ph, θ} such that for all test functions {wh, qh}

B({wh, qh}, {vh, ph}) + Bvms({wh, qh}, {vh, ph}) − (wh, ρ f )Ω = 0, (21)

Iθ̈ + f (θ̇, t) − T f (vh, ph) = 0, (22)

where I is the rotor moment of inertia, f (θ̇, t) may represent forcing due to friction
in the system or interaction with the generator, and T f (vh, ph) is the torque exerted
on the rotor by the fluid, i.e. the aerodynamic torque. This is a two-way coupled
problem: the fluid solution depends on the rotor position and speed, while the rotor
equation is driven by the fluid torque.

The fluid domain rotates with the same angular speed as the rotor. This means
the fluid domain current configuration is defined as

Ω = {x | x = R(θ)[X − X0] + X0, X ∈ Ω0}, (23)

where Ω0 is the fluid domain in the reference configuration, X0 is the rotor center
of mass, and R(θ) is the rotation matrix given by

R(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (24)

With the above definition of the fluid domain motion, the fluid domain velocity
becomes

v̂ =
dR(θ)

dθ
[X − X0] θ̇. (25)

The aerodynamic torque is given by

T f (v, p) =

∫
Γrot

r × (pn− 2µ∇sv · n)dΓ, (26)

where Γrot is the rotor surface, r = x−x0 is the radius-vector from the rotor center of
mass in the current configuration, and n is the unit normal to the rotor surface. In the
computations, instead of using Eq. (26) directly, we opt for a conservative definition
of the aerodynamic torque. For this, we first define the discrete momentum equation
residual at every finite element node or isogeometric control point A and cartesian
direction i as

RA,i = B({NAei, 0}, {vh, ph}) + Bvms({NAei, 0}, {vh, ph}) − (NAei, ρ f )Ω, (27)

where NA’s are the velocity basis functions and ei’s are the Cartesian basis vectors.
The residual RA,i vanishes everywhere in the domain except at the rotor surface
control points (or nodes). The conservative aerodynamic torque along the z-axis
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may now be computed as

T f (vh, ph) =
∑
A, j,k

ε3 jkrA, jRA,k, (28)

where εi jk’s are the cartesian components of the alternator tensor and rA, j are the
nodal or control point coordinates.

The coupled system given by Eqs. (21)–(22) is advanced in time using the
Generalized-alpha method (see [31, 89, 90]) for both the fluid and rotor equations.
Within each time step, the coupled equations are solved using an inexact Newton
approach. For every Newton iteration we obtain the fluid solution increment,
update the fluid solution, compute the aerodynamic torque, obtain the rotor
solution increment, and update the rotor solution and the fluid domain velocity and
position. The iteration is repeated until convergence. Because the wind turbine
rotor is a relatively heavy structure, the proposed approach, also referred to as
“block-iterative” (see [44] for the terminology), is stable.

Remark: The case of prescribed angular velocity is also of interest and can
be obtained by providing a time history of θ, which obviates Eq. (22). We make
use of this in the sequel, where we perform a validation study of our wind turbine
rotor configuration.

Remark: We note that the torque definition given by Eq. (28) makes use of
the isoparametric property of the finite element and isogeometric methods. Besides
the possible accuracy benefits associated with a conservative definition of torque,
the formulation avoids performing boundary integration and makes use of the
same “right-hand-side” routine as the fluid assembly itself, which simplifies
implementation.

Remark: The conservative torque definition given by Eq. (28) is only appli-
cable for strongly enforced velocity boundary conditions, which are employed in
this work for wind turbine simulations. For the case of weak boundary conditions,
a conservative definition of the torque given in [22] may be used instead.

5.2. Rotationally-periodic boundary conditions
To enhance the efficiency of the simulations, we take advantage of the problem

rotational symmetry and only construct a 120◦ slice of the computational domain
(see Section 2). However, to carry out the simulations, rotationally-periodic bound-
ary conditions must be imposed. Denoting by vl and vr the fluid velocities at the left
and right boundary, respectively (see Figure 10), and by pl and pr the corresponding
pressures, we set

pl = pr, (29)
vl = R(2/3π) vr. (30)
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That is, while the pressure degrees-of-freedom take on the same values, the fluid
velocity degrees-of-freedom are related through a linear transformation with the
rotation matrix from Eq. (24) evaluated at θ = 2/3π. Note that the transformation
matrix is independent of the current domain position.

Rotationally periodic boundary conditions are implemented through standard
master-slave relationships. During the discrete residual assembly (see Eq. (27)), the
nodal or control-point momentum residual at the slave boundary is rotated using
RT (2/3π) and added to the master residual (assumed to reside at the right bound-
ary). Once the fluid solution update is computed, the velocity solution at the master
boundary is rotated using R(2/3π) prior to communicating it to the slave bound-
ary. All of the numerical examples presented in this article use rotationally-periodic
boundary conditions. We note that rotationally periodic boundary conditions were
employed earlier in [54, 56, 91] for parachute simulations.

5.3. Simulations with prescribed rotor speed: A validation study
We compute the aerodynamics of the NREL 5MW offshore baseline wind tur-

bine [61] with prescribed rotor shape and speed with a rotating mesh. The rotor
radius, R, is 63 m. The wind speed is uniform at 9 m/s and the rotor speed is
1.08 rad/s, giving a tip speed ratio of 7.55 (see [92] for wind turbine terminology).
We use air properties at standard sea-level conditions. The Reynolds number (based
on the cord length at 3

4R and the relative velocity there) is approximately 12 million.
At the inflow boundary the velocity is set to the wind velocity, at the outflow bound-
ary the stress vector is set to zero, and at the radial boundary the radial component
of the velocity is set to zero. We start from a flow field where the velocity is equal
to the inflow velocity everywhere in the domain except on the rotor surface, where
the velocity matches the rotor velocity. We carry out the computations at a constant
time step of 4.67×10−4 s. Both NURBS and tetrahedral finite element simulations
of this setup are performed. The time step size was originally set in computational
units (non-dimensional) to 0.01 based on the Courant number considerations. Us-
ing a significantly larger time step size, such as 5 times larger, results in solutions
which we do not find accurate.

The chosen wind velocity and rotor speed correspond to one of the cases given
in [61], where the aerodynamics simulations were performed using FAST [64]. We
note that FAST is based on look-up tables for airfoil cross-sections, which give
planar, steady-state lift and drag data for a given wind speed and angle of attack. The
effects of trailing edge turbulence, hub, and tip are incorporated through empirical
models. It was reported in [61] that at these wind conditions and rotor speed, no
blade pitching takes place and the rotor develops a favorable aerodynamic torque
(i.e., torque in the direction of rotation) of 2500 kN m. Although this value is
used for comparison with our simulations, the exact match is not expected, as our
computational modeling is very different than the one in [61]. Nevertheless, we feel
that this value of the aerodynamic torque is close to what it is in reality, given the
vast experience of NREL with wind turbine rotor simulations employing FAST.
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5.3.1. NURBS-based simulation
The problem setup and the details of the computational domain are shown in

Figures 5 and 6. The mesh of the 120◦ slice of the domain is comprised of 1,449,000
quadratic NURBS elements, which yields about the same number of mesh control
points (analogues of nodes in finite elements). The computation is carried out on
240 processors on Ranger, a Sun Constellation Linux Cluster at the Texas Advanced
Computing Center [93] with 62,976 processing cores. Near the blade surface, the
size of the first element in the wall-normal direction is about 2 cm. The GMRES
search technique [94] is used with a block-diagonal preconditioner. Each nodal
block consists of a 3 × 3 and 1 × 1 matrices, corresponding to the discrete momen-
tum and continuity equations, respectively. The number of nonlinear iterations per
time step is 4 and the number of GMRES iterations is 200 for the first Newton it-
eration, 300 for the second, and 400 for the third and fourth. Figure 11 shows the
air speed at t = 0.8 s at 1 m behind the rotor plane. Note the fine-grained turbulent
features at the trailing edge of the blade, which require enhanced mesh resultion for
accurate representation. Figure 12 shows the air pressure contours at the suction
side (i.e., the back side) of the wind turbine blade. It is precisely the large nega-
tive pressure that creates the desired lift. The fluid traction vector projected to the
plane of rotation is shown in Figure 13. The traction vector points in the direction
of rotation and grows in magnitude toward the blade tip, creating favorable aerody-
namic torque. However, at the blade tip the traction vector rapidly decays to zero
and even changes sign, which introduces a small amount of inefficiency. The time
history of the aerodynamic torque is shown in Figure 14, where the steady-state re-
sult from [61] is also shown for reference. The figure shows that in less than 0.8 s
the torque settles at a statistically-stationary value of 2,670 kN m, which is within
6.4% of the reference. Given the significant differences in the computational mod-
eling approaches the two values are remarkably close. This result is encouraging in
that 3D time-dependent simulation with a manageable number of degrees of free-
dom and without any empiricism is able to predict important quantities of interest
for wind turbine rotors simulated at full scale. This result also gives us confidence
that our procedures are accurate and may be applied to simulate cases where 3D,
time-dependent modeling is indispensable (e.g., simulation of wind gusts or blade
pitching).

Given the aerodynamic torque and the rotor speed, the power extracted from the
wind by the rotor for these wind conditions (based on our simulations) is

P = T f θ̇ ≈ 2.88MW. (31)

According to Betz law (see, e.g., [62]), the maximum power that a horizontal axis
wind turbine is able to extract from the wind is

Pmax =
16
27

ρA‖vin‖
3

2
≈ 3.23MW, (32)
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where A = πR2 is the cross-sectional area swept by the rotor, and ‖vin‖ is the inflow
speed. From this we conclude that the wind turbine aerodynamic efficiency at the
simulated wind conditions is

P
Pmax

≈ 89%, (33)

which is quite high even for modern wind turbine designs.
The blade is segmented into 18 spanwise “patches” to investigate how the aero-

dynamic torque distribution varies along the blade span. To better resolve the torque
gradient at the blade root and tip, Patch 1 has 0.366 the span length of the middle
patches, and Patches 2–4 and 16–18 have 2

3 . The patch-wise torque distribution is
shown in Figure 15. The torque is nearly zero in the cylindrical section of the blade.
A favorable aerodynamic torque is created on Patch 4 and its magnitude continues
to increase until Patch 15. The torque magnitude decreases rapidly after Patch 15,
however, the torque remains favorable all the way to the last patch.

The importance of 3D modeling and simulation is further illustrated in Fig-
ure 16, where the axial component of the flow velocity is plotted at a blade cross-
section located at 56 m above the rotor center. The magnitude of the axial velocity
component exceeds 15 m/s in the boundary layer, showing that 3D effects are im-
portant, especially in the regions of the blade with the largest contribution to the
aerodynamic torque.
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(a) (b)

(c) (d)

Figure 4: Stages of analysis-suitable geometry construction for wind turbine rotor simulations.
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(a)

(b)

Figure 5: (a) Volumetric NURBS mesh of the computational domain. (b) A planar cut to illustrate
mesh grading toward the rotor blade.
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(a) (b)

Figure 6: (a) Wind turbine rotor surface. (b) Full problem domain. Both are obtained by merging
the 120◦ rotationally-periodic domains.

(a) (b)

Figure 7: Turbulent Taylor–Couette flow. (a) Problem setup. (b) Instantaneous flow speed. Isosur-
faces of Q from Eq. (20) colored by flow speed.
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Figure 8: Turbulent Taylor–Couette flow. Mean azimuthal velocity.
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Figure 9: Turbulent Taylor–Couette flow. Mean angular momentum.
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Figure 10: Rotationally-periodic boundary conditions.
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Figure 11: Air speed at t = 0.8 s
.

Figure 12: Pressure contours at several blade cross-sections at t = 0.8 s viewed from the back of the
blade. The large negative pressure at the suction side of the airfoil creates the desired lift.
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Figure 13: Fluid traction vector colored by magnitude at t = 0.8 s viewed from the back of the
blade. The traction vector is projected to the rotor plane and illustrates the mechanism by which the
favorable aerodynamic torque is created.
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Figure 14: Time history of the aerodynamic torque. Statistically-stationary torque is attained in less
than 0.8 s. The reference steady-state result from [61] is also shown for comparison.
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Figure 15: Patches along the blade (top) and the aerodynamic torque contribution from each patch
(bottom) at t = 0.8 s.

Figure 16: Axial flow velocity over the blade cross-section at 56 m at t = 0.8 s. The level of
axial flow in the boundary layer is significant, which illustrates the importance of 3D computational
modeling.
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5.3.2. FEM-based simulation
As an added benefit, the isogeometric representation of the analysis geometry

may be used to create a mesh for standard finite element analysis. To generate the
triangular mesh on the rotor surface, we started with a quadrilateral surface mesh
generated by interpolating the NURBS mesh at knots. We then subdivided each
quadrilateral element into two triangles and then made some minor modifications to
improve the mesh quality near the hub. The fluid domain tetrahedral mesh was then
generated from the rotor surface triangulation. The computational domain, which

Figure 17: Rotationally-periodic domain with wind turbine blade shown in blue.

includes only one of the three blades, is shown in Figure 17. The inflow, outflow
and radial boundaries lie 0.5R, 2R and 1.43R from the hub center, respectively. This
can be more easily seen in Figure 18, where the inflow, outflow, and radial bound-
aries are the left, right and top edges, respectively, of the cut plane along the rotation
axis. We use the DSD/SST-TIP1 technique [38], with the SUPG test function option
WTSA (see Remark 2 in [38]), with the “LSIC” stabilization dropped. The stabi-
lization parameters used are those given in [38] by Eqs. (7)–(12). In solving the
linear equation systems involved at every nonlinear iteration, the GMRES search
technique is used with a diagonal preconditioner. The computation is carried out
in a parallel computing environment, using PC clusters. The mesh is partitioned to
enhance the parallel efficiency of the computations. Mesh partitioning is based on
the METIS algorithm [95]. The fluid volume mesh consists of 241,609 nodes and
1,416,782 four-node tetrahedral elements, with 3,862 nodes and 7,680 triangles on
the rotor surface. Each periodic boundary contains 1,430 nodes and 2,697 triangles.
Near the rotor surface, we have 15 layers of refined mesh with first layer thickness
of 1 cm and a progression factor of 1.1. The boundary layer mesh at 3

4R is shown in
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Figure 18: Cut plane of fluid volume mesh along rotor axis.

Figure 19. The number of nonlinear iterations per time step is 5, and the number of

Figure 19: Boundary layer mesh at 3
4 R.

GMRES iterations per nonlinear iteration is 500.
Figure 20 shows, at 0.8 s, velocity magnitudes at the rotor plane of a whole

domain formed by merging three periodic-domain solutions. The total aerodynamic
torque is 1,701 kN m at 0.2 s and 821 kN m at 0.8 s, increases back to a level
of 922 kN m at 0.887 s, and exhibits fluctuations in time. While in the earlier
stages of the computation the torque level is more favorable, as the computation
proceeds, it becomes less favorable because of flow separation, which should not
occur for this wind turbine at the specified flow regime, becomes more widespread.
We believe possible sources of flow separation are lack of sufficient mesh resolution
near the blade surface, sudden increase in element size outside the boundary layer
mesh, and lack of turbulence modeling. The patches and the torque contribution
from each patch for a single blade are shown in Figure 21 at 0.2 s and 0.8 s. The
torques for Patches 1–3 are approximately zero since these correspond to the hub
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Figure 20: Velocity magnitude (ground reference frame) at 0.8 s at the rotor plane of a merged
whole domain. High-speed flow trailing from the blade tips is readily observed. We note that the
rotor plane velocities range up to 70 m/s but the coloring range is only up to 20 m/s to provide more
contrast.

and cylindrical blade sections. The velocity and pressure fields at 3
4R ( 1

4 patch length
down-span from Patch 13/14 border) are shown in Figures 22 and 23 at 0.2 s and 0.8
s. The velocity and pressure fields at the center of Patch 17 (approximately 15

16R) are
shown in Figures 24 and 25 at 0.2 s and 0.8 s. Possible solutions we have in mind
to control the flow separation include more mesh refinement in regions just outside
the boundary layer mesh and using, as a quick, simple attempt, the Discontinuity-
Capturing Directional Dissipation (DCDD) [37]. The DCDD was shown in [96]
to function like the Smagorinsky turbulence model [97] and was used in [98] for
computation of air circulation problems with thermal coupling.
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Figure 22: Velocity vectors in blade reference frame (top) and pressure field (bottom) for airfoil
section at 3

4 R at 0.2 s.

Figure 23: Velocity vectors in blade reference frame (top) and pressure field (bottom) for airfoil
section at 3

4 R at 0.8 s.
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Figure 24: Velocity vectors in blade reference frame (top) and pressure field (bottom) for airfoil
section at center of Patch 17 at 0.2 s.

Figure 25: Velocity vectors in blade reference frame (top) and pressure field (bottom) for airfoil
section at center of Patch 17 at 0.8 s.
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5.4. Coupled air flow and rigid rotor simulation

Time (s)
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Figure 26: Time history of the rotor angular velocity and acceleration.

In this section, we perform a coupled aerodynamic analysis of the same NREL
5MW offshore baseline wind turbine using a NURBS discretization. The wind
speed at the inflow is now set to 12 m/s. Reference [61] reports that at this wind
speed the rotor blades are pitched to prevent over-rotation. Our interest was to study
a scenario in which no blade pitching controls are applied and the rotor is free to spin
under the influence of incoming wind. This situation may occur due to the failure
of the rotor control system, in which case, under the prescribed wind condition, the
rotor will spin at speeds much faster than the limits set by the design strength of the
rotor structure.

The simulation is started with the rotor spinning at a prescribed angular veloc-
ity of 0.8 rad/s. Then the rotor is released to spin freely under the action of wind
forces. We neglect the frictional losses and interaction with the generator, that is,
we set f (θ̇, t) = 0 in Eq. (22). Figure 26 shows the time history of the rotor angular
speed and acceleration. Within 1 s the rotor attains an angular velocity of 3 rad/s.
The computation was stopped at this point, however, the rotor continues to accel-
erate. Due to the size and the dimension of the blade, such rotor speeds lead to
unsustainable structural loads and, ultimately, wind turbine failure.

Figure 27 shows a snapshot of the rotor spinning at nearly 3 rad/s and the iso-
surfaces of the air speed. The trailing edge of the blade and especially the tip create
significant amount of turbulence. Snapshots of air pressure on the front and back of
the blade are shown in Figure 28. Note that, compared to the previous case of 9 m/s
wind and 1.08 rad/s rotation, the pressure magnitude is significantly higher. Fur-
thermore, the pressure field at the trailing edge and the blade tip exhibits fluctuating
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Figure 27: Isosurfaces of air speed at t = 0.8 s.

behavior, which leads to high-frequency loading and aerodynamic noise generation
in these areas.
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(a) Front (b) Back

Figure 28: Air pressure distribution on the blade surface.
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6. Conclusions

This two-part paper presents a comprehensive computational framework for ad-
vanced simulation of wind turbines at full scale and its application to the NREL
5MW offshore baseline wind turbine. Part 1 of the paper focused on the wind tur-
bine geometry modeling, mesh generation, and numerical simulation in which the
rotor is assumed to be rigid. Isogeometric analysis was adopted as the primary
geometry modeling and simulation framework. A template-based approach was de-
veloped in which the analysis-suitable geometry for both fluid and structural wind
turbine rotor domains is constructed. The fluid and structural meshes are compatible
at the interface and may be employed for the coupled FSI analysis, which is pre-
sented in Part 2 of this paper. The residual-based variational multiscale formulation
was employed for the fluid simulation and turbulence modeling. The quasi-static
assumption on the fine scales was generalized to moving domain problems in the
ALE framework leading to a formulation that globally conserves linear momentum.

Partial validation of the turbulence modeling technique was performed on a tur-
bulent Taylor–Couette flow, which has features in common with wind turbine flows,
such as rotation, curved solid walls, and boundary layers. Comparison of linear fi-
nite elements and quadratic NURBS revealed the superior per-degree-of-freedom
accuracy of the NURBS-based discretization. Accurate mean flow results are ob-
tained even for very coarse meshes with no boundary layer resolution. Weakly-
imposed boundary conditions were employed in this simulation and were partly
responsible for the good quality of the computational results.

Further validation of the proposed method was performed by computing the
NREL 5MW offshore baseline wind turbine rotor at full scale. Both NURBS and
standard finite elements were employed for this simulation. The NURBS-based
representation of the wind turbine geometry was used to create a tetrahedral mesh
for the FEM simulation, which is an added benefit of the isogeometric framework.
The results for aerodynamic torque, a key quantity in evaluating the wind turbine
performance, were in close agreement with those reported in [61] for the NURBS
simulation. This suggests that 3D, complex-geometry, time-dependent computa-
tional modeling of wind turbine rotors, which is fully predictive and does not rely
on empiricism, is capable of accurately approximating the aerodynamic quantities
of interest while keeping the number of degrees of freedom at a manageable level.
The tetrahdral discretization, which used a significantly smaller number of degrees
of freedom, produced a somewhat lower value of the torque than anticipated due to
the premature flow separation that starts near the blade tip and spreads. The results
of the tetrahedral simulation are expected to improve with further mesh refinement.

The computational framework was extended to coupling of the flow with a ro-
tating rigid body, and successfully applied to the simulation of the wind turbine
rotor over-spinning under high wind speed inlet conditions. Such computation, per-
formed using the NURBS-based discretization, would not be possible with the cur-
rently existing methods and tools for wind wind turbine simulation.
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In the future work we plan to employ weak imposition of Dirichlet boundary
conditions for wind turbine simulations, thus reducing the computational cost as-
sociated with boundary layer refinement and increasing accuracy. We also plan
to incorporate the effect of the wind turbine tower in the simulations, which may
have considerable influence on the results. It should be noted that the presence of
the tower will preclude the use of rotationally-periodic boundary conditions, which
will increase computational cost. Given the advanced nature of the simulations, the
proposed framework may be developed further and used for rotor control and blade
geometry optimization. Mesh refinement to increase the accuracy of the tetrahedral
simulations is also planned.
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