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Abstract We propose a framework that combines vari-
ational immersed-boundary and arbitrary Lagrangian–
Eulerian (ALE) methods for fluid–structure interaction
(FSI) simulation of a bioprosthetic heart valve implanted in
an artery that is allowed to deform in the model. We find that
the variational immersed-boundary method for FSI remains
robust and effective for heart valve analysis when the back-
ground fluid mesh undergoes deformations corresponding
to the expansion and contraction of the elastic artery. Fur-
thermore, the computations presented in this work show that
the arterial wall deformation contributes significantly to the
realism of the simulation results, leading to flow rates and
valve motions that more closely resemble those observed in
practice.

Keywords Fluid–structure interaction · Bioprosthetic heart
valve · Variational immersed-boundary method · Arbitrary
Lagrangian–Eulerian formulation · Isogeometric analysis ·
Arterial wall deformation

1 Introduction

Heart valves are passive structures that ensure the unidirec-
tional blood flow through the heart by opening and clos-
ing in response to hemodynamic forcing. Hundreds of thou-
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sands of diseased valves are replaced by prosthetics annu-
ally [1, 2]. Bioprosthetic heart valves (BHV) are prosthetics
composed of thin flexible leaflets that are fabricated from
biological materials and mimic the structure of native heart
valves to avoid pathological hemodynamics [2]. The prin-
cipal drawback of this style of prosthetic is its durability,
which is limited to 10–15 years [3]. Accurate computational
analysis of these devices could provide insights into the me-
chanical processes that both contribute to and follow from
their deterioration, streamlining the design process of new
prosthetics.

The biomechanical significance of arterial elasticity was
first clearly described by Hales [4] in 1733, after performing
a series of pioneering experiments on animals. Hales found
that arteries expand elastically to store the systolic output of
the heart, then gradually release this blood during diastole.
This is now known as the Windkessel effect.1 Frank [5–7]
developed the first mathematical model of the Windkessel
effect in 1899. Frank’s model may be intuitively understood
through the electronic–hydraulic analogy [8], which substi-
tutes electrical current for volumetric flow and voltage for
pressure. In this analogy, Frank’s model—the two-element
Windkessel model—consists of a capacitor and resistor in
parallel, downstream of the aortic valve, which acts as a pul-
satile current source.

The capacitor models the elastic arteries, which accu-
mulate blood to develop pressure, while the resistor mod-
els viscous head loss within the circulatory system by anal-
ogy to Ohm’s Law. This model allows prediction of the
time-dependent aortic pressure based on the history of flow
rate through the aortic valve. Many refinements to Frank’s
model have been proposed since his initial contribution, in-

1 Windkessel translates from German to “air chamber”, and likely
refers to Hales’ original analogy between arterial compliance and the
air-filled cavities used to smooth hose output from 18th-century fire
engines.
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cluding the three- [9], and four- [10] element Windkessel
models. Such models are referred to as “lumped-parameter
models”. Lumped-parameter models may be coupled with
detailed computational fluid dynamics (CFD) simulations
of specific arterial sections of interest. The voltage of the
lumped-parameter model acts as a pressure boundary condi-
tion on the outflow of the CFD domain, and the volumetric
flow from the CFD domain acts as a current source for the
lumped-parameter model [11]. However, to fully account for
the Windkessel effect of arterial elasticity, fluid–structure in-
teraction (FSI) must be incorporated into the detailed model
of the section of interest. In this paper, we demonstrate that
the elasticity of the section of aorta immediately surround-
ing an implanted BHV can have profound effects on the dy-
namics of both the valve itself and the surrounding blood
flow.

For the reasons discussed in our earlier work [12], we
simulate the BHV leaflets using a non-boundary-fitted (vari-
ational immersed-boundary) method, in which the structural
discretization is free to move independently through a back-
ground fluid mesh. Detailed reviews of non-boundary-fitted
methods for FSI can be found in Sotiropoulos and Yang [13],
Mittal and Iaccarino [14], and Peskin [15]. These meth-
ods are particularly attractive for applications with complex
moving boundaries, such as heart valve leaflets [16–21].
However, they have the inherent disadvantage of uncon-
trolled mesh quality near the fluid–structure interface, and
may be unable to resolve important boundary layer features
that may globally affect the flow.

More accurate results can be obtained using boundary-
fitted approaches by building a fluid mesh that is tailored to
the structure and deforms as the structure moves. In such
computations, the fluid subproblem may be posed using an
arbitrary Lagrangian–Eulerian (ALE) formulation [22–24],
or a space–time formulation [25–27], both of which explic-
itly account for the motion of the fluid mechanics domain
and mesh. For the parts of an arterial FSI computation with
no contact between solid surfaces, the problem of mesh de-
formation may be effectively solved using a simple fictitious
linear elasticity problem [28–32]. This makes vascular FSI
an ideal application for boundary-fitted approaches.

In the analysis of a BHV implanted in a deforming
artery, we are faced with the confluence of two problems
that suggest different computational methods. We there-
fore elect to use a hybrid method that leverages the ad-
vantages of both ALE and immersed-boundary techniques
for FSI. We discretize the valve leaflets separately, and
immerse them into a deforming boundary-fitted mesh of
the artery volume. The proposed technique falls under the
umbrella of the recently proposed Fluid–Solid Interface-
Tracking/Interface-Capturing Technique (FSITICT) [33], a
method that targets FSI problems in which interfaces that are
possible to track are tracked, and those too difficult to track

are captured. The FSITICT was introduced as an FSI ver-
sion of the Mixed Interface-Tracking/Interface-Capturing
Technique (MITICT) [34]. The MITICT was successfully
tested in 2D computations with solid circles and free sur-
faces [35,36] and in 3D computation of ship hydrodynamics
[37]. Recently Wick [38, 39] made use of the FSITICT ap-
proach, coupling a boundary-fitted and immersed-boundary
discretizations in a single computation, to compute several
2D FSI benchmark problems.

Our immersed-boundary approach for FSI was first de-
veloped in Kamensky et al. [12] using the variational frame-
work of augmented Lagrangian methods. The augmented
Lagrangian approach for FSI was proposed in Bazilevs et
al. [40] to handle boundary-fitted computations with non-
matching fluid–structure interface discretizations. We found
in Kamensky et al. [12] that this augmented Lagrangian
framework can be extended to handle non-boundary-fitted
CFD and FSI problems, and its efficacy was demonstrated
using several computations including the coupling of a BHV
and surrounding blood flow at physiological pressure levels.

In this work, we take the augmented Lagrangian frame-
work for FSI as the starting point of our ALE/immersed-
boundary hybrid methodology. A single computation com-
bines a boundary-fitted, deforming-mesh treatment of some
fluid–structure interfaces with a non-boundary-fitted treat-
ment of others. This approach enables us to simulate the FSI
of a BHV implanted in an elastic artery through the entire
cardiac cycle, at full scale, under realistic physiological con-
ditions.

The paper is organized as follows. In Section 2 we
present the details of our hybrid ALE/immersed-boundary
method developed for the FSI simulation of a heart valve im-
planted in a deformable artery. In Section 3 we provide the
simulation details and report the results of the FSI compu-
tations of an actual BHV design. In particular, we compare
the results from the rigid- and elastic-wall simulations and
find that wall elasticity plays an important role in the overall
system response. In Section 4 we draw conclusions.

2 FSI modeling using a hybrid
ALE/immersed-boundary approach

In this section, we present the computational framework for
FSI analysis of a bioprosthetic heart valve implanted in a
deformable artery. The blood flow in a deforming artery is
governed by the Navier–Stokes equations of incompressible
flow posed on a moving domain. The domain motion is han-
dled using the ALE formulation, which is a widely used
approach for vascular blood flow applications [41–46]. The
coupling of the BHV leaflet dynamics to the artery is han-
dled through the recently proposed variational immersed-
boundary method [12], in which the structural discretization
is free to move independently through a background fluid
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mesh. The hybrid ALE/immersed-boundary method will be
presented and applied to the simulation of an aortic BHV
coupled to an elastic arterial wall and blood flow over car-
diac cycles.

2.1 Augmented Lagrangian framework for FSI

Let (Ω1)t and (Ω2)t ∈ R
d, d = {2, 3} represent the time-

dependent domains of the fluid and structural mechanics
problems, respectively, at time t, with (Γ1)t and (Γ2)t repre-
senting their corresponding boundaries. Let (ΓI)t ∈ R

d rep-
resent the interface between the fluid and structural domains.
Let u1 and p denote the fluid velocity and pressure, respec-
tively. Let y denote the displacement of structural material
points from their positions in a reference configuration, and
define the structure velocity u2 as the material time deriva-
tive of y. We introduce an additional unknown function λλλ
defined on (ΓI)t, which takes on the interpretation of a La-
grange multiplier. Let Su, Sp, Sd, and S` be the function
spaces for the fluid velocity, fluid pressure, structural ve-
locity, and Lagrange multiplier solutions, respectively, and
Vu, Vp, Vd, and V` be the corresponding weighting func-
tion spaces. The variational problem of the augmented La-
grangian formulation is: find u1 ∈ Su, p ∈ Sp, y ∈ Sd, and
λλλ ∈ S` such that for all test functions w1 ∈ Vu, q ∈ Vp,
w2 ∈ Vd, and δλλλ ∈ V`

B1({w1, q}, {u1, p}; û) − F1({w1, q})

+

∫
(ΓI)t

w1 · λλλ dΓ +

∫
(ΓI)t

w1 · β(u1 − u2) dΓ = 0, (1)

B2(w2, y) − F2(w2)

−

∫
(ΓI)t

w2 · λλλ dΓ −
∫

(ΓI)t

w2 · β(u1 − u2) dΓ = 0, (2)

∫
(ΓI)t

δλλλ · (u1 − u2) dΓ = 0. (3)

In the above, the subscripts 1 and 2 denote the fluid and
structural mechanics quantities, and β is a penalty parame-
ter, which we leave unspecified for the moment. B1, B2, F1,
and F2 are the semi-linear forms and linear functionals cor-
responding to the fluid and structural mechanics problems,
respectively, and are given by

B1({w, q}, {u, p}; û) =

∫
(Ω1)t

w · ρ1

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u
)

dΩ

+

∫
(Ω1)t

εεε(w) : σσσ1 dΩ +

∫
(Ω1)t

q∇∇∇ · u dΩ,

(4)

F1({w, q}) =

∫
(Ω1)t

w · ρ1f1 dΩ +

∫
(Γ1h)t

w · h1 dΓ, (5)

B2(w, y) =

∫
(Ω2)t

w · ρ2
∂2y
∂t2

∣∣∣∣∣∣
X

dΩ +

∫
(Ω2)t

εεε(w) : σσσ2 dΩ, (6)

F2(w) =

∫
(Ω2)t

w · ρ2f2 dΩ +

∫
(Γ2h)t

w · h2 dΓ, (7)

where ρ1 and ρ2 are the densities,σσσ1 andσσσ2 are the Cauchy
stresses, f1 and f2 are the applied body forces, h1 and h2 are
the applied surface tractions, (Γ1h)t and (Γ2h)t are the bound-
aries where the surface tractions are specified, εεε(·) is the
symmetric gradient operator given by εεε(w) = 1

2 (∇∇∇w+∇∇∇wT ),

û is the velocity of the fluid domain (Ω1)t,
∂(·)
∂t

∣∣∣∣∣
x̂

is the time

derivative taken with respect to the fixed spatial coordinate x̂
in the referential domain (which does not follow the motion

of the fluid itself), and
∂(·)
∂t

∣∣∣∣∣
X

is the time derivative hold-

ing the material coordinates X fixed. The gradient∇∇∇ is taken
with respect to the spatial coordinate x of the current config-
uration. We assume that the fluid is Newtonian with dynamic
viscosity µ and Cauchy stress σσσ1 = −pI + 2µεεε(u1).

Bazilevs et al. [40] demonstrate how the Lagrange mul-
tiplier, λλλ, may be formally eliminated by substituting an ex-
pression for the fluid–structure interface traction in terms of
the other unknowns. This leads to the following variational
formulation for the coupled problem: find u1 ∈ Su, p ∈ Sp,
and y ∈ Sd such that for all w1 ∈ Vu, q ∈ Vp, and w2 ∈ Vd

B1({w1, q}, {u1, p}; û) − F1({w1, q}) + B2(w2, y) − F2(w2)

−

∫
(ΓI)t

(w1 − w2) ·σσσ1(u1, p) n1 dΓ

−

∫
(ΓI)t

δσσσ1(w1, q) n1 · (u1 − u2) dΓ

+

∫
(ΓI)t

(w1 − w2) · β(u1 − u2) dΓ = 0. (8)

In the above, δσσσ1(w, q)n1 = 2µεεε(w)n1 + qn1. Equation (8)
may be interpreted as an extension of Nitsche’s method [47],
which is a consistent, stabilized method for imposing con-
straints on the boundaries by augmenting the governing
equations with additional constraint equations.

This augmented Lagrangian approach for FSI was origi-
nally proposed by Bazilevs et al. [40] and further studied in
Hsu and Bazilevs [48] to handle boundary-fitted computa-
tions with non-matching fluid–structure interface discretiza-
tions. In Kamensky et al. [12], we found that this framework
can be extended to handle non-boundary-fitted FSI prob-
lems and the accuracy and efficiency of the methodology
was examined through several computations. In this work,
we take the augmented Lagrangian framework for FSI as
the starting point of our hybrid ALE/immersed-boundary
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method. A single computation can combine a boundary-
fitted, deforming-mesh treatment of some fluid–structure in-
terfaces with a non-boundary-fitted treatment of others.

Remark 1 In the above developments we assumed that the
trial and test function spaces of the fluid and structural sub-
problems are independent of each other. This approach pro-
vides one with the framework that is capable of handling
non-matching fluid and structural interface discretizations.
If the fluid and structural velocities and the test functions
are explicitly assumed to be continuous (i.e. u1 = u2 and
w1 = w2) at the interface, the FSI formulation given by
Eq. (8) reduces to: find u1 ∈ Su, p ∈ Sp, and y ∈ Sd such
that for all w1 ∈ Vu, q1 ∈ Vp, and w2 ∈ Vd

B1({w1, q}, {u1, p}; û)−F1({w1, q})+ B2(w2, y)−F2(w2) = 0.

(9)

This form of the FSI problem is suitable for matching fluid–
structure interface meshes. Although somewhat limiting,
matching interface discretizations were successfully applied
to cardiovascular FSI in many earlier works [32, 44, 49–54].

2.2 Semi-discrete fluid formulation with weak boundary
conditions

The fluid subproblem may be obtained by setting w2 = 0 in
Eq. (8). This approach gives a formulation for weak imposi-
tion of Dirichlet boundary conditions for the fluid problem,
which was first proposed by Bazilevs and Hughes [55] and
further refined in Bazilevs et al. [56, 57] to improve the per-
formance of the fluid mechanics formulation in the presence
of underresolved boundary layers. This weak imposition of
the Dirichlet boundary conditions is also the starting point of
the variational immersed-boundary approach [12]. In a non-
boundary-fitted method, the elements of the fluid discretiza-
tion may extend into the interior of an immersed object. Im-
posing Dirichlet boundary conditions is no longer straight-
forward given that the basis functions are non-interpolating
at the object boundaries. In order to enforce essential bound-
ary conditions, one can either modify the basis functions so
they vanish at the interface [58] or augment the governing
equations with additional constraint equations. In this work
we choose the latter approach.

Consider a collection of disjoint elements {Ωe}, ∪eΩ
e ⊂

Rd, with closures covering the fluid domain: Ω1 ⊂ ∪eΩe.
Note that Ωe is not necessarily a subset of Ω1. {Ωe}, Ω1, and
ΓI remain time-dependent, but we drop the subscript t for
notational convenience. The mesh defined by {Ωe} deforms
with a velocity field ûh and the boundary ΓI moves with ve-
locity u2. The semi-discrete fluid problem is given by: find
uh

1 ∈ S
h
u and ph ∈ Sh

p such that for all wh
1 ∈ V

h
u and qh ∈ Vh

p

BVMS
1

(
{wh

1, q
h}, {uh

1, ph}; ûh
)
− FVMS

1

(
{wh

1, q
h}
)

−

∫
ΓI

wh
1 ·

(
−phn1 + 2µεεε(uh

1)n1

)
dΓ

−

∫
ΓI

(
2µεεε(wh

1)n1 + qhn1

)
·
(
uh

1 − u2

)
dΓ

−

∫
(ΓI)−

wh
1 · ρ1

((
uh

1 − ûh
)
· n1

) (
uh

1 − u2

)
dΓ

+

∫
ΓI

τB
TAN

(
wh

1 −
(
wh

1 · n1

)
n1

)
·

((
uh

1 − u2

)
−

((
uh

1 − u2

)
· n1

)
n1

)
dΓ

+

∫
ΓI

τB
NOR

(
wh

1 · n1

) ((
uh

1 − u2

)
· n1

)
dΓ = 0, (10)

where (ΓI)− is the “inflow” part of ΓI, on which (uh
1 − ûh) ·

n1 < 0, the constants τB
TAN and τB

NOR correspond to a split-
ting of the penalty term into the tangential and normal direc-
tions, respectively, and ΓI may cut through element interiors.
The discrete trial function spaces Sh

u for the velocity and Sh
p

for the pressure, as well as the corresponding test function
spacesVh

u andVh
p are assumed to be equal order, and, in this

work, are comprised of isogeometric [59,60] functions. The
forms BVMS

1 and FVMS
1 are the variational multiscale (VMS)

discretizations of B1 and F1, respectively, given by

BVMS
1 ({w, q}, {u, p}; û)

=

∫
(Ω1)t

w · ρ1

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u
)

dΩ

+

∫
(Ω1)t

εεε(w) : σσσ1 dΩ +

∫
(Ω1)t

q∇∇∇ · u dΩ

+
∑

e

∫
Ωe∩Ω1

(
(u − û) · ∇∇∇w +

∇∇∇q
ρ1

)
· u′ dΩ

+
∑

e

∫
Ωe∩Ω1

∇∇∇ · w ρ1 p′ dΩ

−
∑

e

∫
Ωe∩Ω1

w · (u′ · ∇∇∇u) dΩ

−
∑

e

∫
Ωe∩Ω1

∇∇∇w
ρ1

:
(
u′ ⊗ u′

)
dΩ

+
∑

e

∫
Ωe∩Ω1

(
u′ · ∇∇∇w

)
τ ·

(
u′ · ∇∇∇u

)
dΩ, (11)

and

FVMS
1 ({w, q}) = F1({w, q}), (12)

where

u′ = τM

(
ρ1

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u − f
)
−∇∇∇ ·σσσ1

)
, (13)
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p′ = τC∇∇∇ · u. (14)

Equations (11)–(14) correspond to the ALE–VMS formula-
tion of the Navier–Stokes equations of incompressible flows
[61–63]. The additional terms may be interpreted both as
stabilization and as a turbulence model [64–72]. The stabi-
lization parameters are

τM =

(
s(x, t)

( Ct

∆t2 + (u − û) ·G(u − û) + CIν
2G : G

))− 1
2

,

(15)

τC = (τM tr G)−1 , (16)

τ =
(
u′ ·Gu′

)− 1
2 , (17)

where ∆t is the time-step size, ν = µ/ρ1 is the kinematic
viscosity, CI is a positive constant derived from an appropri-
ate element-wise inverse estimate [73–76], G is the element
metric tensor defined as

G =
∂ξξξ

∂x

T ∂ξξξ

∂x
, (18)

where ∂ξξξ/∂x is the inverse Jacobian of the element map-
ping between the parametric and physical domain, tr G is
the trace of G, and the parameter Ct is typically taken equal
to 4 [66, 70, 77]. The scalar function s(x, t) ≥ 1 in Eq. (15)
is a dimensionless scaling factor introduced in Kamensky
et al. [12] to improve local mass conservation near concen-
trated loads. Locally increasing s near thin immersed struc-
tures can greatly improve the quality of approximate solu-
tions when the concentrated surface force due to the struc-
ture induces a significant pressure discontinuity. In most of
the domain, we keep s = 1, as in the usual VMS formu-
lation, but, in an O(h) neighborhood around thin immersed
structures, we increase it to equal the dimensionless constant
sshell ≥ 1.

Remark 2 On the fluid mechanics domain interior, the mesh
velocity, ûh, may be obtained by solving a linear elasto-
statics problem subject to the displacement boundary condi-
tions coming from the motion of the boundary-fitted fluid–
solid interface [28–32]. This method is effective for rela-
tively mild deformations, such as those of the artery. How-
ever, for scenarios that involve large translational and/or ro-
tational structural motions, such as heart valve dynamics, the
boundary-fitted fluid mesh can become severely distorted.
Non-boundary-fitted approaches could be an alternative for
these type of problem.

Remark 3 The last term of Eq. (11) provides additional
residual-based stabilization and originates from Taylor et
al. [78]. The term is consistent and dissipative, and has sim-
ilarities with discontinuity-capturing methods such as the
DCDD [68, 79, 80] and YZβ [81–83] techniques.

The terms from the second to the last line of Eq. (10)
are responsible for the weak enforcement of kinematic and
traction constraints at the non-matching or immersed bound-
aries. It was shown in earlier works [55–57, 84, 85] that im-
posing the Dirichlet boundary conditions weakly in fluid dy-
namics allows the flow to slip on the solid surface when the
wall-normal mesh size is relatively large. This effect mim-
ics the thin boundary layer that would otherwise need to
be resolved with spatial refinement, allowing more accu-
rate solutions on coarse meshes. In the immersed-boundary
method, the fluid mesh is arbitrarily cut by the structural
boundary, leaving a boundary layer discretization of infe-
rior quality compared to the body-fitted case. Therefore, in
addition to imposing the constraints easily in the context of
non-boundary-fitted approach, we may obtain more accurate
fluid solutions as an added benefit of using the weak bound-
ary condition formulation (10).

In Eq. (10), the parameters τB
TAN and τB

NOR must be suffi-
ciently large to stabilize the formulation, but not so large as
to degenerate Nitsche’s method into a pure penalty method.
Based on previous studies of weakly-enforced Dirichlet
boundary conditions in fluid mechanics [55–57], we expect
these parameters to scale as

τB
(·) =

CB
I µ

h
(19)

where h is a measure of the element size at the boundary
and CB

I is a dimensionless constant. However, in the case of
an immersed boundary, neither the appropriate definition of
h nor the principle for deriving CB

I is straightforward. As a
result, we chose the penalty-parameter values through nu-
merical experiments.

Integrating the fluid formulation (11) over elements that
are only partially contained in Ω1 typically requires spe-
cial quadrature techniques, as discussed in Kamensky et
al. [12]. In the present work, we do not need these quadra-
ture techniques, because fluid elements only overlap spa-
tially with thin shell structures, which are modeled geomet-
rically as (d − 1)-dimensional surfaces and therefore have
zero Lebesgue measure in Rd. To evaluate the surface in-
tegrals of Eq. (10) over immersed boundaries, we define a
Gaussian quadrature rule with respect to a parameterization
of the immersed surface, then locate the quadrature points of
this rule in the parameter space of the background mesh el-
ements to evaluate traces of the fluid test and trial functions.

Unsteady flow computations may sometimes diverge
due to flow reversal on outflow boundaries. This is known
as backflow divergence and is frequently encountered in
cardiovascular simulations. In order to preclude backflow
divergence, an outflow stabilization method originally pro-
posed in Bazilevs et al. [50] and further studied in Esmaily-
Moghadam et al. [86] is employed in our fluid mechanics
formulation.
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2.3 Arterial wall modeling

In this section we show the variational formulation of the
boundary-fitted solid problem for the arterial wall modeling.
The fluid–solid interface discretization is assumed to be con-
forming. Let X be the coordinates of the initial or reference
configuration and let y be the displacement with respect to
the reference configuration. The coordinates of the current
configuration, x, are given by x = X + y. The deformation
gradient tensor F is defined as

F =
∂x
∂X

= I +
∂y
∂X

, (20)

where I is the identity tensor.
Let Sd andVd be the trial solution and weighting func-

tion spaces for the solid problem. The arterial wall is mod-
eled as a three-dimensional hyperelastic solid and the vari-
ational formulation which represents the balance of linear
momentum for the solid is stated as follows: find the dis-
placement y ∈ Sd, such that for all weighting functions
w2 ∈ Vd

B2(w2, y) − F2(w2) = 0, (21)

where

B2(w, y) =

∫
(Ω2)t

w · ρ2
∂2y
∂t2

∣∣∣∣∣∣
X

dΩ +

∫
(Ω2)0

∇∇∇Xw : P dΩ, (22)

F2(w) =

∫
(Ω2)t

w · ρ2f2 dΩ +

∫
(Γ2h)t

w · h2 dΓ. (23)

In the above, (Ω2)0 is the solid domain in the reference con-
figuration, ∇∇∇X is the gradient operator on (Ω2)0, and P = FS
is the first Piola–Kirchhoff stress tensor, where S is the sec-
ond Piola–Kirchhoff stress tensor given by

S = µJ−2/3
(
I −

1
3

tr C C−1
)

+
1
2
κ
(
J2 − 1

)
C−1. (24)

In Eq. (24), µ and κ are interpreted as the blood vessel shear
and bulk moduli, respectively, J = det F is the Jacobian de-
terminant, and C = FT F is the Cauchy–Green deformation
tensor. Equation (24) is a generalized neo-Hookean model
with dilatational penalty given in Simo and Hughes [87].
Its stress-strain behavior was analytically studied on simple
cases of uniaxial strain [32] and pure shear [88]. The model
was argued in Bazilevs et al. [44] to be appropriate for arte-
rial wall modeling in FSI simulations. It was shown that the
level of elastic strain in arterial FSI problems is sufficiently
large to preclude the use of infinitesimal (linear) strains, yet
not large enough to be sensitive to the nonlinearity of the
particular material model. However, the current model has
the advantage of stable behavior for the regime of strong
compression and therefore is selected in this work for the
modeling of the arterial wall.

2.4 Immersed shell structures

We model the heart valve as a shell structure immersed
into a deforming background mesh covering the lumen of
the artery. The exact solution for the pressure around a
shell structure may be discontinuous at the structure, which
presents a conceptual difficulty. The fluid discretization can-
not be informed by the structure’s position. This means that
our fluid approximation space cannot be selected in such a
way that the pressure basis functions are themselves discon-
tinuous at the immersed boundary. This implies an inher-
ent approximation error in the pressure field. This error will
converge slowly for polynomial bases [89]. Nonetheless, we
believe that solutions of sufficient accuracy for engineering
purposes can be obtained in this fashion and we focus on
developing a robust method for obtaining these solutions.

2.4.1 Reduction of Nitsche’s method to the penalty method

Consider integrating the boundary terms of Eq. (10) over
both sides of a thin immersed shell structure. If the velocity
and pressure approximation spaces are continuous through
the vanishing thickness of the shell (and the velocity ap-
proximation space is continuously differentiable), then the
dependence of the consistency and adjoint consistency terms
on the normal vector will cause contributions from opposing
sides to cancel one another. The only remaining terms will
be the penalty and the inflow stabilization. In the case of an
immersed shell structure, we may view the inflow term as
a velocity-dependent penalty. The Nitsche-type formulation
given by Eq. (10) therefore reduces to the following penalty
method:

BVMS
1

(
{wh

1, q
h}, {uh

1, ph}; ûh
)
− FVMS

1

(
{wh

1, q
h}
)

−

∫
(ΓI)−

wh
1 · ρ1

((
uh

1 − ûh
)
· n1

) (
uh

1 − u2

)
dΓ

+

∫
ΓI

τB
TAN

(
wh

1 −
(
wh

1 · n1

)
n1

)
·

((
uh

1 − u2

)
−

((
uh

1 − u2

)
· n1

)
n1

)
dΓ

+

∫
ΓI

τB
NOR

(
wh

1 · n1

) ((
uh

1 − u2

)
· n1

)
dΓ = 0, (25)

when the approximation spaces Vh
u and Vh

p are sufficiently
regular around the shell.

To determine the velocity and pressure about an im-
mersed valve in its closed state, a method must be capable
of developing nearly hydrostatic solutions in the presence
of large pressure gradients. Penalty forces will only exist if
there are nonzero violations of kinematic constraints. A pure
penalty method rules out the desired hydrostatic solutions:
every term that could resist the pressure gradient to satisfy
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balance of linear momentum depends on velocity. Increas-
ing β may diminish leakage through a structure, but it is a
well-known disadvantage of penalty methods that extreme
values of penalty parameters will adversely affect the nu-
merical solvability of the resulting problem. This motivates
us to return to Eqs. (1)–(3) and develop a method that does
not formally eliminate the multiplier field.

2.4.2 Reintroducing the multipliers

Since the introduction of constraints tends to make discrete
problems more difficult to solve, we will only reintroduce a
scalar multiplier field to strengthen enforcement of the no-
penetration part of the FSI kinematic constraint, rather than
the vector-valued multiplier field of Eqs. (1)–(3). The vis-
cous, tangential component of the constraint will continue to
be enforced by only the penalty τB

TAN. This may be thought
of as a formal elimination of just the tangential component
of the multiplier field, which also retains the ability to al-
low the flow to slip at the boundary, which tends to produce
more accurate fluid solutions as discussed in Section 2.2.
For clarity, we redefine the FSI boundary terms on the mid-
surface of the shell structure, Γt, rather than considering the
full boundary, ΓI. This means that constants in the current
formulation may differ from those of Eqs. (1)–(3) by factors
of two. We arrive, then, at the formulation

B1({w1, q}, {u1, p}; û) − F1({w1, q})

+

∫
Γt

w1 · (λnn2) dΓ +

∫
Γt

w1 · β(u1 − u2) dΓ = 0, (26)

B2(w2, y) − F2(w2)

−

∫
Γt

w2 · (λnn2) dΓ −
∫
Γt

w2 · β(u1 − u2) dΓ = 0, (27)

∫
Γt

δλnn2 · (u1 − u2) dΓ = 0, (28)

where λn is the new scalar multiplier field and, to empha-
size the relation to Eqs. (1)–(3), the penalty force has not
been split into normal and tangential components. The con-
sistency and adjoint consistency terms associated with elim-
inating the tangential component of the multiplier have been
omitted under the assumption that they will vanish after in-
tegrating over both sides of the thin shell, as discussed in
Section 2.4.1.

We discretize the multiplier field by collocating kine-
matic constraints at points of the quadrature rule for inte-
grals over Γt. This entails adding a scalar multiplier un-
known at each quadrature point. In discrete evaluations of
integrals, these multiplier unknowns are treated like point
values of a function defined on Γt. Because the spatial res-
olution of the discrete multiplier representation is not con-
trolled relative to the background fluid mesh, we must relax

the collocated constraints to ensure stability of the numer-
ical scheme. We accomplish this through the time-discrete
algorithm given in Section 2.5. The algorithmic constraint
relaxation is interpreted at the time-continuous level by Ka-
mensky et al. [12], through an analogy to Chorin’s method
of artificial compressibility [90], in which the Lagrange mul-
tiplier solves an auxiliary differential equation in time.

2.4.3 Treatment of shell structure mechanics

We assume that the structure is a thin shell, represented
mathematically by its mid-surface. Further, we assume
this surface to be piecewise C1-continuous and apply the
Kirchhoff–Love shell formulation and isogeometric dis-
cretization studied by Kiendl et al. [91–93]. The spatial co-
ordinates of the shell mid-surface in the reference and cur-
rent configurations are given by X(ξ1, ξ2) and x(ξ1, ξ2), re-
spectively, parameterized by ξ1 and ξ2. Assuming the range
{1, 2} for Greek letter indices, we define the covariant sur-
face basis vectors

gα =
∂x
∂ξα

, (29)

g3 =
g1 × g2

||g1 × g2||
, (30)

and

Gα =
∂X
∂ξα

, (31)

G3 =
G1 ×G2

||G1 ×G2||
, (32)

in the current and reference configurations, respectively. Us-
ing kinematic assumptions and mathematical manipulations
given in Kiendl [93], we split the in-plane Green–Lagrange
strain Eαβ into membrane and curvature contributions

Eαβ = εαβ + ξ3καβ, (33)

where

εαβ =
1
2

(
gα · gβ −Gα ·Gβ

)
, (34)

καβ =
∂Gα

∂ξβ
·G3 −

∂gα
∂ξβ
· g3, (35)

are the membrane strain and change of curvature tensors,
respectively, at the shell mid-surface. In Eq. (33), ξ3 ∈

[−hth/2, hth/2] is the through-thickness coordinate and hth

is the shell thickness. The forms B2 and F2 appearing in the
structure subproblem then become, in the case of a thin shell
structure,

B2(w, y) =

∫
Γt

w · ρ2hth
∂2y
∂t2

∣∣∣∣∣∣
X

dΓ +

∫
Γ0

∫
hth

δE : S dξ3dΓ,

(36)
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F2(w) =

∫
Γt

w · ρ2hthf2 dΓ +

∫
Γt

w · hnet
2 dΓ, (37)

where S is the second Piola–Kirchhoff stress, δE is the vari-
ation of the Green–Lagrange strain, Γ0 and Γt are the shell
mid-surface in the reference and deformed configurations,
respectively, hnet

2 = h2(ξ3 = −hth/2) + h2(ξ3 = hth/2) sums
traction contributions from the two sides of the shell. For the
purposes of this paper, we assume a St. Venant–Kirchhoff

material, in which S is computed from a constant elastic-
ity tensor, �, applied to E. For isotropic materials, the con-
stitutive material tensor may be derived from a Young’s
modulus, E, and Poisson ratio, ν, and the integral over ξ3

in Eq. (36) can be computed analytically. The St. Venant–
Kirchhoff material model can become unstable when sub-
jected to strongly compressive stress states [94], but such
states are not encountered in the present application, because
transverse normal stress is ignored by the thin-shell formu-
lation and in-plane stresses within heart valve leaflets are
primarily tensile.

Isogeometric analysis [59,60] is employed for modeling
the shell structure. We use C1-continuous quadratic B-spline
functions to represent both the geometry and displacement
solution field. The details of this discretization are given in
Kiendl et al. [91–93]. A noteworthy aspect of this discretiza-
tion is the fact that it requires no rotational degrees of free-
dom. The C1-continuous approximation space (for a single
patch) is in H2, so we may directly apply Galerkin’s method
to the forms defined in Eqs. (36) and (37).

2.5 Time integration and FSI solution strategy

We complete the discretization of the coupled FSI for-
mulation by using finite differences to approximate the
time derivatives appearing therein. In particular, we employ
the Generalized-α technique [32, 95, 96], which is a fully-
implicit second-order accurate method with control over the
dissipation of high-frequency modes. This produces a non-
linear algebraic system of equations relating the unknown
coefficients of the fluid, solid structure, mesh-movement,
shell structure, and multiplier solutions at time level tn+1

to the known solutions from time level tn. An attempt to
solve this system with a monolithic approach (e.g., by New-
ton’s iteration with a consistent tangent) would encounter
the following difficulties: 1) The sparsity pattern of the non-
linear residual’s Jacobian matrix would change as the im-
mersed shell structure moves through the background mesh.
2) Fluid, structure, and mesh solvers would become more
difficult to interchange. 3) The potential for drastically-
different multiplier and fluid resolutions could lead to in-
stability.

To circumvent the third issue, at each time step, we com-
pute the solution using the following two-step procedure:

1. Solve for the fluid, solid structure, mesh displacement,
and shell structure unknowns, holding λn fixed. Note that
the fluid and shell structure are still coupled in this prob-
lem, due to the penalty term.

2. Update the multiplier λn, by adding the normal compo-
nent of penalty forces present in the solution from Step
1.

The solution from Step 1 will not satisfy the kinematic con-
straints exactly at all quadrature points on Γt. This is a de-
liberate weakening of the constraints to improve stability,
as mentioned in Section 2.4.2. The two-step solution pro-
cedure may be interpreted as penalization of an implicitly-
evaluated time integral of the velocity difference between
the fluid and shell structure, as detailed in Kamensky et
al. [12], and is conceptually-similar to the method of artifi-
cial compressibility [90] for incompressible flow problems.
Note that the time integral of the velocity difference is a
displacement: we effectively implement spring-like sliding
contact elements between the fluid and shell structure. This
prevents the steady creeping flow through shell structures
that can occur when only the current velocity difference is
penalized, as in the penalty approach coming from Nitsche’s
method.

To solve the nonlinear coupled problem in Step 1, we
apply a fixed-point iteration based on Newton’s method. The
linear system to be solved within each iteration of Newton’s
method would have the form

∂Rfl

∂Ufl

∂Rfl

∂Uso

∂Rfl

∂Ume

∂Rfl

∂Ush

∂Rso

∂Ufl

∂Rso

∂Uso

∂Rso

∂Ume

∂Rso

∂Ush

∂Rme

∂Ufl

∂Rme

∂Uso

∂Rme

∂Ume

∂Rme

∂Ush

∂Rsh

∂Ufl

∂Rsh

∂Uso

∂Rsh

∂Ume

∂Rsh

∂Ush




∆Ufl

∆Uso

∆Ume

∆Ush

 = −


Rfl

Rso

Rme

Rsh

 , (38)

where R(·) and U(·) are the nonlinear residuals and discrete
unknowns of the fluid (fl), solid structure (so), mesh (me),
and shell structure (sh). ∆U(·) are the corresponding solu-
tion increments. To avoid the aforementioned disadvantages
of assembling the full consistent tangent, we approximate it
with the block-diagonal matrix

∂Rfl

∂Ufl

∂Rfl

∂Uso
0 0

∂Rso

∂Ufl

∂Rso

∂Uso
0 0

0 0
∂Rme

∂Ume
0

0 0 0
∂Rsh

∂Ush


, (39)
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left
ventricle

aortic sinus

ascending
aorta

aortic valve leaflets

artery wall

Fig. 1: A schematic drawing illustrating the position of the
aortic valve relative to the left ventricle of the heart and the
ascending aorta.

Fig. 2: B-spline heart valve mesh comprised of 1,404
quadratic elements. The pinned boundary condition is ap-
plied to the leaflet attachment edge.

then assemble and solve each block of equations in se-
quence (from top to bottom). We use a number of further
approximations within each of the left-hand side blocks, but
maintain the original nonlinear residuals, R(·), of the fully-
coupled problem. Converging these residuals to zero solves
the original problem, regardless of any approximations used
in the tangent matrix. The procedure that we apply at each
step of the fixed-point iteration is not equivalent to a linear
solve with matrix (39). To accelerate convergence, we use
the updated solutions from previous blocks to assemble the
equations for subsequent ones. We repeat this fixed-point
iteration to converge R(·) toward zero and obtain a fully-
coupled solution of the fluid-solid-mesh-shell system. In
practice, we use a fixed number of iterations, chosen to yield
typically-satisfactory convergence at the selected time step
size. This algorithm combines the quasi-direct and block-
iterative FSI coupling approaches outlined in Tezduyar et
al. [97–99] and Bazilevs et al. [100].

n1

x1

x2

d

S1

S2

n2

Fig. 3: Illustration of contact notation.

3 Bioprosthetic heart valve simulations

In this section, we use the proposed hybrid ALE/immersed-
boundary method to simulate the FSI of an aortic BHV im-
planted in an elastic artery over cardiac cycles. The aortic
valve regulates flow between the left ventricle of the heart
and the ascending aorta. Figure 1 provides a schematic de-
piction of its position in relation to the surrounding anatomy.
The valve leaflets are discretized separately and immersed
into a deforming boundary-fitted background mesh of the
artery lumen.

3.1 Heart valve model

The BHV leaflet geometry used in this study is based on
a 23-mm design by Edwards Lifesciences. We model each
leaflet using a C1-continuous B-spline patch, which com-
prises 468 quadratic B-spline elements. The pinned bound-
ary condition is applied to the leaflet attachment edge as
shown in Figure 2. An isotropic St. Venant–Kirchhoff ma-
terial with E = 107 dyn/cm2 and ν = 0.45 is applied to the
BHV. The thickness and density of the leaflets are 0.0386 cm
and 1.0 g/cm3, respectively. There is no damping applied to
the valve dynamics in this study.

3.2 Leaflet–leaflet contact

Contact between leaflets is an essential feature of a func-
tioning heart valve. BHV leaflets contact one another dur-
ing the opening, and especially during the closing to block
flow. An advantage of immersed-boundary methods for FSI
is that pre-existing contact algorithms from structural anal-
ysis [101–105] may be incorporated directly into the struc-
tural subproblem without affecting the fluid subproblem. We
adopt a penalty-based approach for sliding contact and em-
ploy contact elements associated with the quadrature points
of the shell structure.
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Fig. 4 A view of the arterial wall
and lumen into which the valve
is immersed.

As detailed in Kamensky et al. [12], a contact element
activates when its associated quadrature point, located on a
particular BHV leaflet designated S 1, is found to penetrate
through another leaflet, designated S 2. Penalties are com-
puted using a signed distance, d, from S 2 to the quadra-
ture point on S 1, and their activation is controlled by sev-
eral geometrical conditions omitted from the current paper
for brevity. Opposing concentrated loads are applied at the
quadrature points on S 1 and their closest points on S 2. This
notation is illustrated for a pair of contacting points in Fig-
ure 3. The designation of one leaflet as S 1 and another as
S 2 is arbitrary, and to preserve geometrical symmetries, we
sum the forces resulting from both choices.

3.3 Artery model

The BHV model mentioned earlier is immersed into a
pressure-driven incompressible flow through a deformable
artery. The fluid density and viscosity are ρ1 = 1.0 g/cm3

and µ = 3.0 × 10−2 g/(cm s), respectively, which model the
physical properties of human blood.

The artery is modeled as a 16 cm long elastic cylindri-
cal tube with a three-lobed dilation near the BHV, as shown
in Figure 4. This dilation represents the aortic sinus, which
is known to play an important role in heart valve dynam-
ics [106]. The cylindrical portion of the artery has an inside
diameter of 2.3 cm and a thickness of 0.15 cm. It is com-
prised of quadratic NURBS patches, allowing us to repre-
sent the circular portions exactly. The sinus is generated by
displacing control points radially from an initial cylindrical
configuration, so the normal thickness of the sinus varies.
We use a multi-patch design to avoid including a singular-
ity at the center of the cylindrical sections. Cross-sections
of this multi-patch design are shown in Figure 5. The mesh
of this artery, which includes the fluid-filled interior and
solid arterial wall, consists of 69,696 quadratic B-spline el-
ements. For analysis purposes, basis functions are made C0-
continuous at the fluid–solid interface and the discretization
is conforming.

Mesh refinement is focused near the valve and sinus, as
shown in Figure 4. Figure 5 shows that the mesh is clustered
toward the wall to better capture the boundary-layer solu-
tion. As shown in Figure 6, we extend the pinned edges of

Fig. 5: Cross-sections of the fluid and solid meshes, taken
from the cylindrical portion and from the sinus.

the valve leaflets with a rigid stent. The stent extends out-
side of the fluid domain and intersects with the solid region,
to properly seal the gap between the pinned edge of the valve
and the arterial wall.

The arterial wall is modeled as a hyperelastic material—
a neo-Hookean model with dilatational penalty (see Simo
and Hughes [87] and Section 2.3 of the present paper)—with
Young’s modulus and Poisson’s ratio set to 107 dyn/cm2

and 0.45, respectively. The density of the arterial wall is
1.0 g/cm3. Mass-proportional damping is added to model
the interaction of the artery with surrounding tissues and in-
terstitial fluids. In this case the inertial term in Eq. (22) is
replaced as follows:

ρ2
∂2y
∂t2 ← ρ2

∂2y
∂t2 + aρ2

∂y
∂t
, (40)

and the damping coefficient, a, is set to 1.0 × 104 s−1.
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Fig. 6: The sinus, magnified and shown in relation to the
valve leaflets (pink) and rigid stent (blue).

3.4 Boundary conditions and parameters of the numerical
scheme

The solid wall is subjected to zero traction boundary condi-
tions at the outer surface. The inlet and outlet branches are
allowed to slide in their cut planes as well as deform radi-
ally in response to the variations in the blood flow forces
(see Bazilevs et al. [44] for details). This gives more real-
istic arterial wall displacement patterns than fixed inlet and
outlet cross-sections.

Because the BHV stent is assumed to contain an
effectively-rigid metal frame [107], the dynamics of the
artery and BHV leaflets are coupled primarily through the
fluid rather than the sutures connecting the stent to the artery.
We therefore constrain the stent to be stationary, and like-
wise fix the displacement unknowns of any control point of
the solid portion of the artery mesh whose corresponding
basis function’s support intersects the stent.

The nominal outflow boundary is 11 cm downstream of
the valve, located at the right end of the channel, based on
the orientation of Figure 4. The nominal inflow is located 5
cm upstream at the left end of the channel. The designations
of inflow and outflow are based on the prevailing flow direc-
tion during systole, when the valve is open and the majority
of flow occurs. In general, fluid may move in both directions
and there is typically some regurgitation during diastole. A
physiologically-realistic left ventricular pressure profile ob-
tained from Yap et al. [108] and shown in Figure 7 is applied
as a traction boundary condition at the inflow. The duration
of a single cardiac cycle is 0.86 s.

The traction −(p0 + RQ)n1 is applied at the outflow,
where p0 is a constant physiological pressure level, Q is the
volumetric flow rate through the outflow (with the conven-
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Fig. 7: Physiological left ventricular (LV) pressure profile
applied at the inlet of the fluid domain. The duration of a
single cardiac cycle is 0.86 s. The data is obtained from Yap
et al. [108]

tion that Q > 0 indicates flow leaving the domain), R > 0 is
a resistance constant, and n1 is the outward facing normal of
the fluid domain. This resistance boundary condition and its
implementation are discussed in Bazilevs et al. [50]. In the
present computation, we use p0 = 80 mmHg and R = 70
(dyn s)/cm5. These values ensure a realistic transvalvular
pressure difference of 80 mmHg in the diastolic steady state
(where Q is nearly zero) while permitting a reasonable flow
rate during systole. At both inflow and outflow boundaries
we apply backflow stabilization with γ = 0.5 (see Esmaily-
Moghadam et al. [86] for details).

The time-step size is set to ∆t = 1.0 × 10−4 s and the
τM scaling factor is sshell = 106. For the immersed heart
valve, we find that results are relatively insensitive to the
tangential-velocity penalty-parameter values, while condi-
tioning and nonlinear convergence improve when the values
are lower. We therefore set a lower value for τB

TAN = 2.0×102

g/(cm2 s) and a higher value for τB
NOR = 2.0× 103 g/(cm2 s),

also because the no-penetration condition is more critical for
accuracy.

3.5 Results and discussion

We compute both the rigid- and elastic-wall cases to study
the importance of including arterial wall elasticity in the
heart-valve FSI simulations. Starting from homogeneous
initial conditions, we compute several cardiac cycles until
a time-periodic solution is achieved. Figure 8 shows the vol-
umetric flow rate through the top of the tube throughout the
cardiac cycle. The flow rates computed using rigid and elas-
tic arteries differ primarily in the period immediately follow-
ing valve closure. The rigid-wall results show large oscilla-
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Fig. 8: Computed volumetric flow rate through the top of
the fluid domain, during a full cardiac cycle of 0.86 s, for
the rigid and elastic arterial wall cases.

tion in the flow rate, as well as in the valve movement (see
Figure 9). The oscillation is much smaller when arterial wall
elasticity is included.

In the rigid-wall case, the energy of the fluid hammer
striking the closed valve is initially converted to elastic po-
tential in the leaflets, transferred back to kinetic energy as
the valve rebounds, converted into potential as the fluid
moves through an adverse pressure gradient, then converted
once again to kinetic energy as the blood reverses direction,
forming a new fluid hammer and restarting a cyclic rever-
beration. This oscillation is gradually damped by the resis-
tance outflow condition and viscous forces in the fluid be-
ing directly modeled. The reverberation of the fluid ham-
mer impact on the closing valve is the source of the S2 heart
sound, marking the beginning of diastole [109, 110]. How-
ever, the flow rate oscillation that follows from the rigid
artery assumption is observed to be much smaller or com-
pletely absent in human aortas [111, 112]. This is consistent
with our elastic-wall computations, which show that an elas-
tic artery has a compliance effect and can distend to absorb a
fluid hammer impact and dissipate the initial kinetic energy
to surrounding tissues and interstitial fluids (modeled here
through damping). The artery’s absorption of fluid hammer
impacts on the valve greatly reduces the maximum strains
(and thus stresses) observed in the leaflets, as shown in Fig-
ure 9.

Remark 4 The strains shown in Figure 9 are the maximum
in-plane principal Green–Lagrange strain (MIPE, the largest
eigenvalue of E). We choose to plot the strains on the aor-
tic side of the leaflets to include contributions from both
stretching and bending. Evaluation of strain at the shell mid-
surface, ξ3 = 0, would only display the membrane contribu-
tion.

t = 0.36–0.49 s t = 0.36 s

t = 0.355–0.465 s. t = 0.375 s

Fig. 9: Leaflet oscillation and the highest MIPE during the
cardiac cycle for the rigid and elastic arterial wall cases. The
strains are evaluated on the aortic side of the leaflets. The
maximum MIPE on the plots are 0.766 for the rigid-wall
case and 0.483 for the elastic-wall case.

Remark 5 Note that the effect we demonstrate here is not the
full Windkessel effect. Direct simulation of the Windkessel
effect would require a much larger network of arteries down-
stream of the valve, and the final outflow from these arteries
should be relatively constant [8]. We instead demonstrate
that the elasticity of the arteries directly adjacent to a heart
valve can significantly impact its dynamics, especially at the
point of valve closure, where maximum strains occur, and
should therefore not be neglected in simulations. We recom-
mend combining this technology with a lumped-parameter
Windkessel model of arteries further downstream, but we
have applied a simple resistance boundary condition in this
present work to more clearly highlight the effect of arterial
FSI within the directly-simulated domain.

We now examine the details of the fluid and structure
solutions obtained from the elastic-artery computation. Fig-
ure 10 shows several snapshots of the details of the fluid
solution fields and Figure 11 shows the deformations and
strain fields of the leaflets at several points during the car-
diac cycle. As the valve opens during systole, we see tran-
sition to turbulent flow. We also see that the leaflets remain
partially in contact while opening. The snapshot at t = 0.35 s
illustrates the fluid hammer effect that is evident in the flow
rate. After 0.62 s, the solution becomes effectively hydro-
static. The strain near the commissure points at t = 0.35 s is
slightly higher than at t = 0.7 s. This is due to the effect of
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t = 0.03 s t = 0.05 s t = 0.11 s t = 0.26 s

t = 0.33 s t = 0.34 s t = 0.35 s t = 0.62 s

Fig. 10: Volume rendering of the velocity field at several points during a cardiac cycle. The time t is synchronized with
Figure 7 for the current cycle.

t = 0.03 s t = 0.26 s t = 0.35 s

t = 0.05 s t = 0.33 s t = 0.62 s

t = 0.11 s t = 0.34 s t = 0.86 s

Fig. 11: Deformations of the valve from the FSI computation, colored by the MIPE evaluated on the aortic side of the leaflet.
Note the different scale for each time.
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Fig. 12: Relative wall displacement between opening (t =

0.24 s) and closing (t = 0.345 s) phases.

the fluid hammer striking the valve as it initially closes. This
phenomenon is usually neglected by both quasi-static and
pressure-driven dynamic computations, as neither accounts
for the inertia of the fluid [107, 113]. The FSI solution also
shows that the geometrical symmetry of the initial data is
not preserved, which is typical for turbulent flow. This result
underscores the importance of computing FSI for the en-
tire valve, without symmetry assumptions. In Figure 12, the
models are superposed in the configurations corresponding
to the opening (t = 0.24 s) and closing phases (t = 0.345 s)
for better visualization of the relative arterial wall displace-
ment results.

4 Conclusions

We presented a computational framework for FSI which
combines a recently proposed variational immersed-
boundary method [12] and the traditional ALE technique.
We applied this hybrid ALE/immersed-boundary framework
to simulate a bioprosthetic heart valve implanted in an artery
that is allowed to deform in the model. Our computations
demonstrate that the variational immersed-boundary method
for FSI remains effective for heart valve analysis when the
background fluid mesh undergoes relatively mild deforma-
tions, corresponding to the expansion and contraction of an
elastic artery. Further, we find that arterial wall deforma-
tion contributes significantly to the realism of BHV simu-
lation results. It damps out oscillations in the flow rate and

valve deformation during the closing phase, leading to flow
profiles that more closely resemble those observed in prac-
tice [111, 112].

The highest strain on the valve, occurring at the point of
valve closure, is much lower when wall elasticity is consid-
ered. This difference in peak strain between the rigid-artery
and elastic-artery computations suggests a potential future
research direction: it indicates that arterial stiffness could be
an important variable to consider in computational studies of
structural fatigue in BHVs. Atherosclerosis and BHV leaflet
deterioration are known to be correlated [114], although the
prevailing hypothesis, which we do not purport to refute in
this work, is that these phenomena have a shared etiology
rather than a cause-and-effect relationship.

One conspicuous shortcoming of our simulations is the
relatively simple material model of the valve leaflets. The
St. Venant–Kirchhoff material used in this work does not ac-
curately reflect some of the properties of biological materi-
als [94,115]. In the present application, the largest strains are
primarily tensile, avoiding the St. Venant–Kirchhoff mate-
rial’s most significant pathology: instability under compres-
sion. However, its tensile behavior does not exhibit the ex-
ponential stiffening characteristic of soft tissues [116, 117].
The introduction of a more realistic soft tissue material
model will allow for meaningful comparison of the valve’s
deformations with detailed geometrical data collected in the
flow loop experiments of Iyengar et al. [118] and Sugimoto
et al. [119].
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