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Abstract
Heart valve fluid–structure interaction (FSI) analysis is one of the computationally challenging cases in cardiovascular fluid
mechanics. The challenges include unsteady flow through a complex geometry, solid surfaces with large motion, and contact
between the valve leaflets. We introduce here an isogeometric sequentially-coupled FSI (SCFSI) method that can address the
challenges with an outcome of high-fidelity flow solutions. The SCFSI analysis enables dealing with the fluid and structure
parts individually at different steps of the solutions sequence, and also enables using different methods or different mesh
resolution levels at different steps. In the isogeometric SCFSI analysis here, the first step is a previously computed (fully)
coupled Immersogeometric Analysis FSI of the heart valve with a reasonable flow solution. With the valve leaflet and arterial
surfacemotion coming from that, we perform a new, higher-fidelity fluidmechanics computationwith the space–time topology
changemethod and isogeometric discretization.Both the immersogeometric and space–timemethods are variationalmultiscale
methods. The computation presented for a bioprosthetic heart valve demonstrates the power of the method introduced.
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1 Introduction

In addressing the computational challenges of heart valve
fluid–structure interaction (FSI) analysis with high-fidelity
flow solutions, in this article we introduce an isogeomet-
ric sequentially-coupled FSI (SCFSI) method. The SCFSI
method (see [1–3] and references therein) enables dealing
with the fluid and structure parts individually at different
steps of the solutions sequence, and also enables using dif-
ferent methods or different mesh resolution levels at different
steps. In the isogeometric SCFSI analysis here, the first
step is a previously computed (fully) coupled Immersoge-
ometric Analysis (IMGA) FSI of the heart valve from [4],
which has a reasonable flow solution. With the valve leaflet
and arterial surface motion coming from that, we perform
a new, higher-fidelity fluid mechanics computation with a
space–time (ST) computational method composed of core
and special ST methods. The core component is the ST
Variational Multiscale (ST-VMS) method [5–7], which sub-
sumes its precursor “ST-SUPS” (see Sect. 1.4) and shares
the residual-based VMS (RBVMS) [8–11] feature with the
IMGA [4]. Beyond the ST-VMS, the key components are
the ST Topology Change (ST-TC) method [12,13], which
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is used in combination with the ST Slip Interface (ST-SI)
method [14,15], and the ST Isogeometric Analysis (ST-IGA)
[5,16,17]. Integration of these components, resulting in the
ST-SI-TC [18] and ST-SI-TC-IGA [19,20] methods, gives
us the increased scope and accuracy we want in FSI analysis
when there is contact between the moving solid surfaces or
other TC. With the SCFSI method based on the IMGA and
ST-SI-TC-IGA,we conduct anFSI analysis of a bioprosthetic
heart valve (BHV).

1.1 Moving-mesh and nonmoving-meshmethods

Using the terminologies and categorizations used in [21–23],
a method for flows with moving boundaries and interfaces
(MBI) can be an interface-tracking (moving-mesh) method
or an interface-capturing (nonmoving-mesh) method, or pos-
sibly a combination of the two. In a moving-mesh method, as
the interface moves and the fluid mechanics domain changes
its shape, the mesh moves to adjust to the shape change and
to follow (i.e. “track”) the interface.

Moving-mesh methods require mesh update methods.
Mesh update typically consists of moving the mesh for as
long as possible and remeshing as needed. With the key
objectives being to maintain the element quality near solid
surfaces and to minimize the frequency of remeshing, a
number of advanced mesh update methods [24–28] were
developed to be used with the ST-SUPS, including those
that minimize the deformation of the layers of small ele-
ments placed near solid surfaces. Some of these methods
have also been used with other moving-mesh methods. The
advanced mesh update methods developed more recently
[12,13,16,29–32] have been used mostly with the ST-VMS,
and some of the methods are unique to the ST framework
(see Sect. 1.8).

Moving the fluid mechanics mesh to follow a fluid–solid
interface enables us to control the mesh resolution near the
interface, have high-resolution representation of the bound-
ary layers, and obtain accurate solutions in such critical flow
regions. These desirable features do not come easily or do
not come at all with the nonmoving-mesh methods. In these
methods, the interface geometry is somehow represented
over a nonmoving fluid mechanics mesh, with more accu-
racy in some methods than in some others, but the key point
is that the fluid mechanics mesh does not move to follow the
interface. Because the mesh is not following the interface,
independent of how accurately the interface geometry is rep-
resented, the boundary layer resolution will be limited by the
fluid mechanics mesh resolution where the interface is.

In many cases, finding the mesh update too challenging in
an MBI problem is the reason for using a nonmoving-mesh
method. Naturally, different researchers will have different
thresholds for finding the mesh update too challenging. For
some, even just a mesh moving without any remeshing could

be too much. For some, the need for remeshing, no matter
how small the associated cost is, could be too much. Some
may find a near contact between solid surfaces or other near
TC too much. Yet, some can bear it until the “end,” giving
up on the mesh update methods only when there is an actual
contact or other TC, and even then, perhaps only partially.
Some do not give up even then (see Sect. 1.6). What we need
to keep inmind in all this is that, as pointed out in [33], “while
it is understandable that fixed-mesh methods become more
favored when the interface geometric complexity appears to
be too high for amoving-meshmethod, we need to remember
that there is a difference between making the problem com-
putable and obtaining good fluid mechanics accuracy near
the interface.”

As mentioned in [22], one of course recognizes that
certain classes of interfaces (such as free-surface and two-
fluid flows with splashing) might be too complex to handle
with an interface-tracking technique and, therefore, for
all practical purposes, require an interface-capturing tech-
nique. The Mixed Interface-Tracking/Interface-Capturing
Technique (MITICT) [27] was introduced in 2000 for com-
putation of MBI problems that involve both fluid–solid
interfaces that can be accurately tracked with amoving-mesh
method and fluid–fluid interfaces that are too complex or
unsteady to be tracked. Such fluid–fluid interfaces are cap-
tured over the mesh tracking the fluid–solid interfaces.

Thinking similarly about MBI problems with an actual
contact or otherTC, theFluid–Solid Interface-Tracking/Inter-
face-Capturing Technique (FSITICT) was introduced in
2009 [3] as the FSI version of the MITICT. In the FSITICT,
we track the interface we can with a moving mesh, and cap-
ture over that moving mesh the interfaces we cannot track,
specifically the interfaces where we need to have an actual
contact between the solid surfaces.

1.2 Computational challenges of heart valve FSI

Heart valve FSI analysis is one of the computationally
challenging cases in cardiovascular fluid mechanics. The
challenges include unsteady flow through a complex geome-
try, solid surfaces with large motion, and contact between the
valve leaflets. Because the flow has to be completely blocked
at contact, this is a case of actual contact. The heart valve
IMGA FSI analysis reported in [4] was with actual contact
and was conducted in the framework of the FSITICT.

1.3 SCFSI

The SCFSI method was introduced [34,35] as an approx-
imate FSI method in the context of arterial FSI, with the
name Sequentially-Coupled Arterial FSI (SCAFSI). In the
SCAFSI, first we compute a “reference” (i.e. “base”) arterial
deformation as a function of time, driven only by the blood
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pressure, which is given as a function of time by specifying
the pressure profile in a cardiac cycle. Then we compute a
sequence of updates involving mesh motion, fluid dynam-
ics calculation, and recomputing the arterial deformation. In
[34,35] the method was in early stages of its development,
the description was rather cursory, and the test computations
were limited. A more extensive description of the method
was provided in [1], together with a wider set of test compu-
tations.

Multiscale versions of the SCAFSI were introduced in
[1], and the test computations were presented for the tem-
porally multiscale version, using different time-step sizes
for the structural and fluid mechanics parts. In the spatially
multiscale versions proposed in [1], fluid mechanics meshes
with different refinement levels are used at different stages
of the FSI computation. We use a relatively coarse mesh at
the early stages and reserve the highly-refined mesh for the
stage where we plan to do the high-fidelity fluid mechanics
computation. The spatially multiscale versions introduced in
[1] included SCAFSI M1C. In that version, we first compute
the time-dependent structure shape with the (fully) coupled
FSI method and a relatively coarse fluid mechanics mesh,
followed by mesh motion and fluid mechanics computa-
tion with a more refined mesh, obtaining a higher-fidelity
fluid mechanics solution. Test computations with the spa-
tiallymultiscale versionswere first reported in a book chapter
[36] and a conference paper [37], and then in journal arti-
cles [2,3]. The more general name “SCFSI” was introduced
in [3,36,37], and SCFSI M2C was introduced in [3,37].
In SCFSI M2C, we first compute the time-dependent flow
field with the (fully) coupled FSI method and a relatively
coarse structural mechanics mesh, followed by a structural
mechanics computation with a more refined mesh, obtaining
a higher-fidelity structural mechanics solution.

1.4 ST-VMS and ST-SUPS

The Deforming-Spatial-Domain/Stabilized ST (DSD/SST)
method [28,38,39] was introduced for computation of flows
withMBI, including FSI. In flowcomputationswithMBI, the
DSD/SST functions as a moving-mesh method, possessing
the associated desirable features. Because the stabilization
components of the original DSD/SST are the Streamline-
Upwind/Petrov-Galerkin (SUPG) [40] and Pressure-Stabili-
zing/Petrov-Galerkin (PSPG) [38] stabilizations, it is now
called “ST-SUPS.” The ST-VMS [5–7] is the VMS version
of the DSD/SST. It has two more stabilization terms beyond
those in the ST-SUPS, and the additional terms give the
method better turbulence modeling features. The ST-SUPS
and ST-VMS, because of the higher-order accuracy of the
ST framework (see [5,6]), are desirable also in computations
without MBI.

As amoving-meshmethod, the DSD/SST is an alternative
to the Arbitrary Lagrangian–Eulerian (ALE) method, which
is older (see, for example, [41]) and more commonly used.
The ALE-VMS method [22,42–47] is the VMS version of
theALE. It succeeded the ST-SUPS andALE-SUPS [48] and
preceded the ST-VMS. To increase their scope and accuracy,
the ALE-VMS and RBVMS are often supplemented with
special methods, such as those for weakly-enforced Dirich-
let boundary conditions [49–51] and “sliding interfaces”
[52,53]. TheALE-SUPS, RBVMSandALE-VMShave been
applied to many classes of FSI, MBI and fluid mechanics
problems. The classes of problems include ram-air parachute
FSI [48], wind-turbine aerodynamics and FSI [54–64], more
specifically, vertical-axis wind turbines [63–66], floating
wind turbines [67], wind turbines in atmospheric boundary
layers [62–64,68], and fatigue damage inwind-turbine blades
[69], patient-specific cardiovascular fluid mechanics and FSI
[42,70–75], biomedical-device FSI [4,76–80], ship hydrody-
namics with free-surface flow and fluid–object interaction
[81,82], hydrodynamics and FSI of a hydraulic arresting
gear [83,84], hydrodynamics of tidal-stream turbines with
free-surface flow [85], passive-morphing FSI in turboma-
chinery [86], bioinspired FSI for marine propulsion [87,88],
bridge aerodynamics and fluid–object interaction [89–91],
and mixed ALE-VMS/IMGA computations [4,79,80,92,93]
in the framework of the FSITICT [3]. Recent advances in
stabilized and multiscale methods may be found for strati-
fied incompressible flows in [94], for divergence-conforming
discretizations of incompressible flows in [95], and for com-
pressible flows with emphasis on gas-turbine modeling in
[96].

The ST-SUPS and ST-VMS have also been applied
to many classes of FSI, MBI and fluid mechanics prob-
lems (see [97] for a comprehensive summary). The classes
of problems include spacecraft parachute analysis for the
landing-stage parachutes [22,31,98–100], cover-separation
parachutes [101] and the drogue parachutes [102–104],
wind-turbine aerodynamics for horizontal-axis wind-turbine
rotors [22,23,54,105], full horizontal-axis wind-turbines
[30,60,106,107] and vertical-axis wind-turbines [14,63,64],
flapping-wing aerodynamics for an actual locust [16,22,
29,108], bioinspired MAVs [106,107,109,110] and wing-
clapping [12,32], blood flow analysis of cerebral aneurysms
[106,111], stent-blocked aneurysms [111–113], aortas [114–
118], heart valves [12,13,19,20,107,116,118,119] and coro-
nary arteries in motion [120], spacecraft aerodynamics
[101,121], thermo-fluid analysis of ground vehicles and
their tires [7,119], thermo-fluid analysis of disk brakes [15],
flow-driven string dynamics in turbomachinery [122–124],
flow analysis of turbocharger turbines [17,125–128], flow
around tires with road contact and deformation [18,119,129–
131], fluid films [131,132], ram-air parachutes [133], and
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compressible-flow spacecraft parachute aerodynamics [134,
135].

For completeness, we will include the ST-VMS in “App-
endix A”. The ST-SUPS, ALE-SUPS, RBVMS, ALE-VMS
and ST-VMS all have some embedded stabilization parame-
ters that play a significant role (see [22]). These parameters
involve a measure of the local length scale (also known as
“element length”) and other parameters such as the element
Reynolds and Courant numbers. There are many ways of
defining the stabilization parameters. Some of the newer
options for the stabilization parameters used with the SUPS
and VMS can be found in [7,14,16,30,105,130,136–139].
Some of the earlier stabilization parameters used with the
SUPS and VMS were also used in computations with other
SUPG-like methods, such as the computations reported in
[86,140–151]. We will specify in “Appendix B” which sta-
bilization parameters we use in the computation reported in
this article.

1.5 ST-SI

TheST-SIwas introduced in [14], in the context of incompres-
sible-flow equations, to retain the desirable moving-mesh
features of the ST-VMS and ST-SUPS in computations
involving spinning solid surfaces, such as a turbine rotor. The
mesh covering the spinning surface spinswith it, retaining the
high-resolution representation of the boundary layers, while
the mesh on the other side of the SI remains unaffected. This
is accomplished by adding to the ST-VMS formulation inter-
face terms similar to those in the version of theALE-VMS for
computations with sliding interfaces [52,53]. The interface
terms account for the compatibility conditions for the veloc-
ity and stress at the SI, accurately connecting the two sides of
the solution. An ST-SI version where the SI is between fluid
and solid domains was also presented in [14]. The SI in that
case is a “fluid–solid SI” rather than a standard “fluid–fluid
SI” and enables weak enforcement of the Dirichlet bound-
ary conditions for the fluid. The ST-SI introduced in [15]
for the coupled incompressible-flow and thermal-transport
equations retains the high-resolution representation of the
thermo-fluid boundary layers near spinning solid surfaces.
These ST-SImethods have been applied to aerodynamic anal-
ysis of vertical-axis wind turbines [14,63,64], thermo-fluid
analysis of disk brakes [15], flow-driven string dynamics
in turbomachinery [122–124], flow analysis of turbocharger
turbines [17,125–128], flow around tires with road contact
and deformation [18,119,129–131], fluid films [131,132],
aerodynamic analysis of ram-air parachutes [133], and flow
analysis of heart valves [19,20,116,118].

In the ST-SI version presented in [14] the SI is between
a thin porous structure and the fluid on its two sides. This
enables dealing with the porosity in a fashion consistent with
how the standard fluid–fluid SIs are dealt with and how the

Dirichlet conditions are enforcedweaklywithfluid–solidSIs.
This version also enables handling thin structures that have
T-junctions. Thismethodhas been applied to incompressible-
flow aerodynamic analysis of ram-air parachutes with fabric
porosity [133]. The compressible-flow ST-SI methods were
introduced in [134], including the version where the SI is
between a thin porous structure and the fluid on its two sides.
Compressible-flow porosity models were also introduced in
[134]. These, together with the compressible-flow ST SUPG
method [152], extended the ST computational analysis range
to compressible-flow aerodynamics of parachutes with fab-
ric and geometric porosities. That enabled ST computational
flow analysis of the Orion spacecraft drogue parachute in the
compressible-flow regime [134,135].

For completeness, we will include the ST-SI in “Appendix
A”. The interface terms in the ST-SI also involve element
length, in the direction normal to the interface. We will spec-
ify in “Appendix B” which element length we use for that in
the computation reported in this article.

1.6 ST-TC

The ST-TC [12,13] was introduced for moving-mesh com-
putation of flow problems with TC, such as contact between
solid surfaces. Even before the ST-TC, the ST-SUPS and ST-
VMS, when used with robust mesh update methods, have
proven effective in flow computations where the solid sur-
faces are in near contact or create other near TC, if the
nearness is sufficiently near for the purpose of solving the
problem. Many classes of problems can be solved that way
with sufficient accuracy. For examples of such computa-
tions, see the references mentioned in [12]. The ST-TC
made moving-mesh computations possible even when there
is an actual contact between solid surfaces or other TC.
By collapsing elements as needed, without changing the
connectivity of the “parent” mesh, the ST-TC can handle
an actual TC while maintaining high-resolution bound-
ary layer representation near solid surfaces. This enabled
successful moving-mesh computation of heart valve flows
[12,13,19,20,107,116,118,119], wing clapping [12,32], flow
around a rotating tire with road contact and prescribed defor-
mation [18,119,129–131], and fluid films [131,132].

1.7 ST-SI-TC

The ST-SI-TC is the integration of the ST-SI and ST-TC. A
fluid–fluid SI requires elements on both sides of the SI.When
part of an SI needs to coincide with a solid surface, which
happens for example when the solid surfaces on two sides
of an SI come into contact or when an SI reaches a solid
surface, the elements between the coinciding SI part and the
solid surface need to collapse with the ST-TC mechanism.
The collapse switches the SI from fluid–fluid SI to fluid–
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solid SI. With that, an SI can be a mixture of fluid–fluid and
fluid–solid SIs. With the ST-SI-TC, the elements collapse
and are reborn independent of the nodes representing a solid
surface. The ST-SI-TC enables high-resolution flow repre-
sentation evenwhen parts of the SI are coincidingwith a solid
surface. It also enables dealing with contact location change
and contact sliding. This was applied to heart valve flow
analysis [19,20,116,118], tire aerodynamics with road con-
tact and deformation [18,119,129–131,131], and fluid films
[131,132].

1.8 ST-IGA

The successwith IGAbasis functions in space [42,52,70,153]
motivated the integration of the ST methods with isogeo-
metric discretization, which we broadly call “ST-IGA.” The
ST-IGA was introduced in [5]. Computations with the ST-
VMS and ST-IGA were first reported in [5] in a 2D context,
with IGA basis functions in space for flow past an airfoil,
and in both space and time for the advection equation. Using
higher-order basis functions in time enables deriving full ben-
efit from using higher-order basis functions in space. This
was demonstrated with the stability and accuracy analysis
given in [5] for the advection equation.

The ST-IGA with IGA basis functions in time enables
a more accurate representation of the motion of the solid
surfaces and a mesh motion consistent with that. This
was pointed out in [5,6] and demonstrated in [16,29,109].
It also enables more efficient temporal representation of
the motion and deformation of the volume meshes, and
more efficient remeshing. These motivated the develop-
ment of the ST/NURBS Mesh Update Method (STNMUM)
[16,29,109], with the name coined in [30]. The STNMUM
has a wide scope that includes spinning solid surfaces. With
the spinning motion represented by quadratic NURBS in
time, and with sufficient number of temporal patches for a
full rotation, the circular paths are represented exactly. A
“secondary mapping” [5,6,16,22] enables also specifying a
constant angular velocity for invariant speeds along the cir-
cular paths. The ST framework and NURBS in time also
enable, with the “ST-C” method, extracting a continuous
representation from the computed data and, in large-scale
computations, efficient data compression [7,15,119,122–
124,154]. The STNMUM and the ST-IGA with IGA basis
functions in time have been used in many 3D computations.
The classes of problems solved are flapping-wing aero-
dynamics for an actual locust [16,22,29,108], bioinspired
MAVs [106,107,109,110] and wing-clapping [12,32], sep-
aration aerodynamics of spacecraft [101], aerodynamics of
horizontal-axis [30,60,106,107] and vertical-axis [14,63,64]
wind-turbines, thermo-fluid analysis of ground vehicles and
their tires [7,119], thermo-fluid analysis of disk brakes [15],
flow-driven string dynamics in turbomachinery [122–124],

flow analysis of turbocharger turbines [17,125–128], and
flow analysis of coronary arteries in motion [120].

The ST-IGA with IGA basis functions in space enables
more accurate representation of the geometry and increased
accuracy in the flow solution. It accomplishes that with
fewer control points, and consequently with larger effective
element sizes. That in turn enables using larger time-step
sizes while keeping the Courant number at a desirable
level for good accuracy. It has been used in ST computa-
tional flow analysis of turbocharger turbines [17,125–128],
flow-driven string dynamics in turbomachinery [123,124],
ram-air parachutes [133], spacecraft parachutes [135], aortas
[116–118], heart valves [19,20,116,118], coronary arteries in
motion [120], tires with road contact and deformation [129–
131], and fluid films [131,132]. Using IGA basis functions in
space is now a key part of some of the newest arterial zero-
stress-state estimation methods [118,155–160] and related
shell analysis [161].

1.9 ST-SI-IGA and ST-SI-TC-IGA

The ST-SI-IGA is the integration of the ST-SI and ST-IGA,
and the ST-SI-TC-IGA is the integration of the ST-SI, ST-TC
and ST-IGA.

The turbocharger turbine flow [17,125–128] and flow-
driven string dynamics in turbomachinery [123,124] were
computedwith the ST-SI-IGA. The IGAbasis functionswere
used in the spatial discretization of the fluid mechanics equa-
tions and also in the temporal representation of the rotor
and spinning-mesh motion. That enabled accurate represen-
tation of the turbine geometry and rotormotion and increased
accuracy in the flow solution. The IGA basis functions were
used also in the spatial discretization of the string struc-
tural dynamics equations. That enabled increased accuracy
in the structural dynamics solution, as well as smoothness in
the string shape and fluid dynamics forces computed on the
string.

The ram-air parachute analysis [133] and spacecraft
parachute compressible-flow analysis [135] were conducted
with the ST-SI-IGA, based on the ST-SI version that weakly
enforces the Dirichlet conditions and the ST-SI version that
accounts for the porosity of a thin structure. The ST-IGA
with IGA basis functions in space enabled, with relatively
few number of unknowns, accurate representation of the
parafoil and parachute geometries and increased accuracy
in the flow solution. The volume mesh needed to be gener-
ated both inside and outside the parafoil. Mesh generation
inside was challenging near the trailing edge because of the
narrowing space. The spacecraft parachute has a very com-
plex geometry, including gores and gaps. Using IGA basis
functions addressed those challenges and still kept the ele-
ment density near the trailing edge of the parafoil and around
the spacecraft parachute at a reasonable level.
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The heart valve flow analysis [19,20,116,118] was con-
ductedwith theST-SI-TC-IGA.Themethod, beyondenabling
amore accurate representation of the geometry and increased
accuracy in the flow solution, kept the element density in the
narrow spaces near the contact areas at a reasonable level.
When solid surfaces come into contact, the elements between
the surface and the SI collapse. Before the elements collapse,
the boundaries could be curved and rather complex, and the
narrow spaces might have high-aspect-ratio elements. With
NURBS elements, it was possible to deal with such adverse
conditions rather effectively.

In computational analysis of flow around tires with
road contact and deformation [130,131], the ST-SI-TC-IGA
enables a more accurate representation of the geometry and
motion of the tire surfaces, a mesh motion consistent with
that, and increased accuracy in the flow solution. It also keeps
the element density in the tire grooves and in the narrow
spaces near the contact areas at a reasonable level. In addi-
tion, we benefit from themesh generation flexibility provided
by using SIs.

In computational analysis of fluid films [131,132], the
ST-SI-TC-IGA enables solution with a computational cost
comparable to that of the Reynolds-equation model for the
comparable solution quality [132]. With that, narrow gaps
associated with the road roughness [131] can be accounted
for in the flow analysis around tires.

An SI provides mesh generation flexibility in a general
context by accurately connecting the two sides of the solution
computed over nonmatching meshes. This type of mesh gen-
erationflexibility is especially valuable in complex-geometry
flow computations with isogeometric discretization, remov-
ing the matching requirement between the NURBS patches
without loss of accuracy. This feature was used in the flow
analysis of heart valves [19,20,116,118], turbocharger tur-
bines [17,125–128], and spacecraft parachute compressible-
flow analysis [135].

1.10 Outline of the remaining sections

In Sect. 2, we present the SCFSI analysis of the BHV. The
concluding remarks are given in Sect. 3. The ST-VMS and
ST-SI are given in “AppendixA”, and the stabilization param-
eters in “Appendix B”.

2 SCFSI analysis of a BHV

In the SCFSI analysis, the first step is a (fully) coupled IMGA
FSI computation [4] of the BHV, with a cardiac cycle of
T = 0.86 s. The computation was driven by a prescribed
left-ventricular pressure at the inlet and a resistance bound-
ary condition at the outlet, and the corresponding flow rate
was obtained as part of the FSI solution. With the BHV and

Fig. 1 BHV model. Leaflets, metal frame, and sinuses

arterial-surface motion coming from the FSI solution, we
perform a new fluid mechanics computation with the ST-SI-
TC-IGA.

2.1 Geometry

The model, shown in Fig. 1, has three leaflets and a metal
frame. In the IMGA FSI computation [4], the BHV is rep-
resented with cubic T-splines, and the arterial surface with
quadratic NURBS. Figure 2 shows the BHV and arterial-
surface meshes.

2.2 Surfacemesh in the ST-SI-TC-IGA computation

The structure model is of zero thickness in geometry. Even in
the closed position of the valve, there are small gaps between
the model surfaces, including the metal surfaces. However,
the flow solver, because of the way the IMGA deals with
zero-thickness geometries, in combination with the limited
mesh refinement, could see the gaps as closed. In our case,
we want the flow solver to see the model surfaces accurately
so that the moving-mesh method can do what it is good at
— enable high-resolution flow representation near those sur-
faces. Our method for closing the gaps is to add just enough
thickness to the surface geometries coming from the IMGA
computation. We select the thickness to be small so that our
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Fig. 2 BHV mesh with cubic T-spline elements and arterial-surface
mesh with quadratic NURBS elements in the IMGA FSI computa-
tion [4]

model geometry is as close to the IMGA geometry as possi-
ble. It is roughly 10 times smaller than the structure thickness
used in the IMGA computation. We start with a thickness
of 4.921×10−3cm, determined based on closing the gaps
between the metal surfaces, which are not deforming. That
being our maximum thickness, we reduce it locally to pre-
vent overlap between the model surfaces, but only when we
need to do so during the cardiac cycle, in a time-varying
fashion.

Fig. 3 Original surface (blue) and the surfaces giving the structure
thickness (orange). 2D view of the free edge (top) and 3D close-up
view fromwhere the leaflets connect to themetal frame (bottom). (Color
figure online)

Figure 3 shows the surfaces added on the two sides, giv-
ing the structure thickness. We project the surfaces created
on the two sides to quadratic-NURBS representation, and
then connect the surfaces with a rounding arch. The round-
ing arch and the surfaces are connected in a tangent form.
With the rounding, as an added benefit, we can capture the
small-scale flow patterns near the free edges of the leaflets.
The structural displacements from the IMGA computation
are projected to the original surface and that is applied to
the corresponding points of the surfaces on the two sides.
Figures 4 and 5 show the valve surfaces. Figure 6 shows the
artery quadratic NURBS surfaces.
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Fig. 4 Valve quadratic NURBS surfaces with the rounding arch, full
view (left) and close-up view from where the leaflets connect to the
metal frame (right). The frames are for t = 0.175, 0.275, 0.315, 0.495,
0.585 s

Fig. 5 Valve quadratic NURBS surfaces with the rounding arch, full
view (left) and close-up view from where the leaflets connect to the
metal frame (right). The frames are for t = 0.590, 0.595, 0.605, 0.635,
0.785 s
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Fig. 6 Artery quadraticNURBSsurfaces. The frames are for t = 0.175,
0.275, 0.315, 0.495, 0.585, 0.590, 0.595, 0.605, 0.635, 0.785 s

2.3 Mesh and inflow conditions

We create a template mesh with three SIs. The mesh has
three parts, identified as Part 1, Part 2 and Part 3. Figure 7
shows the three SIs and the three parts of the mesh. The
number of control points and number of elements are 429,780
and 289,452. Part 1 faces the SIs and will have the elements
that will collapse and become reborn by the motion of the
leaflets. Part 2 remains unchanged during the computation.
Part 3 is the mesh between Part 1, Part 2 and the arterial
wall. The motion of Part 1, following the leaflet motion, is

Fig. 7 The three SIs of the template mesh (left) and the three parts of
the mesh (right): Part 1 (red), Part 2 (blue), and half of Part 3 (green).
(Color figure online)

generated with a method taking into account the contact. The
motion of Part 3 is generated automatically, by solving the
steady-state structuralmechanics equations based on the neo-
Hookean model with Jacobian-based stiffening [7,22,24–26,
162], following Part 1, the leaflet motion and the artery wall
motion. Figures 8 and 9 show the mesh motion.

The boundary conditions are no-slip on the valve and the
arterial wall, traction-free at the outflow boundary, and uni-
form velocity at the inflow boundary. We use the flow rate
from the IMGA computation. When the valve is closed, the
flow rate at the inflow boundary and the time derivative of the
closed-space volume do not match. Figure 10 shows that dis-
crepancy.Wenote that the volumewe are time-differentiating
is the volume of the mesh zone that covers the closed space,
which we will call “time-differentiation volume.” In dealing
with the discrepancy, in the closed-valve time periods, we set
the flow rate equal to the time derivative of the closed-space
volume. In narrow time zones neighboring the closed-valve
periods, we set the flow rate equal to a value blended between
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Fig. 8 Cross-section of the volume mesh at t = 0.175, 0.275, 0.315,
0.495, 0.585, 0.590 s. The checkerboard coloring is for differentiating
between the NURBS elements. (Color figure online)

Fig. 9 Cross-section of the volume mesh at t = 0.595, 0.605, 0.635,
0.785 s. The checkerboard coloring is for differentiating between the
NURBS elements. (Color figure online)

Fig. 10 Flow rate and time derivative of the closed-space volume. The
gray time zone is when the valve is closed. The volume that we are
time-differentiating is the volume of the mesh zone that covers the
closed space
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Fig. 11 Flow rate, time derivative of the closed-space volume, and the
modified flow rate. The gray time zone is when the valve is closed. The
volume that we are time-differentiating is the volume of the mesh zone
that covers the closed space

the actual flow rate and the time derivative of the time-
differentiation volume.

Figure 11 shows the modified flow rate. Figure 12 shows
the inflow velocity corresponding to the modified flow rate.

2.4 Computational conditions

We use the ST-SUPS (see “Appendix A”, which contains
also the ST-SI), with the stabilization parameters given in
“Appendix B”. The time-step size is 5.00×10−3 s. The num-
ber of nonlinear iterations per time step is 3, and the number
of GMRES iterations per nonlinear iteration is 300.

2.5 Results

Figures 13 and 14 show theflowpatterns from the second car-
diac cycle. Thefigures demonstrate thatwe are able to capture

Fig. 12 Inflow velocity

the sheet-like flow structure emanating from the leaflet edges
andwe have a reasonable flow field even when the leaflet sur-
faces come into contact. Figure 15 shows the corresponding
wall shear stress (WSS) on the valve surfaces. The WSS is
high around the leaflet edges and on the upstream-side of the
leaflet surfaces.

3 Concluding remarks

We have introduced an isogeometric SCFSI method that
can address some of the toughest computational challenges
of heart valve FSI analysis with high-fidelity flow solu-
tions. Beyond the challenges related to the unsteady flow
through a complex geometry and the solid surfaceswith large
motion, we have addressed the challenges related to the con-
tact between the valve leaflets with a SCFSI combination
of immersogeometric and ST computational methods. Both
the immersogeometric and ST methods are variational mul-
tiscale methods. Because the ST computational method is a
moving-mesh method, it enables high-resolution representa-
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0.5 1.0 2.5 3.0

Fig. 13 Isosurfaces corresponding to a positive value of the second
invariant of the velocity gradient tensor, colored by the velocity mag-
nitude (m/s). The frames are for t = 1.035, 1.135, 1.175, 1.355, 1.445,
1.450 s

0.5 1.0 2.5 3.0

Fig. 14 Isosurfaces corresponding to a positive value of the second
invariant of the velocity gradient tensor, colored by the velocity mag-
nitude (m/s). The frames are for t = 1.455, 1.465, 1.495, 1.645 s

tion of the boundary layers near moving solid surfaces. The
SCFSI analysis enables dealing with the fluid and structure
parts individually at different steps of the solutions sequence,
and also enables using different methods or different mesh
resolution levels at different steps. In the isogeometric SCFSI
analysis we presented here, the first step was a previously
computed (fully) coupled IMGA FSI of the heart valve
with a reasonable flow solution. Taking the valve leaflet and
arterial surface motion coming from that, we performed a
higher-fidelity fluid mechanics computation with the ST-SI-
TC-IGA. With the computation presented for a BHV, we
demonstrated the power of the method introduced.
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0.0 15.0 30.0

Fig. 15 Magnitude of the WSS (Pa). One-third of the valve is trans-
parent. The frames are for t = 1.035, 1.135, 1.175, 1.355, 1.445, 1.450,
1.455, 1.465, 1.495, 1.645 s
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A ST-VMS and ST-SI

For completeness, we include, mostly from [14,18], the ST-
VMS and ST-SI methods.

A.1 ST-VMS

The ST-VMS is given as

∫
Qn

wh · ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ

+
∫
Qn

εεε(wh) : σσσ hdQ −
∫

(Pn)h

wh · hhdP

+
∫
Qn

qh∇∇∇ · uhdQ +
∫

�n

(wh)+n · ρ
(
(uh)+n − (uh)−n

)
d�

+
(nel)n∑
e=1

∫
Qe
n

τSUPS

ρ

(
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)

+∇∇∇qh
)

· rhMdQ

+
(nel)n∑
e=1

∫
Qe
n

νLSIC∇∇∇ · whρrhCdQ

−
(nel)n∑
e=1

∫
Qe
n

τSUPSwh ·
(
rhM · ∇∇∇uh

)
dQ

−
(nel)n∑
e=1

∫
Qe
n

τ 2SUPS

ρ
rhM ·

(
∇∇∇wh

)
· rhMdQ

= 0, (1)
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where

rhM = ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
− ∇∇∇ · σσσ h, (2)

rhC = ∇∇∇ · uh (3)

are the residuals of the momentum equation and incompress-
ibility constraint. Here, ρ, u, p, f , and h are the density,
velocity, pressure, body force, and the stress specified at the
boundary. The stress tensor is defined asσσσ = −pI+2μεεε(u),
where I is the identity tensor, μ = ρν is the viscosity, ν is
the kinematic viscosity, and εεε (u) = (

(∇∇∇u) + (∇∇∇u)T
)
/2 is

the strain-rate tensor. The test functions associated with the u
and p are w and q. A superscript “h” indicates that the func-
tion is coming from a finite-dimensional space. The symbol
Qn represents the ST slice between time levels n and n + 1,
(Pn)h is the part of the slice lateral boundary associated with
the boundary condition h, and �n is the spatial domain at
time level n. The superscript “e” is the ST element counter,
and nel is the number of ST elements. The functions are dis-
continuous in time at each time level, and the superscripts
“−” and “+” indicate the values of the functions just below
and above the time level.

Remark 1 The ST-SUPS can be obtained from the ST-VMS
by dropping the eighth and ninth integrations.

The stabilization parameters, τSUPS and νLSIC, will be given
in “Appendix B1”.

A.2 ST-SI

A.2.1 Two-side formulation (fluid–fluid SI)

In describing the ST-SI, labels “Side A” and “Side B” will
represent the two sides of the SI. The ST-SI version of the
formulation given by Eq. (1) includes added boundary terms
corresponding to the SI. The boundary terms for the two sides
are first added separately, using test functionswh

A and qhA and
wh
B and qhB. Then, putting together the terms added to each

side, the complete set of terms added becomes

−
∫

(Pn)SI

(
qhBnB − qhAnA

)
· 1
2

(
uhB − uhA

)
dP

−
∫

(Pn)SI

ρwh
B · 1

2

((
Fh
B −

∣∣∣Fh
B

∣∣∣
)
uhB

−
(
Fh
B −

∣∣∣Fh
B

∣∣∣
)
uhA

)
dP

−
∫

(Pn)SI

ρwh
A · 1

2

((
Fh
A −

∣∣∣Fh
A

∣∣∣
)
uhA

−
(
Fh
A −

∣∣∣Fh
A

∣∣∣
)
uhB

)
dP

+
∫

(Pn)SI

(
nB · wh

B + nA · wh
A

) 1

2

(
phB + phA

)
dP

−
∫

(Pn)SI

(
wh
B − wh

A

)
·
(
n̂B · μ

(
εεε(uhB) + εεε(uhA)

))
dP

− γ

∫
(Pn)SI

n̂B · μ
(
εεε

(
wh
B

)
+ εεε

(
wh
A

))
·
(
uhB − uhA

)
dP

+
∫

(Pn)SI

μC

h

(
wh
B − wh

A

)
·
(
uhB − uhA

)
dP, (4)

where

Fh
B = nB ·

(
uhB − vhB

)
, (5)

Fh
A = nA ·

(
uhA − vhA

)
, (6)

n̂B = nB − nA
‖nB − nA‖ . (7)

Here, (Pn)SI is the SI in the ST domain, n is the unit normal
vector, v is the mesh velocity, γ = 1, and C is a nondi-
mensional constant. The element length h will be defined in
“Appendix B2”.

A.2.2 One-side formulation (fluid–solid SI)

On solid surfaces where we prefer weak enforcement of the
Dirichlet conditions [49,51] for the fluid, we use the ST-SI
version where the SI is between the fluid and solid domains.
This version is obtained (see [14]) by starting with the terms
added to Side B and replacing the Side A velocity with the
velocity gh coming from the solid domain. Then the SI terms
added to Eq. (1) to represent the weakly-enforced Dirichlet
conditions become

−
∫

(Pn)SI

qhBnB · uhBdP −
∫

(Pn)SI

ρwh
B · Fh

Bu
h
BdP

+
∫

(Pn)SI

qhBnB · ghdP

+
∫

(Pn)SI

ρwh
B · 1

2

((
Fh
B +

∣∣∣Fh
B

∣∣∣
)
uhB

+
(
Fh
B −

∣∣∣Fh
B

∣∣∣
)
gh

)
dP

−
∫

(Pn)SI

wh
B ·

(
nB · σσσ h

B

)
dP

− γ

∫
(Pn)SI

nB · 2μεεε
(
wh
B

)
·
(
uhB − gh

)
dP

+
∫

(Pn)SI

μC

hB
wh
B ·

(
uhB − gh

)
dP. (8)

The element length hB will be given in “Appendix B2”.

123



Computational Mechanics

B Stabilization parameters

B.1 ST-VMS

There are various ways of defining the stabilization parame-
ters τSUPS and νLSIC. Here, τSUPS is mostly from [137]:

τSUPS =
(
τ−2
SUGN12 + τ−2

SUGN3 + τ−2
SUGN4

)− 1
2
. (9)

The first and second components are given as

τ−2
SUGN12 =

[
1
u

] [
1
u

]
: GST (10)

and

τ−1
SUGN3 = νrr : G, (11)

where r is the solution-gradient direction:

r = ∇∇∇ ‖u‖
‖∇∇∇ ‖u‖‖ . (12)

Here GST and G are the ST and space-only element metric
tensors:

GST =
(
Q̂ST

)−T ·
(
Q̂ST

)−1
, (13)

G = Q̂−T · Q̂−1, (14)

where

Q̂ST = QST ·
(
DST

)−1
, (15)

Q̂ = Q · D−1. (16)

The ST and space-only Jacobian tensors are

QST =
[

∂t
∂θ

∂t
∂ξξξ

∂x
∂θ

Q

]
(17)

and

Q = ∂x
∂ξξξ

, (18)

where θ and ξξξ are the temporal and spatial parametric coor-
dinates. The transformation tensor DST is defined as

DST =
[
Dθ 0T

0 D

]
. (19)

The definitions used for Dθ and D play an important role,
especially for higher-order isogeometric discretization [137,

139] and simplex elements [138]. However, in this article,
we use Dθ = 1 and D = I.

The third component, originating from [7], is defined as

τSUGN4 =
∥∥∥∇∇∇uh

∥∥∥−1

F
, (20)

where ‖ · ‖F represents the Frobenius norm.
The stabilization parameter νLSIC is from [30]:

νLSIC = h2LSIC
τSUPS

, (21)

where hLSIC is set equal to the minimum element length
hMIN:

hMIN = 2
(
max
r

(rr : G)
)− 1

2
. (22)

For more ways of calculating the stabilization parameters in
flow computations, see [86,136,140–151].

B.2 ST-SI

The element length used in the ST-SI is given as

h =
(
h−1
B + h−1

A

2

)−1

, (23)

hB = 2 (nBnB : G)−
1
2 (for Side B), (24)

hA = 2 (nAnA : G)−
1
2 (for Side A). (25)

These were introduced in [127].
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