
Compressible flows on moving domains: Stabilized methods,
weakly enforced essential boundary conditions, sliding interfaces,

and application to gas-turbine modeling

Fei Xua, George Moutsanidisb, David Kamenskyb, Ming-Chen Hsua, Muthuvel Muruganc,
Anindya Ghoshalc, Yuri Bazilevsb,∗

aDepartment of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
bDepartment of Structural Engineering, University of California, San Diego, La Jolla, CA 92037, USA

cVehicle Technology Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

Abstract

A novel stabilized formulation for 3D compressible viscous flows on moving domains is devel-
oped. New weak imposition of essential boundary conditions and sliding-interface formulations
are also proposed in the context of moving-domain compressible flows. The new formulation is
successfully tested on a set of examples spanning a wide range of Reynolds and Mach numbers
showing its superior robustness. Experimental validation of the new formulation is also carried
out with good success. In addition, the formulation is applied to simulate flow inside a gas turbine
stage, illustrating its potential to support design of real engineering systems through high-fidelity
aerodynamic analysis.

Keywords: Compressible flow, Stabilized methods, Discontinuity capturing, Weak essential
boundary conditions, Sliding-interface formulation, Gas turbine

Contents

1 Introduction 2

2 Numerical methodology 5
2.1 Governing equations of compressible flows . 5

2.1.1 Preliminaries . 5
2.1.2 Strong form . 6
2.1.3 Reduced form of the energy equation . 7
2.1.4 Weak form . 8

2.2 Constituents of the discrete formulation . 9

∗Corresponding author
Email address: yuri@ucsd.edu (Yuri Bazilevs)

The final publication is available at Elsevier via https://doi.org/10.1016/ j.compfluid.2017.02.006

https://doi.org/10.1016/j.compfluid.2017.02.006

2.2.1 Quasi-linear form . 9
2.2.2 Moving-domain formulation . 9
2.2.3 SUPG operator . 10
2.2.4 Discontinuity-capturing operator . 11
2.2.5 Weak-boundary-condition operator . 12
2.2.6 Sliding-interface operator . 14

2.3 Semi-discrete formulation and time integration 15

3 Numerical examples 16
3.1 Oblique shock . 16
3.2 Supersonic flow over a flat plate . 17
3.3 Flow around NASA’s delta wings . 19

3.3.1 Subsonic case . 20
3.3.2 Supersonic case . 22

3.4 Turbulent flow around a sphere at Re = 10,000 . 24
3.4.1 Problem setup . 25
3.4.2 Simulation results . 26

4 Flow inside a gas turbine stage 28
4.1 Problem setup . 28
4.2 Simulation results . 30

5 Conclusions 33

Appendix A 34

1. Introduction

The success of finite element methods in solid and structural mechanics, heat conduction, and
other areas in 1970s encouraged its development and use to simulate flow problems. Stabilized
finite element methods for fluid mechanics were introduced, and the first of them was the stream-
line upwind/Petrov–Galerkin (SUPG) method [1] for incompressible flows. The key idea of SUPG
was to add a residual-based stabilization term to the Galerkin form of the governing equations in
order to enhance the stability for higher Reynolds number flows while retaining consistency of the
formulation. SUPG was extended to compressible flows using conservation variables in [2–4]. The
concept of SUPG was further refined and studied for entropy variables in [5–7], and then general-
ized to arbitrary variable sets in [8, 9]. Over the years, significant progress was made in stabilized
methods for compressible flows. The one perhaps most relevant to this paper was combining a

2

new version [10, 11] of the compressible-flow SUPG method [2–4] with the Deforming-Spatial-
Domain/Stabilized Space–Time (DSD/SST) method [12–14]. The DSD/SST method (now also
called the “ST method”) was introduced for flow problems with moving boundaries/interfaces,
including fluid–structure interaction (FSI). The method resulting from this straightforward mix-
ture of the DSD/SST concept and the compressible-flow SUPG method, which is now called
compressible-flow ST SUPG method, was first tested in [15]. This was followed by computa-
tions for air intake of a jet engine with adjustable spool at supersonic speeds [16], aerodynamics
of two high-speed trains in a tunnel [14], liquid propellant guns [17, 18], and compressible-flow
FSI [19, 20]. Other progress included large-scale parallel computations [16, 21–24], unified for-
mulations of incompressible and compressible flows [8, 25], and the development of stabilization
parameters [10, 11, 26–32].

It was observed early on that when stabilized methods were applied to compressible flow anal-
ysis, oscillations occurred in the vicinity of shocks and other sharp solution features. Hughes
et al. [33, 34] proposed a class of shock- or discontinuity-capturing methods that provide addi-
tional dissipation by adding mesh- and solution-dependent artificial viscosity terms to a stabilized
formulation. These viscosities are often residual-based, and thus preserve consistency of the for-
mulation. These shock-capturing methods were in the context of entropy variables. In a 1991
ASME paper [10], the original compressible-flow SUPG method, now called “(SUPG)82”, was
supplemented with a very similar shock-capturing term, which included a shock-capturing param-
eter that is now called “δ91”. The shock-capturing parameter was derived from the one given in [7]
for the entropy variables. It was shown in that, with the added shock-capturing term, (SUPG)82

was very comparable in accuracy to (SUPG)82 recast in entropy variables. In the 2D inviscid-
flow test computations reported in [11] soon after that, (SUPG)82 and (SUPG)82 recast in entropy
variables yielded indistinguishable results. Following these works, references [9, 35] general-
ized discontinuity-capturing methods to arbitrary solution-variable sets. Further developments in-
clude the discontinuity-capturing directional dissipation (DCDD) stabilization for incompressible
flows [28, 36] and the YZβ shock capturing [28–32, 37–41], which is based on a scaled residual
and has a parameter (β) that controls the degree of shock smoothness. Numerical experiments
in [30–32] demonstrated that these new discontinuity capturing techniques are relatively simple to
implement and give results of comparable or even improved accuracy relative to earlier approaches.
A concise summary of stabilized methods and discontinuity-capturing techniques for compressible
flows may be found in a recent review article [42] and references therein.

In this paper, we make use of SUPG stabilization and discontinuity capturing to develop a
novel numerical formulation for the Navier–Stokes equations of compressible flows in the Arbi-
trary Lagrangian–Eulerian (ALE) frame [43] suitable for moving-domain simulations. Early de-
velopments in stabilized ALE-based finite-element methods for compressible flows may be found

3

in [44–46]. In the present effort, we introduce several improvements to the existing formula-
tions, as well develop new techniques, such as weakly enforced essential boundary condition and
sliding-interface formulations, that enlarge the scope and applicability of moving-domain, finite-
element-based compressible flow formulations.

Weakly enforced no-slip boundary conditions [47] are imposed on solid surfaces in order to
avoid excessive resolution of thin, and often turbulent, boundary layers. Weak imposition of es-
sential boundary conditions in the sense of Nitsche’s method [48] for incompressible flows was
first introduced in [47], and further refined in [49, 50]. The most distinguishing feature of this
method is the added flexibility to allow the flow to slip on the solid surface in the case when the
wall-normal mesh size is relatively large [50–52]. This feature allows one to achieve good ac-
curacy on relatively coarse boundary-layer meshes. Weakly enforced boundary conditions have
been successfully applied to simulations of wall-bounded turbulent flows [49, 50] and wind tur-
bines [52–55]. More recently, weak enforcement of no-slip conditions was developed and applied
in the context of immersogeometric analysis [56–59], which led to solutions of higher-order ac-
curacy on non-boundary-fitted meshes. In the present work, we propose an extension of weakly
enforced essential boundary conditions in the context of compressible flows, which brings the
aforementioned advantages to this important area of computational fluid mechanics.

The sliding-interface formulation for incompressible flows was introduced in [60] for simu-
lating flows with objects in relative motion. The formulation was comprehensively studied and
refined in [54, 55], mostly with application to wind turbines. The sliding-interface formulation
may be interpreted as a Discontinuous Galerkin method [61], where the basis functions are contin-
uous inside the interior of subdomains but not at the sliding interface. In the incompressible-flow
regime, the sliding-interface formulation was recently extended to the space–time (ST) variational
multiscale (VMS) method [62–69], and the extension is called the “ST Slip Interface (ST-SI)”
method [70–76]. In this work, we develop a compressible-flow counterpart of the sliding-interface
formulation.

This paper is organized as follows. In Section 2, we develop a complete numerical formulation
of the Navier–Stokes equations of compressible flows. In Section 3, we compute several 2D and
3D examples to verify and validate the different constituents of our compressible-flow numerical
methodology. We focus on a broad range of Reynolds and Mach numbers to illustrate the robust-
ness of the numerical formulation. In Section 4, we apply the methods developed to simulate flow
inside a gas turbine stage, illustrating the potential of our methods to support design for real engi-
neering systems through high-fidelity aerodynamic analysis. In Section 5, we draw conclusions.

4

2. Numerical methodology

2.1. Governing equations of compressible flows

2.1.1. Preliminaries

The Navier–Stokes equations of compressible flows are often expressed using a vector of con-
servation variables Ũ defined as

Ũ =

ρ

ρu1

ρu2

ρu3

ρetot

, (1)

where ρ is the density, ui is the ith velocity component, i = 1, ..., d, where d = 2 or 3 is the space
dimension, and etot = e+‖u‖2/2 is the fluid total energy density, where e is the fluid internal energy
density and ‖u‖ is the velocity magnitude.

We also introduce a vector of primitive variables based on pressure or the pressure-primitive
variables Y defined as

Y =

p

u1

u2

u3

T

, (2)

where p is the pressure and T is the temperature. Pressure, density, and temperature are related
through an equation of state. Here we make use of the ideal gas equation of state, which may be
written as

p = ρRT , (3)

where R is the ideal gas constant. Furthermore, we assume a calorically perfect gas and define the
fluid internal energy density as

e = cvT , (4)

where cv = R/(γ − 1) is the specific heat at constant volume and γ is the heat capacity ratio.
Throughout the paper we use (·),t to denote a partial time derivative holding the spatial coordi-

nates x fixed, and we use (·),i to denote the spatial gradient.

5

2.1.2. Strong form

The Navier–Stokes equations of compressible flows, which express pointwise balance of mass,
linear momentum, and energy, may be written in terms of Ũ as

Ũ,t + F̃adv
i,i = F̃diff

i,i + S̃, (5)

where F̃adv
i and F̃diff

i are the vectors of advective and diffusive fluxes, respectively, and S̃ is the
source term. The residual of the compressible-flow equations may be defined as

R̃es = Ũ,t + F̃adv
i,i − F̃diff

i,i − S̃. (6)

We further split the advective flux into F̃adv
i = F̃adv\p

i + F̃p
i . The aforementioned fluxes are defined

as

F̃adv\p
i =

ρui

ρuiu1

ρuiu2

ρuiu3

ρui

(
e + ‖u‖2/2

)

, (7)

F̃p
i =

0
pδ1i

pδ2i

pδ3i

pui

, (8)

F̃diff
i =

0
τ1i

τ2i

τ3i

τi ju j − qi

, (9)

where δi j is the Kronecker delta. The viscous stress τi j and heat flux qi are given by

τi j = λuk,kδi j + µ
(
ui, j + u j,i

)
, (10)

qi = −κT,i, (11)

where µ is the dynamic viscosity, λ = −2µ/3 based on Stokes’ hypothesis, and κ is the thermal
conductivity.

6

2.1.3. Reduced form of the energy equation

Introducing the mass and momentum balance into the energy equation, we can simplify the
compressible-flow equation system. The balance laws given by Eq. (5) become

U,t + Fadv
i,i + Fsp = Fdiff

i,i + S, (12)

where

U =

ρ

ρu1

ρu2

ρu3

ρe

, (13)

Fadv
i = Fadv\p

i + Fp
i =

ρui

ρuiu1

ρuiu2

ρuiu3

ρuie

+

0
pδ1i

pδ2i

pδ3i

0

, (14)

Fdiff
i =

0
τ1i

τ2i

τ3i

−qi

, (15)

and the term Fsp is the contribution of stress power in the energy equation, which has the form

Fsp =

0
0
0
0

pui,i − τi ju j,i

. (16)

A modified residual function is now defined as

Res = U,t + Fadv
i,i + Fsp − Fdiff

i,i − S. (17)

7

2.1.4. Weak form

Let Ω ∈ Rd denote the fluid domain and let Γ be its boundary. Considering U,Fadv\p
i ,Fp

i , Fsp,
and Fdiff

i as functions of Y, i.e., U(Y), Fadv\p
i (Y), Fp

i (Y), Fsp(Y), and Fdiff
i (Y), the weak form of

Eq. (12) may be stated as: Find Y ∈ S, such that ∀W ∈ V,

B (W,Y) − F (W) = 0, (18)

where

B (W,Y) =

∫
Ω

W ·
(
U,t(Y) + Fadv\p

i,i (Y) + Fsp(Y)
)

dΩ

−

∫
Ω

W,i ·
(
Fp

i (Y) − Fdiff
i (Y)

)
dΩ, (19)

and

F (W) =

∫
Ω

W · S dΩ +

∫
Γh

W ·H dΓ. (20)

S andV are the trial-function space for the pressure-primitive variables and test-function space for
the compressible-flow equation system, respectively, and Γh is the subset of Γ where the traction
and heat flux boundary conditions H are enforced. The vector H is given by

H =

0
−pn1 + τ1ini

−pn2 + τ2ini

−pn3 + τ3ini

−qini

, (21)

where ni is the ith component of outward unit surface normal vector n. The vector H contains the
fluid traction in the momentum-equation slot and heat flux in the energy-equation slot.

Remark 1. Note that the choice of the variable set does not change the balance laws. In the present
work, rather than using conservation variables as the problem unknowns, pressure-primitive vari-
ables are chosen. One reason for this choice is that, unlike for conservation variables, the in-
compressible limit of the compressible-flow equations is well defined for the pressure-primitive
variables [9]. Pressure-primitive variables are also convenient for setting boundary conditions and
implementing fluid–structure interaction (FSI) coupling. In addition, as will become evident in the
later sections, pressure-primitive variables lead to a natural extension of the weakly enforced essen-
tial boundary condition and sliding-interface formulations, originally defined for incompressible

8

flows, to the compressible flow regime.

Remark 2. The use of reduced-energy equation is likewise convenient for FSI modeling involving
thermally-coupled solids, because only the heat flux appears in the energy-equation slot of vector
H.

2.2. Constituents of the discrete formulation

2.2.1. Quasi-linear form

The Navier–Stokes equations of compressible flows given by Eq. (12) may be expressed in the
following quasi-linear form involving the conservation variables U:

U,t + ÂiU,i + Âsp
i U,i −

(
K̂i jU, j

)
,i
− S = 0, (22)

where Âi =
∂Fadv

i

∂U
, Âsp

i is such that Âsp
i U,i = Fsp, and K̂i j is such that K̂i jU, j = Fdiff

i .
Analogously, using the pressure-primitive variables Y, the quasi-linear form of Eq. (22) may

be written as

A0Y,t + AiY,i + Asp
i Y,i −

(
Ki jY, j

)
,i
− S = 0, (23)

where A0 =
∂U
∂Y

, Ai =
∂Fadv

i

∂Y
=
∂Fadv

i

∂U
∂U
∂Y

= ÂiA0, Asp
i is such that Asp

i Y,i = Fsp, and Ki j is such

that Ki jY, j = Fdiff
i . Explicit expressions for the matrices appearing in the quasi-linear forms are

provided in Appendix A.

2.2.2. Moving-domain formulation

Using the space–time Piola transformation and following the steps in [77], the convective ALE
formulation of the Navier–Stokes equations of compressible flows may be stated as

U,t

∣∣∣
x̂ + Fadv

i,i + Fsp − ûiU,i − Fdiff
i,i − S = 0, (24)

where ûi is the ith component of the domain velocity û and (·),t
∣∣∣
x̂ denotes a partial time derivative

holding the referential coordinates x̂ fixed. The quasi-linear form of Eq. (24) may be written for
the conservation variables as

U,t

∣∣∣
x̂ +

(
Âi + Âsp

i − ûiI
)

U,i −
(
K̂i jU, j

)
,i
− S = 0. (25)

In the case of the pressure-primitive variables, Eq. (24) becomes

A0Y,t

∣∣∣
x̂ +

(
Ai + Asp

i − ûiA0

)
Y,i −

(
Ki jY, j

)
,i
− S = 0. (26)

9

The residual for the ALE form of the compressible-flow equations may be expressed as

Res = A0Y,t

∣∣∣
x̂ +

(
Ai + Asp

i − ûiA0

)
Y,i −

(
Ki jY, j

)
,i
− S. (27)

We also introduce the matrices ÂALE
i = Âi + Âsp

i − ûiI for the conservation variables, and AALE
i =

Ai + Asp
i − ûiA0 for the pressure-primitive variables.

2.2.3. SUPG operator

We assume the time-dependent fluid domain Ω is divided into Nel spatial finite elements each
denoted by Ωe, and define the SUPG operator as follows:

BSUPG (W,Y) =

Nel∑
e=1

∫
Ωe

((
AALE

i

)T
W,i

)
· τττSUPGRes(Y) dΩ, (28)

where the stabilization matrix τττSUPG to this day remains a subject of active research [28–31]. In
the present work we adopt a philosophy of designing τττSUPG for the conservation variables and
transforming to the pressure-primitive-variable formulation. For this, we employ the following
design condition [27]:

Nel∑
e=1

∫
Ωe

((
AALE

i

)T
W,i

)
· τττSUPGRes dΩ =

Nel∑
e=1

∫
Ωe

((
ÂALE

i

)T
W,i

)
· τ̂ττSUPGRes dΩ, (29)

which yields

τττSUPG = A−1
0 τ̂ττSUPG, (30)

where A−1
0 = Y,U is the transformation matrix between the two variable sets. The stabilization

matrix τ̂ττSUPG may be defined as [26]

τ̂ττSUPG =

(
4

∆t2 I + Gi jÂALE
i ÂALE

j + CIGi jGklK̂ikK̂l j

)− 1
2

, (31)

where ∆t is the time step size, CI is a positive constant derived from an appropriate element-wise
inverse estimate [78–80], and Gi j is the element metric tensor computed as

Gi j =

d∑
k=1

∂ξk

∂xi

∂ξk

∂x j
, (32)

where x(ξ) denotes the mapping from the parametric element to its physical-domain counterpart.
The definition of τ̂ττSUPG in Eq. (31) requires the computation of the square-root-inverse of a

10

5 × 5 matrix in 3D. For this purpose, the Denman–Beavers method [81, 82] is employed. The
Denman–Beavers method is an iterative technique that derives from the Newton–Raphson ap-
proach to the computation of the matrix square-root-inverse. To improve the convergence of the
Denman–Beavers iterations for the simulations we consider in this work, we propose to modify
the algorithm by setting

P0 =
∆t2

4

(
4

∆t2 I + Gi jÂALE
i ÂALE

j + CIGi jGklK̂ikK̂l j

)
, (33)

Q0 = I, (34)

as the initial guess, and carrying out the Denman–Beavers iterations as

Pk+1 =
1
2

(
Pk + Q−1

k

)
, (35)

Qk+1 =
1
2

(
Qk + P−1

k

)
, (36)

where k is the iteration index. In the above equations, Pk+1 is a successive approximation of
the matrix square-root of P0 and Qk+1 is a successive approximation of the matrix square-root-
inverse of P0. As a result, when the Denman–Beavers iteration converges, τ̂ττSUPG in Eq. (31) can be

computed as
∆t
2

Qk+1.

Remark 3. Note that the initial guess of P0 is scaled by
∆t2

4
. For the simulations considered in

this work, ∆t is usually small and as a result P0 defined in Eq. (33) is close to an identity matrix.
This presents an excellent initial guess for the Denman–Beavers algorithm.

Remark 4. Defining τ̂ττSUPG as in Eq. (31) and taking the square-root-inverse using the iterative
Denman–Beavers algorithm amounts to what we call the “direct” approach, which is somewhat
more computationally expensive than adopting simplified expressions for τ̂ττSUPG. Nevertheless, we
feel the proposed methodology justifies the extra cost due to the increased accuracy and robustness
it exhibits for a wide range of Reynolds and Mach numbers.

2.2.4. Discontinuity-capturing operator

Following the philosophy for designing the SUPG operator, we first define the discontinuity-
capturing (DC) operator for conservation variables as

Nel∑
e=1

∫
Ωe

W,i · K̂DCU,i dΩ, (37)

11

where K̂DC is the diffusivity matrix for the DC operator. Changing variables from U to Y gives

Nel∑
e=1

∫
Ωe

W,i · K̂DCA0Y,i dΩ, (38)

which, in turn, defines the DC-operator diffusivity matrix for the pressure-primitive variables as

KDC = K̂DCA0. (39)

We assume a diagonal form of the diffusivity matrix for the conservation variables, namely,

K̂DC = diag (κ̂C, κ̂M, κ̂M, κ̂M, κ̂E) , (40)

where the diagonal entries are given by

κ̂C = CC
h |Res1|

|∇U1|
, (41)

κ̂M = CM
h |Res2:d+1|

|∇U2:d+1|
, (42)

κ̂E = CE
h |Resd+2|

|∇Ud+2|
. (43)

In the above, h is the element size, and CC, CM, and CE are the O(1) positive constants correspond-
ing to the continuity, momentum, and energy equations, respectively. The above equations are
inspired by the so-called CAU discontinuity capturing technique [83], and may also be viewed as
YZβ discontinuity capturing with β = 1. Note that the definition of KDC is residual-based, and thus
does not upset consistency of the formulation. The DC operator for the pressure-primitive variable
formulation is now defined as

BDC (W,Y) =

Nel∑
e=1

∫
Ωe

W,i ·KDCY,i dΩ. (44)

Remark 5. We note that the CAU discontinuity-capturing technique is an extension of the “δ91”
shock-capturing technique [10, 11] to unsteady flows. The CAU is residual-based in the context of
unsteady problems, while “δ91” was residual-based in the context of steady, inviscid flows.

2.2.5. Weak-boundary-condition operator

The idea of weak imposition of essential boundary conditions for incompressible flows was
first proposed in [47]. The motivation for this development was to relax the boundary-layer res-
olution requirements for wall-bounded turbulent flows without sacrificing the overall solution ac-

12

curacy [47, 49–52]. Weakly enforced essential boundary conditions act as near-wall models for
underresolved boundary-layer flows while converging to their strongly-enforced counterparts at
optimal rate with mesh refinement. Here we extend the weakly enforced essential boundary con-
dition formulation to compressible flows.

We assume that essential boundary conditions on the velocity and temperature fields are en-
forced on ΓD ∈ Γ, and the fluid domain boundary Γ is decomposed into Neb surface elements each
denoted by Γb. Let W = [q w wθ]T be the vector of test functions with w = [w1 w2 w3]T being the
test functions for the linear-momentum balance equations. The weak-boundary-condition operator
for compressible flows that is consistent with the pressure-primitive variable formulation is given
by

BWBC (W,Y) = −

Neb∑
b=1

∫
Γb ⋂

ΓD

w · (σσσ(u, p)n) dΓ

−

Neb∑
b=1

∫
Γb ⋂

ΓD

(δσσσ(w, q)n) · (u − g) dΓ

−

Neb∑
b=1

∫
Γb ⋂

Γ−D

w · ρ ((u − û) · n) (u − g) dΓ

+

Neb∑
b=1

∫
Γb ⋂

ΓD

w · τµ(u − g) dΓ

+

Neb∑
b=1

∫
Γb ⋂

ΓD

(w · n) τλ(u − g) · n dΓ

−

Neb∑
b=1

∫
Γb ⋂

ΓD

wθκ∇T · n dΓ

−

Neb∑
b=1

∫
Γb ⋂

ΓD

κ∇wθ · n (T − Tb) dΓ

−

Neb∑
b=1

∫
Γb ⋂

Γ−D

wθρcv ((u − û) · n) (T − Tb) dΓ

+

Neb∑
b=1

∫
Γb ⋂

ΓD

wθτκ(T − Tb) dΓ, (45)

whereσσσ(u, p) = −pI + (λ∇ · u)I + µ
(
∇u + ∇Tu

)
, δσσσ(w, q) = ρqI + (λ∇ ·w)I + µ

(
∇w + ∇Tw

)
, g is

the prescribed velocity on the no-slip boundary, Tb is the prescribed temperature on the boundary,
and Γ−D is the inflow part of ΓD where (u − û) · n < 0.

Remark 6. The first five terms on the right-hand side of Eq. (45) correspond to the weak en-

13

forcement of the velocity boundary conditions, while the last four terms ensure weak enforcement
of temperature boundary conditions. The formulation is essentially a direct extension of weak
boundary-condition enforcement for incompressible-flow and advection-diffusion equations.

Remark 7. The penalty parameters in the weak-boundary-condition operator are defined as fol-
lows: τµ = CB

I µ/hn, τλ = CB
I |λ|/hn, and τκ = CB

I κ/hn. Here hn is the element size in the wall-normal
direction and CB

I is a positive constant, which needs to be sufficiently large for the overall stability
of the formulation. It emanates from an appropriate element-level trace inequality [78–80], and,
for low-order elements, it is sufficient to take 4 ≤ CB

I ≤ 8. We advise the readers to avoid taking CB
I

to be too large, because in that case the penalty terms will dominate the weak-boundary-condition
formulation and overshadow its variational consistency responsible for the good performance of
the method.

2.2.6. Sliding-interface operator

Here we extend the sliding-interface formulation, developed for incompressible flows in [60]
and applied to wind-turbine simulation in [54, 55], to compressible flows. We are motivated by
applications such as gas turbines, where the sliding interfaces arise due to the need to handle
mechanical and structural components that are in relative motion.

To present the method, we consider two subdomains that are in relative motion and share a
sliding interface, denoted by ΓI. We use subscripts 1 and 2 to distinguish the quantities (e.g.,
test and trial functions, state variables, etc.) defined on the subdomains. To weakly enforce the
compatibility of the flow variables, tractions, and heat fluxes at the sliding interface, we define the
following sliding-interface operator:

BSI (W,Y) = −

Neb∑
b=1

∫
Γb ⋂

ΓI

(w1 − w2) ·
1
2

(σσσ(u1, p1)n1 −σσσ(u2, p2)n2) dΓ

−

Neb∑
b=1

∫
Γb ⋂

ΓI

1
2

(δσσσ(w1, q1)n1 − δσσσ(w2, q2)n2) · (u1 − u2) dΓ

−

Neb∑
b=1

∫
Γb ⋂(Γ−I)1

q1 · ρ1βT1 ((u1 − û1) · n1) (p1 − p2) dΓ

−

Neb∑
b=1

∫
Γb ⋂(Γ−I)2

q2 · ρ2βT2 ((u2 − û2) · n2) (p2 − p1) dΓ

−

Neb∑
b=1

∫
Γb ⋂(Γ−I)1

w1 · ρ1 ((u1 − û1) · n1) (u1 − u2) dΓ

−

Neb∑
b=1

∫
Γb ⋂(Γ−I)2

w2 · ρ2 ((u2 − û2) · n2) (u2 − u1) dΓ

14

+

Neb∑
b=1

∫
Γb ⋂

ΓI

(w1 − w2) · τµ(u1 − u2) dΓ

+

Neb∑
b=1

∫
Γb ⋂

ΓI

(w1 · n1 + w2 · n2) τλ(u1 · n1 + u2 · n2) dΓ

−

Neb∑
b=1

∫
Γb ⋂

ΓI

(
wθ1 − wθ2

) κ
2

(∇T1 · n1 − ∇T2 · n2) dΓ

−

Neb∑
b=1

∫
Γb ⋂

ΓI

κ

2
(
∇wθ1 · n1 − ∇wθ2 · n2

)
(T1 − T2) dΓ

−

Neb∑
b=1

∫
Γb ⋂(Γ−I)1

wθ1ρ1cv ((u1 − û1) · n1) (T1 − T2) dΓ

−

Neb∑
b=1

∫
Γb ⋂(Γ−I)2

wθ2ρ2cv ((u2 − û2) · n2) (T2 − T1) dΓ

+

Neb∑
b=1

∫
Γb ⋂

ΓI

(
wθ1 − wθ2

)
τκ(T1 − T2) dΓ, (46)

where βT = 1/p, and the remaining terms are defined as in Eq. (45). For each of i = 1 and i = 2,
the surface

(
Γ−I

)
i
is the portion of ΓI on which (ui − ûi) · ni < 0. Note that n1 = −n2.

Remark 8. The above formulation is, for the most part, a direct extension of the sliding-interface
formulation for incompressible-flow and advection-diffusion equations. The terms that are not
present in the incompressible-flow or advection-diffusion formulations are the third and fourth
terms on the right-hand side of Eq. (46). These terms provide additional convective stabilization for
the pressure variable and are important for the overall stability of the sliding-interface formulation.

2.3. Semi-discrete formulation and time integration

Putting all the numerical constituents into a single framework, the semi-discrete form of the
Navier–Stokes equations of compressible flows may be stated as: Find Yh ∈ Sh, such that ∀Wh ∈

Vh,

B
(
Wh,Yh

)
− F

(
Wh

)
+ BSUPG

(
Wh,Yh

)
+ BDC

(
Wh,Yh

)
+ BWBC

(
Wh,Yh

)
+ BSI

(
Wh,Yh

)
= 0, (47)

where Sh and Vh are the discrete counterparts of S and V. To integrate the semi-discrete
compressible-flow equations in time we employ the Generalized-α method, which was first intro-
duced in [84] for structural dynamics and later extended to fluid dynamics in [85]. Generalized-α

15

10°

M = 2
p = 0.1786

u1 = cos 10°
u2 = −sin 10°

T = 6.1941×10-4

29.3°

u2 = 0
x

y

shock

line plots

(a) Problem setup (b) Mesh

Figure 1: Oblique shock. Problem setup, boundary conditions, and mesh.

is an implicit, unconditionally stable, second-order method with control over high-frequency dis-
sipation. At each time step, the solution of the nonlinear algebraic-equation system is performed
using the Newton–Raphson technique. At each Newton–Raphson iteration the linear system is
solved iteratively using a block-diagonal-preconditioned GMRES technique [86, 87].

3. Numerical examples

In this section, we present a series of numerical examples that cover a wide range of Reynolds
and Mach numbers to illustrate the general applicability of the proposed compressible-flow for-
mulation. Comparison with experimental data, with computational results obtained by other re-
searchers, and with analytical solutions are presented where applicable.

3.1. Oblique shock

In this 2D example a uniform inviscid flow at M = 2 impacts a wall at a 10◦ angle. The analyt-
ical solution of the steady Euler equations predicts formation of an oblique shock at 29.3◦ relative
to the wall at the leading edge. The problem setup is shown in Figure 1a. The computational
domain is a bi-unit square discretized using a uniform 41 × 41-node mesh of triangular elements
shown in Figure 1b. The values of p, u1, u2, and T are prescribed on the left and top boundaries,
and no-penetration boundary conditions are set at the bottom wall. The right boundary is left open.

In Figure 2, we plot the pressure and temperature solution along a dashed line shown in Fig-
ure 1a (at x = 0.9) together with the analytical result. The computed pressure and temperature
profiles match their analytical counterparts very well. The shock is in the correct location and is
resolved within four elements without oscillation, illustrating a good combination of accuracy and
robustness of the proposed methodology.

16

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.15

0.2

0.25

0.3

Analytical
Present result

(a) Pressure

0.2 0.3 0.4 0.5 0.6 0.7 0.8
5.5

6

6.5

7

7.5

10-4

Analytical
Present result

(b) Temperature

Figure 2: Oblique shock. Pressure and temperature solutions along a vertical line corresponding x = 0.9. Exact
solution is plotted for comparison.

M = 3
Re = 1000

p = 7.937×10-2
u1 = 1
u2 = 0

T = 2.769×10-4

symmetric
x

y

shock

no-slip wall, T = 7.754×10-4

boundary layer

Figure 3: Supersonic flow over a flat plate. Problem setup and boundary conditions.

3.2. Supersonic flow over a flat plate

A 2D viscous supersonic flow over a flat plate at free-stream Re = 1000 and M = 3 is simulated.
Figure 3 shows the problem setup wherein a shock and boundary layer are developed from the
leading edge. The temperature-dependent viscosity is set according to Sutherland’s law as

µ = C1T 1.5/ (T + S) , (48)

where S = 0.0001406 is a constant taken from literature (see, e.g., [9]), and C1 = 0.0906 is a
scaling factor chosen to yield the desired free-stream Reynolds number.

The computational domain is a rectangle with −0.2 ≤ x ≤ 1.2 and 0 ≤ y ≤ 0.8. The wall begins
at x = 0 and continues along the lower boundary all the way to the outflow. All the unknowns are

17

(a) Pressure (b) Temperature

(c) Mach number (d) Velocity magnitude

Figure 4: Supersonic flow over a flat plate. Isocontours of pressure, temperature, Mach number, and velocity magni-
tude.

set at the inlet and top boundaries, and the outlet is assumed to have zero traction and heat flux.
On the portion of the bottom boundary prior to the wall (i.e., the “symmetric” boundary), normal
velocity, tangential traction, and heat flux are all set to zero. No-slip boundary condition is enforced
strongly at the solid wall. Wall temperature is prescribed as the stagnation temperature given by

Tw = T∞

(
1 +

γ − 1
2

M2
∞

)
. (49)

Two uniform meshes with 22,400 and 89,600 triangular elements, denoted by M1 and M2,
respectively, are employed in the computations. Figure 4 shows the solution contours obtained on
M1. The data is in good qualitative and quantitative agreement with the results presented in [9].

Figure 5 shows the computed pressure (Cp), friction (C f), and heat-flux (Ch) coefficients plotted
along the wall. The coefficients are defined as

Cp =
2 (p − p∞)
ρ∞‖u∞‖2

, (50)

C f =
2τw

ρ∞‖u∞‖2
, (51)

18

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Pressure coefficient

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(b) Friction coefficient

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

(c) Heat flux coefficient

Figure 5: Supersonic flow over a flat plate. Pressure (Cp), friction (C f), and heat-flux (Ch) coefficients plotted along
the wall. Numerical solutions from [9] are plotted for reference.

Ch =
2qw

ρ∞‖u∞‖3
, (52)

where, p∞ is the inflow static pressure, ρ∞ is the inflow density, ‖u∞‖ is the magnitude of inflow
velocity, τw is the wall shear stress, and qw is the heat flux. Meshes M1 and M2 produce nearly
identical results, suggesting the mesh is sufficiently refined to obtain accurate wall quantities in
this example. Excellent agreement with the reference results of [9] is also attained.

3.3. Flow around NASA’s delta wings

Flow around delta wings across a wide range of Reynolds and Mach numbers have been ex-
perimentally investigated and extensively documented by NASA researchers [88, 89]. We use this
data to validate the compressible-flow formulation proposed in this work. Among the available

19

Inflow:
uniform	flow
M = 0.8
Re = 6�106

4

Angle	of	attack:	14.5�

Outflow:
traction
free

4

Figure 6: Flow around NASA’s delta wing. Problem setup.

data, we choose a subsonic case and a supersonic case, both have a high angle of attack leading
to flow separation. This example partially serves to validate the newly proposed weakly enforced
boundary conditions for wall-bounded turbulent compressible flows with separation.

3.3.1. Subsonic case

Chu and Luckring [88] conducted experimental tests of the flow around delta wings with a
leading edge sweep angle of 65◦, and documented the pressure distributions on the delta wing
surfaces. The experiment was performed for Mach number ranging from M = 0.4 to M = 0.9,
and Reynolds number ranging from Re = 6 × 106 to Re = 36 × 106. Here we choose the case
M = 0.8, Re = 6× 106, and the angle of attack of 14.5◦. In [88], four types of leading edge profiles
were employed. Here we choose the delta wing with a sharp leading edge. The detailed geometry
description of the delta wing may be found in [88, Appendix A]. In the present computations we
normalize the delta-wing geometry by scaling the chord to a non-dimensional length of c = 1.

The delta wing is placed in a large rectangular-box computational domain (see Figure 6). At
the inflow we set ‖u‖ = 1, p = 1.1161, and T = 3.8713×10−3, which yields M = 0.8. The viscosity
is set to µ = 1.1111 × 10−7 to obtain the desired Reynolds number based on the non-dimensional
mean aerodynamic chord length of c̄ = 2/3. On the wing surface, no-slip velocity and stagnation
temperature of T = 4.3368 × 10−3 boundary conditions are enforced weakly. At the outlet, zero
traction and heat-flux boundary conditions are specified. On the lateral boundaries, no-penetration
and zero tangential-traction and heat-flux boundary conditions are set.

The problem mesh is designed as follows. We first use an element size of 0.004 to discretize
the delta wing surface uniformly into triangles. Starting from the surface mesh, we define a total

20

Figure 7: Subsonic flow around NASA’s delta wing. Cut through the mesh interior and zoom on the boundary-layer
discretization.

of 15 layers of prismatic elements, with the first layer height of 0.001 and a growth ratio of 1.1.
The first layer height gives y+ ≈ 225. A mesh refinement zone with the element growth ratio of 1.2
and a maximum element size of 0.04 is defined near and downstream of the delta wing to better
resolve the downstream flow. The remainder of the fluid domain is filled with tetrahedral elements
with a maximum mesh size of 1.0. This design gives the problem mesh of 6,551,827 elements. A
cut through the mesh interior is shown in Figure 7 along with the zoom-in to the boundary-layer
discretization. The time step size in the computation is set to ∆t = 4 × 10−4.

Figure 8 shows the highly turbulent, separated flow around the delta wing through the visual-
ization of vortex structures (see, e.g., [90, 91] for definition). The flow separates along the leading
edge and forms a region of rotational flow referred to as the “primary vortex” [89]. This highly
rotational flow induces surface velocities that create regions of low pressure, as can be seen in
Figure 9. These regions of low pressure are coincident with the locations of the primary vortices
shown in Figure 8.

Figure 10 shows the mean pressure coefficient along the spanwise direction (η) at different
chord locations (x/c). The definition of x/c and η are shown in Figure 10f. Very good agreement
between the numerical results and experimental data is observed. In particular, sharp pressure
gradients at x/c = 0.6, x/c = 0.8, and x/c = 0.95 are very well captured in the simulation. This
demonstrates the superior coarse-mesh (here y+ ≈ 225) accuracy of weakly enforced boundary
conditions in handling compressible, turbulent flow separation and reattachment.

21

Figure 8: Subsonic flow around NASA’s delta wing. Vorticity isosurfaces colored by velocity magnitude. Streamlines
are also plotted in order to better illustrate the structure of the primary vortex.

(a) Lower surface (b) Upper surface

Figure 9: Subsonic flow around NASA’s delta wing. Pressure distribution over the delta-wing surfaces.

3.3.2. Supersonic case

We compute the delta-wing flow in the supersonic regime, and refer the reader to [89] for the
experimental investigations of this case. We chose the case at M = 2, Re = 2 × 106, and the angle
of attack of 12◦, in which the shock-induced flow separation appears. We note that the geometry
in this case is slightly different from the subsonic case. The geometry details may be found in [89,
Figure 1]. As in the subsonic case, we normalize the geometry by scaling the chord length to a
non-dimensional unit length.

The problem setup is similar to the subsonic case. At the inflow we set ‖u‖ = 1, p = 0.1786,
and T = 6.1941 × 10−4, which yields M = 2. On the wing surface, no-slip velocity and stagnation

22

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(a) x/c = 0.2

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(b) x/c = 0.4

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(c) x/c = 0.6

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(d) x/c = 0.8

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(e) x/c = 0.95

y

x

c = 1.0

b(x)!=y/b(x)

(f) Definition of x/c and η

Figure 10: Subsonic flow around NASA’s delta wing. Pressure coefficient plotted along the spanwise direction at
different chord locations on the wing surface. Experimental data from [88] are plotted for comparison.

23

Figure 11: Supersonic flow around NASA’s delta wing. Mach number contours on the vertical symmetry plane.

temperature of T = 1.1149 × 10−3 boundary conditions are enforced weakly. At the outlet, zero
traction and heat-flux boundary conditions are specified. On the lateral boundaries, no-penetration
and zero tangential-traction and heat-flux boundary conditions are set. The temperature dependent
viscosity is determined by the Sutherland’s law given by Eq. (48) with C1 = 1.6434 × 10−5 and
S = 0.0001406, which yields the desired inflow Reynolds number based on the non-dimensional
mean aerodynamic chord length of c̄ = 2/3. A similar mesh design as in the subsonic case is
employed, which yields a total of 6,149,717 elements. The time step size used in this case is
4 × 10−4.

Figure 11 shows the Mach number contours on the vertical symmetry plane. In the figure
one can clearly observe the formation of an oblique shock below the wing and the well-known
“Prandtl–Meyer expansion fan” above the wing. In Figure 12, the time-averaged pressure is plotted
along the x/c = 0.96 line on the upper surface (x/c and η are defined in the same way as in
Figure 10f) together with the experimental measurements, showing very good agreement between
the two. In particular, a sudden drop in the pressure due to flow separation is accurately captured
in the simulation.

3.4. Turbulent flow around a sphere at Re = 10,000

With this example we pursue a dual purpose: a. To demonstrate the effectiveness of our for-
mulation in the nearly incompressible, low-Mach-number regime, thus extending the applicability
of our methodology to cover a broad range of flows; b. To validate the sliding-interface formula-
tion by solving the same problem with and without the sliding interface, and expecting to obtain
solutions with the same level of accuracy.

24

0 0.15 0.3 0.45 0.6 0.75 0.9
-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 12: Supersonic flow around NASA’s delta wing. Pressure coefficient on the upper surface along the spanwise
direction at x/c = 0.96. Experimental data from [89] are plotted for comparison.

3.4.1. Problem setup

Turbulent flow around a sphere at Re = 10,000 and M = 0.1 is considered. The inflow consists
of uniform flow with unit speed, p = 71.4286, and T = 0.2478. The sphere diameter and fluid
viscosity are set to D = 1 and µ = 0.0001, respectively, yielding the desired free-stream Reynolds
number. No-slip conditions and stagnation temperature of T = 0.2588 are imposed weakly on
the sphere. As mentioned earlier, the problem is solved with and without the sliding interface.
The problem setup, including the sliding interface, is shown in Figure 13. In the case of sliding-
interface computation, the inner domain is assumed to rotate with angular velocity of one radian per
non-dimensional time unit with zero-velocity boundary condition weakly enforced on the sphere
surface. This setup is expected to produce the same solution as the stationary-domain case without
the sliding interface.

We use a similar mesh design as in [92]. We first discretize the sphere into uniform triangles.
Seven layers of prismatic elements with a growth ratio of 1.2 are then constructed, resulting in the
first element size of y+ = 2.36 in non-dimensional wall units. Subsequently, the sliding interface
is introduced, and two cylindrical refinement zones around and downstream of the sphere are
constructed to better capture the wake flow. The remainder of the fluid domain is filled with
tetrahedral elements. The mesh statistics are shown in Table 1. A cut through the mesh is shown
in Figure 14 to illustrate the discretization in the fluid-domain interior. The mesh with the sliding
interface has a total of 6,378,930 elements, while the mesh without the sliding interface has a total
of 6,395,378 elements. In both computations the time step is set to ∆t = 0.005, which yields a CFL
number of O(1).

25

Table 1: Turbulent flow around a sphere. Mesh statistics.

First layer
height

Sliding
interface

Refinement
cylinder 1

Refinement
cylinder 2

Outer box

0.004 0.04 0.04 0.16/
√

2 0.8

7.
5

7.
5

2 D = 1

Re =	10000
M =	0.1

Figure 13: Turbulent flow around a sphere. Problem setup.

Figure 14: Turbulent flow around a sphere. Cut through the mesh and zoom on the boundary layer and sliding interface
(marked in red).

3.4.2. Simulation results

Figure 15 shows instantaneous vortical structures, which illustrate several features of this flow
including a thin, laminar boundary layer in the front of the sphere, flow separation at the sphere

26

Figure 15: Turbulent flow around a sphere. Vorticity isosurfaces colored by velocity magnitude.

apex, and complex flow in the sphere wake.
We compare our results, in terms of the key quantities of interest, for the simulations with

and without the sliding interface with data obtained from the Direct Numerical Simulation (DNS)
reported in [93] and experimental data from [94, 95]. Note that the DNS results in [93] are obtained
by solving the Navier–Stokes equations of incompressible flows. As a result, a perfect match
between our results and the DNS data is not expected. Table 2 presents a comparison of the time-
averaged CD, the drag coefficient, L/D, the non-dimensional length of the recirculation bubble, and
Cpb, the pressure coefficient at an azimuthal angle of 180◦, which corresponds to the rearmost point
on the sphere in the flow direction. The distribution of mean pressure and skin-friction coefficient
as function of the azimuthal angle is shown in Figure 16. Here the mean skin-friction coefficient is
defined as C f = τ̄w/(ρ∞||u∞||2Re0.5), where τw is the wall friction.

In all comparisons we observe a very good agreement between the results with or without the
sliding interface. Among all the quantities of interest, we emphasize that the predictions of the
non-dimensional length of the circulation bubble are very close in these two cases. This shows that
the sliding-interface formulation gives good compatibility of the kinematic and thermodynamic
variables as well as tractions and heat fluxes across the non-matching interface.

Remark 9. In the computation of the skin-friction coefficient, the traction vector on the sphere
surface is computed using a conservation definition [51, 96], which takes on the following form:

t = −σσσ(u, p)n − ρ{(u − û) · n}− (u − g) + τµ(u − g) + τλ ((u − g) · n) n , (53)

where { · }− denotes the negative part of the bracketed quantity.

Remark 10. The data in Table 2 indicates that a slightly higher drag is predicted in the M = 0.1
compressible-flow computations relative to incompressible DNS, which corresponds to M = 0.

27

Table 2: Turbulent flow around a sphere. Comparison of time-averaged quantities of interest. Simulation results with
and without the sliding interface (SI) are reported. The drag coefficient for Re ≈ 10,500 and M = 0.11 obtained
experimentally in [94, 95] is also provided for comparison.

CD L/D Cpb

Results without SI 0.409 1.423 -0.297
Results with SI 0.411 1.421 -0.301
DNS [93] (incompressible) 0.402 1.657 -0.272
Experimental data [94, 95] 0.413 – –

0 30 60 90 120 150 180
-0.8

-0.4

0

0.4

0.8

1.2

(a) Pressure coefficient

0 30 60 90 120 150 180
-0.5

0

0.5

1

1.5

2

2.5

(b) Skin-friction coefficient

Figure 16: Turbulent flow around a sphere. Time-averaged pressure and skin-friction coefficient plotted as a function
of azimuthal angle.

This is not surprising since the data in [94] shows that for a flow in the subsonic regime at Re > 200
the sphere drag increases with the increasing Mach number. The higher drag value emanates from
higher suction pressure predicted in the compressible-flow simulation (see Figure 16).

4. Flow inside a gas turbine stage

In this section, we simulate the flow inside a gas turbine stage. This stage contains a row of
stator blades and a row of rotor blades. The flow accelerates inside the stator-blade channels and
then enters the rotor-blade channels.

4.1. Problem setup

We model the fluid domain by a stationary subdomain containing the stator and a rotational
subdomain containing the rotor. The two domains are coupled using the sliding-interface formula-
tion. A uniform axial inflow with velocity of 82.3 m/s, pressure of 2,012,790 Pa and temperature of
1669.78 K is applied at the inlet boundary. The traction-free boundary condition is set at the outlet.

28

Inlet:
||u||= 82.3 m/s
p = 2,012,790 Pa
T = 1,669.78 K
M = 0.103

Axis to casing:
95.524 mm

Axis to shaft:
77.724 mm

Stator (24 blades) Rotor (34 blades): 44,700 rpm

Outlet: traction
free

Casing and shaft:
no-slip

Figure 17: Flow inside a gas turbine stage. Problem setup, geometry and dimensions.

The no-slip velocity boundary conditions and the stagnation temperature of T = 1, 673.15 K are
enforced weakly on the rotor and stator blades. On the shaft and casing surfaces, the zero normal
heat flux condition is applied and the no-slip velocity boundary conditions are enforced strongly.
The dynamic viscosity is set to µ = 5.551 × 10−5 kg/(m·s). The gas-turbine geometry, dimensions,
and problem-setup details are shown in Figure 17. We note that this is a smaller gas turbine design,
similar to the one used as part of a turboshaft for Black Hawk or Apache helicopters.

Gas turbine engines are generally optimized to operate at nearly constant speed with fixed
blade geometry for the design operating conditions. When the operating conditions of the en-
gine changes, the flow incidence angles may not be optimal with the blade geometry, resulting in
reduced off-design performance. Articulating the pitch angle of gas turbine blades can improve
performance by maintaining flow incidence angles within the optimum range. To optimize the
pitch angles of the stator and rotor blades and perform a series of simulations with different pitch
angles requires a capability to change the blade pitch angles parametrically. Following the idea of
the interactive geometry modeling platform proposed in [97, 98], we build a parametric design tool
based on Rhinoceros 3D [99] and Grasshopper [100]. The user interface of the design tool is shown
in Figure 18. Note that we have two input parameters, “Rotor pitching” (with blue background)
and “Stator pitching” (with red background). By changing these two input parameters, we can
directly change the pitching angles of the rotor blades (blue) and stator blades (red) parametrically
in the 3D gas turbine stage model.

After the geometry is parametrically designed, we mesh the fluid domain using tetrahedral

29

Figure 18: Flow inside a gas turbine stage. Parametric geometry model of the gas turbine stage built by the Rhino–
Grasshopper-based design platform.

elements. The mesh is locally refined in the region near the blades, as shown in Figure 19. The
sliding-interface meshes are also shown in Figure 19.

4.2. Simulation results

For a gas turbine operating under off-design conditions, flow phenomena such as flow separa-
tion may occur. These will increase the flow losses and thus negatively influence the gas-turbine
performance. Pitching the blade angle to match the flow angle can help improve the performance.
To illustrate this, we first pick an off-design case and simulate the flow. We then look at the differ-
ence between the flow angle and the blade angle, and pitch the rotor blades to match these angles
accordingly. Finally, we run a simulation on the new design to see how much the efficiency can be
improved by articulating the rotor blades. In the simulations, the time step size of ∆t = 3 × 10−7 s
is employed, which yields a CFL number of around 2. For the case before pitching, the mesh
contains 9,454,324 tetrahedral elements. Figure 20 shows a visualization of the highly turbulent
3D flow structures.

We expect the flow variables to be continuous across the sliding interface. To show that, we
make a cylindrical slice cutting through the fluid domain, from inlet to outlet. Contours of flow
speed, pressure, temperature, and Mach number are shown in Figure 21, and appear to be continu-
ous across the sliding interface.

30

(a) Mesh of the domain interior

(b) Zoom on the sliding interface

Figure 19: Flow inside a gas turbine stage. Problem mesh.

The relative velocity magnitude inside the rotor passages is shown in Figure 22. Before pitching
the rotor blades, since the flow inlet angle is smaller than the blade inlet angle, the flow is not fully
attached on the pressure surface (see Figure 22a). By pitching the rotor to decrease the blade inlet
angle, we are able to recover a better flow field. The flow is fully attached to the blades, on both
the pressure and suction surfaces, as shown in Figure 22b.

Gas-turbine performance may be assessed by computing the adiabatic efficiency of the turbine

31

Figure 20: Flow inside a gas turbine stage. Vorticity colored by velocity magnitude.

(a) Flow speed (b) Pressure

(c) Temperature (d) Mach number

Figure 21: Flow inside a gas turbine stage. Flow variables on a cylindrical cut, which appear to be continuous across
the sliding interface.

32

(a) Before pitching (b) After pitching

Figure 22: Flow inside a gas turbine stage. Relative velocity magnitude inside the rotor passages. Flow streamlines
are also plotted to show improvements in the flow characteristics after pitching the rotor blades.

stage (see [101]). The adiabatic efficiency is defined as the ratio between the actual and isentropic
(ideal) power output. With subscripts 0 and 2 denoting quantities at the stator inlet and rotor exit,
respectively, the adiabatic efficiency ηad is given by

ηad =

1 −
T2

T0

1 −
(

p2

p0

) γ−1
γ

. (54)

Using the above formula in the postprocessing of our simulation results, we find that before pitch-
ing ηad = 0.468 while after pitching ηad = 0.494, which presents a 5% increase and shows that
rotor-blade pitching can help improve gas-turbine efficiency under off-design conditions.

5. Conclusions

In this paper we developed a novel stabilized formulation for compressible flows on moving
domains using the ALE approach. While stabilized methods for compressible flows have a long
history of development, the current work presents the following innovations relative to the earlier
research:

• A direct approach to the construction of the parameter τττSUPG, which consistently accounts
for the stabilization of all the modes in the compressible-flow equations system.

• A new formulation for weakly enforced essential boundary conditions.

• A new formulation for sliding interfaces.

33

We extensively validated our formulation and demonstrated its robustness using test cases spanning
a wide range of Reynolds and Mach numbers. We also demonstrated excellent accuracy of wall
quantities, such as pressure and skin friction, that can be achieved on relatively coarse boundary-
layer meshes using weak imposition of essential boundary conditions. The aerodynamic analysis
of a gas turbine stage indicates that the methods developed in this work may be used directly to
support engineering design at industrial scale.

Acknowledgments

This work was supported by the ARO Grant No. W911NF-14-1-0296. The HPC resources
that have contributed to the research results reported in this paper were provided by the Texas Ad-
vanced Computing Center (TACC) at the University of Texas at Austin. This support is gratefully
acknowledged.

Appendix A.

For the Navier–Stokes equations with reduced energy equation (12), the matrices correspond-
ing to pressure-primitive variables are as follows:

The matrix A0 = U,Y is given by

A0 =

ρβT 0 0 0 −ραp

ρβT u1 ρ 0 0 −ραpu1

ρβT u2 0 ρ 0 −ραpu2

ρβT u3 0 0 ρ −ραpu3

ρβT e 0 0 0 0

, (A.1)

where βT = 1/p, αp = 1/T .
It’s inverse A−1

0 = Y,U is given by

A−1
0 =

0 0 0 0
αp

ρβT cv

−
u1

ρ

1
ρ

0 0 0

−
u2

ρ
0

1
ρ

0 0

−
u3

ρ
0 0

1
ρ

0

−
T
ρ

0 0 0
1
ρcv

. (A.2)

34

The Euler–Jacobian matrices are given by

Aadv\p
1 =

ρβT u1 ρ 0 0 −ραpu1

ρβT u2
1 2ρu1 0 0 −ραpu2

1

ρβT u1u2 ρu2 ρu1 0 −ραpu1u2

ρβT u1u3 ρu3 0 ρu1 −ραpu1u3

ρβT eu1 ρe 0 0 0

, (A.3)

Aadv\p
2 =

ρβT u2 0 ρ 0 −ραpu2

ρβT u1u2 ρu2 ρu1 0 −ραpu1u2

ρβT u2
2 0 2ρu2 0 −ραpu2

2

ρβT u2u3 0 ρu3 ρu2 −ραpu2u3

ρβT eu2 0 ρe 0 0

, (A.4)

Aadv\p
3 =

ρβT u3 0 0 ρ −ραpu3

ρβT u1u3 ρu3 0 ρu1 −ραpu1u3

ρβT u2u3 0 ρu3 ρu2 −ραpu2u3

ρβT u2
3 0 0 2ρu3 −ραpu2

3

ρβT eu3 0 0 ρe 0

, (A.5)

Ap
1 =

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, (A.6)

Ap
2 =

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, (A.7)

35

Ap
3 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

. (A.8)

Asp
1 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 p − τ11 −τ12 −τ13 0

. (A.9)

Asp
2 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −τ21 p − τ22 −τ23 0

. (A.10)

Asp
3 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −τ31 −τ32 p − τ33 0

. (A.11)

The diffusivity matrices are given by

K11 =

0 0 0 0 0
0 2µ + λ 0 0 0
0 0 µ 0 0
0 0 0 µ 0
0 0 0 0 κ

, (A.12)

36

K12 =

0 0 0 0 0
0 0 λ 0 0
0 µ 0 0 0
0 0 0 0 0
0 0 0 0 0

, (A.13)

K13 =

0 0 0 0 0
0 0 0 λ 0
0 0 0 0 0
0 µ 0 0 0
0 0 0 0 0

, (A.14)

K21 =

0 0 0 0 0
0 0 µ 0 0
0 λ 0 0 0
0 0 0 0 0
0 0 0 0 0

, (A.15)

K22 =

0 0 0 0 0
0 µ 0 0 0
0 0 2µ + λ 0 0
0 0 0 µ 0
0 0 0 0 κ

, (A.16)

K23 =

0 0 0 0 0
0 0 0 0 0
0 0 0 λ 0
0 0 µ 0 0
0 0 0 0 0

, (A.17)

37

K31 =

0 0 0 0 0
0 0 0 µ 0
0 0 0 0 0
0 λ 0 0 0
0 0 0 0 0

, (A.18)

K32 =

0 0 0 0 0
0 0 0 0 0
0 0 0 µ 0
0 0 λ 0 0
0 0 0 0 0

, (A.19)

K33 =

0 0 0 0 0
0 µ 0 0 0
0 0 µ 0 0
0 0 0 2µ + λ 0
0 0 0 0 κ

. (A.20)

The matrices for the conservation variables may be obtained from the corresponding matrices
for the pressure-primitive variables using the following transformations: Âi = AiA−1

0 , Âadv\p
i =

Aadv\p
i A−1

0 , Âp
i = Ap

i A−1
0 , Âsp

i = Asp
i A−1

0 , and K̂i j = Ki jA−1
0

References

[1] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations for con-
vection dominated flows with particular emphasis on the incompressible Navier-Stokes
equations. Computer Methods in Applied Mechanics and Engineering, 32:199–259, 1982.

[2] T. E. Tezduyar and T. J. R. Hughes. Development of time-accurate finite element techniques
for first-order hyperbolic systems with particular emphasis on the compressible Euler equa-
tions. NASA Technical Report NASA-CR-204772, NASA, 1982.

[3] T. E. Tezduyar and T. J. R. Hughes. Finite element formulations for convection dominated
flows with particular emphasis on the compressible Euler equations. In Proceedings of AIAA

21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno, Nevada, 1983.

[4] T. J. R. Hughes and T. E. Tezduyar. Finite element methods for first-order hyperbolic sys-

38

tems with particular emphasis on the compressible Euler equations. Computer Methods in

Applied Mechanics and Engineering, 45:217–284, 1984.

[5] T. J. R. Hughes, L. P. Franca, and M. Mallet. A new finite element formulation for compu-
tational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes
equations and the second law of thermodynamics. Computer Methods in Applied Mechanics

and Engineering, 54:223–234, 1986.

[6] T. J. R. Hughes and M. Mallet. A new finite element formulation for computational fluid
dynamics: III. The generalized streamline operator for multidimensional advective-diffusive
systems. Computer Methods in Applied Mechanics and Engineering, 58:305–328, 1986.

[7] T. J. R. Hughes, L. P. Franca, and M. Mallet. A new finite element formulation for compu-
tational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for
linear time-dependent multi-dimensional advective-diffusive systems. Computer Methods

in Applied Mechanics and Engineering, 63:97–112, 1987.

[8] G. Hauke and T. J. R. Hughes. A unified approach to compressible and incompressible
flows. Computer Methods in Applied Mechanics and Engineering, 113:389–396, 1994.

[9] G. Hauke and T. J. R. Hughes. A comparative study of different sets of variables for solv-
ing compressible and incompressible flows. Computer Methods in Applied Mechanics and

Engineering, 153:1–44, 1998.

[10] G. J. Le Beau and T. E. Tezduyar. Finite element computation of compressible flows with
the SUPG formulation. In Advances in Finite Element Analysis in Fluid Dynamics, FED-
Vol.123, pages 21–27, New York, 1991. ASME.

[11] G. J. Le Beau, S. E. Ray, S. K. Aliabadi, and T. E. Tezduyar. SUPG finite element com-
putation of compressible flows with the entropy and conservation variables formulations.
Computer Methods in Applied Mechanics and Engineering, 104:397–422, 1993.

[12] T. E. Tezduyar. Stabilized finite element formulations for incompressible flow computations.
Advances in Applied Mechanics, 28:1–44, 1992.

[13] T. E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations in-
volving moving boundaries and interfaces – the deforming-spatial-domain/space–time pro-
cedure: I. The concept and the preliminary numerical tests. Computer Methods in Applied

Mechanics and Engineering, 94(3):339–351, 1992.

[14] T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou. A new strategy for finite element compu-
tations involving moving boundaries and interfaces – the deforming-spatial-domain/space–
time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with
drifting cylinders. Computer Methods in Applied Mechanics and Engineering, 94(3):353–
371, 1992.

39

[15] S. K. Aliabadi and T. E. Tezduyar. Space–time finite element computation of compressible
flows involving moving boundaries and interfaces. Computer Methods in Applied Mechan-

ics and Engineering, 107(1–2):209–223, 1993.

[16] T. E. Tezduyar, S. K. Aliabadi, M. Behr, and S. Mittal. Massively parallel finite element
simulation of compressible and incompressible flows. Computer Methods in Applied Me-

chanics and Engineering, 119:157–177, 1994.

[17] G. P. Wren, S. E. Ray, S. K. Aliabadi, and T. E. Tezduyar. Space–time finite element
computation of compressible flows between moving components. International Journal for

Numerical Methods in Fluids, 21:981–991, 1995.

[18] G. P. Wren, S. E. Ray, S. K. Aliabadi, and T. E. Tezduyar. Simulation of flow problems
with moving mechanical components, fluid–structure interactions and two-fluid interfaces.
International Journal for Numerical Methods in Fluids, 24:1433–1448, 1997.

[19] S. E. Ray, G. P. Wren, and T. E. Tezduyar. Parallel implementations of a finite element
formulation for fluid–structure interactions in interior flows. Parallel Computing, 23:1279–
1292, 1997.

[20] S. E. Ray and T. E. Tezduyar. Fluid–object interactions in interior ballistics. Computer

Methods in Applied Mechanics and Engineering, 190:363–372, 2000.

[21] T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal. Parallel finite-element com-
putation of 3D flows. Computer, 26(10):27–36, 1993.

[22] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes. An efficient communications
strategy for finite element methods on the Connection Machine CM-5 system. Computer

Methods in Applied Mechanics and Engineering, 113:363–387, 1994.

[23] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes. Scalability of finite element
applications on distributed-memory parallel computers. Computer Methods in Applied Me-

chanics and Engineering, 119:61–72, 1994.

[24] T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V. Kalro, and M. Litke. Flow simulation and
high performance computing. Computational Mechanics, 18:397–412, 1996.

[25] S. Mittal and T. Tezduyar. A unified finite element formulation for compressible and incom-
pressible flows using augumented conservation variables. Computer Methods in Applied

Mechanics and Engineering, 161:229–243, 1998.

[26] F. Shakib, T. J. R. Hughes, and Z. Johan. A new finite element formulation for computational
fluid dynamics: X. The compressible euler and navier-stokes equations. Comput. Methods

Appl. Mech. and Engrg., 89:141–219, 1991.

[27] G. Hauke. Simple sabilizing matrices for the computation of compressible flows in primi-
tive variables. Computer Methods in Applied Mechanics and Engineering, 190:6881–6893,

40

2001.

[28] T. E. Tezduyar. Determination of the stabilization and shock-capturing parameters in SUPG
formulation of compressible flows. In Proceedings of the European Congress on Com-

putational Methods in Applied Sciences and Engineering, ECCOMAS 2004 (CD-ROM),
Jyvaskyla, Finland, 2004.

[29] T. E. Tezduyar. Finite element methods for fluid dynamics with moving boundaries and
interfaces. In E. Stein, R. De Borst, and T. J. R. Hughes, editors, Encyclopedia of Compu-

tational Mechanics, Volume 3: Fluids, chapter 17. John Wiley & Sons, 2004.

[30] T. E. Tezduyar and M. Senga. Stabilization and shock-capturing parameters in SUPG for-
mulation of compressible flows. Computer Methods in Applied Mechanics and Engineering,
195:1621–1632, 2006.

[31] T. E. Tezduyar, M. Senga, and D. Vicker. Computation of inviscid supersonic flows around
cylinders and spheres with the SUPG formulation and YZβ shock-capturing. Computational

Mechanics, 38:469–481, 2006.

[32] T. E. Tezduyar and M. Senga. SUPG finite element computation of inviscid supersonic flows
with YZβ shock-capturing. Computers & Fluids, 36:147–159, 2007.

[33] T. J. R. Hughes, M. Mallet, and A. Mizukami. A new finite element formulation for compu-
tational fluid dynamics: II. Beyond SUPG. Computer Methods in Applied Mechanics and

Engineering, 54:341–355, 1986.

[34] T. J. R. Hughes and M. Mallet. A new finite element formulation for computational fluid
dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive
systems. Computer Methods in Applied Mechanics and Engineering, 58:329–339, 1986.

[35] G. Hauke. A unified approach to compressible and incompressible flows and a new entropy-

consistent formulation of the k-ε model. PhD thesis, Stanford University, 1995.

[36] T. E. Tezduyar. Computation of moving boundaries and interfaces and stabilization param-
eters. International Journal for Numerical Methods in Fluids, 43:555–575, 2003.

[37] F. Rispoli, A. Corsini, and T. E. Tezduyar. Finite element computation of turbulent flows
with the discontinuity-capturing directional dissipation (DCDD). Computers & Fluids,
36:121–126, 2007.

[38] Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes. YZβ discontinuity-capturing
for advection-dominated processes with application to arterial drug delivery. International

Journal for Numerical Methods in Fluids, 54:593–608, 2007.

[39] F. Rispoli, R. Saavedra, A. Corsini, and T. E. Tezduyar. Computation of inviscid compress-
ible flows with the V-SGS stabilization and YZβ shock-capturing. International Journal for

Numerical Methods in Fluids, 54:695–706, 2007.

41

[40] F. Rispoli, R. Saavedra, F. Menichini, and T. E. Tezduyar. Computation of inviscid su-
personic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-
capturing. Journal of Applied Mechanics, 76:021209, 2009.

[41] F. Rispoli, G. Delibra, P. Venturini, A. Corsini, R. Saavedra, and T. E. Tezduyar. Particle
tracking and particle–shock interaction in compressible-flow computations with the V-SGS
stabilization and YZβ shock-capturing. Computational Mechanics, 55:1201–1209, 2015.

[42] T. J. R. Hughes, G. Scovazzi, and T. E. Tezduyar. Stabilized methods for compressible
flows. Journal of Scientific Computing, 43:343–368, 2010.

[43] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian finite element
formulation for incompressible viscous flows. Computer Methods in Applied Mechanics

and Engineering, 29:329–349, 1981.

[44] S. M. Rifai, Z. Johan, W.-P. Wang, J.-P. Grisval, T. J. R. Hughes, and R. M. Ferencz. Mul-
tiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing
platforms. Computer Methods in Applied Mechanics and Engineering, 174(3):393–417,
1999.

[45] S. M. Rifai, J. C. Buell, Z. Johan, and T. J. R. Hughes. Automotive design applications
of fluid flow simulation on parallel computing platforms. Computer Methods in Applied

Mechanics and Engineering, 184(2):449–466, 2000.

[46] A. Masud. Effects of mesh motion on the stability and convergence of ALE based formula-
tions for moving boundary flows. Computational Mechanics, 38:430–439, 2006.

[47] Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid
mechanics. Computers & Fluids, 36:12–26, 2007.

[48] J.A. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwen-
dung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus

dem Mathematischen Seminar der Universität Hamburg, 36:9–15, 1970.

[49] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Weak Dirichlet boundary con-
ditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and

Engineering, 196:4853–4862, 2007.

[50] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale
modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on
unstretched meshes. Computer Methods in Applied Mechanics and Engineering, 199:780–
790, 2010.

[51] Y. Bazilevs and I. Akkerman. Large eddy simulation of turbulent Taylor–Couette flow
using isogeometric analysis and the residual-based variational multiscale method. Journal

of Computational Physics, 229:3402–3414, 2010.

42

[52] M.-C. Hsu, I. Akkerman, and Y. Bazilevs. Wind turbine aerodynamics using ALE–VMS:
Validation and the role of weakly enforced boundary conditions. Computational Mechanics,
50:499–511, 2012.

[53] Y. Bazilevs, M.-C. Hsu, and M. A. Scott. Isogeometric fluid–structure interaction analy-
sis with emphasis on non-matching discretizations, and with application to wind turbines.
Computer Methods in Applied Mechanics and Engineering, 249–252:28–41, 2012.

[54] M.-C. Hsu and Y. Bazilevs. Fluid–structure interaction modeling of wind turbines: simulat-
ing the full machine. Computational Mechanics, 50:821–833, 2012.

[55] M.-C. Hsu, I. Akkerman, and Y. Bazilevs. Finite element simulation of wind turbine aerody-
namics: Validation study using NREL Phase VI experiment. Wind Energy, 17(3):461–481,
2014.

[56] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S.
Sacks, and T. J. R. Hughes. An immersogeometric variational framework for fluid–structure
interaction: application to bioprosthetic heart valves. Computer Methods in Applied Me-

chanics and Engineering, 284:1005–1053, 2015.

[57] F. Xu, D. Schillinger, D. Kamensky, V. Varduhn, C. Wang, and M.-C. Hsu. The tetrahedral
finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex
geometries. Computers & Fluids, 141:135–154, 2016.

[58] M.-C. Hsu, C. Wang, F. Xu, A. J. Herrema, and A. Krishnamurthy. Direct immersogeometric
fluid flow analysis using B-rep CAD models. Computer Aided Geometric Design, 43:143–
158, 2016.

[59] M. C. H. Wu, D. Kamensky, C. Wang, A. J. Herrema, F. Xu, M. S. Pigazzini, A. Verma, A. L.
Marsden, Y. Bazilevs, and M.-C. Hsu. Optimizing fluid–structure interaction systems with
immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting
gear. Computer Methods in Applied Mechanics and Engineering, 316:668–693, 2017.

[60] Y. Bazilevs and T. J. R. Hughes. NURBS-based isogeometric analysis for the computation
of flows about rotating components. Computational Mechanics, 43:143–150, 2008.

[61] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of Discontinuous
Galerkin methods for elliptic problems. SIAM Journal of Numerical Analysis, 39:1749–
1779, 2002.

[62] K. Takizawa and T. E. Tezduyar. Multiscale space–time fluid–structure interaction tech-
niques. Computational Mechanics, 48:247–267, 2011.

[63] K. Takizawa and T. E. Tezduyar. Space–time fluid–structure interaction methods. Mathe-

matical Models and Methods in Applied Sciences, 22(supp02):1230001, 2012.

[64] K. Takizawa, D. Montes, S. McIntyre, and T. E. Tezduyar. Space–time VMS methods for

43

modeling of incompressible flows at high Reynolds numbers. Mathematical Models and

Methods in Applied Sciences, 23:223–248, 2013.

[65] K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T. E. Tezduyar. Computer modeling
techniques for flapping-wing aerodynamics of a locust. Computers & Fluids, 85:125–134,
2013.

[66] K. Takizawa, T. E. Tezduyar, and N. Kostov. Sequentially-coupled space–time FSI anal-
ysis of bio-inspired flapping-wing aerodynamics of an MAV. Computational Mechanics,
54:213–233, 2014.

[67] K. Takizawa, T. E. Tezduyar, A Buscher, and S. Asada. Space–time fluid mechanics com-
putation of heart valve models. Computational Mechanics, 54:973–986, 2014.

[68] K. Takizawa, T. E. Tezduyar, and A. Buscher. Space–time computational analysis of MAV
flapping-wing aerodynamics with wing clapping. Computational Mechanics, 55:1131–
1141, 2015.

[69] K. Takizawa, T. E. Tezduyar, and T. Kuraishi. Multiscale ST methods for thermo-fluid
analysis of a ground vehicle and its tires. Mathematical Models and Methods in Applied

Sciences, 25:2227–2255, 2015.

[70] K. Takizawa, T. E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel.
Space–time VMS method for flow computations with slip interfaces (ST-SI). Mathematical

Models and Methods in Applied Sciences, 25:2377–2406, 2015.

[71] K. Takizawa, T. E. Tezduyar, T. Kuraishi, S. Tabata, and H. Takagi. Computational thermo-
fluid analysis of a disk brake. Computational Mechanics, 57:965–977, 2016.

[72] K. Takizawa, T. E. Tezduyar, and H. Hattori. Computational analysis of flow-driven string
dynamics in turbomachinery. Computers & Fluids, 142:109–117, 2017.

[73] K. Takizawa, T. E. Tezduyar, Y. Otoguro, T. Terahara, T. Kuraishi, and H. Hattori. Tur-
bocharger flow computations with the Space–Time Isogeometric Analysis (ST-IGA). Com-

puters & Fluids, 142:15–20, 2017.

[74] K. Takizawa, T. E. Tezduyar, S. Asada, and T. Kuraishi. Space–time method for flow
computations with slip interfaces and topology changes (ST-SI-TC). Computers & Fluids,
141:124–134, 2016.

[75] K. Takizawa, T. E. Tezduyar, and T. Terahara. Ram-air parachute structural and fluid me-
chanics computations with the space–time isogeometric analysis (ST-IGA). Computers &

Fluids, 141:191–200, 2016.

[76] K. Takizawa, T. E. Tezduyar, T. Terahara, and T. Sasaki. Heart valve flow com-
putation with the integrated Space–Time VMS, Slip Interface, Topology Change and
Isogeometric Discretization methods. Computers & Fluids, published online, DOI:

44

10.1016/j.compfluid.2016.11.012, November 2016.

[77] Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang. Isogeometric fluid–structure inter-
action: theory, algorithms, and computations. Computational Mechanics, 43:3–37, 2008.

[78] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element

Method. Cambridge University Press, Sweden, 1987.

[79] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, 2nd

ed. Springer, Berlin, 2002.

[80] A. Ern and J. L. Guermond. Theory and Practice of Finite Elements. Springer, Berlin, 2004.

[81] E. D. Denman and A. N. Beavers. The matrix sign function and computations in systems.
Applied mathematics and Computation, 2(1):63–94, 1976.

[82] A. E. Tejada-Martı́nez, I. Akkerman, and Y. Bazilevs. Large-eddy simulation of shallow
water Langmuir turbulence using isogeometric analysis and the residual–based variational
multiscale method. Journal of Applied Mechanics, 79(1):010909, 2012.

[83] R. C. Almeida and A. C. Galeão. An adaptive Petrov–Galerkin formulation for the com-
pressible euler and Navier–Stokes equations. Computer Methods in Applied Mechanics and

Engineering, 129(1):157–176, 1996.

[84] J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with
improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics,
60:371–75, 1993.

[85] K. E. Jansen, C. H. Whiting, and G. M. Hulbert. A generalized-α method for integrating the
filtered Navier-Stokes equations with a stabilized finite element method. Computer Methods

in Applied Mechanics and Engineering, 190:305–319, 2000.

[86] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing, 7:856–
869, 1986.

[87] F. Shakib, T. J. R. Hughes, and Z. Johan. A multi-element group preconditioned GMRES
algorithm for nonsymmetric systems arising in finite element analysis. Computer Methods

in Applied Mechanics and Engineering, 75:415–456, 1989.

[88] J. Chu and J. M. Luckring. Experimental surface pressure data obtained on 65 delta wing
across Reynolds number and Mach number ranges, volume 1 – sharp leading edge. NASA
Technical Report NASA-TM-4645-Vol-1, NASA, 1996.

[89] D. S. Miller and R. M. Wood. Lee–side flows over delta wings at supersonic speeds. NASA
Technical Report NASA-TP-2430, NASA, 1985.

[90] M. S. Chong, A. E. Perry, and B. J. Cantwell. A general classification of three-dimensional

45

flow fields. Physics of Fluids A, 2(5):765–777, 1990.

[91] J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid Mechanics,
285:69–94, 1995.

[92] Y. Bazilevs, J. Yan, M. de Stadler, and S. Sarkar. Computation of the flow over a sphere at
Re = 3700: A comparison of uniform and turbulent inflow conditions. Journal of Applied

Mechanics, 81(12):121003, 2014.

[93] I. Rodriguez, O. Lehmkuhl, R. Borrell, and A. Oliva. Flow dynamics in the turbulent wake
of a sphere at sub–critical Reynolds numbers. Computers & Fluids, 80:233–243, 2013.

[94] A. B. Bailey and J. Hiatt. Sphere drag coefficients for a broad range of Mach and Reynolds
numbers. AIAA Journal, 10(11):1436–1440, 1972.

[95] C. Wieselsberger. Wietere feststellungen über die gesetze des flüssigkeits–und luft wider-
standes. Zeitschrift für Physik, 23:219–224, 1922.

[96] E. H. van Brummelen, K. G. van der Zee, V. V. Garg, and S. Prudhomme. Flux evaluation
in primal and dual boundary-coupled problems. Journal of Applied Mechanics, 79:010904,
2011.

[97] M.-C. Hsu, C. Wang, A. J. Herrema, D. Schillinger, A. Ghoshal, and Y. Bazilevs. An
interactive geometry modeling and parametric design platform for isogeometric analysis.
Computers and Mathematics with Applications, 70:1481–1500, 2015.

[98] A. J. Herrema, N. M. Wiese, C. N. Darling, B. Ganapathysubramanian, A. Krishnamurthy,
and M.-C. Hsu. A framework for parametric design optimization using isogeometric analy-
sis. Computer Methods in Applied Mechanics and Engineering, 316:944–965, 2017.

[99] Rhinoceros. http://www.rhino3d.com/. [Accessed 5 February 2016].

[100] Grasshopper. http://www.grasshopper3d.com/. [Accessed 5 February 2016].

[101] M. P. Boyce. Gas turbine engineering handbook. Elsevier, 2011.

46

http://www.rhino3d.com/
http://www.grasshopper3d.com/

	Introduction
	Numerical methodology
	Governing equations of compressible flows
	Preliminaries
	Strong form
	Reduced form of the energy equation
	Weak form

	Constituents of the discrete formulation
	Quasi-linear form
	Moving-domain formulation
	SUPG operator
	Discontinuity-capturing operator
	Weak-boundary-condition operator
	Sliding-interface operator

	Semi-discrete formulation and time integration

	Numerical examples
	Oblique shock
	Supersonic flow over a flat plate
	Flow around NASA's delta wings
	Subsonic case
	Supersonic case

	Turbulent flow around a sphere at Re = 10,000
	Problem setup
	Simulation results

	Flow inside a gas turbine stage
	Problem setup
	Simulation results

	Conclusions
	

