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Abstract

Computational fluid dynamics (CFD) simulations of flow over complex objects have
been performed traditionally using fluid-domain meshes that conform to the shape of
the object. However, creating shape conforming meshes for complicated geometries
such as automobiles requires extensive geometry preprocessing. This process is usually
tedious and requires modifying the geometry, including specialized operations such as
defeaturing and filling of small gaps. Hsu et al. (2016) developed a novel immerso-
geometric fluid-flow method that does not require the generation of a boundary-fitted
mesh for the fluid domain. However, their method used the NURBS parameterization
of the surfaces for generating the surface quadrature points to enforce the boundary
conditions, which required the B-rep model to be converted completely to NURBS
before analysis can be performed. This conversion usually leads to poorly parameter-
ized NURBS surfaces and can lead to poorly trimmed or missing surface features. In
addition, converting simple geometries such as cylinders to NURBS imposes a perfor-
mance penalty since these geometries have to be dealt with as rational splines. As a
result, the geometry has to be inspected again after conversion to ensure analysis com-
patibility and can increase the computational cost. In this work, we have extended the
immersogeometric method to generate surface quadrature points directly using analytic
surfaces. We have developed quadrature rules for all four kinds of analytic surfaces:
planes, cones, spheres, and tori. We have also developed methods for performing adap-
tive quadrature on trimmed analytic surfaces. Since analytic surfaces have frequently
been used for constructing solid models, this method is also faster to generate quadra-
ture points on real-world geometries than using only NURBS surfaces. To assess the
accuracy of the proposed method, we perform simulations of a benchmark problem
of flow over a torpedo shape made of analytic surfaces and compare those to immer-
sogeometric simulations of the same model with NURBS surfaces. We also compare
the results of our immersogeometric method with those obtained using boundary-fitted
CFD of a tessellated torpedo shape, and quantities of interest such as drag coefficient
are in good agreement. Finally, we demonstrate the effectiveness of our immersoge-
ometric method for high-fidelity industrial scale simulations by performing an aero-
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dynamic analysis of a truck that has a large percentage of analytic surfaces. Using
analytic surfaces over NURBS avoids unnecessary surface type conversion and signif-
icantly reduces model-preprocessing time, while providing the same accuracy for the
aerodynamic quantities of interest.

Keywords: Immersogeometric analysis, Isogeometric analysis, B-rep CAD model,
Analytic surfaces, Surface integration, Weakly enforced boundary conditions

1. Introduction

Immersogeometric analysis is a geometrically flexible technique for solving com-
putational fluid—structure interaction (FSI) problems involving large, complex struc-
tural deformations (Kamensky et al., 2015; Hsu et al., 2014, 2015). This method was
further investigated by Xu et al. (2016) in the context of a tetrahedral finite cell ap-
proach (Varduhn et al., 2016) for the simulation of incompressible flow (both laminar
and turbulent) around geometrically complex objects. In immersogeometric analysis,
a surface representation of a solid object is immersed into a non-boundary-fitted dis-
cretization of the background fluid domain. This background discretization is then used
to solve for the flow physics using finite-element-based computational fluid dynamics
(CFD). The main motivation behind the immersogeometric method is to alleviate the
difficulties associated with mesh generation around complex geometries. Creating a
boundary-fitted fluid-domain mesh that accurately captures all the features of the de-
sign geometry is often time consuming and labor intensive. Very often, small and thin
geometric features are hard to discretize and, as a result, require extensive geometry
cleanup, defeaturing, and mesh manipulation (Marcum and Gaither, 2000; Wang and
Srinivasan, 2002; Beall et al., 2004; Lee et al., 2010). The immersogeometric method
was proposed to eliminate these labor-intensive mesh generation procedures from the
CFD simulation pipeline while still maintaining high accuracy of the simulation re-
sults. In addition, since the fluid domain is meshed independently and it is no longer
necessary to defeature or remove small geometric features from the immersed object,
the original design can be accurately preserved. The flexibility of the immersogeo-
metric approach also allows it to be automated and placed in an optimization loop that
searches for an optimal design (Wu et al., 2017).

Hsu et al. (2016) extended the immersogeometric method to directly use the
boundary-representation (B-rep) of the CAD model to perform fluid flow simulations.
Since, non-uniform rational B-splines (NURBS) are the de-facto surface representation
used for representing the surfaces in B-rep, their method focused on using NURBS to
perform the immersogeometric analysis. However, even though CAD models of aero-
dynamic and hydrodynamic structures have a large proportion of NURBS surfaces,
CAD models of synthetic objects (such as road vehicles) usually have many flat fea-
tures with rounded corners. These are represented internally in the CAD system using
analytic surfaces rather than NURBS, since they can be easily manipulated by the solid
modeling kernel and can be stored in a compact manner. Hanniel and Haller (2011) per-
formed a detailed survey of over 3,000 SolidWorks models and concluded that more
than 90% of the B-rep surfaces were analytic surfaces. Converting these surfaces to



Figure 1: Top: The B-rep CAD model of a semi-trailer truck. The B-rep truck model consisting of analytic
and NURBS surfaces is used directly to perform immersogeometric flow analysis. Bottom: Visualization
of the instantaneous vortical structures of turbulent flow around the semi-trailer truck colored by velocity
magnitude.

NURBS in order to perform analysis usually leads to poorly parameterized NURBS
surfaces and can lead to poorly trimmed or missing surface features. In addition, con-
verting simple geometries such as cylinders to NURBS imposes a performance penalty
since these geometries have to be dealt with as rational splines. As a result, the geome-
try has to be inspected again after conversion to ensure analysis compatibility and can
increase the computational cost.

There are two main pre-processing steps required to perform immersogeometric
analysis on complex CAD models. First, Gaussian quadrature information needs to be
generated on the surface of the immersed model for the purpose of evaluating the weak
Dirichlet boundary conditions (Bazilevs and Hughes, 2007). Second, the fluid-domain
mesh with adequate refinement along the surfaces of the immersed object needs to
be generated. In this paper, we have developed adaptive surface quadrature rules for
the different analytic surfaces used in CAD models. We have also developed a mesh
refinement technique that uses a hierarchical voxelization of the immersed model to
generate an analysis-suitable fluid mesh.

The immersed objects used in previous immersogeometric methods were either
made up of triangulated surfaces or trimmed NURBS surfaces. In the case of triangles,
the Gaussian quadrature points were directly generated on the planar triangular surface.



In the case of trimmed NURBS, the NURBS parameterization was used to generate the
Gauss points. However, to generate the Gauss points on trimmed analytic surfaces, we
need to develop surface quadrature rules for the trimmed analytic surfaces of the im-
mersed B-rep models. In this paper, we have developed methods to generate Gaussian
quadrature rules on trimmed analytic surfaces, including planes, cones, spheres, and
tori that are used in CAD models.

The boundary of solid models created using CAD systems is usually represented
using multiple trimmed surfaces. In the case of parametric surfaces (NURBS), the
parameterization is also used for storing the trim curves. In addition, the parametric
space can be easily mapped to a normalized [0, 1] X [0, 1] domain, which makes the
development of Gaussian quadrature rules straightforward. In addition, the normalized
parametric domain can be easily subdivided using quad-tree techniques to generate
adaptive surface quadrature rules for trimmed surfaces. In the case of analytic surfaces,
the surface parameterization is not easily mapped to a normalized parametric domain,
which complicates the development of adaptive surface quadrature rules. In this paper,
we make use of 2D bounding boxes in the parametric space of the different analytic
surfaces to generate adaptive surface quadrature rules.

In boundary-fitted fluid-flow analysis, the surface mesh of the object can be directly
used to generate the fluid-domain mesh. This surface mesh along with the growth pa-
rameter of an advancing-front volume mesh generation algorithm (Lohner and Parikh,
1988) can be used together to maintain a smaller mesh size closer to the surface of the
object, for the purpose of better resolving boundary layers. However, in immersogeo-
metric analysis, the lack of a surface mesh complicates the generation of an adaptive
fluid-domain mesh, which can lead to a mesh with a large number of elements that
significantly increase the computational time. In this paper, we create a hierarchical
voxelization of the immersed CAD model using GPU rendering techniques (Krishna-
murthy et al., 2009a,b). We make use of this hierarchical voxelization to set the size
parameters of the fluid-domain mesh generation algorithm. This method produces a
mesh that has sufficiently small elements close to the immersed object boundary, while
producing an overall fluid-domain mesh with fewer elements.

This paper is organized as follows. In Section 2, we briefly review the formulation
for immersogeometric analysis. In Section 3, we discuss the surface quadrature rules
for the different analytic surfaces. In Section 4, we explain the voxel-based method
we use for generating the fluid-domain mesh with the required refinement around the
surfaces of the immersed object. In Section 5, we apply our proposed method to the
simulations of flow around a benchmark object made up of trimmed analytic surfaces,
and a full-scale commercial truck (Fig. 1) to demonstrate the ability of our immer-
sogeometric method for the aerodynamic analysis of industrial-scale simulations. In
Section 6, we draw conclusions.



2. Immersogeometric fluid-flow analysis

The fundamentals of immersogeometric fluid-flow analysis consist of three main
components. The flow physics is formulated using a variational multiscale (VMS)
method for incompressible flows (Hughes et al., 2000; Bazilevs et al., 2007a). To
capture the flow domain geometry accurately, adaptively refined quadrature rules are
used in the intersected elements, without modifying the background mesh (Diister et al.,
2008; Xu et al., 2016). Finally, the Dirichlet boundary conditions on the surface of the
immersed objects are enforced weakly in the sense of Nitsche’s method (Nitsche, 1970;
Bazilevs and Hughes, 2007). Here we briefly review this variationally consistent weak
boundary conditions, which require the development of Gaussian quadrature rules for
analytic surfaces.

The standard way of imposing Dirichlet boundary conditions is to enforce them
strongly by ensuring that they are satisfied by all trial solution functions, which is
not feasible in immersed methods. Instead, the strong enforcement is replaced by
weakly enforced Dirichlet boundary conditions proposed by Bazilevs et al. (Bazilevs
and Hughes, 2007; Bazilevs et al., 2007b, 2010). The semi-discrete problem can be
stated as follows: Let Q (subsets of R?, d € {2,3}) denote the spatial domain and I" be
its boundary. Consider a collection of disjoint elements {Q°}, U, Q¢ C R4, with closures
covering the fluid domain, Q c U, Q. Let V" and (Vﬁ’, be the discrete velocity and pres-
sure spaces of functions supported on these elements. Find fluid velocity u” € V" and
pressure p" € V% such that for all test functions w" €V and ¢" € V?:
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In the above, BYMS and FYMS are the VMS discretization of the Navier-Stokes equa-
tions of incompressible flows. Their detailed expression is given by Xu et al. (2016). p
is the density of the fluid, & is the strain-rate tensor, n is the outward unit normal, I'°
is the Dirichlet boundary that may cut through element interiors, I'”- is the inflow part
of I'”, on which u" - n < 0, g is the prescribed velocity on I'’, and Ty and 75, are
stabilization parameters that need to be chosen element-wise as a compromise between
the conditioning of the stiffness matrix, variational consistency, and the stability of the
formulation.

For immersogeometric methods, weakly enforced boundary conditions are partic-
ularly attractive as the additional Nitsche terms (the third to last terms on the left-
hand side of Eq. (1)) are formulated independently of the mesh. In contrast to strong
enforcement, which relies on boundary-fitted meshes to impose Dirichlet boundary



conditions on the discrete solution space, the Nitsche terms also hold for intersected
elements, where the domain boundary does not coincide with element boundaries. All
that is needed is a separate discretization of the domain boundary with quadrature rules
whose position of the quadrature points in intersected elements is known or can be
determined. In Hsu et al. (2016), the geometry of the object was described entirely
by NURBS. However, modern CAD models of synthetic objects tend to have many
flat, conical, toroidal and spherical sections. These are represented internally in the
CAD system using analytic surfaces rather than NURBS. Converting these features to
NURBS usually leads to poor parameterization of NURBS surfaces, poorly trimmed
or missing surface features, and the increase of computational cost. In this work, we
tackle this issue by performing the surface integration of the weak boundary conditions
directly using analytic surface information. This novel approach eliminates the need
for converting to NURBS discretization for the object surface and allows the use of the
native CAD model directly in immersogeometric analysis.

3. Adaptive surface quadrature for B-rep surfaces

In B-rep, a CAD solid model is represented using the set of faces that make up
its boundary surfaces. The geometric descriptions of these faces can be categorized
into two types: parametric and analytic surfaces. Generally, parametric surfaces are
represented by NURBS surfaces, which have been used for immersogeoemtric appli-
cations previously (Hsu et al., 2016). Analytic surfaces—which include planes, cones,
spheres, and tori—are described using algebraic equations (Fig. 2). Note that a cylin-
drical surface is considered a special case of a conical surface. We first review adaptive
surface quadrature for NURBS in Section 3.1. The parameterization and the algebraic
equations of analytic surfaces are presented in Section 3.2. The sub-cell based adaptive
quadrature rules for these analytic surfaces are presented in Section 3.3.

3.1. Surface quadrature for NURBS surfaces

The parameterization of an untrimmed NURBS surface is based on the tensor prod-
uct of the knot locations along the u and v parametric directions. The tensor product
parametric domain is usually divided at the knot locations to generate separate elements
for the surface quadrature for each knot span. In the presence of trim curves, adaptive
quadrature is required to better capture the geometry of the trimmed regions. Hsu et al.
(2016) implemented adaptive quadrature by first dividing the base untrimmed NURBS
surface patch into quadrature elements for each knot span. Then each Gauss point was
tested whether it lies inside or outside the trimmed section of the NURBS surface. Only
the Gauss points that lie inside the surfaces are kept. We extend this method to perform
adaptive surface quadrature for analytic surfaces in this paper.

3.2. Surface quadrature for analytic surfaces

The algebraic equations for different types of analytic surfaces represent the map-
pings of a region of the uv parametric plane into the Euclidean three-dimensional space.
An arbitrary 3D point of an analytic surface can be represented by a combination of
the two parameters u and v in the algebraic equation. The parametric domain will be
divided into quadrature elements for surface integrals.
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Figure 2: Analytic surfaces: plane, cone (cylinder), sphere, and torus. A sub-cell is red shaded for each
analytic surface.

3.2.1. Planar surface
For an untrimmed planar surface, the algebraic equation is

S(u,v)=0o+uu+vv, 2)

where o is the origin of the plane and u and v are the basis vectors in a right-handed
coordinate system (u, v,n). n is the normal vector of this planar surface and is defined
as the cross product of the two basis vectors, u X v. For surface integrals, a sub-cell of
a planar surface is based on the subsets of the real number domains along both « and v
directions. A typical sub-cell of the planar surface is shown in Fig. 2a.

3.2.2. Conical and cylindrical surfaces
For an untrimmed conical surface, the algebraic equation is

S(u, v) = Cpase + (1 + u SINO/R) Vpaee (V) + 1 €COS O Npye 3)

where cpase 1S the base ellipse center, ny,ge is the unit vector in the normal direction of
the base ellipse, R is the half length of the major axis of the base ellipse, and Vi, (V)
is the vector from the base ellipse center to the base ellipse point at a given value of v.
Let u be the unit vector along the generator of the cone with parameter u increasing in
the direction of np,s. The latitude metric u has a singular value if there is an apex. Let
v be the unit vector along the base ellipse according to the right-hand rule around np,se.



The longitude metric v has a domain [—x, ), which is periodic. The normal vector n
of this conical surface is defined as —u X v. 6 has the magnitude of the half angle of
the cone. 6 > 0if u- vyuee > 0 and 6 < O if u - vpae < 0. 6 has a domain between
[-m/2,7/2). Note that the conical surface becomes a cylinder when 6 = 0 and a planar
surface when 8 = —m/2. A typical sub-cell of a conical surface is shown in Fig. 2b.

3.2.3. Spherical surface
For an untrimmed spherical surface, the algebraic equation is

S(u,v) =c+rsinup+rcosu(cosvq+sinvr), (@)

where c is the sphere center, r is the sphere radius, p is the unit vector in the direction
from the south pole to the north pole, q is the unit vector in the direction from the
center to the origin of the parametric space, and r = p X . Let u be the unit vector
along the longitude line of the sphere with parameter u defined as the angle between the
vector from the center to the test point and the equatorial plane. The latitude metric u
increases from the south pole to the north pole and has a domain between [-r/2, 71/2).
Let v be the unit vector along the latitude line of the sphere according to the right-hand
rule around p. The longitude metric v has a domain between [, ), which is periodic.
The normal vector n of this spherical surface is defined as —u X v. A typical sub-cell
of a spherical surface is shown in Fig. 2c.

3.2.4. Toroidal surface
For an untrimmed toroidal surface, the algebraic equation is

S(u,v) =c+rsinup+ (R+rcosu)(cosvq+sinvr), 5)

where c is the torus center, r is the minor radius, R is the major radius, p is the unit
vector along the torus axis, q is the unit vector in the direction from the center to the
origin of the parametric space, and r = pxq. Let u be the unit vector along the poloidal
direction of the torus with parameter u increasing in the direction of the axis p. u = 0
is the circle with the largest radius (R + r) relative to ¢. Let v be the unit vector along
the toroidal direction of the torus according to the right-hand rule around p. Both the
latitude metric u and the longitude metric v have the same domain between [—n, ),
which are periodic. The normal vector n of this toroidal surface is defined as —u X v.
A typical sub-cell of a toroidal surface is shown in Fig. 2d.

3.3. Sub-cell-based adaptive quadrature

To evaluate the quadrature points for a trimmed analytic surface, the untrimmed
surface patch is evenly divided into quadrature elements along both parametric direc-
tions. The number of the quadrature elements is based on the physical Euclidean edge
length along each parametric direction. Hence, the largest sub-cell will not exceed a
user-defined element size. After the untrimmed domain is divided into quadrature el-
ements, a three-point Gauss—Legendre quadrature rule in each parametric direction is
used for the generation of the surface quadrature points in the parametric space for all
of these surface quadrature elements. Note that the determinants of Jacobian for the
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Figure 3: Standard Gaussian quadrature for a trimmed surface.
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Figure 4: Sub-cell-based adaptive quadrature is used for a better evaluation of the surface integral of a
trimmed surface.

quadrature points are evaluated directly using the ratio of the areas of the sub-cells in
the physical and parametric spaces. In addition, patches that include degenerate points
(such as the pole of a sphere or a cone vertex) need not be specifically handled, since
the quadrature points are generated only on the interior of the analytic surface patches.
The quadrature points are tested whether they lie inside the trimmed region of the sur-
face. The inside quadrature points are used for the evaluation of the surface integral,
while the outside quadrature points are discarded. This implementation of standard
three-point Gaussian quadrature rules on a trimmed analytic surface is shown in Fig. 3.

In order to accurately evaluate the surface integral of trimmed analytic surface, an
adaptive quadrature method is implemented (Fig. 4). The quadrature elements that
are intersected by a trim curve are identified and recursively refined. We make use
of a 2D bounding box in the parametric domain to perform this refinement. First, the
bounding box of a trim curve is checked whether it is fully inside or outside of the
domain of a sub-cell, which is then used to exclude curve segments that are completely
outside. The sub-cell domain that completely contains the bounding box of a trim
curve segment is further refined. However, if the bounding box of the trim curve is not
fully inside or outside of a sub-cell, a further test is required to ensure the trim curve
is correctly intersected with the boundary of the sub-cell. We check the total number



of the intersection points between all the trim curves and sub-cell boundary. If there
exists at least two intersection points, the sub-cell is recursively refined.

Fig. 4a shows an example case for finding an intersected quadrature element
(marked in green) that needs to be subdivided. First, the bounding-box of the trim-
curve (marked in red) is found to be intersecting with the bottom-right sub-cell quadra-
ture element. Next, the number of intersection points between the sub-cell boundary
and the trim curves are calculated. In this example, there are two intersection points
(marked in blue triangles). Hence, this sub-cell is subdivided into 4 sub-cells. This pro-
cess is recursively performed until a user-defined subdivision level is reached. Fig. 4b
and 4c show the results of two different levels of recursive subdivision for a trimmed
patch.

3.4. Implementation

We use SolidWorks and ACIS solid modeling kernel to efficiently generate the
surface quadrature points directly from B-rep models. SolidWorks is a widely used
CAD software and ACIS is a commercial CAD modeling kernel. The ACIS kernel
includes methods that can be used to read and interpret the equations of an analytic
surface. The software implementation of the generation of sub-cell-based adaptive
quadrature points on analytic surfaces is shown in Fig. 5.
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Figure 5: SolidWorks plug-in for generating surface quadrature rules directly from a B-rep model using
ACIS kernel. The surface parameterization of the object is shown on the right.

4. Voxel-based non-boundary-fitted mesh generation

The mesh for the fluid domain needs to be suitably refined near the surfaces of the
immersed object in order to accurately capture the flow in the boundary layer surround-
ing the object. For traditional boundary-fitted mesh generation, the surface tessellation
can be used to control the size of the mesh in the region close to the surface. However,
in immersogeometric analysis, since the immersed object is not tessellated, the size
of the immersed mesh needs to be controlled using other methods. In this work, we
use a voxel-based approach for controlling the size of the fluid-domain mesh near the
surfaces of the immersed object. The voxels are considered as individual axis-aligned
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Figure 6: Visualization of a coarse voxelization of the CAD models used for local refinement of the immersed
mesh. A fine voxelization is used for point membership classification.

bounding-boxes (AABBs) that can be used to set the maximum mesh sizes for the
tetrahedral fluid-domain mesh.

We make use of a rendering-based voxelization method (Krishnamurthy et al.,
2009a; Hsu et al., 2016) to create voxelizations of different user-defined resolutions
of the immersed object using the GPU. The analytic surfaces of the immersed model
are converted into triangles with a very fine resolution that is less than one-tenth of the
resolution of the immersed mesh. The time taken to perform the point-membership
classification is the sum of the time taken to evaluate the analytic surfaces in the model
and the total time taken to render each slice. For example, the total time taken to eval-
uate the analytic surfaces in the finest model of the torpedo shape in Section 5.2 is 0.06
second, while the time taken to classify the 778,284,864 (1204 x 804 x 804) voxels is
28.83 seconds. These timings are obtained by running our point-membership classifi-
cation algorithm on a MacBook Pro with a 2.7 GHz processor, 16 GB RAM, and an
NVIDIA GeForce GT 650M GPU.

For the generation of the non-boundary-fitted tetrahedral mesh, the boundary vox-
els of a coarse voxelization of the CAD model are used for the local refinement. The
boundary voxels are identified based on whether there are surface Gauss points inside
them. The boundary voxels specify the regions that are near the immersed boundary
where sufficient local refinement is needed to accurately capture the fluid boundary
layer. To implement this method, we use the functionality of “SizeBox” in ANSA,
which is a commercial mesh generator. In ANSA, this function constrains the maxi-
mum length of the tetrahedral elements within each SizeBox. The 3D tetrahedral mesh
is generated using the “TetraCFD” mesh generation algorithm, which is based on the
advancing-front mesh-generation method (Lohner and Parikh, 1988).

A visualization of the boundary voxels used in one of our B-rep test models (tor-
pedo) is shown on the left in Fig. 6; this particular torpedo model has 734 boundary
voxels. Since the SizeBox will only constrain the maximum length of the tetrahe-
dral elements that are fully inside the AABB of the boundary voxel, the dimension of
SizeBox should be larger than the element size near the immersed object. The non-
boundary-fitted tetrahedral mesh using these boundary voxels is shown later in Fig. 9b.
The element size near the object surfaces is 0.04, while the voxel dimension is 0.1,
which is 2.5 times larger. The tetrahedral elements, which are arbitrarily intersected
with the immersed body, are sufficiently refined within each voxel. This locally refined
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non-boundary-fitted mesh is suitable for immersogeometric fluid-flow analysis.

5. B-rep immersogeometric analysis with analytic surfaces

In this section, the B-rep-based immersogeometric analysis with analytic surfaces is
used to simulate the fluid flow around bluff bodies. First, we show the immersogeomet-
ric analysis of the flow around an untrimmed analytic spherical surface to compare the
results with a previous study using an untrimmed NURBS sphere (Hsu et al., 2016).
Second, we simulate the flow around a torpedo shaped object with trimmed analytic
surfaces and compare it with both a NURBS-based immersogeometric example and a
boundary-fitted fluid-flow example that is used as a reference. Finally, the flow past
a B-rep CAD model of a full-scale semi-trailer truck with many analytic surfaces is
simulated to demonstrate the accuracy and efficiency of the immersogeometric method
with analytic surfaces.

5.1. Benchmark: Flow around an untrimmed analytic spherical surface

The flow around an untrimmed spherical surface at Reynolds number (Re) 100
is used as a benchmark to assess the accuracy of our analytic-surface-based immer-
sogeometric method. The simulation setup including the computational domain and
the boundary conditions used is identical to the setup used in Xu et al. (2016). An
untrimmed spherical surface is immersed into a linear tetrahedral background fluid
mesh “IM1”. In addition, two adaptive quadrature levels are used for the analytic sur-
faces to faithfully capture the geometry in the intersected background elements of the
fluid mesh.

To investigate the required surface quadrature density for the flow around an an-
alytic spherical surface, we consider different levels of surface quadrature refinement
(same as Hsu et al. (2016)). A three-point Gauss—Legendre quadrature rule in each
parametric direction is applied to the quadrature elements'. However, the subdivision
of the analytic surface into quadrature elements is different from that of the NURBS
parameterization used for the sphere. The subdivision of the analytic surface is based
on the uniform length scale in physical space, while the division of the NURBS sphere
in Hsu et al. (2016) is based on uniform knot spans, which in practice do not yield
a uniform length in physical space (Hughes et al., 2005, Appendix B). Fig. 7 shows
three levels of surface quadrature element refinement on both analytic (red lines) and
NURBS (blue lines) surfaces.

The results of the drag coefficient Cp for the analytic spherical surface and the
NURBS surface for different levels of surface quadrature refinement (Level 3 to Level
6) are shown in Fig. 7. The results demonstrate that the density and distribution of the

I(p + 1) Gaussian integration points per parametric direction for each knot span was used in Hsu et al.
(2016), where p = 2 is the degree of the NURBS surfaces in the sphere model. We use the same three-point
Gaussian quadrature rule here for better comparison with NURBS results. The Jacobian determinant used for
the surface integration of analytic surfaces is calculated using algebraic equations and is exact, irrespective
of the number of Gaussian quadrature points used. However, the surface quadrature points still need to be
sufficiently distributed along the surface with respect to the background fluid element size for accurate flow
solutions.
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Figure 7: Comparison between analytic (red lines) and NURBS (blue lines) surfaces with three levels of sur-
face quadrature element refinement. Convergence of the Drag coefficient with surface quadrature refinement.
The drag coefficients converge to 1.094.

surface quadrature points are crucial for the weak enforcement of Dirichlet boundary
conditions and for obtaining accurate flow solutions.

5.2. Benchmark: Flow around an object with trimmed analytic surfaces

In this section, we simulate the flow around a torpedo shaped object with a com-
bination of trimmed and untrimmed analytic surfaces to assess the accuracy of our
analytic-surface-based immersogeometric method. The torpedo shaped object consists
of one trimmed spherical surface, one untrimmed cylindrical surface, one untrimmed
conical surface, and one trimmed planar surface (Fig. 5). The dimensions of the object
are shown in Fig. 8a. The same object is converted to NURBS and immersed in the
same background meshes used for the analytic surfaces for the comparison of the two
immersogeometric approaches. In addition, a boundary-fitted tetrahedral-mesh-based
CFD is simulated as a reference.

The simulation setup including the dimensions of the computational domain, the
refinement cylinder, and the boundary conditions is shown in Fig. 8b. All sizes are
non-dimensional. The inflow velocity and the fluid density are set to be unity. The
characteristic length is chosen as the diameter of the front hemisphere and thus the
Reynolds number can be defined as the inverse of the viscosity, that is, Re = u~!. In our
simulations, the viscosity is set to 0.01, so the flow around this object is at Re = 100.
The no-slip boundary condition is enforced weakly at the surfaces of the object.

The mesh resolution near the surfaces of the object is critical to resolving the
boundary layers accurately. For this object, we discretize the fluid domain using linear
tetrahedral elements, due to their capability of efficiently generating a locally refined
non-boundary-fitted mesh around a complex object. Using the mesh generation method
proposed in Section 4, the boundary voxels are used to define the locations for local
refinement. To have a fair comparison, the same refinement strategy is also applied
to the boundary-fitted mesh. The detailed mesh statistics and the characteristic ele-
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ment sizes used in the four sets of boundary-fitted meshes (BM0O, BM1, BM2, and
BM3) and immersogeometric meshes (IMO, IM1, IM2, and IM3) are listed in Tables 1
and 2, respectively. The central cross-section of the two coarsest meshes (BMO and
IMO) are shown in Fig. 9. The difference in the number of elements in the respective
boundary-fitted and immersed meshes is less than 4%, making them comparable for
the simulations. In the BMO and IMO setup, the boundary voxels for Level O (blue) are
used to set the mesh size near the surfaces of the object (Fig. 10a). In the BM1 and
IM1 setup, the boundary voxels for both Level O (blue) and Level 1 (green) are used to
set the mesh size near the surfaces of the object (Fig. 10b). In general, for a Level n
setup, the boundary voxels of all levels until n are used to set the mesh size near the
surfaces of the object. A detailed listings of the different voxel sizes used for the local
refinement for the four cases is given in Table 3.

Table 1: Element sizes and Cp in the boundary-fitted mesh around an object.

Total number  Near object  Refinement cylinder ~ Outer box

Mesh of elements element size  element size element size D

BMO 277,996 0.04 04 1.4 1.197
BM1 911,371 0.02 0.2 1.2 1.190
BM2 3,453,690 0.01 0.1 1.0 1.186
BM3 15,731,430 0.005 0.05 0.8 1.185

In this work, we again use sub-cell-based adaptive quadrature to handle the inter-
sected tetrahedral elements for the immersogeometric meshes. As shown in Xu et al.
(2016), two levels of adaptive quadrature provide a reasonable balance between the
accuracy and computational cost for the immersogeometric analysis. Meanwhile, as
shown in Hsu et al. (2016), setting the surface quadrature element size the same as
the volume element size near the object can ensure sufficient surface quadrature point
density for the immersogeometric flow analysis of trimmed patches. The maximum
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Figure 8: Left: Dimensions of the torpedo shaped object. Right: Computational domain, refinement cylinder,
boundary conditions, and the immersed object.
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(b) IMO.

Figure 9: Central cross-section of the coarsest boundary-fitted mesh (BMO) and the coarsest immersogeo-
metric mesh (IMO).
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Figure 10: Central cross-section of the immersogeometric mesh IMO and IM1.

Table 2: Element sizes and drag coefficients in the immersogeometric mesh around an object.

Mesh Ef;%tgr]e Near object i(}lel?;g;lent Outer box Cp Cp
element size . element size  Analytic NURBS
of elements element size
IMO 277,493 0.04 0.4 1.4 1.211 1.210
M1 883,216 0.02 0.2 1.2 1.194 1.194
M2 3,317,197 0.01 0.1 1.0 1.187 1.187
M3 15,174,511  0.005 0.05 0.8 1.185 1.185

quadrature element sizes used in all the cases are the same as their corresponding tetra-
hedral element sizes near the object.

All simulations are performed with a time-step size of 0.01. In each case, the
simulation is continued until the steady state is reached. Fig. 11 shows that the drag
coefficients Cp for both the boundary-fitted and the analytic-surface-based immerso-
geometric analysis converge to 1.185 using the finest meshes. The numerical values of
the drag coefficients for the two cases are also listed in Tables 1 and 2, respectively. The
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Table 3: Voxel-based SizeBox used in the mesh refinement around the object.

Voxel size Voxel size Voxel size Voxel size
Mesh (element size)  (element size) (element size) (element size)
Level 0 Level 1 Level 2 Level 3
IMO/BMO 0.1 (0.04) - - -
IM1/BM1 0.1 (0.04) 0.05 (0.02) - -
IM2/BM2 0.1 (0.04) 0.05 (0.02) 0.025 (0.01) -
IM3/BM3 0.1 (0.04) 0.05 (0.02) 0.025 (0.01) 0.0125 (0.005)

1.22

& Boundary—fitted
Immersogeometric
(analytic surfaces)
121 I I

5 6 7 8

10
Number of Elements

Figure 11: Drag coefficient convergence associated with number of effective fluid elements for boundary-
fitted and immersogeometric (analytic surfaces) cases. The drag coefficients converge to 1.185.

(a) BM3. (b) IM3.

Figure 12: Velocity magnitude contours of the boundary-fitted and the immersogeometric simulation results.

velocity magnitude contours for these two cases are compared in Fig. 12 to demonstrate
the quality of the flow solution.

Note that for the immersogeometric cases, the difference in the drag coefficients
using the analytic surfaces and the NURBS surfaces is less than 0.001 for all levels of
mesh refinement. However, as shown in Fig. 13, the time taken to evaluate the surface
Gauss points for the analytic surfaces is approximately 3 times faster than that of the
NURBS surfaces.

These results demonstrate that immersogeometric fluid-flow analysis using
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Figure 13: Time costs of the surface Gauss points evaluation for the NURBS surfaces and the analytic
surfaces.

trimmed analytic surfaces, with surface quadrature rules generated using the method
proposed in Section 3.4, produces accurate prediction of flow quantities of interest and
is more efficient than using only NURBS surfaces.

5.3. Airflow around a semi-trailer truck

In order to demonstrate the applicability of our analytic-surface-based immerso-
geometric method to industrial scale problems, we simulate the flow past a full-scale
semi-trailer truck. To perform the CFD analysis of flow around a complex model, a
common practice is to preprocess the B-rep by tessellating it into a triangular mesh (Xu
et al., 2016) or convert it to NURBS (Hsu et al., 2016). However, both these methods
are not ideal and can lead to time-consuming mesh generation or unnecessary conver-
sion to parametric surfaces (e.g. NURBS). The conversion to NURBS may also result
in poorly parameterized NURBS surfaces and often leads to poorly trimmed or miss-
ing surface features. In addition, the time cost for generating the surface quadrature for
NURBS surfaces is generally higher than that for the analytic surfaces. Therefore, di-
rectly using the analytic surfaces from the B-rep model is an ideal solution to integrate
design and analysis.

In a solid CAD model, analytic surfaces have frequently been used for B-rep model
construction. A typical B-rep model of a road vehicle like the semi-trailer truck shown
in Fig. 1 has a larger number of analytic surfaces than parametric surfaces. This partic-
ular model has only 8 parametric surfaces but 2,480 analytic surfaces, which include
1,769 planar surfaces, 689 conical and cylindrical surfaces, 8 spherical surfaces, and
14 toroidal surfaces. Specifically, the tire mainly consists of cylindrical surfaces, the
boundary of the trailer includes many planar surfaces, and the corner of the mirror
bracket is a toroidal surface.

There is a significant advantage of using analytic surfaces over NURBS for gen-
erating the surface quadrature points. For this semi-trailer truck, it takes only 15.54 s
for generating 497,552 Gauss points using analytic surfaces, while it takes 44.12 s for
generating 496,096 Gauss points when all surfaces are converted to NURBS. Using
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Figure 14: Dimensions of the immersed semi-trailer truck and the boundary conditions of the flow domain.
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Figure 15: Locally refined tetrahedral meshes of the fluid domain for aerodynamic analysis of the semi-
trailer truck. We show the mesh cut along a plane in flow direction. The B-rep model is used directly for
generating the boundary voxels for the local mesh refinement.

analytic surfaces, generating the surface Gaussian quadrature points is nearly 3 times
faster than using NURBS. In addition, for the NURBS case, there is an additional step
of converting the analytic surfaces to the NURBS surfaces. Therefore, using the ana-
lytic surfaces directly for generating the Gaussian quadrature points enables us to more
efficiently preprocess the model.

The dimensions of the truck and its simulation setup including the computational

domain and boundary conditions are shown in Fig. 14. A uniform inflow with a stream-
wise velocity of 31.293 m/s (70 mph), which corresponds to a typical driving speed of
the semi-trailer truck on highways, is applied. A no-slip boundary condition is applied
to the ground for simplicity. The density and the dynamic viscosity of the air are 1.177
kg/m? and 1.846 x 107> kg/(m-s), respectively. As in Englar (2001), the characteris-
tic length of the truck is defined as the length of the truck along the inflow direction,
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which is 15.083 m in our case. The Reynolds number is around 30 million which yields
a highly turbulent flow.
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Figure 16: Time-averaged velocity (top) and pressure (bottom) fields on a planar cut for the case with analytic
surfaces.

The B-rep model of this semi-trailer truck is directly immersed into the tetrahedral
background mesh. The boundary voxels for the local mesh refinement of this semi-
trailer truck are shown in Fig. 6. The voxel-based SizeBox, three refinement zones and
the immersogeometric mesh are shown in Fig. 15. The element sizes set for the fluid
domain boundaries, outer refinement zone, inner refinement zone, object bounding-
box zone and the voxels are 2.0 m, 1.0 m, 0.5 m, 0.2 m and 0.1 m, respectively. This
immersogeometric mesh consists of 2,007,309 linear tetrahedral elements (1,556,810
effective elements in the fluid domain). Two levels of adaptive quadrature is used in the
intersected background elements to accurately integrate the volume integrals and faith-
fully capture the geometry of the semi-trailer truck. The inside-outside classification
of the volume quadrature points is carried out using the finest level of the voxelization.
In this case, the finest voxelization consists of 12,369,920 (128 x 160 x 604) voxels; the
size of each voxel (0.025 m) is 4 times smaller than the near object element size (0.1
m).

The instantaneous vortical structures of the highly turbulent flow around the semi-
trailer truck (Fig. 1) is visualized using the isosurfaces of 1, = —100, —200, and —400.
A, is the second largest eigenvalue of the tensor 8> +Q?, where S and Q are the symmet-
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ric and antisymmetric components of Vu, respectively. The vortex core is defined as
the region where 1, < 0 (see Jeong and Hussain (1995) for details). We also compute
the time-averaged drag coefficient ED = ZFD /pU 2A, where U is the inflow velocity,
Fp is the time-averaged drag force, and A = 9.703 m? is the area of the frontal truck
surface projected onto a plane perpendicular to the main flow direction. The values
of Cp are 0.735 and 0.728 for the B-rep case with analytic surfaces and the case with
only NURBS surfaces, respectively. These values are computed by simulating the flow
for 18 s with a time-step size of 0.001 s. The drag coefficients are in good agreement
with the reference drag coefficients of heavy vehicles, which are in the range of 0.6—
0.9 (Gotz and Mayr, 1998; Englar, 2001; Chowdhury et al., 2013). The time-averaged
velocity and pressure fields in a planar cross-section are shown in Fig. 16.

The study of the semi-trailer truck presented in this section demonstrates an effec-
tive way to perform industrial-scale turbulent flow simulations using our B-rep-based
immersogeometric flow analysis. The proposed method is an efficient way to overcome
the complicated mesh generation process and maintain a high solution accuracy for the
flow around a complex real-world geometry.

6. Conclusions

We have presented a new method for immersogeometric fluid-flow analysis that
directly uses CAD models with analytic surfaces. Solid models of complex objects
usually consist of many analytic surfaces. Our method directly uses the analytic sur-
face equations to generate the surface Gaussian quadrature points. We have also ex-
tended our methods to perform adaptive quadrature on trimmed analytic surfaces. Our
method does not require converting the B-rep CAD model surfaces to NURBS, which
is computationally expensive and can lead to poorly parameterized or converted sur-
faces. In addition, the method avoids the challenges associated with geometry cleanup
and mesh generation. We have also presented a method to generate a fluid-domain
mesh with selective refinement around the surfaces of the immersed object using hier-
archical voxelization of the object. Our timing results show that our analytic-surface-
based method is much faster in computing the Gauss point information than using only
NURBS surfaces. In addition, the flow simulation results obtained using immersoge-
ometric analytic surfaces are in good agreement with reference flow simulation results
obtained using NURBS and boundary-fitted CFD. Finally, the analytic-surface-based
immersogeometric method can be easily applied to industrial-scale flow analysis. In
our simulation of flow past the semi-trailer truck, we directly used the CAD model gen-
erated using SolidWorks to perform immersogeometric analysis. The drag coefficient
computed using the immersogeometric method is in good agreement with the values of
drag coefficient of similar semi-trail trucks reported in the literature.
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