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Abstract

A stabilized finite element framework for high-speed compressible flows is presented. The
Streamline-Upwind/Petrov-Galerkin formulation augmented with discontinuity-capturing (DC)
are the main constituents of the framework that enable accurate, efficient, and stable simulations
in this flow regime. Full- and reduced-energy formulations are employed for this class of flow
problems and their relative accuracy is assessed. In addition, a recently developed DC formulation
is presented and is shown to be particularly well suited for hypersonic flows. Several verification
and validation cases, ranging from 1D to 3D flows and supersonic to the hypersonic regimes, show
the excellent performance of the proposed framework and set the stage for its deployment on more
advanced applications.

Keywords: Compressible flows, Stabilized methods, Shock-capturing, Finite elements,
Supersonic flows, Hypersonic flows

1. Introduction

In computational fluid dynamics several approaches have been used in order to find the numer-
ical solution of the Navier-Stokes equations: finite difference (FDM), finite volume (FVM) and
finite element (FEM) methods. While FDM requires structured grids, even though curved cells
are allowed, the FVM offers good geometric flexibility and no constraints on the mesh type are re-
quired. Similar to the FVM, the FEM works for both structured and unstructured grids with curved
or rectilinear cells (or elements). For these reasons, both methods, FVM and FEM, can easily
handle very complex geometries [1]. The superiority of FEM with respect to FVM is in the ease of
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implementation of the boundary conditions and the ease in obtaining higher-order accuracy, which
are not trivial in FVM [2].

In this work the focus will be exclusively on the FEM numerical technique. The FEM has its
origin in the structural mechanics field. It was then applied to the solution of fluid dynamics prob-
lems, not without any difficulties. Indeed, a lot of research has been dedicated to the method since
the end of the 1970s [3] to the development of stabilized formulations for compressible [1] and in-
compressible flows [4]. The subject of the stabilized formulations for FEM in fluid dynamic is still
an active research field and it is thanks to these formulations that FEM became a valid numerical
technique for the study of fluid dynamics problems (turbulent and laminar flows, incompressible
and compressible flows over a wide range of flow regimes).

The first finite element stabilized formulation, based on the streamline upwind concept, was
developed as a Petrov-Galerkin formulation by [4] for the linear advection-diffusion equation and
the incompressible Navier-Stokes equations. In [4], the authors showed the accuracy and robust-
ness of the Streamline-Upwind/Petrov-Galerkin (SUPG) formulation for several numerical cases.
In that period, other researchers developed upwind finite elements approximations in order to en-
hance the stability of convection dominated flows, such as in [3, 5, 6]. A mathematical analysis
assessing the stability and order of convergence of the FEM for convection-diffusion problems
and linear hyperbolic problems can be found in [7]. The first step towards the generalization of
the SUPG formulation to the compressible flows was made in [1], [8] and [9]. In these works,
the class of Petrov-Galerkin finite element formulation based on the streamline upwind methods
was developed for the compressible Euler equations. The main idea was to write the system of
conservation laws in quasi-linear form using the Jacobian matrix of the flux vector in the discon-
tinuous part of the weighting function [9]. In [8] the definition of the stabilization parameter τττ
was identified as subject of further research, since the accuracy of the solution depends on it. In
order to select the optimal value of the parameter τ for every equation of the system describing
the problem, it was proposed in [10] to define τττ as a matrix and by doing so separate τττ could be
defined for each degree of freedom. The work presented in [10] was generalized to the space-time
finite element formulations for compressible flows by [11], where a new design for τττ parameter
was proposed. Up to this point it was established that the SUPG finite element formulations for
convection-dominated flows produce oscillation-free solutions, unlike the classical Galerkin meth-
ods. In this regard, interesting results have been obtained when the conservation laws were solved
in a particular set of entropy variables. A discussion on the finite element formulations derived in
entropy variables can be found in [12] and [13]. In [12], it was shown that symmetric forms of the
compressible Euler and Navier-Stokes equations can be obtained by selecting a particular set of
entropy variables. The classical Galerkin weighted residuals formulation was adopted to discretize
the symmetric Navier-Stokes equations resulting in an intrinsically stable discrete solution which
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always satisfies the second law of thermodynamic [12]. The authors of [12] concluded that when-
ever a discontinuity in the solution field is present, the Galerkin method was not effective and a
Petrov-Galerkin formulation was necessary to solve this class of problems. A convergence analysis
of FEM, based on streamline diffusion techniques with and without shock-capturing term, for hy-
perbolic conservation laws, was carried out in [14–16]. The authors showed the convergence of the
finite elements solution to the entropy solution (physical solution) of the conservation laws stating
that the results could be extended to a multidimensional system of conservation laws derived in
entropy variables. The stabilized finite element formulations supplemented with shock-capturing
terms in two different sets of variables, conservation and entropy variables, have been tested and
compared in [17] and [18]. The results showed no superiority of one set of variables with respect
to the other. Both choices in variables resulted in accurate solutions of the compressible flows
and almost no differences in the two discrete solutions were observed [18]. From an analysis of
finite element formulations in entropy variables, it was clear that the streamline upwind formula-
tions could not perform well whenever a discontinuity was present in the solution field. Although
the SUPG term ensured an oscillation-free discrete solution when the solution was smooth, it was
found to be rather ineffective with cases involving discontinuos exact solutions. In those scenar-
ios, a discrete solution with spurious oscillations was produced. In order to solve the problem
the discontinuity-capturing (DC) term (or shock-capturing) was required. The DC term was first
added to the SUPG formulation for the linear scalar convection-diffusion equation in [19] and to
the convection-diffusion-reaction equation in [20]. It was generalized to multidimensional systems
of advective-diffusion equations in [21]. From the DC term in entropy variables defined in [19], a
DC parameter in conservation variables was defined in [17, 18].

The Galerkin Least Squares (GLS) method represents another stabilized formulation which
originates from a generalization of the SUPG method. The method was first developed for
advection-diffusion equations in [22]. The GLS formulation for compressible Navier-Stokes equa-
tions was extended to any set of variables in [23–25]. The extension of the method to any choice
of variables was derived starting from the GLS formulation in entropy variables. The performance
comparison among the different sets of variables was described in [23] and [24]. It was stated
that only a set of entropy variables could satisfy the second law of thermodynamics regardless of
the use of any dissipation terms, while for all other sets of variables (conservation and primitive
variables) dissipation terms were necessary, such as the GLS and the DC operator. Moreover, it
was observed that both entropy and pressure primitive variables perform well in the incompress-
ible limit of the compressible Navier-Stokes equations and for this reason they represent a good
choice in a unified compressible-incompressible numerical framework [23, 24]. The space-time
GLS formulation in entropy variables supplemented with a DC term was applied to the solution
of the compressible Euler and Navier-Stokes equations in [11]. An adaption of the GLS formu-
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lation to hypersonic flows computation with the entropy variables was described in [26], where
instead of the perfect gas model an equilibrium chemistry algorithm was implemented. The ini-
tial formulation for thermochemical nonequilibrium with the entropy variables was also presented
in [27]. First moving-mesh computations with the compressible-flow SUPG method were reported
in 1990s, using the space-time compressible-flow SUPG method, first in 2D (axi-symmetric), for
air intake of a jet engine at M = 1.4 in [28, 29] and then in 3D, for two high-speed trains passing
each other in a tunnel, in [30]. Most recently, the SUPG-based finite element formulation was
presented in [31] using conservative variables to model the hypersonic atmospheric entry of large
vehicles with an ablative thermal protection system.

A lot of research has been dedicated to find the correct expression for the stabilization parame-
ters (for both SUPG/GLS and DC terms). The stabilization parameters are indeed very important,
since they affect the accuracy of the method and they should be selected in a way that a good
compromise between accuracy and stability is achieved [25]. An approach was developed by [32],
where the stabilization parameters were computed based on element-level matrices and vectors.
The parameters developed in [32] took into account the element length scales, advection and el-
ement Reynolds number and were applied to the unsteady advection-diffusion equation and to
the Navier-Stokes equations of incompressible flows. The stabilization parameters developed for
each element using the advection-dominated and diffusion-dominated limits are described in [33–
35]. The element level stabilization parameters were applied to the classic SUPG formulation
developed in [4] supplemented by the shock-capturing of [17] for the inviscid compressible flows
in [36, 37]. In particular, in [37] the parameters were computed for each degree of freedom of
each element. Further discussion on the computation of the time parameters of the stabilized for-
mulation for compressible flows can be found in [38, 39]. Following the first introduction of the
DC term for the scalar advection-diffusion equation [19], another DC term was proposed in [20]
in the context of the SUPG formulation for the convection-diffusion-reaction equations. The DC
term introduced in [20] contains a second element length scale in the direction of the solution
gradient (the first element length scale in the advection direction being the one used in the SUPG
term definition). Using this element length scale in the direction of the solution gradient, the DC
directional dissipation (DCDD) was developed and introduced in [34, 40]. The DCDD parameter
is selected in a way that the method is not over diffusive in the particular case of advection parallel
to the solution strong gradient. Simpler and less computationally expensive DC parameters with
respect to the one introduced in [17], were developed in [39, 41] in the context of stabilized finite
element formulation for compressible flows. The new shock-capturing parameters, categorized as
YZβ Shock-Capturing [41–43], were derived from the DCDD idea for incompressible flows and
unlike the DC developed in [17], their definition was based on conservation variables instead of
entropy variables. In [42, 43], the SUPG formulation supplemented with the YZβ Shock-Capturing
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was applied to the solution of inviscid supersonic flows and it proved to yield better shock quality
than the SUPG formulation [4] with the DC developed in [17]. A number of new developments
happened in the last few years in stabilization parameters and element lengths, including those
for isogeometric discretization and those with node-numbering invariance. Some of them were
summarized in [44]. We refer the interested reader to [45–51].

Some of the earliest compressible-flow computations with the SUPG plus DC method in com-
plex engineering problems were reported in 1990s, for a delta-wing in [29, 52], for a commercial
aircraft in [29], for a missile in [53], for two high-speed trains in a tunnel in [30], and for a fighter
aircraft in [30]. Most recently, the SUPG formulation was also successfully applied to several
complex engineering problems in compressible flow regime such as gas turbines [44, 54, 55],
rotorcraft [56], full vehicle aerodynamics [57], spacecraft parachute aerodynamics [58, 59], and
related applications in incompressible regime (e.g. analysis of the turbocharger [60, 61]), however,
little research has been dedicated to investigating the method in hypersonic flow regimes. It is the
aim of the current work to investigate in details the performance of the SUPG-based finite element
formulation for hypersonic flow modeling, compare two formulations with the different forms of
the energy conservation equation and examine new DC operator.

The rest of the paper is structured as follows. In Section 2 the governing equations of viscous
compressible flows are described as well as the steps to obtain the finite element SUPG formulation
supplemented with a DC operator. The validation and verification of the stabilized finite element
formulation is shown in Section 3. The results of numerical test cases for high speed flows, in-
cluding the 1D Sod’s problem, the 2D Mach 6 flat plate, the 2D Mach 10 oblique shock, the 2D
Mach 17 cylinder case, and the 3D Mach 6 Viking Lander Capsule, are also presented in Section
3. Concluding remarks and future research are summarized in Section 4.

2. Methodology

2.1. Governing equations

The set of the governing equations solved in this work is the system of Navier–Stokes equations
for compressible flows involving the conservation of mass

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

momentum
∂ (ρu)
∂t

+ ∇ · (ρu ⊗ u) + ∇p = ∇ · τττ, (2)

and energy
∂ (ρetot)
∂t

+ ∇ · (ρuetot) + ∇ · (pu) = ∇ · (τττu − q) , (3)
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assuming no source terms. In the above equations, ρ is the density, u is the velocity vector, p is the
pressure, τττ is the second-order viscous stress tensor

τττ = λ∇ · u + µ
(
(∇u) + (∇u)T

)
(4)

and q is the heat conduction vector
q = −κ∇T, (5)

where λ is the bulk viscosity, µ is the dynamic viscosity and κ is the thermal conductivity. In Eq. (3)
etot is the total energy defined as the sum of the internal and kinetic energies

etot = e +
‖u‖2

2
, (6)

where the internal energy is computed assuming a calorically perfect gas:

e = cvT. (7)

Pressure, density, and internal energy are related through the ideal gas equation of state

p = ρ(γ − 1)e, (8)

where γ is the adiabatic index.
The Navier–Stokes equations of compressible flows can be compactly written as

Ũ,t + F̃adv
i,i = F̃di f f

i,i , (9)

where Ũ is a vector of conservation variables,

Ũ =



ρ

ρu1

ρu2

ρu3

ρetot


, (10)

index i = 1, ..., d, where d = 2, 3 is the space dimension, and F̃adv
i and F̃di f f

i are the ith component
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of the advective and diffusive fluxes, respectively, given by

F̃adv
i =



ρui

ρuiu1 + pδ1i

ρuiu2 + pδ2i

ρuiu3 + pδ3i

ρuietot + pui


F̃di f f

i =



0
τ1i

τ2i

τ3i

τi ju j − qi


. (11)

The advective flux vector can be further split in two terms as

F̃adv
i = F̃adv/p

i + F̃p
i =



ρui

ρuiu1

ρuiu2

ρuiu3

ρuietot


+



0
pδ1i

pδ2i

pδ3i

pui


. (12)

We can simplify the compressible-flow equation system by introducing the mass and momen-
tum balance in the energy equation leading to

U,t + Fadv/p
i,i + Fp

i,i + Fsp = Fdi f f
i,i , (13)

where

U =



ρ

ρu1

ρu2

ρu3

ρe


(14)

Fadv
i = Fadv/p

i + Fp
i =



ρui

ρuiu1

ρuiu2

ρuiu3

ρuie


+



0
pδ1i

pδ2i

pδ3i

0


Fdi f f

i =



0
τ1i

τ2i

τ3i

−qi


(15)

Fsp =



0
0
0
0

pui,i − τi ju j,i


(16)
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The flux vector Fsp is the contribution of stress power in the energy equation.
As a result, we have two formulations which will be investigated in this work: The full-energy

formulation defined by Eqs. (9)-(12) and the reduced-energy formulation defined by Eqs. (13)-(16).
The latter formulation was presented in [54].

2.2. Weak formulations

The weak form of the problem can be obtained by applying the method of weighted residuals.
The strong form of the Navier–Stokes equations is multiplied by a vector-valued test function
W ∈ V, where V is a suitably chosen space of test functions, and integrated over the spatial domain
Ω with boundary Γ. The integration by parts is then performed on the pressure and diffusive fluxes
resulting in ∫

Ω

W ·
(
Ũ,t + F̃adv/p

i,i

)
dΩ −

∫
Ω

W,i ·
(
F̃p

i − F̃di f f
i

)
dΩ+∫

Γh

W ·
(
F̃p

i − F̃di f f
i

)
ni dΓ = 0

(17)

for the full-energy form and in∫
Ω

W ·
(
U,t + Fadv/p

i,i + Fsp
)

dΩ −

∫
Ω

W,i ·
(
Fp

i − Fdi f f
i

)
dΩ+∫

Γh

W ·
(
Fp

i − Fdi f f
i

)
ni dΓ = 0

(18)

for the reduced-energy form. Here, Ũ, F̃adv/p
i , F̃p

i , F̃
di f f
i and U,Fadv/p

i ,Fp
i ,F

di f f
i are assumed to be

functions of Y, ni is the ith component of the outward unit surface normal vector n, and Γh is the
portion of Γ where the natural boundary conditions are applied. The last term on the left-hand-
side of Eq. (17) and Eq. (18) represents the known values of the prescribed traction and heat-flux
boundary conditions.

Equations (17) and (18) may be re-written in a quasi-linear form using the pressure-primitive
variables Y defined as

Y =



p

u1

u2

u3

T


. (19)

Given the suitably chosen space of vector-valued trial functions S for the pressure-primitive vari-
ables, the weak form of the Navier–Stokes equations of compressible flows for the full-energy case
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may be stated as: Find Y ∈ S, such that for all W ∈ V,∫
Ω

W ·
(
Ã0Y,t + Ãadv/p

i Y,i

)
dΩ −

∫
Ω

W,i ·
(
Ãp

i Y − K̃i jY, j

)
dΩ+∫

Γh

W ·
(
F̃p

i − F̃di f f
i

)
nidΓ = 0,

(20)

and the reduced-energy case may be stated as: Find Y ∈ S, such that for all W ∈ V,∫
Ω

W ·
(
A0Y,t + Aadv/p

i Y,i + Asp
i Y,i

)
dΩ −

∫
Ω

W,i ·
(
Ap

i Y −Ki jY, j

)
dΩ+∫

Γh

W ·
(
Fp

i − Fdi f f
i

)
ni dΓ = 0.

(21)

Here, the matrices A0, Aadv/p
i , Ap

i , Asp
i , Ki j, Ã0, Ãadv/p

i , Ãp
i , K̃i j are defined as

A0 =
∂U
∂Y

, Aadv/p
i =

∂Fadv/p
i

∂U
∂U
∂Y

, Ap
i =

∂Fp
i

∂U
∂U
∂Y

, Asp
i =

Fsp

Y,i
, Ki j =

Fdi f f
i

Y, j
,

Ã0 =
∂Ũ
∂Y

, Ãadv/p
i =

∂F̃adv/p
i

∂Ũ
∂Ũ
∂Y

, Ãp
i =

∂F̃p
i

∂Ũ
∂Ũ
∂Y

, K̃i j =
F̃di f f

i

Y, j
,

(22)

and the explicit expressions for the above matrices are given in Appendix A.

2.3. SUPG and DC operators

We assume the fluid domain Ω is divided into Nel elements each denoted by Ωe and denote by
Res(Y) the strong-form residual of the Navier–Stokes equations of compressible flows. We define
the SUPG operator as follows:

BSUPG (W,Y) =

Nel∑
e=1

∫
Ωe

((
A∗i

)T W,i

)
· τττSUPGRes(Y) dΩ. (23)

Here, τττSUPG is the stabilization matrix for the pressure-primitive variables given by [24, 54]

τττSUPG = A−1
0 τ̂ττSUPG, (24)

where τ̂ττSUPG is the stabilization matrix for conservation variables defined as [11, 54]

τ̂ττSUPG =

(
4

∆t2 I + Gi jÂ∗i Â∗j + CI Gi jGklK̂∗ikK̂
∗
jl

)− 1
2

. (25)
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Here ∆t is the time step size, CI is a positive constant derived from an appropriate element-wise
inverse estimate [62], and Gi j are the components of the element metric tensor G defined as

Gi j =

d∑
k=1

∂ξk

∂xi

∂ξk

∂x j
, (26)

where x(ξ) is the element isoparametric mapping. In the above expressions the definitions of A∗i and
its conservation-variable counterpart Â∗i depend on the formulation employed. In the full-energy
case we set A∗i = Ãadv/p

i + Ãp
i , while in the reduced-energy case we set A∗i = Aadv/p

i + Ap
i + Asp

i .
Likewise, K∗i j = K̃i j for the full-energy case, K∗i j = Ki j for the reduced-energy case, and K̂∗i j is
their conservation-variable counterpart. The definition of τ̂ττSUPG in Eq. (25) requires computing the
square-root-inverse of a 5 × 5 matrix in 3D, which is computed numerically using the Denman–
Beavers algorithm [54, 63, 64].

Following the approach for the SUPG operator design, we first define the DC operator for
conservation variables as

Nel∑
e=1

∫
Ωe

W,i · K̂DCU,i dΩ, (27)

where K̂DC is the matrix-valued DC viscosity. Changing variables from U to Y gives

Nel∑
e=1

∫
Ωe

W,i · K̂DCA0Y,i dΩ, (28)

which, in turn, defines the DC viscosity matrix for the pressure-primitive variables:

KDC = K̂DCA0. (29)

We assume a diagonal form of the DC viscosity matrix for the conservation variables, namely,

K̂DC = diag (κ̂C, κ̂M, κ̂M, κ̂M, κ̂E) , (30)

and provide two definitions of the diagonal entries in what follows.

• We refer to this version as DC1, which was proposed in [54]:

κ̂C = CC
h |Res1|

|∇U1|
, (31)

κ̂M = CM
h |Res2:d+1|

|∇U2:d+1|
, (32)
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κ̂E = CE
h |Resd+2|

|∇Ud+2|
. (33)

• We refer to this version as DC2, which was proposed in [44]:

κ̂C = min
(
CC

h |Res|w
|∇U|w

, κ̂cap

)
, (34)

κ̂M = min
(
CM

h |Res|w
|∇U|w

, κ̂cap

)
, (35)

κ̂E = min
(
CE

h |Res|w
|∇U|w

, κ̂cap

)
. (36)

In the above definitions, h is the element size and CC, CM, and CE are the O(1) positive constants
corresponding to the continuity, momentum, and energy equations, respectively. Furthermore, in
the definition of DC2, |Res|w is a weighted norm of the compressible-flow equation residual

|Res|w = c2 |Res1| + ‖u‖ |Res2:d+1| + |Resd+2| , (37)

|∇U|w is a weighted norm of the conservation-variable solution gradient

|∇U|w = c2 |∇U1| + ‖u‖ |∇U2:d+1| + |∇Ud+2| , (38)

κ̂cap is the maximum allowable value of the DC viscosity

κ̂cap =
(
(u − û) ·G−1 (u − û) + c2tr(G−1)

) 1
2 , (39)

c is the sound speed, and G−1 is the inverse of the element metric tensor.

Remark 1. The DC viscosity definitions originate from the so-called CAU DC technique [65].
It may also be viewed as YZβ DC with β = 1. We also note that the CAU DC technique is an
extension of the “δ91” shock-capturing technique [17, 18] to unsteady flows. The CAU is residual-
based in the context of unsteady problems, while “δ91” was residual-based in the context of steady,
inviscid flows.

Remark 2. Note that in the definition of DC2 the weighted norm appropriately scales the compo-
nents of the residual and solution gradient in order to measure the size of these vectors that have
entries of different dimensions.

Remark 3. Note the introduction of a DC viscosity upper bound or “cap”, κ̂cap, which is a multi-
dimensional generalization of the upwind viscosity h(u+c)/2. While it is expected that, on average,
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the residual-based definition of the DC viscosity will stay well below the upwind limit, division
by the gradient norm can lead to local spikes in this quantity, which are mitigated by the cap. The
introduction of the cap reduces the degree of nonlinearity associated with the DC terms and, as a
result, improves convergence of the Newton–Rhapson iterations. The cap idea was introduced and
successfully employed in [66] for shock-capturing for solids.

2.4. Complete formulation and solution procedure

The final semi-discrete SUPG formulation for compressible flows supplemented by a DC op-
erator is obtained by simply adding the Galerkin, SUPG, and DC terms. The formulation for the
full-energy case becomes: Find Yh ∈ Sh, such that for all Wh ∈ Vh,∫

Ω

Wh ·
(
Ã0Yh

,t + Ãadv/p
i Yh

,i

)
dΩ −

∫
Ω

Wh
,i ·

(
Ãp

i Yh − K̃i jYh
, j

)
dΩ+

Nel∑
e=1

∫
Ωe

((
A∗i

)T Wh
,i

)
· τττSUPGRes(Yh) dΩ +

Nel∑
e=1

∫
Ωe

Wh
,i ·KDCYh

,i dΩ+∫
Γh

Wh ·
(
F̃p

i − F̃di f f
i

)
nidΓ = 0,

(40)

and for the reduced-energy case becomes: Find Yh ∈ Sh, such that for all Wh ∈ Vh,∫
Ω

Wh ·
(
A0Yh

,t + Aadv/p
i Yh

,i + Asp
i Yh

,i

)
dΩ −

∫
Ω

Wh
,i ·

(
Ap

i Yh −Ki jYh
, j

)
dΩ+

Nel∑
e=1

∫
Ωe

((
A∗i

)T Wh
,i

)
· τττSUPGRes(Yh) dΩ +

Nel∑
e=1

∫
Ωe

Wh
,i ·KDCYh

,i dΩ+∫
Γh

Wh ·
(
Fp

i − Fdi f f
i

)
ni dΓ = 0.

(41)

The generalized-α method in [67] is used to integrate the resulting systems in time. At each time
step a non-linear system of equations is solved using the Newton–Raphson method.

Remark 4. The resulting linear equation systems at each non-linear iteration is solved to a tol-
erance using the Generalized Minimal Residual (GMRES) technique [68] with block-diagonal
preconditioning. Nodal blocks (4 × 4 in 2D and 5 × 5 in 3D) are extracted from the left-hand-side
matrix, LU factorization is performed for each nodal block, and the linear equation system is left-
and right-preconditioned using the block-diagonal L−1 and U−1 matrices, respectively. This simple
choice leads to an efficient linear solver with excellent parallel scaling.
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3. Numerical results

In this section numerical examples of hypersonic flow simulations are presented. The main
purpose of these numerical test cases is to show the robustness and accuracy of the formulation
in applications of hypersonic flow regimes. The 1D Sod shock tube problem [69] is the first
case selected to perform a detailed comparison between the full and reduced energy formulations.
Next, the results of a 2D Mach 6 flat plate [70] problem with detailed mesh convergence study,
are presented. A Mach 10 NASA wedge test case [71] is shown, followed by the Mach 17 flow
over a cylinder problem [72] to investigate the instabilities, namely ”Carbuncle problem” [73],
encountered when traditional CAU DC operator, DC1, is used. An alternative definition of DC
operator, DC2, that alleviates this problem, is proposed. The Section concludes with 3D simulation
of Viking Lander Capsule [74] and results comparisons to NASA LAURA code and wind tunnel
experiment. In the following examples the DC1 operator is used, unless stated otherwise.

3.1. 1D Sod shock tube case

The shock tube case is a 1D, inviscid and unsteady case [69]. An initial diaphragm separates
two regions of the same fluid at rest and at different pressure and density. After the instantaneous
removal of the diaphragm a shock wave propagates in the low pressure region while an expansion
wave propagates in the opposite direction. The contact surface across which pressure and velocity
stay the same, propagates in the same direction of the shock wave. In order to simulate this case, the
following initial conditions have been adopted [69]: ρL = 1 [Kg/m3], pL = 1 [Pa], uL = 0 [m/s],
TL = 3.484e−3 [K] and ρR = 0.125 [Kg/m3], pR = 0.1 [Pa], uR = 0 [m/s], TR = 2.787e−3 [K],
where subscript L and R represent left and right regions with respect to the diaphragm. The specific
heat ratio is γ = 1.4 and the gas constant is R = 287 [J/(kg K)]. The length of the domain is
L = 1 [m] and two sets of meshes are investigated, i.e. the coarse mesh of 103 elements and the
fine one of 104 elements. For each mesh, the simulations are carried out using both the full and
the reduced energy formulations. The results obtained from the four simulations at the time instant
t = 0.1 [s], are compared with the analytical solution and shown in Figure 1. In Figure 1 the
internal energy is computed as e = cvT where cv is the specific heat coefficient at constant volume.
Even though it cannot be fully appreciated in Figure 1 because of the scale of the axis, the full
energy formulation gives more accurate estimates for all flow quantities in all the regions. This
is more evident in Figure 1b, where the reduced energy formulation underestimates the value of
the internal energy, e, in the post-shock region of the domain. Figure 2 illustrates in detail the
main features of the density distribution, in particular the front and the tail of the expansion fan,
shown in Figure 2a and Figure 2b respectively, the contact surface in Figure 2c and the shock
wave in Figure 2d. Both formulations perform very well in predicting the location of the front
wave of the expansion fan, showing an excellent agreement with the analytical solution for the
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Figure 1: Comparison of the numerical results for pressure 1a, internal energy 1b, velocity 1c and density 1d
distributions with the analytical solution of the Sod shock tube case [69].

fine mesh. Figure 2b shows that the reduced energy formulation underpredicts the density value
in the post-expansion region, while the full energy formulation agrees with the analytic solution.
The location of the contact surface is correctly predicted by both formulations, but it can be seen in
Figure 2c that the full energy formulation is more diffusive than the reduced energy formulation. In
Figure 2c and Figure 2d, it is evident that the reduced energy formulation overpredicts the density
value in the region between the contact surface and the shock wave, while once again the full
energy formulation predictions are in excellent agreement with the analytical solution. Finally,
Figure 2d shows that the shock wave location is correctly predicted by the full energy formulation,
while the reduced energy underpredicts the shock location with a relative error with respect to
the analytical value of 0.4%. In general, the fine mesh results show less diffusive discontinuities
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Figure 2: Details of the main features of the density distribution for the shocktube case [69]: front wave
of the expansion fan 2a, tail wave of the expansion fan 2b, contact surface 2c and shock wave 2d. The
analytical solution is represented by red circles and is shown for comparison.

(contact surface and shock wave), with respect to the coarse mesh results.
The stabilized formulations, described in the previous section, can handle the unsteady discon-

tinuities in the field, such as moving shock waves and contact surfaces. In terms of accuracy the
full energy formulation is superior to the reduced energy one. Moreover, the smoothness of the
solution in the entire field shows the effectiveness of the SUPG and DC stabilization operators.

3.2. 2D Mach 6 flat plate

The flat plate example is one of the fundamental benchmark cases for code validation. The
physics behind this case is well understood. When a viscous flow interacts with a flat plate at
zero incidence angle, a boundary layer develops from the leading edge and grows in thickness
downstream. The displacement effect of the boundary layer deflects the outer inviscid flow away
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Figure 3: Computational domain for the Mach 6 flat plate case with free stream velocity at zero angle of
attack.

from the wall. When the flow is supersonic, a weak oblique shock wave forms at the leading edge
as a result of the displacement.

This case is based on the work presented in [70]. The computational domain, illustrated in
Figure 3, extends for 1 [m] in the x direction (free stream direction) and for 0.3 [m] in the vertical
direction. At the inflow and top boundaries, the free stream conditions are prescribed as p∞ =

5.17 [Pa], u∞ = 849.34 [m/s] (parallel to the wall) and T∞ = 48.89 [K], that correspond to M∞ = 6
and Re∞,L = 104, which is the local Reynolds number at the reference length of 0.1 [m]. At the
wall the no slip condition for the velocity and a constant temperature Tw = Taw = 353.57 [K] are
prescribed, where

Taw = T∞

(
1 +

γ − 1
2

√
PrM2

∞

)
(42)

is the adiabatic temperature computed with a recovery factor equal the square root of Prandtl
number. At the outlet, zero traction and zero heat transfer are prescribed. The following Sutherland
law is used for the viscosity computation:

µ = µr
Tr + S
T∞ + S

(
T∞
Tr

)1.5

(43)

where µr = 1.716 · 10−5 [Pa · s], Tr = 273.15 [K] and S = 110.4 [K]. The thermal conductivity is
k = µcp/Pr with Pr = 0.72, while the specific heat ratio is γ = 1.4. The simulation was carried out
using a constant time step ∆t = 5 · 10−6 [s], which corresponds to a maximum CFL of 4.
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3.2.1. Grid Convergence Analysis

Together with the validation, the verification of a numerical framework is essential. It is impor-
tant to verify that the partial differential equations of the model describing the physical problem are
solved correctly. The verification process involves getting estimates of the numerical uncertainties
or numerical errors related to the discretization methods. Indeed, the solution should be indepen-
dent of the grid and theoretically the exact solution (solution of the continuum equations) should
be obtained when the grid spacing approaches zero value. In this section numerical uncertainties,
in terms of grid convergence index (GCI), are presented following the guidelines in [75]. Three
different uniform structured grids are considered, a coarse grid of 107 × 32 elements, a medium
grid of 214×64 elements and a fine one of 428×128 elements. Since the meshes are uniform with
equal grid spacing in both directions x and y, it is easy to define the grid size h which is simply
the length of one cell. The grid refinement factor for the coarse-medium meshes is computed as
r32 = h3/h2 and for the medium-fine meshes r21 = h2/h1, being h1 < h2 < h3. In the case presented
here r32 = r21 = 2. The apparent order of convergence p can be calculated as:

p =
1

log (r21)
| log |ε32/ε21| + q(p)| (44)

q(p) = log
(
rp

21 − s

rp
32 − s

)
(45)

s = sign
(
ε32

ε21

)
(46)

where ε32 = φ3 − φ2 and ε21 = φ2 − φ1, and φn refers to the solution relative to the nth grid. The
solution selected to carry out the grid convergence analysis is the wall pressure pw. It is possible
to calculate the extrapolated value from the solutions of the fine and medium grids, φext

21 , and from
solutions of medium and coarse grids, φext

32 , as follows:

φext
21 =

rp
21φ1 − φ2

rp
21 − 1

(47)

φext
32 =

rp
32φ2 − φ3

rp
32 − 1

(48)

Finally from the approximate relative errors:

e21
a = |

φ1 − φ2

φ1
| (49)
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Figure 4: Wall pressure distribution for the coarse, medium and fine grid together with the extrapolated
value φext

21 .

e32
a = |

φ2 − φ3

φ2
| (50)

The fine and medium grid convergence indexes can be computed as below:

GCI21
f ine =

Fse21
a

rp
21 − 1

(51)

GCI32
medium =

Fse32
a

rp
32 − 1

(52)

where Fs = 1.25 is the safety factor. The grid convergence indexes are estimates of the numerical
uncertainties. The average (global) GCIg values and the average order of convergence pg are
obtained by averaging over all the local values. Applying the procedure just described to the Mach
6 flat plate case, the following values are calculated: pg ∼ 1, GCI f ine = 3.94% and GCImedium =

6.28%. The wall pressure distribution for the three grids is presented in Figure 4. The local GCI21
f ine

(computed for every node of the plate) is used to represent the numerical uncertainties as error bars
on the plot of the wall pressure distribution for the fine grid. The result is shown in Figure 5. It can
be observed that the approximate numerical error is large in the leading edge region, close to the
leading edge which is therefore a critical point in the numerical analysis of this case.
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Figure 5: Wall pressure distribution for the fine grid with numerical uncertainties reported as error bars.

Figure 6: Discretization of the computational domain for the flat plate case at Mach 6 with a structure mesh.

3.2.2. Numerical results

Following the grid convergence study, the fine mesh is selected for simulations (see Figure 6).
The grid spacing ∆x ∼ 0.0023 [m] is uniform in the x direction, while a wall refinement is adopted
in the y direction with a minimum grid spacing ∆y = 5 · 10−4 [m] at the wall. First, the Mach
number contours are observed. The compression wave due to the viscous boundary layer at the
plate obtained from the full energy formulation can be seen in Figure 7. The reduced energy
formulation produces similar qualitative results, showing smooth steady-state solution throughout
the whole domain. The normalized Mach profile at the station x = 0.75 [m] is shown for both
formulations in Figure 8. The Mach profile is normalized by the Mach number at the edge of
the boundary layer, Me. The Mach number at the edge of the boundary layer predicted by the
full energy formulation is Me = 5.65, while the one predicted by the reduced energy formulation
is Me = 5.7. The spatial coordinate normal to the wall, y, is normalized by the boundary layer
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Figure 7: Mach number contours for the Mach 6 flat plate case computed using the full energy formulation.
The black line indicates the station x = 0.75 [m]

Figure 8: The normalized Mach profile at x = 0.75 [m] compared to the experiment data obtained by [76].

thickness, which is δ = 0.056 [m] and δ = 0.055 [m] for the full and reduced energy formulations
respectively. The results in Figure 8 show good agreement with the experiment data obtained
by [76] except very close to the wall due to technical difficulties in the velocity measurements in
the wind tunnel. The comparison of the skin friction coefficient, c f , distribution along the plate with
the numerical results obtained using the finite difference method by [70], is presented in Figure 9.
The results from both formulations show an excellent agreement. Finally the non dimensional wall
pressure distribution, pw/p∞, is presented in Figure 10. Again the comparison with the numerical
results in [70] shows the robustness and accuracy of the two stabilized formulations presented in
this work at high Mach numbers.

20



Figure 9: The skin friction coefficient distribution along the wall is compared to numerical results of [70].
The skin friction coefficient is defined as: c f = 2τw/ (ρ∞‖u∞‖).

Figure 10: The wall pressure distribution non dimensionalized by the free stream pressure (pw/p∞) is com-
pared to the numerical results obtained by [70].

3.3. 2D Mach 10 oblique shock problem

The oblique shock case presented in this section involves a flat plate and a flow hitting the
plate with 5◦ incidence. The experimental test was performed at NASA Langley’s 31-inch Mach
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Figure 11: Computational domain for the Mach 9.7 oblique shock case.

Figure 12: Discretization of the computational domain for the oblique shock example at Mach 9.7 with a
structured mesh.

10 facility [77]. The free stream flow is characterized by Mach number M∞ = 9.7 and a Reynolds
number based on free stream values of Re∞ = 3.8 · 105. A weak oblique shock wave forms at
the leading edge of the wedge. The computational domain corresponds to the flow region along
the top surface of the wedge and is shown in Figure 11. The domain is 0.2 [m] long and 0.03 [m]
high and it is discretized with a structured mesh of 1000 × 150 elements shown in Figure 12.
The grid is refined in both directions, x and y, at the wall and at the leading edge of the plate.
The minimum grid spacing in x and y is ∆x = ∆y = 2.5 · 10−5 [m]. Defining u the velocity
component parallel to the plate and v the velocity component normal to the wall, the free stream
conditions prescribed at the inlet and top boundaries of the domain are: u∞ = 1401.94 [m/s],
v∞ = −122.65 [m/s], p∞ = 68.4 [Pa] and T∞ = 52.3 [K]. The no slip conditions and a constant
temperature Tw = 314 [K] are prescribed at the wall. Zero traction and zero heat flux are prescribed
at the outlet. For this case thermodynamic properties of real gas are adopted (see [78]), while the
transport properties are calculated from the kinetic theory models. In particular the viscosity is
computed from the Chapman-Cowling relation [79]:

µ = 2.6693 · 10−6

√
MT
σ2Ω

[Pa · s] (53)
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(a) Full energy formulation.

(b) Reduced energy formulation.

Figure 13: Mach number contours for the Mach 9.7 oblique shock case predicted by the full 13a and the
reduced 13b energy formulation.

where σ = 3.689 [Å] [78] is collision diameter for air and Ω are the collision integrals computed
using empirical equations for the Lennard–Jones (12-6) potential [80]. The thermal conductivity
is calculated from the kinetic theory models in [81] with the modified Eucken correction as below:

k = µ

(
15
4

+ 1.32
(
cp

R
−

5
2

))
R (54)

The Mach contours for full and reduced energy formulations are shown in Figure 13a and in Fig-
ure 13b respectively. Figure 14 shows the Mach profile at x = 0.106 [m] where the results are
compared with simulation results using OpenFOAM [71]. The results from the full energy formu-
lation show very good agreement. Some discrepancies, however, can be observed in terms of the
shock wave angle. The shock wave angle predicted by the full energy formulation is βs ∼ 7◦, while
the angle predicted by the reduced energy formulation is βs ∼ 6.3◦. The angle prediction of the
full energy formulation is very close to the one predicted by OpenFOAM [71], which is βa ∼ 7.2◦,
while the reduced energy formulation underpredicts this value. The smaller shock wave angle pre-
dicted by the reduced energy formulation is the reason behind the higher Mach number predicted
in the post-shock region. The velocity profiles in the boundary layer at four different locations,

23



Figure 14: Mach profile at x = 0.106 [m] obtained using both formulations is compared with numerical
results of [71] for the Mach 9.7 oblique shock.

x = 0.588, 0.784, 0.91, 1.068 [m] are compared with the experiment data [77] in Figure 15. The
results obtained by both formulations are in very good agreement with the experiment data.

3.4. 2D Mach 17.6 cylinder case

The two-dimensional cylinder case [72] described in this section is a hypersonic benchmark
case that has the goal to show the robustness of the numerical framework in handling a strong bow
shock and the accuracy of the predictions under such extreme flow conditions. The free stream
flow conditions are defined by a Mach number M = 17.6 and a Reynolds number Re = 3.769 · 106.
For hypersonic flow past a cylinder, which is a blunt body, a strong, detached shock wave develops
and once the steady state is reached, the shock stand-off distance can be measured. The inflow of
the computational domain is represented by an arc centered at the cylinder’s center. The domain is
10 [m] long and 3.5 [m] high. The computational domain is illustrated in Figure 16. The cylinder
radius is 1 [m]. The domain is discretized with a structured mesh of 60 × 64 elements in the
azimuthal and radial directions respectively. The mesh is uniform in the azimuthal direction, while
it is refined close to the wall with the first wall element’s height being 6 [mm]. The mesh is shown
in Figure 17.

The free stream velocity, pressure and temperature are v∞ = −4.9906 · 103 [m/s], p∞ =

576.2 [Pa] and T∞ = 200 [K] respectively. The free stream conditions are prescribed at the do-
main’s inlet. The no-slip condition and constant temperature Tw = 500 [K] are prescribed at the
cylinder’s surface. Zero traction and zero heat flux are prescribed at the outlet of the domain.
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(a) x = 0.588 [m] (b) x = 0.784 [m]

(c) x = 0.91 [m] (d) x = 1.068 [m]

Figure 15: Velocity profiles in the boundary layer at different locations along the plate for the Mach 9.7
oblique shock case. The profiles predicted by the two formulations (full and reduced energy) are compared
to the experiment data [77].

Figure 16: Computational domain for the Mach 17.6 cylinder case.
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Figure 17: Structured mesh for the Mach 17.6 cylinder case.

The perfect gas relation is used with the gas constant R = 287 [J/(kg K)] and specific heat ratio
γ = 1.4. The Prandtl number is Pr = 0.71. The temperature dependent viscosity is determined by
the Sutherland law:

µ = µr
Tr + S
T∞ + S

(
T∞
Tr

)1.5

(55)

where µr = 1.716 · 10−5 [Pa · s], Tr = 273.15 [K] and S = 110.4 [K]. The thermal conductivity is
computed from the Prandtl number definition as k = µcp/Pr.

The simulations are carried out using both reduced and full energy formulations and using two
different DC operators, DC1 and DC2. The Mach contours visualizations in Figure 18 show that
both formulations using the DC1 operator are affected by the carbuncle problem [73]. The carbun-
cle phenomenon is a shock instability that appears when numerical low-dissipative shock-capturing
techniques are used [82] to approximate multi-dimensional shock waves [73]. It is not clear what
causes the carbuncle phenomenon to appear and there is not a universal solution for this numerical
problem [73]. In [82], it was observed that the upstream Mach number, the shock structure, and the
computational grid affect the carbuncle phenomenon. In this work the carbuncle problem is solved
when the second DC operator, DC2, is adopted instead of the operator DC1. Using the DC1 opera-
tor, numerical instabilities arise at the shock wave for both formulation as shown in Figure 18a and
in Figure 18b. The shock wave instability does not appear when the DC2 operator is used (see Fig-
ure 18c and Figure 18d). Comparing qualitatively Figure 18a and Figure 18c with Figure 18b and
Figure 18d, it can be observed that the full energy formulation predicts a greater shock stand-off

distance than the one predicted by the reduced energy formulation. The shock stand-off distance
predicted by both formulations is compared with the data presented in [72] and is shown in Table 1.
Table 1 shows that the full energy formulation is able to predict the shock stand-off distance with
good accuracy, while the reduced energy formulation strongly underpredicts the distance value
with a relative error of 46% with respect to the predictions by [72].

3.5. Viking Lander Capsule

The Viking Lander Capsule is an atmospheric re-entry vehicle (see Figure 19a). The availaibil-
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(a) Full energy with DC1. (b) Reduced energy with DC1.

(c) Full energy with DC2. (d) Reduced energy with DC2.

Figure 18: Mach number contours for the Mach 17.6 cylinder case: 18a full energy with DC1, 18b reduced
energy with DC1, 18c full energy with DC2, 18d reduced energy with DC2.

Table 1: Shock stand-off distance value predicted by the full and reduced energy formulations using the DC2
operator. Comparison with the predictions by [72]

Predictions Stand-off [m] Relative Error [%]

Full energy 0.49 9%
Reduced energy 0.24 46%
A. Mazaheri and B. Kleb (2007)[72] 0.45

Table 2: Tunnel flow conditions [74].

M ReD u [m/s] p [Pa] T [K] ρ [kg/m3]
6 1.24 · 106 946.4 718.1 62.8 3.961 · 10−2

ity of the capsule’s geometry, numerical, experimental, and flight data make the Viking Lander
Capsule an excellent three-dimensional, hypersonic benchmark case. The simulated model is
shown in Figure 19b. The model dimensions are 3.48% of the capsule real dimensions illustrated
in Figure 19a, which is similar to the wind-tunnel experiment [84]. The model includes the sting
to match the experimental set-up [84]. The free stream flow is characterized by a Mach number
M = 6 and a Reynolds number based on the scaled diameter of the capsule D = 1.22 · 10−1 [m],
ReD = 1.24 × 106. The tunnel undisturbed flow conditions are computed in [74] and shown in Ta-
ble 2. The sketch of the computational domain is shown in Figure 20. At the inlet the free stream
conditions shown in Table 2 are prescribed. The no slip boundary conditions and a constant tem-
perature Tw = 300 [K] are prescribed at the capsule and sting surfaces. At the outlet and laterals,
zero traction and zero heat transfer boundary conditions are imposed. The fluid is assumed as a
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(a) Geometry [83]. (b) Computational model.

Figure 19: The figure on the left 19a shows the real geometric dimensions of the Viking lander capsule [83].
The figure on the right 19b shows the simulation model consisting of the capsule and the sting.

Figure 20: Computational domain for the Viking Lander Capsule case.

perfect gas with the specific heat ratio γ = 1.4, the gas constant R = 287 [J/(kg K)] and Prandtl
number Pr = 0.72. The temperature dependent viscosity is determined by the Sutherland law:

µ = µr
Tr + S
T∞ + S

(
T∞
Tr

)1.5

(56)
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(a) Mesh.

(b) Zoom on the boundary layer.

Figure 21: The computational mesh used for the Viking Lander Capsule case is illustrated in 21a, while the
boundary layer resolution can be appreciated in the mesh detail shown in 21b.

where µr = 1.716 · 10−5 [Pa · s], Tr = 273.15 [K] and S = 110.4 [K]. The thermal conductivity is
computed from the Prandtl number definition as k = µcp/Pr.

The model’s surfaces are discretized with linear triangular elements, while linear tetrahedron
and prism elements are used to discretize the volume and the boundary layer respectively. The
mesh used in the simulation involves approximately 8 millions volume elements. In order to assess
the resolution of the present mesh with respect to the one used in [74], it is useful to define the wall
Reynolds number as:

Rew =
ρa∆η

µ
(57)

where ∆η is the height of the first element at the wall and the density ρ, the speed of sound a,
and the viscosity µ are computed at the wall. The boundary layer is resolved using 10 normal
elements and ∆η = 10−4 [m], giving a maximum wall Reynolds number of around 700, which is
relatively high if compared with the wall grid spacing adopted by [74], where they kept the values
Rew = 1, 0.5 for the coarse and fine meshes respectively. The mesh used for the present simulations
is illustrated in Figure 21.

The simulations are carried out using both reduced and full energy formulations and using
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(a) Full energy formulation. (b) Reduced energy formulation.

(c) LAURA simulation [74].

Figure 22: Mach contours and wall pressure coefficient distribution for the case α = 20◦. The full energy
predictions are shown in 22a, the reduced energy predictions are in 22b, while results predicted by LAURA
code [74] are shown in 22c.

DC2 operator. The simulations are carried out for two different angles of attack, in particular α =

10◦, 20◦. For the case α = 20◦, in Figure 22, the Mach contours and the wall pressure coefficient
predicted by the full (Figure 22a) and reduced (Figure 22b) energy formulations are compared with
the ones computed using NASA LAURA code [74] (see Figure 22c). The flow topology, such as
the shock stand-off distance and the bow shock shape, simulated by the full energy formulation
qualitatively agrees with the LAURA predictions, while the reduced energy predicts a smaller
shock stand-off distance. The maximum value of the pressure coefficient predicted by the reduced
energy formulation (Cp = 1.86) agrees very well with LAURA predictions (Cp = 1.85), while it
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Table 3: Forces coefficients values for the two angles of attack simulated using the reduced and full energy
formulations. Experiment and numerical (LAURA) data are extracted from [74].

α CA CN CL CD L/D

10◦

Experiment 1.5628 0.02357 −0.24828 1.54341 −0.16063
LAURA 1.53969 0.02197 −0.2458 1.52348 −0.16132

Full energy
1.51404 0.02139 −0.24185 1.49475 −0.1618
(3.12%) (9.26%) (2.59%) (3.15%) (0.73%)

Reduced energy
1.56499 0.02835 −0.24384 1.54614 −0.15771
(0.14%) (20.31%) (1.79%) (0.18%) (1.82%)

20◦

Experiment 1.44095 0.05085 −0.44276 1.36593 −0.32438
LAURA 1.42042 0.0482 −0.44049 1.35059 −0.32566

Full energy
1.39502 0.04928 −0.43081 1.32775 −0.32447
(3.19%) (3.09%) (2.7%) (2.8%) (0.03%)

Reduced energy
1.40717 0.06559 −0.41965 1.34474 −0.31207
(2.34%) (28.97%) (5.22%) (1.55%) (3.8%)

is slightly underestimated by the full energy formulation (Cp = 1.8). The aerodynamic forces are
computed by integrating the Cauchy stress tensor acting on the wall surface, σσσ · n, all over the
capsule’s surface and neglecting the sting contribution. Knowing that the axial direction coincides
with the x-axis and the normal direction coincides with z-axis, the axial and normal forces are
defined as FA = Fx and FN = Fz respectively. The axial CA, normal CN , lift CL and drag CD

coefficients are calculated as below:

CA =
FA

q∞S re f
(58)

CN =
FN

q∞S re f
(59)

CL = −CA sinα + CN cosα (60)

CD = CA cosα + CN sinα (61)

where q∞ = 1/2ρ|u|2 is the free stream dynamic pressure and S re f = πD2/4 is the reference area.
The values of the aerodynamic coefficients predicted by both reduced and full energy formulations
are shown in Figure 23 and tabulated in Table 3 together with numerical and experiment data [74].

In Table 3 the relative error is computed with respect to the experiment values. Table 3 and
Figure 23 show that both formulations predict aerodynamic forces with good accuracy even though
the boundary layer is poorly resolved if compared with the one used in [74]. However, it is worth
to notice that the relative errors, with which the forces coefficients are predicted by the full energy
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formulation, in percentage remain almost constant for the two angles of attack α, simulated. This
error consistency does not hold for the predictions of the reduced energy formulation, where the
relative error for the case α = 20◦ is greater than the one for the case α = 10◦.

4. Conclusion

In this work two SUPG finite element formulations with DC for the solution of compress-
ible flows are presented. In particular, the full-energy and reduced-energy formulations are tested
with the pressure-based primitive variable set in the context of hypersonic flows and their relative
accuracy is assessed for this flow regime. Note that the reduced-energy formulation is more conve-
nient for fluid-structure interaction modeling involving thermally-coupled solids, because only the
heat flux appears in the energy-equation slot of the traction vector. Likewise, the pressure-based
primitive variables (which is not the most common for hypersonic regime) are more convenient
for setting boundary conditions and implementing FSI coupling. Moreover, pressure-primitive
variables lead to a natural extension of the weakly enforced essential boundary condition and
sliding-interface formulations, originally defined for incompressible flows, to the compressible
flow regime (see e.g. [44, 54]). The robustness, stability, and accuracy of the two formulations are
shown by solving several benchmark cases for a wide range of Mach numbers and cases complex-
ity, such as the 1D Sod’s problem, the 2D Mach 6 flat plate, the 2D Mach 10 oblique shock case, the
2D Mach 17.6 cylinder case, and the 3D Viking Lander Capsule. The numerical results presented
in Section 3 show that the proposed formulation behaves very well in the context of high-speed
flows maintaining good accuracy and stability in both steady and unsteady cases. While stable
in the presence of strong shocks, the method is not over-diffusive because the shock-capturing
viscosity is residual based and vanishes quickly in the part of the domain where the solution is
smooth.

The present paper clearly demonstrates that the full-energy formulation is superior in accuracy
relative to the reduced-energy formulation for hypersonic flows. There appears to be a bias error
associated with the reduced energy formulation near shock waves, resulting in weaker shocks
than would otherwise occur. In addition, the DC technique that makes use of a single viscosity
parameter based on the weighted norms of the residual and solution gradient, and capped at the
maximum allowable value corresponding to upwind viscosity, is able to overcome the well-known
carbuncle instability without smearing the shock.

The successful performance of the proposed formulation for high-speed flows sets the stage for
the deployment of the techniques developed to more advanced applications such as fluid–structure
interaction modeling of hypersonic aircraft. Moreover, the framework will be augmented with
weak imposition of the Dirichlet boundary conditions to relax the requirement on a boundary layer
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(a) Axial force coefficient CA. (b) Normal force coefficient CN .

(c) Lift coefficient CL. (d) Drag coefficient CD.

(e) Lift to Drag ratio L/D.

Figure 23: Forces coefficients as function of the free stream angle of attack α. The axial force 23a, normal
force 23b, lift 23c and drag 23d coefficients and the lift to drag ratio 23e predicted by the full and reduced
energy formulations of the present simulations are compared to the numerical results by [74] and to the
experiment data by [84].
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resolution. It should also be noted that we have not considered the reacting flows in the present
work and will augment the formulation with the chemistry model in the future work.
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Appendix A.

The matrices used for Navier–Stokes equations of compressible flows with full energy equation
are given by

Ã0 =



ρβT 0 0 0 −ραp

ρβT u1 ρ 0 0 −ραpu1

ρβT u2 0 ρ 0 −ραpu2

ρβT u3 0 0 ρ −ραpu3

ρβT etot ρu1 ρu2 ρu3 ρ
(
−αpetot + cv

)


, (A.1)

where βT = 1/p, αp = 1/T .
Its inverse Ã−1

0 = Y,Ũ is given by

Ã−1
0 =



−αpetot + αp‖u‖2 + cv

ρβT cv
−
αpu1

ρβT cv
−
αpu2

ρβT cv
−
αpu3

ρβT cv

αp

ρβT cv

−
u1

ρ

1
ρ

0 0 0

−
u2

ρ
0

1
ρ

0 0

−
u3

ρ
0 0

1
ρ

0

‖u‖2 − etot

ρcv
−

u1

ρcv
−

u2

ρcv
−

u3

ρcv

1
ρcv



. (A.2)
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We then give the details of the Euler Jacobian matrices by

Ãadv\p
1 =



ρβT u1 ρ 0 0 −ραpu1

ρβT u2
1 2ρu1 0 0 −ραpu2

1

ρβT u1u2 ρu2 ρu1 0 −ραpu1u2

ρβT u1u3 ρu3 0 ρu1 −ραpu1u3

(ρβT etot + 1) u1 ρ
(
etot + u2

1

)
+ p ρu1u2 ρu1u3 ρ

(
−αpetot + cv

)
u1


, (A.3)

Ãadv\p
2 =



ρβT u2 0 ρ 0 −ραpu2

ρβT u1u2 ρu2 ρu1 0 −ραpu1u2

ρβT u2
2 0 2ρu2 0 −ραpu2

2

ρβT u2u3 0 ρu3 ρu2 −ραpu2u3

(ρβT etot + 1) u2 ρu1u2 ρ
(
etot + u2

2

)
+ p ρu2u3 ρ

(
−αpetot + cv

)
u2


, (A.4)

Ãadv\p
3 =



ρβT u3 0 0 ρ −ραpu3

ρβT u1u3 ρu3 0 ρu1 −ραpu1u3

ρβT u2u3 0 ρu3 ρu2 −ραpu2u3

ρβT u2
3 0 0 2ρu3 −ραpu2

3

(ρβT etot + 1) u3 ρu1u3 ρu2u3 ρ
(
etot + u2

3

)
+ p ρ

(
−αpetot + cv

)
u3


, (A.5)

Ãp
1 =



0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, (A.6)

Ãp
2 =



0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, (A.7)
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Ãp
3 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0


. (A.8)

Note that Ãi = Ãadv\p
i + Ãp

i .
Finally, we give the diffusive matrices by

K̃11 =



0 0 0 0 0
0 2µ + λ 0 0 0
0 0 µ 0 0
0 0 0 µ 0
0 (2µ + λ) u1 µu2 µu3 κ


, (A.9)

K̃12 =



0 0 0 0 0
0 0 λ 0 0
0 µ 0 0 0
0 0 0 0 0
0 µu2 λu1 0 0


, (A.10)

K̃13 =



0 0 0 0 0
0 0 0 λ 0
0 0 0 0 0
0 µ 0 0 0
0 µu3 0 λu1 0


, (A.11)

K̃21 =



0 0 0 0 0
0 0 µ 0 0
0 λ 0 0 0
0 0 0 0 0
0 λu2 µu1 0 0


, (A.12)
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K̃22 =



0 0 0 0 0
0 µ 0 0 0
0 0 2µ + λ 0 0
0 0 0 µ 0
0 µu1 (2µ + λ) u2 µu3 κ


, (A.13)

K̃23 =



0 0 0 0 0
0 0 0 0 0
0 0 0 λ 0
0 0 µ 0 0
0 0 µu3 λu2 0


, (A.14)

K̃31 =



0 0 0 0 0
0 0 0 µ 0
0 0 0 0 0
0 λ 0 0 0
0 λu3 0 µu1 0


, (A.15)

K̃32 =



0 0 0 0 0
0 0 0 0 0
0 0 0 µ 0
0 0 λ 0 0
0 0 λu3 µu2 0


, (A.16)

K̃33 =



0 0 0 0 0
0 µ 0 0 0
0 0 µ 0 0
0 0 0 2µ + λ 0
0 µu1 µu2 (2µ + λ) u3 κ


. (A.17)

For the Navier–Stokes equations with reduced energy formulation, the matrices corresponding
to pressure-primitive variables are as follows:
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The matrix A0 = U,Y is given by

A0 =



ρβT 0 0 0 −ραp

ρβT u1 ρ 0 0 −ραpu1

ρβT u2 0 ρ 0 −ραpu2

ρβT u3 0 0 ρ −ραpu3

ρβT e 0 0 0 0


, (A.18)

It’s inverse A−1
0 = Y,U is given by

A−1
0 =



0 0 0 0
αp

ρβT cv

−
u1

ρ

1
ρ

0 0 0

−
u2

ρ
0

1
ρ

0 0

−
u3

ρ
0 0

1
ρ

0

−
T
ρ

0 0 0
1
ρcv



. (A.19)

The Euler–Jacobian matrices are given by

Aadv\p
1 =



ρβT u1 ρ 0 0 −ραpu1

ρβT u2
1 2ρu1 0 0 −ραpu2

1

ρβT u1u2 ρu2 ρu1 0 −ραpu1u2

ρβT u1u3 ρu3 0 ρu1 −ραpu1u3

ρβT eu1 ρe 0 0 0


, (A.20)

Aadv\p
2 =



ρβT u2 0 ρ 0 −ραpu2

ρβT u1u2 ρu2 ρu1 0 −ραpu1u2

ρβT u2
2 0 2ρu2 0 −ραpu2

2

ρβT u2u3 0 ρu3 ρu2 −ραpu2u3

ρβT eu2 0 ρe 0 0


, (A.21)
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Aadv\p
3 =



ρβT u3 0 0 ρ −ραpu3

ρβT u1u3 ρu3 0 ρu1 −ραpu1u3

ρβT u2u3 0 ρu3 ρu2 −ραpu2u3

ρβT u2
3 0 0 2ρu3 −ραpu2

3

ρβT eu3 0 0 ρe 0


, (A.22)

Ap
1 =



0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, (A.23)

Ap
2 =



0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, (A.24)

Ap
3 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0


. (A.25)

Asp
1 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 p − τ11 −τ12 −τ13 0


. (A.26)
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Asp
2 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −τ21 p − τ22 −τ23 0


. (A.27)

Asp
3 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −τ31 −τ32 p − τ33 0


. (A.28)

The diffusivity matrices are given by

K11 =



0 0 0 0 0
0 2µ + λ 0 0 0
0 0 µ 0 0
0 0 0 µ 0
0 0 0 0 κ


, (A.29)

K12 =



0 0 0 0 0
0 0 λ 0 0
0 µ 0 0 0
0 0 0 0 0
0 0 0 0 0


, (A.30)

K13 =



0 0 0 0 0
0 0 0 λ 0
0 0 0 0 0
0 µ 0 0 0
0 0 0 0 0


, (A.31)
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K21 =



0 0 0 0 0
0 0 µ 0 0
0 λ 0 0 0
0 0 0 0 0
0 0 0 0 0


, (A.32)

K22 =



0 0 0 0 0
0 µ 0 0 0
0 0 2µ + λ 0 0
0 0 0 µ 0
0 0 0 0 κ


, (A.33)

K23 =



0 0 0 0 0
0 0 0 0 0
0 0 0 λ 0
0 0 µ 0 0
0 0 0 0 0


, (A.34)

K31 =



0 0 0 0 0
0 0 0 µ 0
0 0 0 0 0
0 λ 0 0 0
0 0 0 0 0


, (A.35)

K32 =



0 0 0 0 0
0 0 0 0 0
0 0 0 µ 0
0 0 λ 0 0
0 0 0 0 0


, (A.36)
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K33 =



0 0 0 0 0
0 µ 0 0 0
0 0 µ 0 0
0 0 0 2µ + λ 0
0 0 0 0 κ


. (A.37)

The matrices for the conservation variables may be obtained from the corresponding matrices
for the pressure-primitive variables using the following transformations: Âi = AiA−1

0 , Âadv\p
i =

Aadv\p
i A−1

0 , Âp
i = Ap

i A−1
0 , Âsp

i = Asp
i A−1

0 , and K̂i j = Ki jA−1
0
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