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Abstract

In this paper, we develop a scalable, adaptively refined, octree-based finite element approach
with immersogeometric analysis to track inertial migration of particles in microchannels. Fluid
physics is modeled using a residual-based variational multiscale method, and the particle move-
ment is modeled as rigid body motion. A parallel, hierarchically refined octree mesh is employed
as the background mesh, on which a variationally consistent immersogeometric formulation is
adopted for tracking the particle motion in the fluid. Adaptations of immersogeometric analysis on
an octree background mesh are developed to enable efficient searching of background element for
a given surface quadrature point, as well as a distribution of surface quadrature points over pro-
cessors to reduce memory overhead and better parallelize the surface assembly. An octree-based
adaptive mesh refinement algorithm adapted to in-out test in the immersogeometric approach is
also developed. The validation of our octree-based immersogeometric approach is carried out us-
ing a benchmark case of a sphere settling in quiescent fluid, with good agreement presented. In
addition, good strong (and weak) scalability on supercomputing resources for this benchmark case
up to 16,384 processes is demonstrated. The proposed method is further deployed for exploring
particle migration in straight and converging-diverging channels. This example illustrates the po-
tential of the octree-based immersogeometric approach for efficiently tracking particle motion in
complex channel flows – a problem with a diverse array of applications.
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1. Introduction

Control and localization of particles (e.g. cells and precipitates) in flow is useful in biological
processing, chemical reaction control, and for creating structured materials [1, 2]. One promis-
ing approach to control localization (or ‘focusing’) of particles of different sizes is via sequential
placement of obstacles in microchannels. This is based on the idea that obstacles produce different
forces on particles with distinct sizes when inertial flow conditions are considered (i.e., when the
Reynolds number based on the channel hydraulic diameter is greater than 5) [3]. However, highly
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Figure 1: Canonical problem: A rigid particle traversing a microchannel decorated with a pillar obstacle
under inertial flow conditions

accurate force calculations are required to design devices that can exploit these small variations
in forces, which essentially becomes a comput55ational exercise. The availability of validated ap-
proaches to compute these dynamics can enable diverse applications in separation, concentration,
and sorting of cells and biomolecules with high specificity.

The general problem of force (and trajectory) calculation on a moving particle in channel flow
can be framed as a canonical problem. The canonical problem is to track the lateral migration
of a single, rigid particle as it traverses a microchannel that is decorated with a pillar obstacle
(see Figure 1). We consider a rigid particle (of size a) moving in an incompressible fluid inside a
channel. We are interested in tracking the motion and lateral forces acting on this particle. This
is a challenging computational problem due to the full fluid–solid coupling, associated small time
step sizes, and adaptive (re)meshing requirements. The full fluid–solid coupling is needed due
to the finite Reynolds number (5 ≤ Re ≤ 100) which necessitates solving the full Navier–Stokes
equations. Furthermore, the construction of migration maps for particles (i.e. how does a particle
traverse a decorated channel, which is a function of initial particle release locations, particle sizes
and flow rates) requires several hundreds of simulations tracking individual particles under various
configurations (of release locations and particle sizes).

To track particles in decorated channels, immersed boundary methods [4, 5] are a popular class
of approaches, since these methods exhibit greater geometric flexibility than their boundary-fitted
counterparts, and simplify (re)meshing process especially when the object is moving. The im-
mersed boundary method embeds the solid geometry into a background mesh without the need
for conforming the solid and fluid meshes. As a result, it becomes computationally convenient to
track the motion of arbitrary particles while avoiding a cumbersome boundary-fitted (re)meshing
process. In the context of finite elements, several adaptations of immersed methods have been ex-
plored for the simulation of fluid interacting with moving objects [6–13]. Among these immersed
methods, immersogeometric analysis [14–18] (IMGA) is a promising approach for accurately pre-
dicting flow results by faithfully capturing the immersed geometry using adaptively refined quadra-
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ture rules in the intersected elements, and weakly enforcing the Dirichlet boundary conditions on
the surface of the immersed object using an extension of Nitsche’s method [19]. Our prior work
has shown that the IMGA is a viable approach to track particles in microchannels [20], and we
extend the IMGA approach to 3D simulations in this work.

The IMGA approach incorporates a residual-based variational multiscale (VMS) formula-
tion [21] to model fluid physics, which has been a successful approach to model complex flow
phenomena. The VMS approach is analogous to a large eddy simulation (LES) model which uses
variational projections in place of the traditional filtered equations in LES and focuses on modeling
the fine-scale equations. The VMS approach does not employ any eddy viscosity, and has been
successfully used to perform accurate flow condition agnostic (laminar or turbulent) simulations.
It has been extended to a wide range of engineering applications, such as buoyancy driven flows,
particle laden flows, fluid–structure interaction, multiphase and free-surface flows, space-time ther-
mal flows, magnetohydrodynamic flows, and compressible flows [22–30]. While the IMGA is a
promising approach to model particle migration in channels, it is challenging to optimize the com-
putational efficiency on an unstructured background mesh. Thus, in this work, we proposed a
new computational framework that performs large-scale finite element computations using IMGA
on an octree-based background mesh due to its convenience and efficiency of fast adaptive mesh
refinement and partitioning compared with traditional unstructured meshing approaches1.

Octree-based meshing has been successfully applied to finite element computations for many
engineering problems [33–38]. Specifically in this work, we employ the optimized parallel octree-
based meshing library, Dendro, which has been deployed for simulating binary black hole inspiral,
solving PDEs in 4D space-time octrees, reconstructing the motion of the ventricular walls in car-
diac images, and computing information theoretic similarity measures for medical images [39–43].
Some of the features of Dendro include a bottom-up construction of octrees and a 2:1 balancing on
distributed architectures [44, 45], and a space filling curve partitioning for load balancing [46–48].
While the concept of octree-based adaptive space partitions is well studied, developing such meth-
ods for the IMGA on large distributed systems is novel. In addition, adaptations of existing IMGA
on the octree background mesh are developed to enable an efficient searching of background ele-
ment for a given surface quadrature point, as well as a distribution of surface quadrature points over
processors to reduce memory overhead and better parallelize the surface assembly in the IMGA.
The original octree-based adaptive mesh refinement algorithm is also adjusted for the in-out test in
the IMGA. Finally, the proposed octree-based IMGA framework is applied to the simulations of
tracking particles in channels to demonstrate its accuracy and scalability.

The paper is organized as follows. In Section 2, we summarize the formulations of the in-

1This work is based on the thesis work of the authors, Xu [31] and Lofquist [32].
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compressible Navier–Stokes equations and particle motion. Section 3 describes the semi-discrete
formulations and time stepping. Section 4 briefs the octree-based mesh implementations and adap-
tations of extending IMGA on the octree-based mesh. In Section 5, we validate the framework and
show scaling results using a case of sphere dropping in a quiescent fluid. We also show a few
applications of this framework for tracking particles in different microchannels. Finally, we draw
conclusions and motivate future research in Section 6.

2. Governing equations for particles moving in fluids

We consider the non-dimensional two-way coupled governing equations describing the inter-
actions between the particle and the fluid in the channel.

2.1. Incompressible Navier–Stokes equations

The flow is described by the dimensionless Navier–Stokes equations posed on a fluid domain
Ωt: (

∂u
∂t

+ u · ∇∇∇u
)
−∇∇∇ ·σσσ = 0 , (1)

∇∇∇ · u = 0 , (2)

where t is the time, and u is the flow velocity. The stress and strain-rate tensors are defined
respectively as

σσσ (u, p) = −p I + 2
1

Re
εεε(u) , (3)

εεε(u) =
1
2

(
∇∇∇u +∇∇∇uT

)
, (4)

where p is the pressure, I is an identity tensor, and Re is the channel hydraulic diameter based
Reynolds number. The problem (1)–(4) is accompanied by suitable boundary conditions, defined
on the boundary of the fluid domain, Γt = ΓD

t ∪ ΓN
t :

u = ug on ΓD
t , (5)

−p n + 2
1

Re
εεε(u) n = h on ΓN

t , (6)

where ug denotes the prescribed velocity at the Dirichlet boundary ΓD
t , h is the traction vector at

the Neumann boundary ΓN
t , and n is the unit normal vector pointing in the wall-outward direction.
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2.2. Particle motion

The particle is modeled as a rigid body. We denote the dimensionless kinematic state of the
object as Y, and the equations of motion may be written in a Lagrange frame of reference as
follows [49]:

Y =


xc

R
P
L

 , Ẏ =
dY
dt

=


vc

ωωω∗R
F
T

 , (7)

where

vc =
P
M
, ωωω = I−1L, (8)

and

I = RIiniRT , ωωω∗ =


0 −ωz ωy

ωz 0 ωx

−ωy ωx 0

 . (9)

In Equations (7)–(9), xc is the position of the center of mass of the object, vc is the velocity of the
center of mass of the object, R is the rotation matrix mapping from initial configuration to current
configuration,ωωω is the object’s angular velocity, P and L are linear and angular momentum, respec-
tively. M and I are the mass and inertia tensor of the object, both of which are non-dimensinalized
using the fluid density and characteristic length scales. and the inertia tensor I can be further de-
fined using Iini in initial configuration, which is constant during the motion. In Equation (7), F and
T are the integral of force and torque acting on the particle surface which are computed from the
solution of the fluid field, and defined as follows:

F =

∮
ΓI

t

σσσ (u, p) ndΓt, T =

∮
ΓI

t

r × (σσσ (u, p) n) dΓt, (10)

where r is the distance vector from the particle’s center of mass to its surface points in the current
configuration, ΓI

t is the particle boundary, and the coordinates x and velocities v of its surface points
are computed as

x = xc + r, v = vc +ωωω × r. (11)
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Finally, n is the unit normal vector that points outward from the particle surface. Note, most
microfluidic applications involve neutrally buoyant particles (i.e. the density of particle matches
the density of fluid). Density matching allows us to omit the buoyancy term in Equation 10. It is
trivial to include buoyancy for case of unmatched densities.

3. Semi-discrete formulation and time discretization

3.1. Variational multiscale formulation

Consider a collection of disjoint elements {Ωe
t }, ∪eΩ

e
t ⊂ R

d. The fluid domain is covered by
the closure of the collection: Ωt ⊂ ∪eΩ

e
t . Note that Ωe

t is not necessarily a subset of Ωt with
the immersed boundary method. Let Vh

u and Vh
p be the finite-dimensional spaces of discrete test

functions and trial solutions for velocity and pressure, which are denoted as superscript h, and
represent resolved scales (coarse scale) produced by the finite element discretization. The strong
problem (1)–(6) may be recast in a weak form and posed over these discrete spaces to produce the
following semi-discrete problem using the VMS modeling approach: Find uh ∈ Vh

u and ph ∈ Vh
p

such that for all wh ∈ Vh
u and qh ∈ Vh

p:

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
= 0 . (12)

The bilinear form BVMS and the load vector FVMS are given as

BVMS
(
{wh, qh}, {uh, ph}

)
=

∫
Ωt

wh ·

(
∂uh

∂t
+ uh · ∇∇∇uh

)
dΩt

+

∫
Ωt

∇∇∇wh : σσσ
(
uh, ph

)
dΩt

+

∫
Ωt

qh∇∇∇ · uh dΩt

−
∑

e

∫
Ωe

t∩Ωt

(
uh · ∇∇∇wh +∇∇∇qh

)
· u′ dΩt

−
∑

e

∫
Ωe

t∩Ωt

p′∇∇∇ · wh dΩt

+
∑

e

∫
Ωe

t∩Ωt

wh · (u′ · ∇∇∇uh) dΩt

−
∑

e

∫
Ωe

t∩Ωt

∇∇∇wh :
(
u′ ⊗ u′

)
dΩt, (13)
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and

FVMS
(
{wh, qh}

)
=

∫
Ωt

wh · f dΩt +

∫
ΓN

t

wh · h dΓt , (14)

where the variables with superscript primes denote the unsolved scales (fine scale) that need to be
modeled, and their effect is added onto the coarse scale. u′ is defined as

u′ = −τM

(
∂uh

∂t
+ uh · ∇∇∇uh − f −∇∇∇ ·σσσ

(
uh, ph

))
, (15)

and p′ is given by

p′ = −τC∇∇∇ · uh . (16)

Here, u′ and p′ are approximated by the residuals of momentum equation and continuity equation,
respectively, and τM and τC are corresponding coefficients with the definitions in Bazilevs et al.
[21]. Equations (12)–(16) feature the VMS formulation of Navier–Stokes equations of incompress-
ible flows. The additional terms added onto the standard weak Galerkin form can be interpreted as
a combination of streamline/upwind Petrov–Galerkin (SUPG) stabilization and VMS large-eddy
simulation of turbulence modeling.

3.2. Immersogeometric analysis

The no-slip boundary condition (which is a Dirichlet boundary condition) on an immersed
particle surface is converted into an equivalent Neumann condition in the sense of the Nitsche’s
method [50]. We perform a surface integral over the immersed boundary to weakly impose the
Dirichlet boundary condition [19, 51, 52]. Assuming the immersed boundary ΓI

t is decomposed
into Neb surface elements each denoted by (ΓI

t)b, the semi-discrete problem becomes

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
−

Neb∑
b=1

∫
(ΓI

t )b

wh ·

(
−ph n + 2

1
Re

εεε(uh) n
)

dΓ

−

Neb∑
b=1

∫
(ΓI

t )b

(
2

1
Re

εεε(wh) n + qh n
)
·
(
uh − v

)
dΓ

+

Neb∑
b=1

∫
(ΓI

t )b

τBwh ·
(
uh − v

)
dΓ = 0 , (17)

where n is the normal vector of the immersed boundary. The boundary terms added to the govern-
ing equations are the second, third and last lines in Equation (17), and a detailed interpretation of
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(a) (b)

Figure 2: Implementation of the immersogeometric method. (a) A schematic (2D example) showing how
the surface assembly of IMGA is performed. The surface mesh is used to identify surface Gauss points
(the ‘X’ locations). The immersed boundary condition terms (i.e. the last three terms in Equation (17)) are
computed at these surface Gauss points, and then distributed to their background nodes. (b) A schematic
(2D example) of the volume assembly in the IMGA method. An in-out test is performed to identify whether
each volume Gauss point lies inside the particle (green points) or inside the fluid (red points). Only the
Gauss points in the fluid domain are used to assemble the elemental matrices.

different terms can be found in Bazilevs and Hughes [19]. Only the penalty-like stabilization pa-
rameter, τB, is a heuristic that has to be appropriately chosen. We use the definition proposed in Wu
et al. [53], which scales the stabilization parameter as τB = max {CB

invh/∆t,CB
vis/(Re h)}, where the

CB’s are positive dimensionless constants, h is the size of the cut element, and ∆t is the time step
size.

The boundary terms are imposed onto the surface Gauss points, which are then interpolated by
their background Cartesian grids as shown in Figure 2a. In this way we can apply the Dirichlet
boundary condition on the immersed boundary of the object. The implementation of the IMGA
requires some refinement of the background mesh across the immersed surface to better capture
the shape of the interface. The volume assembly of IMGA is accomplished by using selective
quadrature (i.e. only using the Gauss points that lie in the fluid and not inside the immersed
particle). This necessitates performing an in-out test to determine the Gauss points inside the
fluid domain (red points) on which we assemble, while discarding the Gauss points inside the
object (green points), as shown in Figure 2b. Note that the in-out test is also required for the
adaptive refinement, and selective quadrature is performed only for the cut elements during volume
assembly. The particle evolution is then computed by evaluating the force and torque exerted from
the fluids on the particle. Finally, when the particle is moving, freshly-cleared nodes, i.e., some
background mesh nodes that are inside the object at one time step, but are in the fluid domain at the
next time step will occur. These mesh nodes have no fluid history and require interpolation from
their neighbors. We refer readers to our previous work [20] for a detailed treatment.
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3.3. Time stepping for fluids and particle motion

The time-dependent Navier–Stokes equations are solved using a backward Euler implicit
scheme as follows

∂u
∂t

=
un − un−1

∆t
= L(un, pn), (18)

where the operator L(un, pn) represents all the other terms except the time-dependent term eval-
uated at the current time step in Equation (1). ∆t is chosen to respect the CFL condition 2. The
(non)linear solution procedure is taken care by PETSc [54]. We utilize the SNES construct (line
search quasi-Newton), which uses the KSP construct, specifically the stabilized bi-conjugate gra-
dient (BCGS) solver. An additive Schwarz preconditioner (ASM) is used to enable parallel pre-
conditioning and solving on decomposed sub-domains.

An explicit forward Euler time-stepper is used to update the particle location and velocity. In
the discrete form we have

Yn+1 = Yn + ∆tẎn. (19)

Fn and Tn at each time step are discretized in space and computed with weakly imposed boundary
conditions as follows

Fn =

Neb∑
b=1

∫
(ΓI

t )b

σσσ(un, pn)ndΓ −

Neb∑
b=1

∫
(ΓI

t )b

τB(un − vn)dΓ, (20)

Tn =

Neb∑
b=1

∫
(ΓI

t )b

r × (σσσ(un, pn)n) dΓ −

Neb∑
b=1

∫
(ΓI

t )b

r × τB(un − vn)dΓ (21)

The last terms in Eqs. (20) and (21) are the penalty-like term that are added onto the surface force
calculation. The total force acting on the object is the summation of the surface force and any
external body forces (such as gravity and buoyancy).

4. Scalable immersogeometric analysis on octree meshes

While the IMGA is a promising approach to model particle migration in channels, it is chal-
lenging to optimize the computational efficiency on an unstructured background mesh. As a result,
in this paper, we propose an octree-based IMGA that extends the IMGA on an octree-based back-
ground mesh. We employ the optimized parallel octree-based meshing library, Dendro. In this

2Due to the explicit time stepping used to track object motion, the ∆t is usually set to a small value.
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Figure 3: An illustrative example of a rigid particle traversing a microchannel decorated with obstacles.
Figure shows a slice cut through the geometry.

section, we discuss adaptations of IMGA as well as some computational aspects required and
developed on Dendro that enable integration of IMGA on octree-based adaptive meshes.

4.1. Octree mesh implementation

While the elemental matrix computations are done using a separate external module (described
in Section 4.2), Dendro provides the adaptive mesh refinement and all parallel data-structures.
For this work, Dendro is extended to support meshes of (long) rectangular channels in order to
account for non-cubic geometry domains. Octants outside the channels will be removed from the
octree structure. Note that for channels with pillar obstacles, we can either immerse the pillars or
create boundary-fitted structures since pillars will not move. The latter approach requires removal
of octants inside pillars. An example of such an adaptively refined mesh (with a boundary-fitted
pillar) is shown in Figure 3. The process in Dendro used to build and maintain an adaptively
refined octree mesh in parallel includes refinement, 2:1 balancing, partition, and meshing, and the
algorithms of Dendro are detailed in [55]. We also refer readers to [44, 56–59] for details on
implementation of Dendro.

4.2. Elemental computation

Node coordinates and elemental connectivity are implicit in the octree’s structure, so Dendro
recalculates these values on the fly as the octree is traversed. To avoid memory overhead, we
consider a single hexahedral element. As we iterate through the octree mesh for assembly we re-
position the nodes in this hexahedral element to match the octree element from Dendro. Since the
octree mesh has only one possible element shape, we pre-calculate and cache the isoparametric to
physical mapping at each integration point. During initialization, we create an ‘index’ element at
each refinement level in the octree and evaluate the basis functions at the integration points. When
the assembly code needs to access these values, we pull them from the corresponding refinement
level in the cache instead of recalculating them at each element.
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4.3. Refinement according to in-out test and subdomains

To adapt the mesh refinement to the in-out test in IMGA, a coarse mesh is first constructed
based on the geometry. Proceeding in a top-down fashion, each cell in the mesh is refined if a sur-
face (pillar/particle) passes through it, which is determined using an in-out test. If all eight corners
of an octant are outside of the immersed geometry, then we retain this element, but do not refine
further. If all eight points are inside the immersed geometry, then this element is performed with
the same manner as outside element for a immersed strategy, while it is removed from the octree
for a boundary-fitted strategy. If some of the corners of the octant are inside and others outside,
then this octant is refined. This process is repeated until the desired level of refinement is achieved.
Similarily, the octants outside the rectangular channels are also removed by a channel boundary in-
out test (as boundary-fitted strategy) during the refinement process. Channel boundaries may also
be refined using the same way for a better approximation of the channel dimensions (and boundary
layers if needed). Since in our case, the pillars, particles and channels are all regular geometries
(i.e., cylinder, sphere and rectangular), the in-out test can be performed analytically. However for
complex geometries, a ray-tracing algorithm may be employed in the in-out test.

In addition, subdomains, which leverage the original mesh data-structure, are created to han-
dle meshes with rectangular geometry and holes for boundary-fitted pillars as octants outside the
channel and inside the boundary-fitted pillars will be removed, and also no communications are
needed for them. A different scattering mapping within the subdomains for current mesh is also
uniquely defined afterwards. The finite element computations will only take place in subdomains
(and we can discard the main octree structure for the original domain). Therefore, subdomains
have an overall (much) smaller computation domain and store (significantly) less data than the
original mesh (for example, in our case of a very long channel). Re-partitioning is required as
creating subdomains will result in load imbalance. For our target application, it is important to
identify both the external (channel) boundary as well as the internal boundary (boundary-fitted
pillar surface). The subdomain stores two bits to keep track of whether a node is non-boundary,
external, or internal boundary.

4.4. Sampling the immersed boundary and adding corrections

In order to reduce memory overhead and better parallelize the surface assembly in IMGA, we
distribute surface quadrature points over processors. The object boundary mesh is generated as a
triangulated mesh. Surface quadrature point coordinates, along with other necessary parameters,
such as the unit normal vector and boundary values of velocity at each quadrature point, are then
calculated in each triangle element using standard Gaussian quadrature. The surface quadrature
points are then sorted and distributed over processes. This is done by associating each surface
quadrature point with an octree element (real or virtual) with the maximum refinement that contains
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the quadrature point. Note that this octree element is not necessarily an existing octant in the octree
mesh. This associated octree element represented by its bottom-left-back (minimum) node can be
then aligned on the space-filling-curve, and the processor it belongs to can be easily found by the
partitioning of the space-filling-curve. To find the actual background octree element that contains
the quadrature point, we loop over all the octree elements in the process to check if the octree
element is an ancestor of the associated octree element, or if they are exactly the same octree
element. Since the octree elements and the surface quadrature points are both sorted based on the
space-filling-curve, we can loop over them – in parallel – with an efficiency of O(m + n) instead
of a nested loop with an efficiency of O(m × n), (unstructured meshes usually have to perform a
nested loop), where m is the local number of elements in the background mesh and n is the local
number of surface quadrature points. Boundary conditions imposed on the surface quadrature
points can be then evaluated and distributed to the nodes of the background octree element. The
distribution of surface quadrature points over processes and finding their background elements are
challenging in unstructured meshes, as the process boundaries are usually complex in most graph-
based partitioning approaches. When the object is moving, this is even more cumbersome since it
has to be performed at each time step.

Another computational efficiency issue caused by the IMGA is that the immersed geometry is
likely localized on a small subset of processes. These processes are the only ones that perform
the surface assembly for weakly imposing no-slip boundary condition on the immersed boundary.
A potential solution is to perform a weighted partition – increasing the weight of the intercepted
elements by the additional relative cost of surface assembly with volume assembly. This weighted
partition will ensure better load balancing. We defer this development to a subsequent paper.

4.5. Adaptive remeshing and intergrid transfers

An essential requirement for computational efficiency is to adapt the spatial mesh as the particle
moves across the channel. In the distributed memory setting, this also indicates a need to re-
partition and re-balance the load. We adaptively remesh the domain at each time step based on the
current position of the particle using results of the in-out test in IMGA followed by the subsequent
2:1 balance enforcement, partitioning and meshing process. Once the new mesh is generated, we
transfer the data from the old mesh to the new mesh using interpolation. To keep things simple
at this stage, we remesh each time from scratch followed by the repartition of new octree (reuse
the same code of initial octree generation and partition because they are sufficiently optimized
in Dendro [59]), and then interpolate the local new mesh. The nodes of the local new mesh are
distributed over processes based on the old mesh partitioning similarly as described in Section 4.4
to perform interpolation. Again, the intergrid transfer is challenging in unstructured meshes as
repartitioning usually offers no guarantee of good overlap between the old and new partitions
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Figure 4: A representative mesh illustrating the refinement around the particle, and contours of velocity
magnitude at two representative time instances.

in most graph-based approaches, and the distribution of local new mesh will be difficult across
complex process boundaries. A construction of global old mesh may be required for intergrid
transfer in unstructured meshes.

5. Experiments and results

5.1. Implementation specification

The Dendro framework is implemented in C++ using MPI for distributed memory parallelism
and OpenMP for shared memory parallelism. This is integrated with a C++ module (Section 4.2)
for evaluating basis functions and weak form of governing equations to support elemental com-
putation. Our code is tightly integrated with PETSc v3.7’s distributed matrix and vector data-
structures and utilizes its SNES and KSP solvers. These tests were compiled and run on Oak
Ridge’s Titan supercomputer (before its decommissioning in 2019). PETSc, Dendro, and the main
program were compiled with the GNU 4.9.3 compiler with -O2 optimization flags. Timing infor-
mation was reported using PETSc’s logging framework.

5.2. Validation

We first validate the framework by comparing the particle trajectory and velocity against
a benchmark experimental data of a sphere dropping in a quiescent fluid [60]. We consider
a container with dimension of 0.1 m × 0.16 m × 0.1 m. We simulate a sphere with a diame-
ter of D = 0.015 m, released at a height of 0.12 m in the middle. The fluid has a density of
ρ f = 960 kg/m3, and a dynamic viscosity of µ = 0.058 kg/(m · s). The density of the sphere
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(b) Sedimental velocity vs. time.

Figure 5: Comparisons of the non-dimensional height and sedimental velocity of the particle as it settles
downwards with an experimental benchmark of a particle setting in a viscous fluid [60]. Note as the particle
nears the bottom surface, its velocity rapidly zeros out.

is ρs = 1120 kg/m3. Reynolds number, defined as ρ f u0D
µ

, is Re = 31.9 with a reference velocity
u0 = 0.128 m/s. Time step size ∆t is set to 1.2×10−3 s. Initial conditions are set as zero velocity in
the whole fluid domain. No-slip boundary condition is imposed on lateral and bottom walls, and
traction-free boundary condition is imposed on the top wall. We adaptively refine the mesh around
the interface of the sphere and fluid. We refine three levels deeper than the rest of the background
mesh. Specifically, we refine to a minimum/maximum level, r = 5/8 (successively bisect and
divide the octree root five and eight times, respectively). We remesh after each time step as the
sphere drops. Note that such frequent adaptive remeshing is one of the challenges of our target
application 3. We set the surface triangular mesh size of the sphere in sync with the background
interface element size, keeping a ratio of 1:2 (surface to background) to ensure adequate surface in-
tegration. The mesh example and visualizations of velocity magnitude contour, and the validation
of non-dimensional height and sedimental velocity as the sphere settles downwards are presented
in Figure 4 and 5, respectively. As can be seen, both the sedimental velocity and the trajectory of
the sphere match with the experiment results well.

5.3. Parallel scalability

We next show scaling performance of the framework. We collect timing for the case of a
dropping sphere. We run each case for 5 time steps. The same setup and (re)meshing strategy as
in last section is adopted. We run this experiment on four minimum/maximum refinement levels:
r = 5/8, 6/9, 7/10, and 8/11. Each refinement level has roughly seven to eight times more degrees

3While remeshing after every time step is not necessary, we perform this to illustrate scaling behavior of each part
of the framework
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Figure 6: Strong and approximated weak scaling for a non-dimensional sphere of unit size dropping in a
channel of size 8 × 8 × 8 running for 5 time steps with number of processes up to 16,384 on Titan.

of freedom to solve for than the previous level, with r = 5/8 having 203,000 and r = 8/11 reaching
70.2 million degrees of freedom.

We note that given specific minimum/maximum refinement level and the same initial and
boundary conditions, the overall problem size (total degrees of freedom) in spite of remeshing
is independent of the number of processes being used for the simulation. To this effect, we believe
presenting performance for different minimum/maximum refinement levels with different numbers
of processes, in the style of a strong scaling is appropriate. Indeed, performing weak scaling for
such real-world applications is more difficult than strong scaling, since it is much harder to ensure
that N/p, i.e., the grain size stays relatively constant with such frequent adaptive remeshing and
consequently changes in problem size, where N is the total degrees of freedom and p is the num-
ber of processes. Therefore, given the somewhat fixed increase in problem size with increasing
minimum/maximum refinement level and corresponding increase of number of processes, we can
combine multiple strong scaling results to derive approximate weak scaling results for the overall
simulation time. The approximated weak scaling results are presented in Figure 6b. Note that mi-
nor fluctuations in the approximation of the weak scalability are expected due to the inconsistent
grain size.

5.3.1. Strong scalability

For our target application, the key goal is to be able to perform the simulations quickly. Given
this, and the relatively moderate size of our problems, the focus is on strong scalability. We first
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to the setup required to perform immersed boundary method. Global matrix and Global vector refer to the
time taken to build the global Jacobian matrix and residual vector. Solve refers to the time taken to actually
solve the system (i.e. PETSc BCGS solver + ASM preconditioner). Remesh refers to the time taken to create
the mesh of next time step and interpolate data onto it.

present strong scalability results for the overall simulation time including the cost of everything
in Figure 6a for three problem sizes. Overall our code scales well, with continued reductions in
simulation time. A breakdown of the total simulation time into various significant components for
the refinement level of r = 8/11 is also presented in Figure 7. We can see that the amount of solve
time and matrix assembly time, which are comparable, dominate the total simulation time for most
of the cases. The immersed boundary method corrections (IMGA setup) involving the distribution
of immersed surface points on the octree mesh also scales reasonably well.

One significant trend with increasing number of processes is “total remeshing”, as shown in
Figure 8 (also listed as “Remesh” in Figure 7). This refers to the overall remeshing stage combining
generating a new mesh, interpolating between two meshes and reinitializing the matrix, vector and
solver. Effectively, this is the overhead paid for having good adaptivity. The scaling of remeshing is
poor compared with other parts of the code, but the magnitude of time it takes is much smaller than
solving the Navier–Stokes equations for most of the cases except using relatively large numbers
of processes (last two data points) in the refinement level of r = 8/11. The remeshing time is
comparable with the solve time (shown in Figure 7) in these two cases when the communication
becomes considerable. This is due to the interpolation between two meshes because the generation
of a new adaptively refined mesh is sufficiently optimized. Note at the current stage, we perform
a remeshing and repartitioning from scratch (due to the sufficiently optimized meshing code) first,
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followed by a subsequent interpolation. However, the interpolation may not be optimal since a
large amount of communication may be required by distributing new local mesh. We are exploring
alternatives (to be reported in a subsequent paper). Specifically, we could remesh (refine or coarsen
octants) in each process while keeping the local geometry domain unchanged in each process. This
means the old and new local mesh are overlapping and consequently there is no need to distribute
new local mesh over processes during interpolation. We could then perform interpolation (no
communication needed) first in each process, and then repartition the new octree and corresponding
newly interpolated solution vector for load balancing.

5.4. Results for particle tracking in microchannels

We finally present two results for the application of this framework. The first is particle tracking
in a channel with a square cross-section, and the other is our canonical problem of particle tracking
in a channel with pillar obstacles. The schematics of both cases are shown in Figure 9, and we
present both cases in non-dimensional units.

5.4.1. Square channel

Case setup: We consider a long channel with dimensions 96 × 4 × 4. We simulate a spherical
particle released at (10, 2, 1) with diameter of D = 1. The origin is located at the bottom-left-
front corner (oriented as shown in Figure 9) of the channel. We set the particle Reynolds number,
ReD = 5. We assume the particle is of the same density as the fluid, so that there is no buoyancy
effect. Time step size ∆t is set to 0.05. The inlet has unit velocity normal to the inlet. No-slip
boundary condition is imposed on surrounding walls, and zero pressure is imposed on the outlet.
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Figure 9: Schematics of particle tracking in different configurations.

Figure 10: Lateral force and velocity magnitude of the particle vs. distance it traveled downstream.

The initial condition for the fluid velocity as well as the particle velocity are both set to be the same
as the inlet velocity. We note that such long simulations – tracking the temporal evolution of the
particle as it traverses nearly 50D downstream – is fairly atypical in the microfluidics community.

Results: We are interested in the magnitude of lateral force acting on the particle and the
magnitude of the particle velocity as the particle reaches its equilibrium cross-sectional position as
shown in Figure 10. After the particle has traveled 30D downstream, it is clear that the velocity
have converged to a steady value (representing pure streamwise motion, and very small lateral
motion), which suggests that the particle has reached its equilibrium position. Additionally, the
net lateral force becomes negligibly small. The final cross sectional location in y − z plane is (2.0,
1.04) which matches the experimentally determined equilibrium position [61].

5.4.2. Channel with pillars

Case setup: In our canonical problem, we consider a sphere of diameter of D = 1 in a channel
of dimensions of 32×5×2.5. Two half pillars of radius 1.25 and height 2.5 are placed in the channel,
forming a converging-diverging type of cross section. The particle is released from (3, 1.4, 1.25)
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Figure 11: Top-down view (x−y plane) of pathline of particle movement in a channel with pillars. Boundary-
fitted pillars are plotted for visualization purpose while they are immersed in the actual simulation.

(a) Side view (x − z plane) of flow velocity magnitude in channel
with pillars at different time steps. The mesh shown is sub-sampled
from the actual mesh for ease of visualization purpose.

(b) Magnitude of force on the
particle vs. distance it traveled
downstream.

Figure 12: Velocity magnitude of particle in channel with pillars at different time steps, and force magnitude
on the particle during its motion.

with the same placement of the origin as the previous example. The particle Reynolds number is
ReD = 50 using the channel flow rate, which ensures that inertial effects are prominent [3]. Time
step size ∆t is set to 0.015. The boundary conditions are the same as the previous case except for
the two half pillars. Note, we also immerse the two half pillars, and therefore the no-slip boundary
condition on the pillars are weakly enforced. The initial condition of fluid velocity is the same as
inlet velocity. The sphere is held stationary until t = 5 to wait for the channel flow to fully develop,
so that a physically meaningful force is imposed on the released particle.

Results: Figure 11 plots the particle path as it navigates the channel with the pillar obstacles.
This path curves in as the particle passes the pillars, and due to the inertial regime that the flow is in,
the cross-sectional position of the particle close to outlet is offset from the initial cross-sectional
location. This is in line with expected behavior from experiments in Stoecklein and Di Carlo
[3], which suggest that inertial microfluidics with pillars can produce irreversible cross-sectional
displacements. Figure 12(a) illustrates the ‘squeezing’ effect due to the presence of pillars and
plots the flow velocity magnitude contour along the x − z plane (i.e., side view) at 3 different time
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steps (before, during and after the particle interacts with the pillars). Note that there is no direct
interaction between the particle and the pillars, but instead all interactions are mediated by the fluid.
Figure 12(b) quantifies this observation by plotting the force acting on the particle. Note the large
jump in force as the particle traverses the channel (close to the pillar) is due to the squeezing effect.
Furthermore, the simulation was performed on a mesh with around 105,000 hexahedra elements,
the average number of degrees of freedom for this problem is around 350K, and the number of time
steps needed to track the particle across the channel dimension is 790 steps. The total simulation
time for this canonical problem is around 10 hours using 12 KNL nodes on TACC Stampede2.
This is very promising as it allows us to proceed with computing cross-sectional displacement
maps under different pillar configurations, which essentially translates to executing this type of
simulation for a large set of different release locations across the inlet cross-section.

6. Conclusions and future directions

We developed a scalable, adaptively refined octree-based immersogeometric analysis frame-
work, and validated this framework using a benchmark case of sphere dropping in fluids. Our
framework demonstrates excellent strong (and weak) scalability for the overall simulation time,
even with frequent remeshing in the benchmark case. Our framework can keep the overhead of
adaptive remeshing and IMGA corrections relatively low. We anticipate additional code optimiza-
tion will make the approach even more scalable. We further deployed the framework to track parti-
cle in microchannels with different (complex) geometries. This framework allows us to efficiently
construct the deformation maps for particles under a broad range of experimentally accessible pa-
rameters, which will result in a passive approach for particle localization. We identify several
avenues of future work. Immediate computational goals include (1) transitioning to a matrix-free
solver that can significantly reduce the solve-time, while ensuring sustained adaptivity for larger
processor counts, (2) designing a local refinement/coarsening algorithm and subsequent reparti-
tioning to optimize intergrid transfer, (3) incorporating a more rigorous dynamic load balancing
that accounts for the additional work involved in the surface computations, and (4) accounting for
multiple moving objects. From the flow physics perspective, we plan to deploy this framework to
characterize the inertial displacement maps for a range of particle sizes and pillar placements.
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