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1 Introduction

Residual-based variational multiscale methods were recently advocated and suc-
cessfully used for turbulence modeling in the LES regime in [3]. The main idea
of the variational multiscale approach is the a-priori decomposition of the underly-
ing functional weighting and solution spaces into coarse and fine scales. The coarse
scales are associated with the numerical approximation, while the fine scales are as-
sociated with the subgrid scales and, as a result, require modeling. Residual-based
models were proposed in [3], where the fine-scale field was assumed to be propor-
tional to the residuals of the coarse scale. The proportionality factors, the so-called
τ’s, are obtained through asymptotic scaling arguments that were developed in sta-
bilized methods theory over the last three decades (see, e.g., [1, 4–12]). Recently
τ’s were identified with low-order moments of the fine-scale Green’s function, a
fundamental object in the design and analysis of variational multiscale methods
(see [13]).

Stabilization parameters play a critical role in the success of the stabilized and vari-
ational multiscale methodologies. Despite decades of research devoted to them,
several outstanding issues remain. One such issue, that to this day generates much
debate in the community, is the dependence of τ’s on the time step for time-
dependent simulations. In particular, conventional definitions of τ’s that include
the time-step are not well-behaved for small time steps in both time-dependent and
steady-state regimes. On the contrary, conventional definitions of τ’s that do not
include the time-step size are not sufficiently robust for complex flow situations.
Evidence of the latter fact will be shown in the numerical example portion of this
paper.

In recent works, Harari [14] and Harari and Hauke [15] examined the small-time-
step problem in the context of diffusion and advection-diffusion problems, respec-
tively, and introduced simple modifications to τ’s to account for the small-time-step
limit.

The small-time-step deficiency was also addressed in Codina et al. [16] in the
context of variational multiscale methods for incompressible flow by means of
so-called “dynamic subgrid scales.” In [16] an ordinary differential equation and
asymptotic scaling arguments are used to advance the fine-scale field in time. The
fine-scale field becomes a “history variable” that needs to be stored at each inte-
gration point, leading to a computational structure that is similar to that for in-
elastic constitutive equations in computational solid mechanics (see, e.g., Simo and
Hughes [17]). Calculations and an analytical stability analysis confirm the good be-
havior of the dynamic subgrid scales approach [16]. A simplified implementation
that only requires an additional vector of the size of the global unknowns may be
found in the recent article by Houzeaux and Principe [18].
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In this article, we present another approach that is based on the element-vector-
based (EVB) definition of τ’s proposed in [1, 2]. In this methodology, τ’s are built
by examining relative magnitudes of the terms appearing in the variational equa-
tions, which is yet another form of a scaling argument. Our calculations confirm
that this methodology is robust for all time-step sizes. Furthermore, an appropriate
definition of the stabilization parameter for the steady flow regime is recovered.

In Section 2 we present the continuous and discrete versions of the variational for-
mulation of the linear time-dependent advection-diffusion equation, show the de-
tails of the formulation of the conventional and EVB stabilization parameters, and
compare their performance on the benchmark example of advection of an L-shaped
discontinuity. In Section 3 we present the residual-based variational multiscale for-
mulation of the incompressible Navier-Stokes equations and compare the perfor-
mance of the conventional and EVB stabilization parameters on two benchmark
problems: laminar flow in a square domain at low Reynolds number and turbulent
channel flow at friction-velocity Reynolds number of 395.

In all numerical calculations we use the generalized-α method for time integra-
tion with the high frequency damping parameter ρ∞ set to 0.5 (see, e.g., [19, 20]).
We use B-splines of maximal continuity for the spatial discretization as we have
demonstrated these provide superior accuracy and robustness compared with C0-
continuous finite elements in flow simulations (see, e.g., [3, 21–24]). Nevertheless,
we feel the main conclusions have more general applicability, and, in particular, are
applicable to low-order finite elements. These are presented in Section 4.

2 Advection-diffusion equation

2.1 Continuous problem

Consider the following time-dependent advection-diffusion equation for φ:

Lφ = f in Ω, (1)

where

Lφ =
∂φ

∂t
+ a · ∇φ − ∇ · (κ∇φ), (2)

in which f is the given source, a is the solenoidal velocity field, κ is the diffusivity,
and Ω is the spatial domain of the problem. The essential and natural boundary
conditions associated are:

φ = g on ΓD, (3)
κ∇φ · n = h on ΓN , (4)
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where ΓD and ΓN are the Dirichlet and Neumann parts of the boundary Γ of the
domain Ω, g and h are the prescribed data, and n is the unit outward boundary
normal.

LetVg andV0 denote the trial solution and weighting function spaces, respectively,
where subscripts g and 0 refer to the essential boundary conditions. The variational
counterpart of Eq. (1) reads: find φ ∈ Vg such that ∀w ∈ V0,(

w,
∂φ

∂t
+ a · ∇φ

)
Ω

+ (∇w, κ∇φ)Ω = (w, f )Ω + (w, h)ΓN , (5)

where (·, ·)Ω and (·, ·)ΓN denote the L2-inner products on Ω and ΓN , respectively.

2.2 Discrete formulation

Let Vh
g and Vh

0 be finite-dimensional subspaces of Vg and V0, respectively. We
state the semi-discrete formulation of the advection-diffusion problem as follows:
find φh ∈ Vh

g such that ∀wh ∈ Vh
0,(

wh,
∂φh

∂t
+ a · ∇φh

)
Ω

+
(
∇wh, κ∇φh

)
Ω
−

(
wh, f

)
Ω
−

(
wh, h

)
ΓN

+

nel∑
e=1

(
τa · ∇wh,Lφh − f

)
Ωe

= 0. (6)

Variational equation (6) is the SUPG formulation of the advection-diffusion prob-
lem [4]. In the sequel we first provide the conventional definitions of the stabiliza-
tion parameter τ appearing in (6), followed by the EVB definition, first proposed in
[1, 2].

2.2.1 Conventional definition of τ’s

The following definition of τ is often employed in practice (see, e.g., [3, 25, 26])

τ = (
4

∆t2 + a · Ga + CIκ
2G : G)−1/2, (7)

where ∆t is the time-step size, CI is a positive constant, independent of the mesh
size, derived from the element-wise inverse estimate (see, e.g., [27]),

Gi j =

3∑
k=1

∂ξk

∂xi

∂ξk

∂x j
, (8)

G : G =

3∑
i, j=1

Gi jGi j, (9)
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a · Ga =

3∑
i, j=1

aiGi ja j, (10)

and ∂ξ/∂x is the inverse Jacobian of the element mapping between the parametric
and physical domains.

Although often employed in practice, τ defined by Eq. (7) is subject to the following
criticisms:

(1) Definition (7) is not robust for small time steps. Namely, in the limit of ∆t →
0, the ∆t term becomes dominant and τ → 0. As a result, formulation (6)
reverts to the Galerkin’s method, which, in turn, is known to be unstable for
the advection-dominated case. As a result, the practitioner is forced to select a
time step that is not “too small” to avoid numerical instability associated with
the small time step limit.

(2) Definition (7) may not be suitable for steady solutions obtained in time-
dependent computations because the steady state depends on ∆t through (7).

In view of these remarks, the ∆t dependence in τ is sometimes omitted and τ takes
on the following definition:

τ = (a · Ga + CIκ
2G : G)−1/2. (11)

Although favorable in some situations, such as steady solutions, simply omitting ∆t
from τmay lead to divergent results in practical computations. We will demonstrate
this in the numerical examples section of this paper.

2.2.2 Element-vector-based (EVB) τ

Let Na, a = 1, . . . , nsh, be the element-level basis functions, and nsh be the number
of element-level basis functions. Let (·, ·)Ωe denote the L2-inner product over the
element domain Ωe corresponding to element e. We define the following element-
level vectors:

cV = {ca} ,

ca =
(
Na, a · ∇φh

)
Ωe
, (12)

k̃V =
{
k̃a

}
,

k̃a =
(
a · ∇Na, a · ∇φh

)
Ωe
, (13)

c̃V = {c̃a} ,

c̃a =

(
a · ∇Na,

∂φh

∂t

)
Ωe

. (14)
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The components of the EVB τ are:

τ−1
1 =

‖ k̃V‖

‖cV‖
, (15)

τ−1
2 =

‖c̃V‖

‖cV‖
, (16)

τ−1
3 = τ−1

1 Pe−1, (17)

where Pe is an element-level Peclet number,

Pe =
‖a‖2

κ

‖cV‖

‖ k̃V‖
. (18)

In equations (15)-(18), ‖ · ‖ denotes the l2-norm. For example, for the vector cV ,

‖cV‖ =

∑
a

c2
a

1/2

. (19)

We define τ as

τ =
(
τ−2

1 + τ−2
2 + τ−2

3

)−1/2
. (20)

Remarks

(1) The τ2 term defined in Eq. (16) directly brings in the dependence of τ on the
time-step size. In the case when the solution is changing in time, this term is
active, while in the steady regime, it is identically zero. As a result, this con-
struction automatically selects a τ appropriate for different solution regimes,
making it attractive for practical applications.

(2) The definition of τ given by Eqs. (15)-(20) can be seen as a nonlinear defi-
nition because it depends on the solution even in linear problems. However,
in marching from time level n to n + 1, the element vectors can be evaluated
at level n. This eliminates the need of solving a nonlinear discrete system in
each time step when the continuous problem is linear.

(3) The definition of τ given by Eqs. (15)-(20) makes τ an element-level constant.
One may also define an EVB τ for every global basis function in the formu-
lation by taking a to be a global basis function index and avoiding summation
over a’s (this option, as well as other variants, were pointed out in [1, 2]). In
fact, we may go as far as recommending this technique for computations that
employ truly global basis functions, such as spectral methods, where conven-
tional definitions of τ (i.e., (7) and (11)) are not directly applicable due to the
global support of the basis functions. However, we note that no experience has
yet been gained with methods using global basis functions.

(4) Note that, in contrast to the original references [1, 2], the element Peclet num-
ber Pe (see Eq. (18)) is defined using the element vector rather than element
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matrix arrays. This is done in the interest of simplicity. It is believed that both
definitions will give similar results.

(5) In references [28–30] the authors successfully employed the element-matrix-
based variant of τ for compressible flow computations.

(6) Note that the EVB τwas designed using scaling arguments to deliver accuracy
comparable to the conventional τ.

2.3 Tests with an L-shaped discontinuity advected skew to mesh

= 0

= 0

= 0= 1

= 1

= 0
  

a = cos ,sin( )

= 10 6,  L = 1

= 45°

1

2
L

1

4
L

Fig. 1. Advection of an L-shaped front. Problem description.

Min = 0.0000, Max = 1.0000

Fig. 2. Advection of an L-shaped front. Elevation plot of the initial condition.
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We test the proposed methodology on the advection of an L-shaped front bench-
mark originally presented in [21]. The problem setup is given in Figure 1. The
diffusivity κ = 10−6, the advection angle is chosen to be 45◦ and the magnitude
of the advective speed is set to unity. The domain is a unit square subdivided into
20 × 20 square elements. At time t = 0 the value of the scalar field is set to unity
in the interior of the L-shaped block located in the lower left-hand corner of the
domain. Elsewhere in the domain φh is set to zero, creating an interior layer with
an L-shaped concave front as shown in Figure 2. The solution is advanced in time
until t = 0.25 as well as to the steady state. Given that the diffusion coefficient is
very small compared to the advection velocity and the mesh size, for all practical
purposes the problem corresponds numerically to pure advection. We will refer to
the interior layer as the discontinuity front, and its location and shape at t = 0.25
are illustrated in Figure 1 with a dashed line.

We compare solutions produced with conventional τ’s defined according to Eqs. (7)
and (11) and the EVB version defined according to Eqs. (15)-(20). Both transient
and steady-state solutions are considered. C5-continuous B-splines of degree six
are employed for all test cases. Very high-order B-splines have been shown to be
especially effective for solutions of the advection-diffusion problem with thin layers
(see, e.g., [21, 24]). Time steps ∆t = 0.025, ∆t = 0.00625, and ∆t = 0.003125 are
used, the last one being much smaller than what is required for time-accuracy.

Results for all three τ’s computed at ∆t = 0.025 are shown in Figures 3 and 4. At
this time step the results are similar for all τ’s for both transient and steady-state
solutions. A small but noticeable “wiggle” is present at the steady state for both the
conventional τ with ∆t and EVB τ. Nevertheless, the maximum overshoot does not
exceed 1.5% and the solution quality is comparable in all cases.

Results for ∆t = 0.00625 are presented in Figures 5 and 6. Transient responses for
all three cases are similar. Comparison of the steady-state results for this time step
reveals the deficiency for the conventional τ with small ∆t: τ is dominated by the
∆t term and it is too small to guarantee a stable steady-state solution (see Figure
6(a)). In contrast, both the conventional τ without ∆t and the EVB τ deliver nearly
identical, stable, and accurate solutions at the steady state.

Results for ∆t = 0.003125 are shown in Figures 7 and 8. At this time step, at
t = 0.25, the conventional τ with ∆t produces small but noticeable wiggles that
propagate from the interior layer inward (see Figure 7(a)). At the steady state, at
this small time step, the effect of the ∆t term in the conventional definition of τ
leads to significant oscillations (see Figure 8(a)), where stability is achieved for the
conventional τ without ∆t and the EVB τ. There are, once again, small oscillations
for the EVB τ.

For this problem, the conventional τ without ∆t generates solutions of somewhat
better quality than the EVB τ. However, as will be shown in the sequel, the con-
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Min = -0.0054, Max = 1.0320

(a) Conventional τ with ∆t

Min = -0.0054, Max = 1.0299

(b) Conventional τ without ∆t

Min = -0.0070, Max = 1.0285

(c) EVB τ

Fig. 3. Advection of an L-shaped front. Results using C5-continuous splines of order six.
Elevation plot of the transient solution (interpolated with 40 × 40 bilinear elements) at
t = 0.25 with ∆t = 0.025

Min = -0.0052, Max = 1.0148

(a) Conventional τ with ∆t

Min = -0.0043, Max = 1.0054

(b) Conventional τ without ∆t

Min = -0.0051, Max = 1.0128

(c) EVB τ

Fig. 4. Advection of an L-shaped front. Results using C5-continuous splines of order six.
Elevation plot of the steady-state solution (interpolated with 40×40 bilinear elements) with
∆t = 0.025.

ventional definition of τ without ∆t is not sufficiently robust in more complicated
situations.
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Min = -0.0048, Max = 1.0097

(a) Conventional τ with ∆t

Min = -0.0082, Max = 1.0044

(b) Conventional τ without ∆t

Min = -0.0096, Max = 1.0039

(c) EVB τ

Fig. 5. Advection of an L-shaped front. Results using C5-continuous splines of order six.
Elevation plot of the transient solution (interpolated with 40 × 40 bilinear elements) at
t = 0.25 with ∆t = 0.00625.

Min = -0.1734, Max = 1.2642

(a) Conventional τ with ∆t

Min = -0.0043, Max = 1.0054

(b) Conventional τ without ∆t

Min = -0.0051, Max = 1.0128

(c) EVB τ

Fig. 6. Advection of an L-shaped front. Results using C5-continuous splines of order six.
Elevation plot of the steady-state solution (interpolated with 40×40 bilinear elements) with
∆t = 0.00625.

3 Variational multiscale residual-based turbulence modeling

In this section we adapt the definition of the EVB τ’s to the incompressible Navier-
Stokes equations and make use of them in the context of the variational multiscale
residual-based turbulence modeling (see [3]). EVB τ’s for stabilized formulations
of the incompressible Navier-Stokes equations were first proposed in [1, 2].
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Min = -0.0110, Max = 1.0125

(a) Conventional τ with ∆t

Min = -0.0082, Max = 1.0045

(b) Conventional τ without ∆t

Min = -0.0087, Max = 1.0040

(c) EVB τ

Fig. 7. Advection of an L-shaped front. Results using C5-continuous splines of order six.
Elevation plot of the transient solution (interpolated with 40 × 40 bilinear elements) at
t = 0.25 with ∆t = 0.003125.

Min = -0.5710, Max = 1.5893

(a) Conventional τ with ∆t

Min = -0.0043, Max = 1.0054

(b) Conventional τ without ∆t

Min = -0.0051, Max = 1.0128

(c) EVB τ

Fig. 8. Advection of an L-shaped front. Results using C5-continuous splines of order six.
Elevation plot of the steady-state solution (interpolated with 40×40 bilinear elements) with
∆t = 0.003125.

3.1 Continuous problem

We begin by considering a weak formulation of the incompressible Navier-Stokes
equations. Let V represent both the trial solution and weighting function spaces,
which are assumed to be the same (we assume for simplicity of exposition that
u = 0 on Γ). We also assume that

∫
Ω

p(t)dΩ = 0 for all t ∈ ]0,T [. As before,
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(·, ·)Ω denotes the L2-inner product with respect to the domain Ω. The variational
formulation is stated as follows: find U = {u, p} ∈ V such that ∀W = {w, q} ∈ V,

B(W,U) = L(W), (21)

where

B(W,U) =

(
w,
∂u
∂t

)
Ω

− (∇w,u ⊗ u)Ω − (∇ · w, p)Ω + (q,∇ · u)Ω

+ (∇sw, 2ν∇su)Ω, (22)
L(W) = (w, f )Ω, (23)

and

∇
su =

1
2

(
∇u + ∇uT

)
. (24)

Here, f is the given body force (per unit mass), ν is the kinematic viscosity and p
is the pressure divided by the density.

Variational equations (21)-(23) imply weak satisfaction of the linear momentum
equations and incompressibility constraint, namely

∂u
∂t

+ ∇ · (u ⊗ u) + ∇p − ∇ · (2ν∇su) − f = 0 in Ω, (25)

∇ · u = 0 in Ω. (26)

3.2 Discrete formulation

Below, we recall the discrete variational formulation of the incompressible Navier-
Stokes equations (see [3]). We approximate Eqs. (21)-(23) by the following vari-
ational problem over the finite-element spaces: find Uh = {uh, ph} ∈ Vh such that
∀Wh = {wh, qh} ∈ Vh,

B
(
Wh,Uh

)
+

(
uh · ∇wh + ∇qh, τM rM

)
Ω

+
(
∇ · wh, τCrC

)
Ω

+
(
(∇wh)T uh, τM rM

)
Ω
−

(
∇wh, τM rM ⊗ τM rM

)
Ω

= L
(
Wh

)
, (27)

where

rM

(
uh, ph

)
=
∂uh

∂t
+ uh · ∇uh + ∇ph − ν∆uh − f , (28)

rC

(
uh

)
= ∇ · uh. (29)

Remarks
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(1) This is a residual-based variational multiscale method for incompressible
Navier-Stokes equations (see [3]). For background, see, e.g., [25, 31–35]. The
first term on the left-hand side of Eq. (27) is the Galerkin term; the next two
terms are classical stabilization terms; and the last two terms are the additional
terms produced by the variational multiscale method.

(2) Note that in the definition of the momentum residual given by Eq. (28), we
applied the incompressibility constraint to the advective and the viscous stress
terms. As a result, the advective term appears in the convection form, while
the viscous stress term appears in the Laplacian form (i.e., compare Eqs. (25)
and (28)). Computational experience indicates that this form is more favorable
for the stability of the discrete formulation.

3.2.1 Conventional definition of τ’s

We recall the conventional definition of τM that is commonly employed in practice
and is form-identical to Eq. (7):

τM =

(
4

∆t2 + uh · Guh + CIν
2G : G

)−1/2

. (30)

In Eq. (27), τC is given as

τC = (τM g · g)−1 . (31)

This definition of τC comes from the small-scale Shur complement operator for the
pressure (see [36]). In Eq. (31), g is a vector obtained by summing ∂ξ/∂x on its
first index as

gi =

3∑
j=1

∂ξ j

∂xi
, (32)

g · g =

3∑
i=1

gigi. (33)

As in the previous section on the time-dependent advection-diffusion equation, we
also consider τM in which the dependence on the time-step size is omitted, that is,

τM =
(
uh · Guh + CIν

2G : G
)−1/2

. (34)

3.2.2 EVB τ’s for the incompressible Navier-Stokes equations

We use the notation of the previous section. In addition, let ei be the ith Cartesian
basis vector. We define the following element-level vectors:

cV =
[
ca,i

]
,
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ca,i =
(
Naei, uh · ∇uh

)
Ωe
, (35)

k̃V =
[
k̃a,i

]
,

k̃a,i =
(
uh · ∇Naei, uh · ∇uh

)
Ωe
, (36)

k̃r
V =

[
k̃r

a,i

]
,

k̃r
a,i =

(
r · ∇Naei, r · ∇uh

)
Ωe
, (37)

c̃V =
[
c̃a,i

]
,

c̃a,i =

(
uh · ∇Naei,

∂uh

∂t

)
Ωe

. (38)

In Eq. (37), r is the unit vector in the direction of the solution absolute value gradi-
ent,

r =
∇‖uh‖∥∥∥∇‖uh‖

∥∥∥ . (39)

The three components of the EVB τ are:

τ−1
1 =

‖ k̃V‖

‖cV‖
, (40)

τ−1
2 =

‖c̃V‖

‖cV‖
, (41)

τ−1
3 = τ−1

1
ν‖ k̃r

V‖

‖cV‖
. (42)

We define τM as

τM =
(
τ−2

1 + τ−2
2 + τ−2

3

)−1/2
. (43)

Remarks

(1) In Eqs. (40)-(42), as before, ‖ · ‖ is used to denote the vector l2-norm, that is,
for the vector cV ,

‖cV‖ =

∑
a,i

c2
a,i


1/2

. (44)

(2) In Eq. (37), k̃r
V is introduced for boundary layer flows. Near solid boundaries,

the vector r points in the direction orthogonal to the solid wall, and, as a result,
for boundary layer elements with high aspect ratios, the EVB τ switches to the
viscous limit with the mesh size h corresponding to the element wall-normal
dimension.
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(3) The equation for τC remains unchanged (see Eq. (31)), although τM employed
in its definition now comes from Eq. (43).

(4) Unlike in the original references [1, 2], we make use of a purely vector-based
definition for τ3 in Eq. (42). This is done in the interest of simplicity and is
well suited for matrix-free computations (not employed in this work).

(5) The τM does not depend on the pressure and is not the same as the EVB τM

for the Navier-Stokes equations proposed by [1, 2]. As such, the present EVB
τM will have a different Stokes limit. This is an issue that is not studied here,
but warrants further investigation.

3.3 Laminar flow in a square domain at low Reynolds number

u = u

u =
sin x 0.7( )sin y + 0.2( )

cos x 0.7( )cos y + 0.2( )

 
 
 

  

 
 
 

  

L = 1

cos x( )cos y( ) + sin x 0.7( )cos x 0.7( )

+2 2 sin x 0.7( )sin y + 0.2( )

sin x( )sin y( ) sin y + 0.2( )cos y + 0.2( )
+2 2 cos x 0.7( )cos y + 0.2( )

 

 

 
 

 

 
 

 

 

 
 

 

 
 

p = sin x( )cos y( ) + cos(1) 1( )sin(1)

= 1.0

f =

u = u

u = u

u = u

Fig. 9. Laminar flow in a square domain at low Reynolds number. Problem description.

The small time step problem also appears when stabilized rather than BB-stable
formulations are employed for the time-dependent Stokes (see e.g., [37, 38]) as
well as low Reynolds number Navier-Stokes (see [16]) problems. To examine the
performance of the different τ’s in this regime, we consider a test case originally
proposed in [38] in the context of the Stokes equations, and solved in [16] using
the Navier-Stokes equations. We consider the latter case. The problem’s setup and
its analytical solution are presented in Figure 9.

We solve the problem using Dirichlet boundary conditions on the velocity field.
The velocity boundary condition is obtained as follows: we perform an L2 projec-
tion of the analytical velocity solution onto our discrete space, which consists of
C1-continuous quadratic B-splines. The control variables at the domain boundary
are assigned Dirichlet boundary conditions with values that come from the L2 pro-
jection. To assign the initial conditions, we set the velocity to zero in the domain
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interior and the pressure to zero everywhere in the domain, including the boundary.
We use a uniform mesh of 80 × 80 elements.

(a) Conventional τ w/ ∆t (b) Conventional τ w/o ∆t (c) EVB τ

Fig. 10. Laminar flow in a square domain at low Reynolds number. Pressure contours of
the solution at the first time step for ∆t = 0.01. The initial conditions are: zero velocity in
the domain interior and zero pressure everywhere.

(a) Conventional τ w/ ∆t (b) Conventional τ w/o ∆t (c) EVB τ

Fig. 11. Laminar flow in a square domain at low Reynolds number. Contours of the
steady-state pressure solution for ∆t = 0.01.

We solve the problem at the large time step of ∆t = 0.01 using all three definitions
of τ. The fluid pressure is shown in Figures 10 and 11, which correspond to the so-
lution at the end of the first time step and the steady-state solution, respectively. In
all cases the solutions are stable. At the steady state, in the interior of the domain,
the discrete pressure solution is very close to its analytical counterpart. However,
at the domain boundary, the pressure solution develops a boundary layer, which
is a well-known artifact that occurs in stabilized formulations of Stokes equations
as well as Navier-Stokes equations in the low Reynolds number regime. (See [39]
for an explanation of this phenomenon and a simple remedy, which was not imple-
mented in this work.)

The sensitivity of the three formulations to small time steps is studied as follows.
We take the steady-state solution from the large time step of ∆t = 0.01 as the
initial condition for the simulation at ∆t = 0.000001. This is the smallest time
step employed in [16, 38]. This procedure of starting with the initial conditions
that are close to the steady-state solution of the underlying equations is similar to
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(a) Conventional τ w/ ∆t (b) Conventional τ w/o ∆t (c) EVB τ

Fig. 12. Laminar flow in a square domain at low Reynolds number. Pressure contours of
the first- and second-step solutions for ∆t = 0.000001. The initial conditions are set to be
the steady-state solution from ∆t = 0.01.

(a) Conventional τ w/ ∆t (b) Conventional τ w/o ∆t (c) EVB τ

Fig. 13. Laminar flow in a square domain at low Reynolds number. Contours of the
steady-state pressure solution for ∆t = 0.000001.

that employed in [16]. The expected result is that the solution does not change,
that is, the steady state results are not sensitive to the definition of the stabilization
parameter. Figure 12 shows the pressure solution for the first two time steps for all
methods considered. The solution remains nearly identical to the initial condition
for the cases of the EVB τ and conventional τ without ∆t. On the other hand, for
the conventional τ with ∆t, the pressure solution rapidly departs from the initial
condition, which means that the steady-state solution is sensitive to this definition
of the stabilization parameter. Also note that the pressure changes sign from the first
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to the second time step, indicating oscillatory-in-time behavior. Despite the rapid
transient in the case of the conventional τ with ∆t, the solution reaches a steady
state that is very similar to that of the other τ definitions (see Figure 13).

Remarks

(1) Despite the sensitivity to the time step size, no spatial pressure instability was
observed for any of the three τ definitions. Even in the case of the small time
step and the conventional τ with ∆t, the transient pressure solution remained
smooth. This is in contrast to the results of [16, 38], and may be attributable
to the differences in the spatial discretization used here and in the aforemen-
tioned references.

(2) We would also like to point out that in [2] the authors used τM defined in Eq.
(43) on the test problem of vortex shedding about a circular cylinder at low
Reynolds number Re = 100. Because of the non-uniformity of the mesh used,
the local Courant number (i.e. the normalized time-step size) varied from ap-
proximately 1.0 to as small as 0.04. The results showed that even at such small
time steps, the element-vector-based τ was stable and yielded an accurate so-
lution.

3.4 Turbulent channel flow at Reτ = 395

Solid wall 

Solid wall 

Flow driven by 

pressure gradient fx 

Fig. 14. Turbulent channel flow. Problem setup.

Our last numerical example is an equilibrium turbulent channel flow at Reynolds
number 395 based on the friction velocity and channel half-width. The problem
setup is shown in Figure 14.The computational domain is a rectangular box of size
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2π×2× 2
3π in the stream-wise, wall-normal, and span-wise directions, respectively.

A no-slip Dirichlet boundary condition is set at the wall (y = ±1), while the stream-
wise and the span-wise directions are assigned periodic boundary conditions. The
flow is driven by a constant pressure gradient, fx, acting in the stream-wise direc-
tion. The values of the kinematic viscosity ν and the forcing fx are set to 1.472×10−4

and 3.37204 × 10−3, respectively, which results in a bulk stream-wise velocity of
unity.

The computations are performed on a mesh of 323 elements and the mesh is graded
in the wall-normal direction to better capture the boundary layer. For the spatial
discretization we employ isogeometric analysis (see, e.g., [3, 22, 24, 40]) and C1-
continuous quadratic B-splines are considered for this test case. Numerical results
are reported in the form of statistics of the mean velocity and root-mean-square
velocity fluctuations. Statistics are obtained by sampling the solution field at the
mesh knots and averaging in the stream-wise and span-wise directions as well as
in time. Comparison of the statistical quantities of interest with the DNS data of
Moser et al. [41] is made in order to assess the accuracy and robustness of the
proposed procedure. All the results are presented in non-dimensional wall units.

We compare the numerical results obtained using the conventional definition of
τM, with and without the ∆t term, and the EVB definition of τM. We consider five
time step sizes: ∆t = 0.1, ∆t = 0.025, ∆t = 0.00625, ∆t = 0.0015625 and ∆t =

0.000390625. Figure 15 corresponds to the simulation at ∆t = 0.1. At this large
time step the solutions are very similar for all τM’s, while the conventional τM with
the ∆t term showing a slightly more accurate mean flow result.

We note that ∆t = 0.1 is the only time step out of the five considered for which we
were able to generate a numerical solution using the conventional τM without ∆t.
For all other time steps we observed rapid divergence with this τM. It is now well
known from numerous test computations carried out by different researchers that
some problems require the inclusion of the transient term in the expression for τM

and some problems require the exclusion of this term. The turbulent channel flow
is a problem that requires the inclusion of the ∆t term, and hence formulation (34)
fails to produce a convergent solution for time step sizes smaller than ∆t = 0.1.

In Figure 16 we compare the solutions obtained with the conventional τM with ∆t
for the four time-step sizes. Stable solutions are obtained for all time step sizes, and
for larger time steps are very similar, but the accuracy of the results deteriorates for
smaller time steps. This is especially evident for the mean flow and stream-wise
fluctuation. The results for the EVB τM are presented in Figure 17. The results for
all time steps are nearly identical and, in particular, no deterioration of accuracy
with decreasing time step size is observed.
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Fig. 15. Turbulent channel flow at Reτ = 395 using quadratic NURBS. Results computed
at ∆t = 0.1 using the conventional τM with and without ∆t, and the EVB τM.

4 Conclusions

We have numerically studied the behavior of element-vector-based (EVB) stabi-
lization parameters in stabilized/variational multiscale formulations of the time-
dependent linear advection-diffusion and incompressible Navier-Stokes equations.
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Fig. 16. Turbulent channel flow at Reτ = 395 using quadratic NURBS. Results us-
ing conventional τM with ∆t for ∆t = 0.025, ∆t = 0.00625, ∆t = 0.0015625 and
∆t = 0.000390625.

In comparison with conventional definitions of stabilization parameters, when the
conventional definitions yield stable results, the EVB parameters yielded compa-
rable accuracy, sometimes slightly worse, sometimes slightly better. However, the
conventional definitions that depend on the time step yield instabilities at small
time steps, and the conventional definitions that do not depend on the time step
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Fig. 17. Turbulent channel flow at Reτ = 395 using quadratic NURBS. Results using EVB
τM for ∆t = 0.025, ∆t = 0.00625, ∆t = 0.0015625 and ∆t = 0.000390625.

yield instabilities in complex, time-dependent flows, such as the turbulent channel
flow, whereas the EVB definitions behaved robustly in all cases studied. At large
time steps, all approaches seem to be more or less equivalent. These findings are
consistent with earlier cases in [1, 2].

The shortcomings of the EVB procedure are that no stability analysis is available
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to validate it theoretically and it introduces a nonlinearity in otherwise linear prob-
lems. With respect to these shortcomings, the dynamic subgrid scales approach of
Codina et al. [16] is superior. However, the EVB procedure has some attributes,
namely, it is simply implemented in existing stabilized/variational multiscale com-
puter programs, it does not entail the solution of an evolution equation for the small
scales and this avoids the storage of small scales as history variables, and it pro-
vides a fair combination of accuracy and robustness in contrast with conventional
definitions. We understand the approach is ad hoc and we do not believe it is the
ultimate solution to the definition of small-scales in stabilized and variational mul-
tiscale methods, but based on our results and others we know of [1, 2], it appears to
be a simple, effective and practically useful option. When things work, they usually
work for a reason. Is there a fundamental basis of the EVB procedure? This is an
intriguing question that can only be answered by future research.
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