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Abstract

Valvular pathologies that induce deterioration in the aortic valve are a common cause of heart disease among aging populations.
Although there are numerous available technologies to treat valvular conditions and replicate normal aortic function by replacing
the diseased valve with a bioprosthetic implant, many of these devices face challenges in terms of long-term durability. One
such phenomenon that may exacerbate valve deterioration and induce undesirable hemodynamic effects in the aorta is leaflet
flutter, which is characterized by oscillatory motion in the biological tissues. While this behavior has been observed for thinner
bioprosthetic valves, the specific underlying mechanics that lead to leaflet flutter have not previously been identified. This work
proposes a computational approach to isolate the fundamental mechanics that induce leaflet flutter in thinner biological tissues
during the cardiac cycle. The simulations in this work identify reduced flexural stiffness as the primary factor that contributes
to increased leaflet flutter in thinner biological tissues, while decreased membrane stiffness and mass of the thinner tissues do
not directly induce flutter in these valves. The results of this study provide an improved understanding of the mechanical tissue
properties that contribute to flutter and offer significant insights into possible developments in the design of bioprosthetic tissues to
account for and reduce the incidence of flutter.

Keywords: Heart valve; Leaflet flutter; Membrane and flexural stiffnesses; Fluid–structure interaction; Isogeometric
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1. Introduction

The high prevalence of aortic valve diseases among aging
populations has driven developments in valvular treatment tech-
nologies, including surgical bioprosthetic heart valves [1] and
transcatheter valve replacement procedures [2, 3], which have
both become increasingly common options to restore proper
cardiac function [4]. Compared to mechanical valves, biopros-
thetic technologies offer a more suitable option to replicate the
overall structure and performance of native heart valves [5].
However, given that surgical operations to replace the aortic
valve with a bioprosthesis require high-risk, invasive proce-
dures that often involve long post-operative recovery times, the
introduction of percutaneous valve replacement technologies
has provided a strong alternative to surgical implant operations
in the treatment of aortic valve diseases [6, 7].

Although bioprosthetic valves and transcatheter implant
technologies have become relatively mature in recent years, nu-
merous issues remain in improving the safety of catheter-based
deployment approaches and the durability of the biological tis-
sues. One practical design approach to reduce the risk of com-
plications during percutaneous valve implant operations is to
use prosthetic devices that incorporate thinner leaflet tissues
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and can be deployed through smaller-diameter catheters [8].
While this approach is effective for the deployment of tran-
scatheter devices, thinner tissues have also been associated with
flutter in the heart valve leaflets [9]. The induced oscillations
in tissues with reduced thickness can cause disturbances and
other abnormal fluid phenomena in the blood flow that may
lead to thrombus or embolus formation [10–12]. In addition to
the problematic hemodynamic behaviors resulting from flutter,
the high-frequency cyclic loading in tissues that exhibit flutter
may also accelerate other mechanical issues, such as deteriora-
tion, reduced durability, and fatigue in bioprosthetic valve im-
plants [13–17], which are already susceptible to calcification,
leaflet tears and perforations, and other types of failure [18–22].

While it is clear that thinner tissues can induce leaflet flutter
in heart valves, the underlying mechanics that contribute to this
phenomenon have not been specifically identified. For these tis-
sues, three primary aspects of the structure are impacted when
the thickness is altered: membrane stiffness, flexural stiffness,
and mass. Based on classical plate theory, in which the mem-
brane stiffness exhibits linear variation with thickness while the
bending stiffness exhibits cubic variation with thickness [23],
one may postulate that the reduced bending stiffness introduces
the most significant contribution to the flutter instability [24];
however, the specific impact of the different tissue mechanics
on the flutter behavior of bioprosthetic valves has not been di-
rectly isolated. For example, it is not clear how reducing the
membrane and flexural stiffnesses contributes to leaflet flutter.
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In order to differentiate the fundamental mechanics that lead
to flutter phenomena in heart valves with thinner leaflet tissues,
this work proposes a simulation-based approach to identify the
impact of individual tissue characteristics. The computational
methods proposed in this work enable a decoupled approach
to directly isolate the contribution of the membrane stiffness,
flexural stiffness, and mass to the flutter of heart valve leaflets
that comprise thinner tissues. Using the proposed framework,
which incorporates an immersogeometric analysis (IMGA) ap-
proach for fluid–structure interaction (FSI) analysis of heart
valves [25, 26], the effect of these quantities on the flow be-
havior, valve dynamics, and induced flutter response are inves-
tigated throughout the entire cardiac cycle.

This paper is organized into the following parts. Section 2
describes the IMGA FSI simulation framework, the details of
the approach for isolating the membrane and flexural stiff-
nesses, and the computational setup for the valve. Section 3
presents the FSI simulation results and quantities of interest re-
lated to the blood flow and leaflets for five different valve cases.
Discussion and conclusions on the effects of the leaflet mass,
membrane stiffness, and flexural stiffness on the cardiac system
are presented in Section 4.

2. Material and Methods

2.1. Fluid–structure interaction methodology

The heart valve simulations in this study are performed us-
ing the IMGA FSI framework [25–33]. This methodology in-
corporates a hybrid approach for modeling different parts of
the overall FSI problem with either a traditional boundary-fitted
method [34, 35] or an immersed approach [25, 36] depending
which is more practical for the specific subproblem. For FSI
problems that involve large structural deformation or changes
in the fluid domain topology, the immersed approach provides
significant geometric flexibility and offers many advantages
over traditional boundary-fitted FSI methods. For the simula-
tions in this study, the heart valve is immersed into the non-
boundary-fitted discretization of the background fluid mesh to
flexibly simulate the large deformations that are present in this
FSI problem, and the artery wall and the blood-flow domain
are boundary-fitted and conforming. The flow is governed by
the Navier–Stokes equations of incompressible flows, which are
discretized using a variational multiscale (VMS) method [37–
39] and solved on an arbitrary Lagrangian–Eulerian (ALE)
frame [40]. The ALE formulation is a suitable approach
for moving domain simulations, such as the deforming-artery
blood-flow problem in this work, and the VMS method inher-
ently includes a large-eddy simulation turbulence model that is
effective for modeling the possibly turbulent blood flow in the
near-valve region of the aorta.

The artery wall is modeled as a large-deformation hyper-
elastic solid that is written in a Lagrangian frame [41]. As
will be discussed in further detail in the following sections,
the heart valve leaflets are modeled as thin-shell structures us-
ing a hyperelastic Kirchhoff–Love shell formulation [42, 43].
The conforming discretization that is employed between the

artery and the blood-flow domain ensures that the kinematic-
and traction-compatibility conditions are automatically satis-
fied and that the FSI coupling is handled using a monolithic
formulation [41]. The IMGA approach is used to directly an-
alyze the spline-based representations of the valve structures,
where a dynamic augmented Lagrangian method [26] is ap-
plied to weakly enforce constraints at the immersed interface
between the fluid and shell structure components in the valvu-
lar FSI analysis. A penalty-based method is applied to enforce
contact between shell structures during the valve closure [25].
The combination of these various components comprises the
IMGA FSI framework, which is discretized in time using the
generalized-α method [41]. Detailed discussions and formula-
tions of the methods that are employed in the IMGA FSI frame-
work can be found in the aforementioned references.

2.2. Shell structural formulation

The thin-tissue structures of the leaflets are modeled as
hyperelastic isogeometric Kirchhoff–Love shells [42, 43]. In
Kirchhoff–Love shell theory, both normal and transverse shear
strains are neglected, and only the in-plane strain components
are considered. Within this formulation, a point x in the shell
continuum can be described by a point r on the midsurface and
a vector a3 normal to the midsurface:

x(ξ1, ξ2, ξ3) = r(ξ1, ξ2) + ξ3 a3(ξ1, ξ2) , (1)

where ξ1, ξ2 are the contravariant coordinates of the midsurface,
ξ3 ∈ [−h/2, h/2] is the through-thickness coordinate, and h is
the shell thickness. The Green–Lagrange strain E is assumed to
vary linearly through the shell thickness and can be expressed
as a combination of the midsurface membrane strain and the
through-thickness bending strain. For the formulations in this
section, let Greek indices take values of 1 or 2 to denote the
in-plane components. The covariant components of E can be
obtained as

Eαβ = εαβ + ξ3καβ , (2)

where εαβ and καβ are the covariant components of the mem-
brane strain tensor, εεε, and curvature change (due to bending)
tensor, κκκ, of the midsurface, respectively.

The weak form of the shell formulation is defined as∫
S0

w · ρh
d2y
dt2 dS +

∫
S0

∫ h/2

−h/2
δE : S dξ3dS

−

∫
S0

w · ρhf dS −
∫
St

w · h dS = 0 , (3)

where S0 and St are the shell midsurfaces in the reference and
deformed configurations, respectively, y is the midsurface dis-
placement, d(·)/dt is defined as a time derivative that is taken
while holding the material coordinate fixed, ρ is the shell den-
sity, δE is the variation of E corresponding to displacement
variation w, S is the second Piola–Kirchhoff stress tensor ob-
tained from a hyperelastic strain energy density functional ψ, f
is a prescribed body force, and h is the total traction from the
two sides of the shell.
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In hyperelastic shell analysis, one can linearize and derive
an in-plane material tangent tensor Ĉ [42, Eq. (39)] based on
the plane stress condition such that

dS αβ = ĈαβγδdEγδ , (4)

where dS and dE are total differentials of S and E. Note that
Ĉ can vary through the shell thickness. The stress resultants,
obtained by integration through the thickness, are defined as

n =

∫ h/2

−h/2
S dξ3 , (5)

m =

∫ h/2

−h/2
S ξ3dξ3 , (6)

where n is the normal force and m is the bending moment. For
their total differentials, according to Eqs. (2) and (4), we obtain

dn =

(∫ h/2

−h/2
Ĉ dξ3

)
dεεε +

(∫ h/2

−h/2
Ĉ ξ3dξ3

)
dκκκ , (7)

dm =

(∫ h/2

−h/2
Ĉ ξ3dξ3

)
dεεε +

(∫ h/2

−h/2
Ĉ

(
ξ3

)2
dξ3

)
dκκκ . (8)

Based on Eq. (3), the internal virtual work can be defined as

δW int =

∫
S0

(n : δεεε + m : δκκκ) dS , (9)

which can be linearized to obtain the internal nodal forces Fint

and stiffness matrix Kint by taking derivatives of Eq. (9) with
respect to the displacement variables [23, 42]:

F int
r =

∂W int

∂ur
=

∫
S0

(
n :

∂εεε

∂ur
+ m :

∂κκκ

∂ur

)
dS , (10)

Kint
rs =

∂2W int

∂ur∂us

=

∫
S0

((
DA

∂εεε

∂us
+ DB

∂κκκ

∂us

)
:
∂εεε

∂ur
+ n :

∂2εεε

∂ur∂us

+

(
DB

∂εεε

∂us
+ DD

∂κκκ

∂us

)
:
∂κκκ

∂ur
+ m :

∂2κκκ

∂ur∂us

)
dS ,

(11)

where r and s are the indices for the total degrees of freedom of
the system, ur and us are the discrete nodal displacements, and

DA =

∫ h/2

−h/2
Ĉ dξ3 , (12)

DB =

∫ h/2

−h/2
Ĉ ξ3dξ3 , (13)

DD =

∫ h/2

−h/2
Ĉ

(
ξ3

)2
dξ3 . (14)

In Eq. (11), the terms associated with D(·) are the material stiff-
ness contributions and the terms associated with n and m are the
geometric stiffness contributions to the internal stiffness, which

can be broken down into membrane, bending, and membrane–
bending coupling stiffnesses. In this work, the flexural stiffness
is defined as the combination of the latter two.

2.3. Isolating membrane and flexural stiffnesses

The intent of this work is to investigate the individual im-
pact of a reduced membrane or flexural stiffness (e.g., due to
reduced thickness) on leaflet flutter. This requires isolating the
change of membrane or flexural stiffness due to a change of
thickness in Eq. (11). However, this is not a trivial task. In
the case of St. Venant–Kirchhoff material, which assumes a lin-
ear stress–strain relationship, it is relatively simple to separate
Eq. (11) into membrane and bending contributions (see Ap-
pendix A).1 However, in the case of general hyperelastic ma-
terials, because S and Ĉ are generally obtained based on the
derivatives of ψ with respect to E (see [42] for details), it is not
straightforward to isolate the membrane and flexural contribu-
tions in Eq. (11). For example, S, and as a result, n, inherently
has contributions associated with κκκ that can not be easily iso-
lated for general hyperelastic materials.

To overcome this issue, a novel approach based on a one-
point quadrature scheme for the through-thickness integration
is proposed for the evaluation of the internal stiffness terms.
This approach offers an effective strategy to isolate the mem-
brane stiffness and avoid discrepancies with the flexural stiff-
ness terms. When one-point quadrature is employed for the
through-thickness integration, the integrands are evaluated at a
single integration point at the midsurface location (ξ3 = 0). In
the application of this strategy, Eqs. (5), (6), and (12)–(14) be-
come the following:

ñ = h S|ξ3=0 , (15)
m̃ = 0 , (16)

D̃A = h Ĉ|ξ3=0 , (17)

D̃B = 0 , (18)

D̃D = 0 , (19)

where (̃·) indicates variables integrated with one-point quadra-
ture along the thickness direction. Based on these updated
quantities, the internal stiffness matrix evaluated using one-
point quadrature through the thickness reduces to

K̃int
rs =

∫
S0

(
D̃A

∂εεε

∂us
:
∂εεε

∂ur
+ ñ :

∂2εεε

∂ur∂us

)
dS , (20)

which only contains contributions related to the membrane stiff-
ness. In using this approach to decouple and isolate the com-
ponents of the internal stiffness that are individually related to
either the membrane or flexural stiffness, the follow matrix defi-
nitions are adopted. Kint

1.0 and Kint
0.5 are the stiffness matrices cal-

culated based on h = 1.0H and h = 0.5H, respectively, where
H is the baseline shell thickness and h is the shell thickness

1For the St. Venant–Kirchhoff material, note that the coupling stiffness is
zero, and the flexural stiffness includes only bending contributions.
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used in the through-thickness integration. K̃int
1.0 and K̃int

0.5 are the
stiffness matrices computed based on the one-point quadrature
definition for the corresponding shell thicknesses. We then de-
fine

Kme
1.0 = K̃int

1.0 , (21)

Kfle
1.0 = Kint

1.0 − K̃int
1.0 , (22)

Kme
0.5 = K̃int

0.5 , (23)

Kfle
0.5 = Kint

0.5 − K̃int
0.5 , (24)

where Kme
(·) and Kfle

(·) indicate the membrane and flexural stiff-
nesses, respectively. For each case in which a different mem-
brane or flexural stiffness contribution is incorporated, the cor-
responding internal stiffness can be computed by combining the
contributions from each individual stiffness matrix. For exam-
ple, in a case with 50% reduced membrane stiffness and base-
line flexural stiffness, the internal stiffness can be computed as

Kme
0.5 + Kfle

1.0 =
(
K̃int

0.5

)
+

(
Kint

1.0 − K̃int
1.0

)
. (25)

2.4. Simulation setup
The computational setup for the heart valve simulations is

shown in Fig. 1. We refer to the “inlet” as the left ventricular
end of the aorta and the “outlet” as the end of the tubular as-
cending aorta. An idealized left-ventricular pressure waveform
is applied as a traction boundary condition at the inlet bound-
ary of the fluid domain (not including the fluid–solid interface.)
This idealized pressure waveform is selected to remove the pos-
sibility of flutter initiation due to an oscillatory pressure con-
dition. The applied pressure signal is periodic, with a period
of 0.86 s for one cardiac cycle. A resistance boundary condi-
tion [44] is applied at the outlet boundary of the fluid domain
in the form of a traction −(p0 + RQ)nf, where p0 = 80 mmHg
is a constant physiological pressure, nf is the outward-facing
normal vector of the fluid domain, R = 70 (dyn s)/cm5 is a
resistance coefficient, and Q is the outlet volumetric flow rate.
Backflow stabilizations [45] are enforced at both ends of the
fluid domain.

Based on previous FSI simulations of the valve [27, 28], the
fluid density and dynamic viscosity are 1.0 g/cm3 and 3.0×10−2

g/(cm s), respectively, which models human blood. The mate-
rial for the artery wall tissue is modeled as a generalized neo-
Hookean model with dilatational penalty [46] with a Young’s
modulus of 1.0 × 107 dyn/cm2 and Poisson’s ratio of 0.45. The
density of the arterial wall is 1.0 g/cm3, and a mass-proportional
damping with coefficient 1.0 × 104 s−1 is added to the wall mo-
tion to model the interaction of the artery with the surrounding
tissues and interstitial fluid. A zero-traction boundary condition
is applied on the outer wall of the artery, and the cross sections
of the inlet and outlet are allowed to slide in their respective
tangential planes and deform radially, but constrained in their
normal directions [47].

Following the previous flutter study [9], the valve dimen-
sions are determined for the 23-mm-diameter annulus aorta ge-
ometry, and a typical 23-mm valve geometry is constructed with
a leaflet diameter of 21.9 mm and a leaflet height of 11.1 mm
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Figure 1: Setup for the FSI simulation, including the aorta model with the
stress-free state of the bioprosthetic heart valves, the left ventricular pressure
waveform enforced on the inlet, and the frequency analysis for the pressure
signal, analyzed over the t = 0.1 to 0.3 s time period. The fiber orientation
of 45◦ is shown on the leaflets in the aorta model. The valve dimensions are
DL = 21.9 mm and hL = 11.1 mm, and the leaflets are labeled as RC: right
coronary leaflet, LC: left coronary leaflet, and NC: non-coronary leaflet. The
normal vectors of the leaflet surfaces point from the aortic side to the ventricular
side of the valve.

(Fig. 1). While this work is motivated by transcatheter valve
technologies, it primarily focuses on the mechanics of the bio-
prosthetic valve tissues. To investigate these fundamental char-
acteristics, a relatively simple valve configuration is selected for
this study to limit the number of additional system complexities
introduced by typical percutaneous implants [32]. The stent
of the bioprosthetic valve is assumed to be rigid and station-
ary given its large stiffness relative to the leaflets and the artery
wall. Each leaflet is clamped to the stent at the attachment edge,
and the entire valve is immersed into the sinus section of the
aorta (sinus of Valsalva), with the suture ring of the stent in-
tersecting the artery wall. The degrees of freedom associated
with solid elements of the artery wall that are intersected by
the stent are fixed in space and time. The leaflets are modeled
with the transversely isotropic Lee–Sacks material model [43]
with a 45◦ fiber orientation that approximates the collagen fiber
alignment of typical pericardial tissue. The material coefficients
reported by Wu et al. [43], which are obtained from fitting
the equibiaxial experimental data of a glutaraldehyde-treated
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bovine pericardium specimen [48], are adopted. The density of
the leaflets is 1.0 g/cm3, and the baseline leaflet thickness H is
0.368 mm.

The aorta domain is discretized with quadratic trivariate
nonuniform rational B-spline elements, with 8640 elements
in the artery wall and 88,560 elements in the fluid domain.
The valve is modeled using cubic B-spline surfaces, with each
leaflet comprising 351 B-spline elements and the stent com-
prising 1380 B-spline elements. The FSI simulation starts at
t = 0.6 s, which corresponds to the diastolic phase of the car-
diac cycle, with homogeneous initial conditions. The simula-
tion advances in time using a time step size of 1.0× 10−4. After
the initial transient from t = 0.6 to 0.86 s, four consecutive car-
diac cycles are subsequently simulated, and the solutions from
the last cardiac cycle are analyzed and reported in the following
sections.

3. Results

3.1. Valve cases
To examine the effect of the membrane and flexural stiff-

nesses, five different valve cases are simulated and analyzed. In
the previous study on the impact of tissues thickness on leaflet
flutter [9], FSI simulations were carried for four different leaflet
thicknesses at 100%, 75%, 50%, and 25% of the baseline tis-
sue thickness of 0.386 mm, where the labels BP-100, BP-75,
BP-50, and BP-25 were used to indicate a bovine pericardium
(BP) valve at a specific percentage of the baseline thickness.
Based on the results from the previous work, which indicated
that flutter is not present in the BP-100 and BP-75 cases and
develops in the BP-50 case, the present study primarily isolates
and focuses on the BP-50 case to examine the underlying me-
chanics related to a reduced tissue thickness that contribute to
the appearance of the flutter response.

As shown in Table 1, in addition to the baseline BP-100 case
that does not induce flutter, four other valve cases are also ex-
amined. The first two additional cases, labeled as BP-M50 and
BP-F50, isolate the impact of individually reducing the valve
membrane and flexural stiffnesses, respectively, by computing
the corresponding stiffness for a tissue thickness of 0.5H. The
third case, labeled as BP-MF50, isolates the impact of simulta-
neously reducing the membrane and flexural stiffnesses based
on 0.5H and maintaining the original mass that is consistent
with a tissue thickness of 1.0H. Finally, the fourth additional
case, labeled as BP-M12.5, identifies the impact of the mem-
brane stiffness when it is reduced by a similar ratio as the flex-
ural stiffness in the BP-F50 and BP-MF50 cases. In classi-
cal plate theory, bending stiffness varies with h3, and a 50%
thickness reduction results in a 87.5% reduction of the bending
stiffness. Evaluating the membrane stiffness based on a 12.5%
thickness approximates same ratio of reduction in membrane
stiffness due to its proportional variation with h. For quantities
reported on a single leaflet, the results are based on the data
from the left coronary leaflet.

Remark 1. Based on the results for the BP-MF50 case that will
be presented in the following sections, which exhibit equiva-

Table 1: Valve cases for the study of membrane and flexural stiffnesses. The ta-
ble shows the corresponding thickness from which the stiffness is computed for
both the membrane and flexural contributions. The calculation of the stiffness
matrices is based on the proposed method outlined in Section 2.3.

Valve case Membrane Flexural Stiffness
labels contribution contribution calculation

BP-100 1.0H 1.0H Kme
1.0 + Kfle

1.0

BP-M50 0.5H 1.0H Kme
0.5 + Kfle

1.0

BP-M12.5 0.125H 1.0H Kme
0.125 + Kfle

1.0

BP-F50 1.0H 0.5H Kme
1.0 + Kfle

0.5

BP-MF50 0.5H 0.5H Kme
0.5 + Kfle

0.5

lent behavior and flutter response to the original BP-50 case
in Johnson et al. [9], we conclude that the mass has a negligible
impact on the flutter behavior of the leaflets. After examin-
ing the impact of simultaneously reducing the membrane stiff-
ness and mass based on the 12.5% thickness, as shown in Ap-
pendix B, the same conclusion can be drawn from the results.
This additional case exhibits a very similar dynamic leaflet re-
sponse as the BP-M12.5 case, so the corresponding quantities
of interest for the reduced mass cases are not included in the
following study.

3.2. Flow results

The results for the volume rendering visualization of the
flow speeds and the vorticity isosurfaces, colored by the axial
(normal to the aortic annulus) velocity are shown in Fig. 2 at
the peak opening of the valve (t = 0.25 s). The transvalvular
pressure gradient is also evaluated for each case as the differ-
ence between the left-ventricular pressure (0.1 cm below the
annulus) and the aortic pressure (1.3 cm above the annulus)
and shown in Fig. 3. As observed from the flow visualization,
there are large, uninterrupted regions of high-speed flow in the
aorta in the BP-100, BP-M50, and BP-M12.5 cases and rela-
tively minimal vortex formation near the leaflets. The BP-F50
and BP-MF50 cases exhibit more chaotic, disturbed flow in
the downstream region and additional vortices induced near the
heart valve, which were previously identified as typical charac-
teristics of valves that experience leaflet flutter [9].

When evaluating the transvalvular pressure gradient, differ-
ent types of flow oscillation are observed for different valve
cases. In the BP-100, BP-M50, and BP-M12.5 cases, small-
amplitude oscillations are initially observed in the transvalvular
pressure before t = 0.1 s and subside after t = 0.16 s. In the
the BP-F50 and BP-MF50, oscillations in the pressure are ob-
served beginning after t = 0.05 s. In these cases, the initial
amplitude of the pressure oscillations is relatively small and
exhibits a substantial amplification over the t = 0.1 to 0.3 s
time period, indicative of leaflet flutter in these cases, that is
not present in the BP-100, BP-M50, and BP-M12.5 cases. As
observed from these results, the cases that have a reduced mem-
brane stiffness also indicate a decrease in the pressure gradient
that results from the additional radial expansion or stretching
that is allowed for these valves, which will be more apparent
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Figure 2: FSI simulation results at t = 0.25 s for each valve case. (a) Volume rendering visualization of the flow speeds and (b) vorticity isosurfaces, colored by the
axial (normal to the aortic annulus) velocity.
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Figure 3: Transvalvular pressure results for each valve case. (a) Transvalvular
pressure gradient computed between the left ventricle (0.1 cm below the annu-
lus) and the aorta (1.3 cm above the annulus) and (b) frequency domain from
discrete Fourier transform operations for the t = 0.1 to 0.3 s time period of the
transvalvular pressure signal.

from the geometric orifice area results presented in the follow-
ing sections.

To specifically examine the prominent high-frequency flow
fluctuations within the t = 0.1 to 0.3 s time period, we isolate
this section of the opening period for further frequency analysis
(Fig. 3b). In each case, some low frequencies are present due to
the overall opening and closure behavior of the valve within this
time period that are also observed in the frequency analysis of
the left ventricular pressure waveform in Fig. 1; however, there
are also characteristic high frequencies within the 40–70 Hz fre-
quency range for the BP-F50 and BP-MF50 cases. This high-
frequency pressure gradient oscillation corresponds to the flut-
ter behavior in these cases, with the BP-F50 valve exhibiting
primary high frequencies around 60 Hz and the BP-MF50 valve
exhibiting high frequencies near 55 Hz.

3.3. Valve opening area

To obtain a better understanding of the valve behavior, the
geometric orifice area (GOA), or anatomical area of the aor-

tic valve orifice, is also quantified. The GOA is calculated by
projecting the opening area of the valve onto the plane perpen-
dicular to the aortic axis. Fig. 4 shows the outline of the five
valve cases from the top view for selected time instances of
t = 0.23, 0.24, 0.25, and 0.26 s. The supplementary video also
shows the leaflet motion during the t = 0.0 to 0.35 time period.
These results show the overall valve opening and demonstrate
the apparent geometric variation of the free edge during this
time period in the BP-F50 and BP-MF50 cases that experience
flutter. The projected GOA is also calculated and shown for
the opening period (t = 0 to 0.35 s) in Fig. 5 and the supple-
mentary video. Frequency analysis of the t = 0.1 to 0.3 s time
interval is again performed to obtain the frequency-domain be-
havior of the GOA signal. From the GOA results, it is clear
that each case has some degree of oscillation in the initial stage
of the valve opening. Based on the overall valve behavior for
each case during this opening stage, this oscillation is likely the
dynamic response of the leaflet system under the applied pres-
sure load. In the BP-100, BP-M50, and BP-M12.5 cases, this
transient response is damped throughout the opening period, as
observed from the diminishing oscillation amplitudes in these
cases. In the BP-F50 and BP-MF50 cases, some of the same
initial oscillations in the GOA signal are observed, likely due
to the dynamic response of the leaflets; however, this behavior
is not damped over the t = 0.1 to 0.3 s time period. Instead,
the oscillation behavior is amplified and continues to increase
until the valve begins to close. This response indicates signifi-
cant leaflet flutter in the cases with the reduced flexural stiffness
that is not observed with the reduced membrane stiffness. High
frequencies corresponding to the high-frequency flutter oscilla-
tions are also observed in the frequency domain for these cases.

As observed from the GOA results, reducing the membrane
stiffness produces larger valve opening areas. While reducing
the flexural stiffness induces a flutter response in the BP-F50
case, this change does not significantly alter the lower-bound
value of the GOA compared to the BP-100 case, and the in-
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Figure 4: Top view of the leaflet free-edge shapes for each valve case at selected time instances.
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Figure 5: Results from the projected geometric orifice area (GOA) calculation
for each valve. (a) Projected GOA for each valve and (b) frequency domain
from the discrete Fourier transform operations for t = 0.1 to 0.3 s of the GOA.

Table 2: Energy efficiency (η) of each valve. The energy efficiency is defined as
the ratio between flow energy exiting and entering the aorta during one cardiac
cycle. ε denotes the relative difference with respect to the BP-100 case.

BP-100 BP-M50 BP-M12.5 BP-F50 BP-MF50
η (%) 90.46 91.61 92.26 89.28 90.31
ε (%) — 1.27 1.99 −1.30 −0.16

crease in area above the BP-100 results is primarily due to the
oscillatory flutter behavior that increases the maximum GOA.
The combined effect of the reduced membrane and flexural
stiffnesses in the BP-MF50 case has a significant impact on the
GOA compared to the BP-100 case due to the addition of flut-
ter and the higher stretching behavior of the valve. Similar high
frequencies to those present in the transvalvular pressure gra-
dient data are also observed in the GOA for the BP-F50 and
BP-MF50 due to the flutter behavior. In the BP-M12.5 case, the
GOA signal contains similar prominent frequencies (55–60 Hz)
in the oscillatory dynamic response that are also present in the
BP-F50 and BP-MF50 cases. This consistent frequency behav-
ior likely indicates that the leaflet flutter is initially induced as a
result of the dynamic response of the tissue that is not mitigated
in the leaflets with reduced flexural stiffness.

3.4. Energy efficiency results
The results for the energy efficiency of each case are also

quantified to identify the impact of the individual stiffness con-
tributions. The energy efficiency, η, is defined as the ratio be-
tween the energy fluxes out of and into the system [49] and
is calculated by integrating the energy fluxes on the outlet and
inlet of the aorta over a complete cardiac cycle. As shown in
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Figure 6: Results from the strain calculation for each valve. (a) Maximum in-
plane principal Green–Lagrange strain (MIPE) on the valve evaluated on the
aortic side of the shell surface at the center of the free edge of the left coronary
leaflet and (b) frequency domain from the discrete Fourier transform operations
for t = 0.1 to 0.3 s of the MIPE.

Table 2, the energy efficiency is computed for each case, and
the relative change in efficiency in the BP-M50, BP-M12.5,
BP-F50, and BP-MF50 cases is compared with the BP-100
case. As observed from these results, the reduced membrane
stiffness increases the energy efficiency due to the increased
GOA without induced flutter, while the reduced flexural stiff-
ness reduces the energy efficiency due to the introduction of
flutter in the BP-F50 and BP-MF50 cases. The combined effect
of simultaneously reducing the membrane and flexural stiff-
nesses leads to a valve that is less efficient than the BP-100 case,
due to the flutter behavior, but more efficient than the BP-F50
case due to the increased opening area related to the reduction
in the membrane stiffness.

3.5. Strain results

The strain on each valve case is also evaluated to identify
the impact of the individual stiffness contributions on the struc-
tural performance of the valve and the possible contribution to
the durability and fatigue behavior of each case. Fig. 6 illus-
trates the maximum in-plane principal Green–Lagrange strain
(MIPE) computed on the aortic side of the shell surface at the
center of the free edge of the left coronary leaflet to highlight
the temporal strain behavior of the valves. The temporal fre-
quency behavior of the MIPE is also analyzed. The computed
quantities for the BP-F50 and BP-MF50 cases again demon-
strate the oscillatory motion of the leaflets in time and display
frequencies that are similar to the high frequencies that were
observed in the GOA, with some additional higher frequencies
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Figure 7: Distributions of the maximum in-plane principal component of the (a) membrane strain tensor εεε and (b) curvature change (due to bending) tensor κκκ,
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the valve. The normal vector of the shell points from the aortic side to the ventricular side of the leaflet.

in the 80–100 Hz range also being observed.
Fig. 7 shows the distributions of the individual contribu-

tions of the membrane strain and curvature change (due to
bending) to the MIPE for each valve at peak systole. The
BP-100 and BP-M50 valves show similar overall behavior in
the membrane strain and curvature change distributions; how-
ever, the reduction in the membrane stiffness allows the valve
to stretch more, resulting in higher membrane strains on the
leaflets. The BP-M12.5 case, as expected, also exhibits high
membrane strain concentrations centered in similar locations
that extend further into different areas of the leaflets compared
to the BP-100 and BP-M50 cases. In the cases that do not
experience flutter, the highest magnitude and degree of varia-
tion in the curvature change is localized near the attachment
edges of the leaflets. The central region of each leaflet has a
relatively low degree of variation in the curvature change. De-
spite the flutter behavior in the BP-F50 case, this valve exhibits
overall lower membrane strain concentrations due to the mini-
mal stretching in the leaflet compared to the other valves. The
BP-MF50 case experiences membrane strains that would be
similar to the combined behavior of the BP-M50 and BP-F50
cases. Compared to the valves that do not experience flutter,
both the BP-F50 and BP-MF50 valves also exhibit distinctly
different overall opening shapes in the leaflets and curvature
change distributions due to the higher folding behavior of these
valves in the central region of the leaflets. The results for the
full MIPE distributions in each case are shown in Appendix C.

4. Discussion

The present study implemented a computational FSI ap-
proach to investigate the contributing mechanics in heart valve
leaflet flutter for thinner tissues. This work simulated five valve
cases, each having different membrane and flexural stiffness
properties, to isolate the underlying mechanics that contribute
to the initiation of flutter in thinner biological tissues. While
leaflet flutter has been previously identified as an undesirable
behavior in these valves, due to the possibility of decreased

valve durability resulting from increased cyclic stresses [9] and
the flutter-induced flow disturbances that may lead an increased
risk of thrombosis [12, 50], the primary mechanics contributing
to leaflet flutter in thinner tissues had not been previously iden-
tified. Based on the results in this study for the specific stiffness
quantities and thickness ranges that have been examined, the
reduced flexural stiffness is the primary factor that contributes
to increased leaflet flutter in the thinner biological tissues, and
the membrane stiffness and mass have minimal impacts on the
incidence of flutter.

In the cases that experience flutter due to a decreased flex-
ural stiffness corresponding to the thinner tissue, the FSI re-
sults indicate disturbed blood flow, oscillatory pressure behav-
ior, and additional induced vortex formation near the valve. The
GOA results in the BP-F50 and BP-MF50 cases also exhibit
the oscillatory behavior induced by the leaflet flutter in addi-
tion to an increased GOA compared to the BP-100 case, with
the BP-MF50 valve allowing more valve expansion than the
BP-F50 valve due to the decrease in membrane stiffness. In
both of these cases, the induced flutter behavior causes a de-
crease in the energy efficiency due to the increased viscous dis-
sipation. In contrast, while the BP-M50 and BP-M12.5 valves
exhibit an increased GOA due to the higher stretching thresh-
old of the tissue, these cases demonstrate an expected increase
in energy efficiency when flutter is not present.

The results from the strain signal and distributions also
demonstrate the direct changes in leaflet behavior for differ-
ent cases as well as the induced flutter due to the decreased
flexural stiffness corresponding to the reduced tissue thickness
in the BP-F50 and BP-MF50 cases. For the strain quantities,
these results also indicate the significant increase in maximum
strain in the BP-M50 and BP-M12.5 cases due to the reduced
membrane stiffness. Although the overall strain in these cases
is higher, it is possible that the added localized, high-amplitude
cyclic stress in the BP-F50 and BP-MF50 cases could lead to
more problematic fatigue behavior compared to overall higher,
uniform strain values, particularly if the strain increase is rela-
tively minor (e.g., the BP-M50 case).
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While this study focuses on identifying the specific under-
lying tissue mechanics that contribute to leaflet flutter, there are
still a number of limitations in this work and additional flutter-
related quantities that could be investigated. The present work
explores a finite set of material input parameters that may not
capture a comprehensive view of the influence of the properties
that were examined in this study. Additionally, the results are
for simulations with a single pressure waveform that consider
only the specified boundary and pressure conditions. In the fu-
ture, based on the robustness and flexibility of the IMGA FSI
framework for heart valve simulation, additional studies with
other conditions, such as different ventricular pressure wave-
forms or patient-specific conditions, could also be analyzed.
Further investigations of the impact of thinner tissues on flutter
behavior could explore uncertainty or variation in the experi-
mentally derived parameters or relevant input quantities. Future
studies might also investigate the influence of other parameters,
such as flow speed and leaflet size [51], as well as geometric
variations [52], on leaflet flutter and determine the critical flex-
ural stiffness for the onset of flutter. Extended analysis of flow
in the ascending aorta for cases with leaflet flutter could pro-
vide additional insight on the physics of turbulence and flutter-
induced flow instabilities in the cardiovascular system. Fatigue
studies of heart valve leaflet flutter could also improve knowl-
edge about the long-term effects of flutter behavior on the dura-
bility of bioprosthetic tissues.

Although there are many possible negative impacts of us-
ing thinner biological tissues in heart valve implants, includ-
ing leaflet flutter, there are also numerous motivating factors
to incorporate these tissues in bioprosthetic valves. One of the
primary benefits of thinner tissues, particularly in transcatheter
valve replacement procedures, is the reduced risk of compli-
cations with the smaller-diameter catheters that can be used
to deploy implants that incorporate thinner tissues [8]. Addi-
tionally, thinner tissues that do not experience flutter can also
increase the energy efficiency of the implant by reducing the
transvalvular pressure and allowing blood to flow more easily
through the aortic valve. Identifying the underlying mechan-
ics that contribute to leaflet flutter provides a clear indication of
the mechanical quantities related to thinner tissues that may of-
fer beneficial or detrimental effects. The results from this work
offer a substantial opportunity for future research in the area of
bioprosthetic tissue engineering for leaflet design. Given the
benefits of thinner tissues and the significant impact of the flex-
ural stiffness on leaflet flutter, an ideal bioprosthetic implant
would incorporate relatively thin tissues with a low to moderate
membrane stiffness and comparatively high flexural stiffness to
improve valve performance and simultaneously mitigate flutter
behavior and its negative effects.

Appendix A. St. Venant–Kirchhoff material

For the isotropic St. Venant–Kirchhoff material, S = C̄E,
where C̄ is the elasticity tensor that is constant through the shell
thickness. For this linear stress–strain relationship, in contrast
to general hyperelastic materials, it is relatively straightforward
to separate the individual membrane and bending contributions

within the internal stiffness. In this model, Eqs. (5), (6), and
(12)–(14) become

n =

∫ h/2

−h/2
S dξ3 =

∫ h/2

−h/2
C̄

(
εεε + ξ3κκκ

)
dξ3 = h C̄εεε , (A.1)

m =

∫ h/2

−h/2
S ξ3dξ3 =

∫ h/2

−h/2
C̄

(
εεε + ξ3κκκ

)
ξ3dξ3 =

h3

12
C̄κκκ ,

(A.2)

DA =

∫ h/2

−h/2
C̄ dξ3 = h C̄ , (A.3)

DB =

∫ h/2

−h/2
C̄ ξ3dξ3 = 0 , (A.4)

DD =

∫ h/2

−h/2
C̄

(
ξ3

)2
dξ3 =

h3

12
C̄ , (A.5)

and the internal stiffness matrix becomes

Kint
rs =

∫
S0

(
DA

∂εεε

∂us
:
∂εεε

∂ur
+ n :

∂2εεε

∂ur∂us

+ DD
∂κκκ

∂us
:
∂κκκ

∂ur
+ m :

∂2κκκ

∂ur∂us

)
dS . (A.6)

Within this internal stiffness formulation, the first two terms
on the right-hand-side of the equation represent the membrane
stiffness, and the latter two terms represent the bending stiff-
ness. The membrane–bending coupling stiffness vanishes since
DB = 0, and there are no additional interdependent stiffness
terms.

Appendix B. Mass reduction case

To examine the impact of reduced mass on the initiation of
flutter, the BP-M12.5 case is compared to an additional case
(BP-MM12.5) where the membrane stiffness and mass are both
reduced based on 12.5% of the thickness (0.125H instead of
1.0H). This case is selected as an extreme example to demon-
strate a more severe impact of the reduced mass on the flutter
behavior. As shown in Fig. B.1, the results of the GOA in these
two cases are very similar, with minimal differences observed in
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Figure B.1: Results from the projected geometric orifice area (GOA) calcula-
tion for the BP-M12.5 and BP-MM12.5 valves. (a) Projected GOA for each
valve case and (b) frequency domain from the discrete Fourier transform oper-
ations for t = 0.1 to 0.3 s of the GOA.
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Figure C.1: Maximum in-plane principal Green–Lagrange strain (MIPE) on each valve at the peak opening (t = 0.25 s) evaluated on the aortic side of the leaflets.

the magnitude of the dynamic responses. Even with the signif-
icant mass reduction in this case, the dynamic leaflet response
is damped out during the opening period, and there is no flutter
induced in the BP-MM12.5 case, which indicates that the mass
does not significantly impact the flutter behavior of the leaflets.

Appendix C. Green–Lagrange strain distributions

The distributions of the maximum in-plane principal
Green–Lagrange strain (MIPE) are shown in Fig. C.1 for the
peak opening at t = 0.25 s. These results show the combined
effect of the membrane strain and the curvature change distribu-
tions, shown in Fig. 7. The Green–Lagrange strain (E) is based
on Eq. (2) and is evaluated on the aortic side of the leaflets
based on the tissue thickness that is used to compute the flexu-
ral stiffness, which maintains through-thickness properties that
are consistent with the simulation quantities.
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