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Abstract In this article we present a validation study in-
volving the full-scale NREL Phase VI two-bladed wind tur-
bine rotor. The ALE-VMS formulation of aerodynamics,
based on the Navier—Stokes equations of incompressible
flows, is employed in conjunction with weakly enforced es-
sential boundary conditions. We find that the ALE-VMS
formulation using linear tetrahedral finite elements is able
to reproduce experimental data for the aerodynamic (low-
speed shaft) torque and cross-section pressure distribution
of the NREL Phase VI rotor. We also find that weak en-
forcement of essential boundary conditions is critical for ob-
taining accurate aerodynamics results on relatively coarse
boundary layer meshes. The proposed numerical formula-
tion is also successfully applied to the aerodynamics sim-
ulation of the NREL 5MW offshore baseline wind turbine
rotor.

Keywords NREL Phase VI - NREL 5SMW offshore - wind
turbine aerodynamics - ALE-VMS - weakly enforced
essential boundary conditions - finite elements

1 Introduction

Currently most wind turbine aerodynamics and aeroelastic-
ity simulations are performed using low-fidelity methods,
such as the Blade Element Momentum (BEM) theory for the
rotor aerodynamics employed in conjunction with simplified
structural models of the wind turbine blades and tower (see,
e.g., [1,2]). These methods are very fast to implement and
execute, however, the cases involving unsteady flow, turbu-
lence, 3D details of the wind turbine blade and tower geom-
etry, etc., are beyond their range of applicability.
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In recent years, several attempts were made to address
the above mentioned challenges and to raise the fidelity
and predictability levels of wind turbine simulations. Stan-
dalone aerodynamics simulations of wind turbine configura-
tions in 3D were reported in [3—11], while standalone struc-
tural analyses of rotor blades of complex geometry and ma-
terial composition, but under assumed wind load conditions
or wind load conditions coming from separate aerodynamic
computations were reported in [12—17]. In the recent work
of [18] it was shown that coupled fluid—structure interaction
(FSI) modeling and simulation of wind turbines is impor-
tant in order to accurately predict their mechanical behavior
at full scale.

We simulated the NREL 5SMW oftshore baseline wind
turbine rotor in [9, 10,18-20], and compared the results with
those reported in [2]. Although good matching of the aero-
dynamic torque was obtained in the case of steady inflow
and rotor speed conditions, this was not, strictly speaking,
validation, since the comparison was made with another nu-
merical simulation. In this work, we perform a true valida-
tion study in which we compare our aerodynamics simula-
tion results with the results of the experiments performed on
atwo-bladed NREL Phase VIrotor [21]. The rotor geometry
definition and experimental data for the aerodynamic (low-
speed shaft) torque and blade cross-section pressure distri-
bution were reported in [21-23] for a variety of test condi-
tions. Here we perform a comparison for a subset of these
tests.

This paper is outlined as follows. In Section 2, we in-
troduce the Arbitrary Lagrangian—Eulerian (ALE) form of
the Navier—Stokes equations of incompressible flow suit-
able for moving domain problems. We also present the
residual-based variational multiscale (VMS) formulation of
the Navier—Stokes equations and turbulence modeling [24],
which we refer to as the ALE-VMS method. In this work,
the ALE-VMS equations are discretized using linear tetra-
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Fig. 1 (a) NREL UAE Phase VI wind turbine mounted in NASA Ames 80 ft x 120 ft wind tunnel. (b) Wake flow visualization of the operating

turbine in the wind tunnel. The images are taken from [21].

hedral finite elements in space. This is in contrast to our ear-
lier work on wind turbine simulation, where Isogeometric
Analysis [25,26] was used for both aerodynamics and FSI
computations. The ALE-VMS formulation is augmented
with weakly enforced essential boundary conditions, which
were first proposed in [27] and further improved and stud-
ied in [28-30]. The weak boundary condition formulation
may thought of as an extension of Nitsche’s method [31] to
the case of the Navier—Stokes equations of incompressible
flow. Another interpretation of the weak boundary condition
formulation is that it is a Discontinuous Galerkin method
(see, e.g., [32]), where the continuity of the basis functions
is enforced everywhere in the domain interior, but not at the
domain boundary. In Section 3, we present the simulation re-
sults. We first perform the simulations for the NREL Phase
VI two-bladed rotor. Both weakly and strongly enforced no-
slip and no-penetration boundary conditions are employed
in these simulations. For the cases considered, very good
matching with the experimental results is obtained for the
aerodynamic torque and pressure distribution on the blade
axial cross-sections when weakly enforced boundary condi-
tion formulation is employed. We then simulate the NREL
SMW offshore baseline wind turbine rotor and obtain very
good agreement with the NURBS-based isogeometric anal-
ysis computations of this test case from [9, 18], as well as
predictions from [2]. In Section 4, we draw conclusions and
outline future developments.

2 ALE-VMS formulation of the Navier—Stokes
equations of incompressible flow

2.1 Continuous problem

Let Q, € R d = 2,3, be the spatial domain of the aero-
dynamics problem with boundary I'; at time ¢ € (0, T). The
subscript ¢ indicates that the fluid mechanics spatial domain
is time-dependent. The Navier—Stokes equations of incom-
pressible flow in the Arbitrary Lagrangian-Eulerian (ALE)
frame may be written on ©, and V¢ € (0, T) as

ou
L ot

+u-1)-Vau—f|-V,.o=0,

V.-u=0, ey

where p, u, and f are the density, velocity and the external
force (per unit mass), respectively, and the stress tensor o is
defined as

o(u,p)=-pl+2usu). 2

Here p is the pressure, I is the identity tensor, u is the dy-
namic viscosity, and & (u) is the strain-rate tensor given by

e(u) = % (qu + quT) . 3)

In Eq. (1), ' denotes the fact that the time derivative is taken

X
with respect to a fixed referential domain spatial coordinates

X, and 1 is the velocity of the fluid domain ;. The spatial
gradients are taken with respect to the spatial coordinates x
of the current configuration, which is reflected in the sub-
script on the gradient operator.
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Fig. 2 NREL Phase VI wind turbine. The problem mesh and computational domain. The ratio of the rotor radius to the radius and the axial length
of the computational domain are approximately 1/4 and 1/6, respectively. The mesh is refined in the inner region for better flow resolution near the

rotor.

2.2 ALE-VMS formulation

The ALE-VMS formulation of the continuum aerodynam-
ics formulation is given by: find u”" € S" and p" € S", such
that Yw" € Vi and Vg" € V',

fwh~p 6_uh +(uh—ﬁh)-Vuh—f dQ
Q at |, !

+f s(wh) : O'(Uh,ph) dQ

t

—f wh~hdF+fthx~uth
(rh)z .Q,

.- V.q"
+ Z ff Tsups (uh - ﬁh) VW + T Y (uh,ph) de
e=1 t

Nei

+ Z f!;e pVLSICVX . whrc(uh, ph) dQ

e=1
Ne]

- TSUPswh' I'm llh,ph 'Vxllh dQ
o

e=1
N,
R
=1 A

=0. “

(TSUPSrM (uh, ph)) ® (Tsuper (llh, ph)) dQ

Here, the time-dependent fluid domain €, is divided into
N¢) individual spatial finite element subdomains denoted by
€¢. The finite element spaces S, for the velocity and S,
for the pressure, as well as the corresponding test function

spaces V" and "Vﬁ are assumed to be of equal order, and, in
this work, are comprised of piece-wise linear polynomials,
which are continuous at the inter-element boundaries of the
tetrahedral mesh. In Eq. (4), h is the natural boundary con-
dition, (I'y), is the part of the boundary where we specify
that natural boundary condition, 0" is the mesh velocity, and
ry and re are the residuals of the momentum and continuity
(incompressibility constraint) equations, respectively, given
by

h

v, p" =p 3 ) + (uh - ﬁh) -V -
-V,-o(u",p") 5)

and

re”, p") =V, -u. (6)

Also in Eq. (4), Tsups and visic are the stabilization parameters
defined in [33] as

Tars = | 5+ (v"-0")-G(u" - 0"+ C'G: G o 7
and

vusic = (trG ‘z'SUpS)_1 , (8)
where

d
trG = Z Gi ©)
i=1
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is the trace of the element metric tensor G, At is the time-
step size, and C; is a positive constant, independent of the
mesh size, derived from an appropriate element-wise inverse
estimate (see, e.g., [34-36]).

Remark 1 The stabilization parameters Tg,ps and visc in
the above equations originate from stabilized finite element
methods for fluid dynamics (see, e.g., [37—43]). The notation
“SUPS”, introduced in [44], indicates that there is a sin-
gle stabilization parameter for the SUPG and PSPG stabi-
lizations, instead of two separate parameters. The notation
“LSIC”, introduced in [41], denotes the stabilization based
on least-squares on the incompressibility constraint. The
stabilization parameters were designed and studied exten-
sively in the context of stabilized finite element formulations
of linear model problems of direct relevance to fluid me-
chanics. These model problems include advection—diffusion
and Stokes equations. The design of Tgps and visic is such
that optimal convergence with respect to the mesh size and
polynomial order of discretization is attained for these cases
(see, e.g., [43] and references therein). Furthermore, en-
hanced stability for advection-dominated flows and the abil-
ity to conveniently employ the same basis functions for ve-
locity and pressure variables for incompressible flow are
some of the attractive outcomes of this method. More re-
cently, the stabilization parameters were derived in the con-
text of the variational multiscale methods [45,46] and were
interpreted as the appropriate averages of the small-scale
Green'’s function, a key mathematical object in the theory of
VMS methods (see [47] for an elaboration). The ALE-VMS
formulation is a moving-domain extension of the residual-
based variational multiscale (RBVMS) turbulence modeling
technique proposed for stationary domains in [24]. It was
also presented in [33] for moving domains in the context of
FSI. Recently, in [44], the authors extended the RBVMS for-
mulation for moving domain problems using the space—time
finite element method.

2.3 Weakly enforced essential boundary conditions

In this section we state the formulation of the weakly
enforced essential boundary conditions. These were first
proposed for the advection—diffusion equation and for the
Navier—Stokes equations of incompressible flow in [27] in
an effort to improve the accuracy of stabilized and multiscale
formulations in the presence of thin unresolved boundary
layers. The idea of weak enforcement of essential bound-
ary conditions emanates from the work of Nitsche [31]
and the developments in discontinuous Galerkin methods.
In [28-30], the weak boundary condition formulation was
further refined and studied on a set of important and chal-
lenging wall-bounded turbulent flows. In this work, we ap-
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Fig. 3 NREL Phase VI wind turbine. A 2D blade cross-section at 0.8R
to illustrate the type of mesh near the boundary that we used in our
computation. The size of the first element in the wall-normal direction
is about 0.008 m.

ply weakly enforced essential boundary condition formula-
tion to the problem of aerodynamics of wind turbines at full
spatial scale.

To account for the weak enforcement of essential bound-
ary conditions, we remove them from the trial and test func-
tion sets S" and V", and add the following terms to the left-
hand-side of Eq. (4)

Nep

- ; frbm(rg) wh -o-(uh,ph)n dr

Ny
_ bz:l: fr” () (2ue (w')n + ¢'n) - (u" —g) ar
Nep
. ; ff” N(r), w'p((u" - @) -n)(u" - g) a7

Neb

+ I; j;”ﬁ(rg), 8 (W'~ (" -n)n)
((v" - g) = ((u" - &) -m)n) ar

> Ly PO ) () m) ar

1

(10)

Here (F g)t is a part of the fluid domain boundary where we
set the velocity boundary conditions given by g. (F g)t is de-
composed into Ny, surface elements, and (F g); is defined as

the “inflow” part of (F g)t as

(Fg);:{x ‘(uh—ﬁh)-n<0, ch(]“g),}.

If (F g)t coincides with the moving wall (rigid or flexible),
then g is the prescribed wall velocity.

The structure of the terms in Eq. (10) is as follows. The
term on the first line is the so-called consistency term. It

an
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Fig. 4 NREL Phase VI wind turbine. The time history of the aerodynamic (low-speed shaft) torque for both weak and strong boundary condition
simulations for (a) 5 m/s and (b) 25 m/s cases. The results are compared to the NREL experimental data reported in [3,48]. Dashed line represents
the experimental standard deviation to indicated the variation over one revolution

(a) Weakly enforced boundary condition

(b) Strongly enforced boundary condition

Fig. 5 NREL Phase VI wind turbine. Pressure and air speed contours and velocity streamlines at 0.8R for 5 m/s case: (a) Weakly enforced boundary
condition simulation. (b) Strongly enforced boundary condition simulation.

is necessary to ensure that the discrete formulation is iden-
tically satisfied by the exact solution of the Navier—Stokes
equations, which, in turn, has implications on the accuracy
of the discrete formulation. Also note that this term cancels
with the terms which come from the integration-by-parts of

the stress terms in Eq. (4), thus correctly removing traction
boundary conditions from the no-slip boundary. The term
on the second line is the so-called adjoint consistency term.
It’s role is less intuitive, as it ensures that the analytical so-
lution of the adjoint equations, when introduced in place of
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(a) Weakly enforced boundary condition

(b) Strongly enforced boundary condition

Fig. 6 NREL Phase VI wind turbine. Pressure and air speed contours and velocity streamlines at 0.8R for 25 m/s case: (a) Weakly enforced
boundary condition simulation. (b) Strongly enforced boundary condition simulation.

the linear momentum and continuity equation test functions,
also satisfies the discrete formulation. Adjoint consistency
is linked to optimal convergence of the discrete solution in
lower-order norms (see, e.2., [32]). The term on the third line
leads to better satisfaction of inflow boundary conditions.
The last two terms are penalty-like, in that they penalize the
deviation of the discrete solution from its prescribed value
at the boundary. These terms are necessary to ensure the sta-
bility (or coercivity) of the discrete formulation, which may
be lost due to the introduction of consistency and adjoint
consistency terms.

The weak boundary condition formulation is numeri-
cally stable if

Cfﬂ
hy

B _ _B _
Toan = Tnor =

12

where h,, is the wall-normal element size, and Cf is a suffi-
ciently large positive constant, which is computed from an
appropriate element-level inverse estimate (see, e.g., [34—
36]). C¥ depends on the space dimension d, the element type
(tetrahedron, hexahedron, etc.), and the polynomial order of
the finite element approximation. For a linear tetrahedron, it
is sufficient to take 4.0 < Cf < 8.0 to obtain a stable discrete
solution. The wall-normal element size may be computed

from the element metric tensor as

hy =(m-Gn)™'2, (13)

where n is the outward wall-normal unit vector.

Remark 2 Rather than setting the no-slip boundary con-
ditions exactly, the weak boundary condition formulation
gives the no-slip solution only in the limit as h, — 0. As
a result, coarse boundary layer discretizations do not need
to struggle to resolve thin boundary layers; the flow sim-
ply slips on the solid boundary. Because of this added flex-
ibility, the weak boundary condition enforcement approach
tends to produce more accurate results on meshes that are
too coarse to capture the boundary layer solution. However,
as the mesh is refined to capture the boundary layer, both
weak and strong boundary condition formulations produce
nearly identical results (see [28]).

Remark 3 Although the weak boundary condition formu-
lation is also stable for very large values of C¥, we do not
advocate this choice. Large values of C® place a heavy pe-
nalization on the no-slip condition, and the above mentioned
flexibility of the method is lost together with the associated
accuracy benefits. We advocate using Cf that is just large
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Fig. 7 NREL Phase VI wind turbine. Pressure coefficients at 0.466R, 0.633R and 0.8R for (a) 5 m/s and (b) 25 m/s cases. The predicted values
(using the weak boundary condition formulation) are plotted against the experimental data reported in [3,48].

enough to guarantee the stability of the discrete formula-
tion.

Remark 4 In references [28], a connection was identified
between weakly enforced boundary conditions and wall
functions. The latter are commonly employed in conjunc-
tion with RANS formulations of turbulent flow (see, e.g., [49,
50]). In the case of wall function formulation, the no-slip
boundary condition is replaced with a tangential traction
boundary condition, where the traction direction is given
by that of the local slip velocity, and the traction magni-
tude is computed by invoking the “law-of-the-wall”, which
is an empirical relationship between the flow speed and the
normal distance to the wall, both appropriately normalized
(see, e.g., [49]). The penalty parameter T8, may be defined

as
%2
B pu
Tow = = (14)
||uTAN||

where ul = ((uh - g) - ((uh - g) . n) n) is the tangential
slip velocity, and u* is the so-called friction velocity, which,
among other factors, depends on the magnitude of the slip
velocity, and is computed from the law-of-the-wall formula
by means of a nonlinear iteration. It was shown in [28],
however, that when the boundary layer mesh is fine enough,
7B from Eq. (14) is independent of the local flow solution,
and reverts to the definition given by Eq. (12). This fact is re-
markable in that Eq. (12) is purely based on considerations
of numerical stability, while Eq. (14) derives from physics
of wall-bounded turbulent flows. In our limited experience,
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both the “numerics-based” and “physics-based” definitions
of the penalty parameter 8, give very similar results.

Air Speed (m/s) Pressure (kPa)
e 7 S wm 0.1

5.5 D -0.2
- TN, ™ 0.5

Fig. 8 NREL Phase VI wind turbine. Isosurfaces of air speed at an
instant for 5 m/s case. The tip vortex generated by the blade is carried
downstream of the rotor with little decay. Pressure contours are also
plotted on the rotor surface.

3 Computational results
3.1 NREL Unsteady Aerodynamics Experiment Phase VI

The proposed ALE-VMS method is applied to predict the
aerodynamics of the Unsteady Aerodynamics Experiment
(UAE) Phase VI two-bladed wind turbine rotor [21] from
the National Renewable Energy Laboratory (NREL). In this
experiment, a two-bladed twisted and tapered 10.058 m di-
ameter wind turbine, which has a rated power of 19.8 kW,
was tested in the NASA Ames 80 ft X 120 ft wind tunnel in
2000 (see Figure 1). This is one of the most comprehensive,
accurate and reliable experiments carried out on a full-scale
wind turbine. This test case was also studied by many com-
putational researchers [3-6,8,11,48,51-58] for the purposes
of validating their simulation software and improving their
ability to predict wind turbine aerodynamic performance.
The Phase VI rotor geometry makes use of a single
NREL S809 airfoil [21]. Selected blade cross-section ge-
ometry data are summarized in Table 1. The detailed doc-
umentation of the rotor configuration and its technical spec-
ifications are available in [21]. Two cases from the experi-
ment were selected for the validation study. The first case
has wind speed of 5 m/s and the second case has wind speed

of 25 m/s. For both cases, we have upwind configuration, 0°
yaw angle, 0° cone angle, blade tip pitch angle of 3°, and ro-
tational speed of 72 rpm. The influence of the hub and tower
on the rotor aerodynamics was neglected, which is a fair ap-
proximation for an upwind turbine (see, e.g., [3]). The two
cases we considered here present very different flow condi-
tions. For the 5 m/s case the flow is fully attached for the
entire blade. On the contrary, stall occurred for most of the
blade for the case of 25 m/s wind, and reference [11] con-
sidered this case to be more challenging for simulation.

The wind turbine rotor radius R is 5.029 m and the blade
is assumed to be rigid. The aerodynamic computation with
prescribed wind and rotor speeds is carried out on a rotat-
ing mesh. The mesh resolution and computational domain
are shown in Figure 2. The ratio of the rotor radius to the
radius and the axial length of the computational domain are
approximately 1/4 and 1/6, respectively. The mesh is refined
in the inner region for better flow resolution near the ro-
tor. At the inflow boundary the wind speed is set to either
5 m/s or 25 m/s. At the outflow boundary the traction vector
is set to zero. At the radial boundary the radial component
of the velocity is set to zero. The air density and viscos-
ity are 1.23 kg/m? and 1.78 x 10~ kg/(m-s), respectively.
The Reynolds number based on the chord length and rela-
tive speed at 0.8R is O(10%).

The mesh is comprised of 8,494,182 linear tetrahedral
elements and 1,508,983 nodes. Figure 3 shows a 2D blade
cross-section at 0.8R to illustrate the type of mesh near the
boundary that we used in our computation. Near the blade
surface at 0.8R, the size of the first element in the wall-
normal direction is about 0.008 m, and the corresponding
y* is 0(10%). No special boundary layer meshing was used
in this study, in part to test the ability of the ALE-VMS
method to deal with coarse boundary layer meshes.

The computations were carried out in a parallel comput-
ing environment on a Dell Cluster at the Texas Advanced
Computing Center (TACC) [59]. The system consists of 256
dual-socket nodes, each with 2 Intel Nehalem quad-core
processors (8 cores) @ 2.53 GHz. Total system resources
include 2048 compute cores, 14.5 TB aggregate memory,
512 GPUs, QDR InfiniBand interconnect, and an attached
Lustre Parallel file system [60]. The mesh is partitioned into
128 subdomains using METIS [61] and each subdomain is
assigned to a compute core. The parallel implementation of
the methodology can be found in [19].

The ALE-VMS formulation is advanced in time using
the Generalized-a method (see [33, 62, 63]). The linear sys-
tem is solved using a block-diagonal preconditioned GM-
RES method [64, 65]. The time-step size is 0.0001 s. The
number of Newton’s iterations per time step is 3 with 50
GMRES iterations for the first and second nonlinear iter-
ations, and 50 to 80 GMRES iterations for the third non-
linear iteration depending on the nonlinear convergence. In
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Radial Distance » ~ Span Station ~ Chord Length Twist Twist Axis Airfoil
(m) (r/5.029 m) (m) (degrees) (% chord) )
0.508 0.100 0.218 0.0 50 Cylinder
1.510 0.300 0.711 14.292 30 NREL S809
2.343 0.466 0.627 4.715 30 NREL S809
3.185 0.633 0.542 1.115 30 NREL S809
4.023 0.800 0.457 -0.381 30 NREL S809
4.780 0.950 0.381 -1.469 30 NREL S809
5.029 1.000 0.355 -1.815 30 NREL S809

Table 1 Selected blade cross-section geometry data for NREL UAE Phase VI rotor. For the complete table, please see [21,51]. Note that in [21],
the information for the standard tip (r = 5.029) is not documented. However, it can be found in [51]

general, it takes about 20 to 24 hours to compute 1 s of
real time, which is generally sufficient to predict the aero-
dynamic torque.

The time history of aerodynamic (low-speed shaft)
torque is shown in Figure 4. Good agreement of the aerody-
namic torque is found between the weak boundary condition
simulations and experimental data for both flow conditions.
However, the results for the strongly enforced boundary con-
dition simulations are not at all accurate.

Pressure and air speed contours and velocity streamlines
at 0.8R for 5 m/s and 25 m/s cases are shown in Figures 5
and 6, respectively. Figure 5a shows the weak boundary con-
dition prediction of the air flow for the 5 m/s case. Here,
the flow is fully attached, and the torque is correctly pre-
dicted. However, the strong boundary condition simulation
predicts flow separation at the trailing edge (see Figure 5b).
The blade stalls and, as a result, the torque is underpredicted
by 126% (see Figure 4a). For the 25 m/s case, small differ-
ences are found in the pressure contours and air flow patterns
between the weak and strong boundary condition computa-
tions. This is due to the fact that the flow is already separated
at the edges, the entire airfoil is stalled, and the boundary
layer resolution is not so important for these type of flow
conditions. In this case, the weak boundary condition again
correctly predicts the torque, while the strong boundary con-
dition underpredicts the torque, but only by 11% (see Fig-
ure 4b).

These results are not surprising. In the case of strongly
enforced boundary conditions, the coarse boundary layer
discretization gives rise to artificially “thick” boundary lay-
ers, which retard the flow and lead to non-physical aerody-
namics, such as premature flow separation. In the case of
weakly enforced boundary conditions, the flow is allowed
to slip on the solid surface without forming these undesired
thick boundary layers. Of course, with sufficient boundary
layer mesh refinement, both approaches will capture the
boundary layer, and the strongly enforced boundary condi-
tion approach will also produce the correct result (see [28]).

Figure 7 shows the pressure coefficient at 0.466R,
0.633R and 0.8R for 5 m/s and 25 m/s cases. The predicted
values (using the weak boundary condition formulation) are
plotted against the experimental data. Very good agreement
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Fig. 9 NREL SMW offshore baseline wind turbine. A 2D blade cross-
section cut at 0.75R to illustrate the coarse boundary layer mesh used in
our computations. Near the blade surface, the size of the first element
in the wall-normal direction is about 0.075 m.
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Fig. 10 NREL 5MW oftshore baseline wind turbine. The time history
of the aerodynamic torque for both weak and strong boundary condi-
tion simulations. The results are compared to the NURBS-based sim-
ulation from [19] and the NREL prediction from [2] obtained using
FAST [1].

is likewise achieved for both attached and separated flow
conditions at different radial locations.

Figure 8 shows the flow visualization (isosurfaces of air
speed) of the 5 m/s case. The tip vortex generated by the
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blade is carried downstream of the rotor with little decay.
Pressure contours are also plotted on the rotor surface in the
figure.

3.2 NREL 5MW offshore baseline wind turbine

In this section, we present our computations of the NREL
SMW offshore baseline wind turbine rotor [2,9]. The NREL
SMW offshore baseline wind turbine is a conventional three-
bladed upwind turbine proposed in [2] to support concept
studies aimed at assessing offshore wind technology. The
detailed geometry description and construction for the blade
surface was documented in [9]. The blade is composed of a
series of DU airfoils and the NACA64 profile.

We compute the case corresponding to wind speed of
11.4 m/s and rotor speed of 12.1 rpm. The air density and
viscosity are 1.2 kg/m? and 2.0x 107> kg/(m-s), respectively.
The rotor has a radius of 63 m and is assumed to be rigid. We
compute the aerodynamics of the wind turbine rotor using
the ALE-VMS approach on a rotating mesh and compare
the relative performance of the weak and strong boundary
conditions for this significantly larger diameter wind turbine
rotor design.

In the previous studies of this problem [9, 10, 18-20],
both NURBS-based isogeometric and standard finite ele-
ment discretizations with strongly enforced boundary con-
ditions were employed. Also, a 120° slice of the compu-
tational domain with rotationally periodic boundary condi-
tions [9,66,67] was used. Here, we consider a full domain of
this three-bladed rotor without rotationally periodic bound-
ary conditions. This choice was motivated by the fact that
we are moving toward simulating the full wind turbine as-
sembly, including the tower, for which rotationally periodic
boundary conditions are no longer applicable.

The aerodynamics volume mesh is comprised of
6,309,349 linear tetrahedral elements and 1,193,404 nodes.
Figure 9 shows a 2D blade cross-section at 0.75R to illus-
trate the coarse boundary layer mesh used in our computa-
tions. Near the blade surface, the size of the first element in
the wall-normal direction is about 0.075 m. The Reynolds
number based on the chord length and relative speed at
0.75R is O(107), and the corresponding y* is O(10%).

The time history of the aerodynamic torque is plotted
in Figure 10 for both weak and strong boundary condition
simulations. The results are compared to the NURBS-based
simulation from [19] and the NREL prediction from [2] ob-
tained using FAST [1]. The weak boundary condition re-
sult is nearly identical to the NURBS-based simulation ex-
cept for low-amplitude, high-frequency fluctuations present
in the NURBS-based simulation, which better captures the
fine-scale turbulence due to higher-order functions and bet-
ter boundary-layer resolution employed. The strong bound-

ary condition result in this study is, however, completely in-
accurate. Nevertheless, as evident in [9, 10, 18-20], with suf-
ficient boundary layer mesh refinement, strongly enforced
boundary condition approach will capture the boundary
layer and will also produce the correct result.

The comparison of the air speed and pressure contours
at the blade cross-section corresponding to 0.75R for weakly
and strongly enforced boundary condition simulations is
shown in Figure 11. As in the case of the Phase VI rotor,
the strong boundary condition simulation produces a thick
boundary layer due to the lack of mesh refinement, which
leads to unphysical flow separation, incorrect pressure distri-
bution around the airfoil, and, as a result, inaccurate torque
prediction.

Figure 12 shows the air speed contours (using the weak
boundary condition formulation) in the rotor plane. As ex-
pected, the large scales of the air flow are very similar be-
tween the three blades. However, due to the fine-scale tur-
bulence, the small-scale features show some differences and
the flow is not fully periodic. Of course, the flow rotational
periodicity will be further reduced in the presence of the
tower.

4 Conclusions

We applied the ALE-VMS finite element formulation of
aerodynamics to the simulation of wind turbines at full
scale. The methodology was validated using the NREL
Phase VI two-bladed rotor for which there exists an exten-
sive set of experimental results. We found that the combi-
nation of ALE-VMS and weakly enforced boundary condi-
tions are able to accurately predict the key quantities of en-
gineering interest such as the aerodynamic torque and pres-
sure distribution at the blade cross-sections even on meshes
with coarse boundary layer refinement. We also applied the
proposed methodology to the simulation of the NREL SMW
offshore baseline wind turbine rotor, with equally successful
computational results. It should be noted that in all cases the
same discrete formulation was employed.

It appears that independent of the flow conditions (tur-
bulent, laminar, fully attached, partially attached, fully de-
tached, etc.) and spatial scales employed (the NREL Phase
VI rotor is 10 m in diameter, while the NREL SMW offshore
baseline wind turbine rotor is 126 m in diameter) the pro-
posed ALE-VMS formulation with weakly enforced no-slip
boundary conditions is able to predict the flow solution cor-
rectly. This is typically not the case for classical turbulence
models, which need to be adjusted for every flow regime
separately.

In the future work we plan to perform a more exten-
sive testing of this configuration to cover the intermediate
flow regimes, and possibly include rotor-tower interaction
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(a) Weakly enforced boundary condition

(b) Strongly enforced boundary condition

Fig. 11 NREL 5MW offshore baseline wind turbine. Pressure and air speed contours and velocity streamlines at 0.75R for (a) weakly enforced
boundary condition and (b) strongly enforced boundary condition simulations.

Fig. 12 NREL 5MW offshore baseline wind turbine. Air speed con-
tours (using the weak boundary condition formulation) in the rotor
plane. The large scales of the air flow are very similar between the
three blades. However, the small-scale features show some differences
and the flow is not fully periodic.

in these and other computations. Furthermore, a mesh re-
finement study may be valuable in order to better understand
the behavior of the weak boundary condition formulation for
different mesh resolution levels, as well as to better capture
the details of turbulent flow.
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