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Abstract In the mid-2010s, we began applying a combination of isogeo-
metric analysis and immersed boundary methods to the problem of biopros-
thetic heart valve (BHV) fluid–structure interaction (FSI). This chapter re-
views how our research on BHV FSI (1) crystallized the emerging concept
of immersogeometric analysis, (2) introduced a new semi-implicit numerical
method for weakly enforcing constraints in time dependent problems, which
we refer to as the dynamic augmented Lagrangian approach, and (3) clarified
the important role of mass conservation in immersed FSI analysis. We illus-
trate these contributions with selected numerical results and discuss future
improvements to, and applications of, the computational FSI techniques we
have developed.

1 Introduction

Heart valves are passive anatomical structures driven by hemodynamic forces.
They ensure proper unidirectional blood flow through the heart. At least
280,000 diseased valves are replaced annually [1,2]. The most popular replace-
ments are bioprosthetic heart valves (BHVs), fabricated from biologically-
derived materials [3]. Like native valves, BHVs consist of flexible leaflets.
BHVs have more natural hemodynamics than the older “mechanical” pros-
thesis designs, which consist of rigid moving parts [2]. However, the lifespans
of typical BHVs remain limited to ∼10–15 years, with structural deteriora-
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tion mediated by fatigue and tissue mineralization [1, 2, 4, 5]. Much research
has sought to prevent mineralization, but methods to extend durability re-
main less-explored. Central to such efforts is an understanding of the stresses
in BHV leaflets over the cardiac cycle.

Computational methods may be used for stress analysis of heart valves.
Some previous computational studies on heart valve mechanics used
(quasi-)static [6,7] and dynamic [8] structural analysis, with assumed pressure
loads. However, pure structural analysis is only accurate for static pressur-
ization of a closed valve, which represents just part of the full cardiac cycle.
It is therefore important to simulate the dynamics of heart valves interacting
with blood, using computational fluid–structure interaction (FSI).

1.1 Computational FSI analysis of heart valves

Heart valves present several challenges for FSI analysis. Most notably, the
valve leaflets contact one another, changing the fluid subdomain’s topol-
ogy. This section updates the literature review of [3] to cover some addi-
tional recent work. Standard arbitrary Lagrangian–Eulerian (ALE) [9–11] or
deforming-spatial-domain/space–time (DSD/ST) [12,13] formulations, which
continuously deform the fluid domain from some reference configuration, are
no longer directly applicable. One must augment these methods with special
techniques to handle extreme deformations. One solution is to generate a new
mesh of finite elements or volumes for the fluid domain whenever its deforma-
tion becomes too extreme [14–17]. This allows computations to proceed, but
introduces additional computational cost and numerical errors. Some recent
work by Takizawa and collaborators [18] introduced a novel space–time with
topology change (ST-TC) method that permits topology change without re-
meshing. Takizawa et al. [19] applied the ST-TC approach to CFD analysis
of a heart valve, and later extended the approach to include sliding interfaces
in [20,21], rendering it suitable for future full FSI analysis.

In light of the aforementioned difficulties, the majority of work to-date
on heart valve FSI analysis has invoked Peskin’s immersed boundary con-
cept [22]. While it is not a universal convention, we follow [23–25] in ap-
plying the term “immersed boundary method” broadly, to describe any nu-
merical method for approximating partial differential equations (PDEs) that
allows boundaries of the PDE domain to cut arbitrarily through a compu-
tational mesh. Researchers may have varying interpretations of the term
“immersed boundary method”, and we recommend that writers clarify its
meaning within a particular document.

Immersed boundary methods for FSI greatly simplify treatment of large
structural deformations, but engender several disadvantages relative to ALE
and DSD/ST techniques [26]. In particular, they struggle to efficiently cap-
ture boundary layer solutions near fluid–structure interfaces. Takizawa et
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al. [27] found that resolving such layers is essential to obtaining accurate
shear stresses in hemodynamic analysis. A comprehensive overview of vari-
ous immersed boundary methods and their properties is beyond the scope of
this literature review; we refer the interested reader to [23,24].

Peskin introduced the immersed boundary concept specifically to meet the
demands of heart valve FSI analysis [22]. The numerical method proposed
by Peskin has found little if any direct application by bioengineers, though,
due to its crude representation of the heart valve as a collection of markers
connected by elastic fibers. However, deficient modeling of the structure sub-
problem is not an inherent feature of immersed boundary methods. In the
early 2000s, [28–33] used an immersed boundary method introduced in [34]
to couple finite element discretizations of heart valves and blood flow. This
allowed investigation of various constitutive models, but numerical instabili-
ties prevented analysis at realistic Reynolds numbers and transvalvular pres-
sures. Increasing availability of parallel computing resources in the 2010s led
to higher resolution simulations of heart valves. Griffith [35] adapted Peskin’s
original method to modern distributed-memory computer architectures and
included adaptive mesh refinement for the fluid subproblem, to compute FSI
of a native aortic valve throughout a full cardiac cycle, with physiological
flow velocities and pressure differences. Borazjani [36] applied the curvilinear
immersed boundary (CURVIB) method [37, 38] to simulate systolic ejection
through a bioprosthetic aortic valve, using nearly 10 million grid points in the
fluid domain. The valve leaflet models in the studies by Griffith and Borazjani
suffered from deficiencies, though, with [35] modeling the leaflets in the style
of Peskin, as markers connected by elastic fibers, and [36] omitting bending
stiffness. The CURVIB method was recently extended to include fluid–shell
structure interaction in [39,40].

The immersed analyses cited above relied on academic research codes. As
early as the late 1990s, immersed methods in the commercial software LS-
DYNA [41] were used for FSI simulations of bioprosthetic and native aortic
valves [42–45]. The time-explicit procedures used by LS-DYNA result in se-
vere Courant–Friedrichs–Lewy conditions [46, 47], limiting stable time step
size in hemodynamic computations, because blood is nearly incompressible.
References [44, 45] circumvented this difficulty by artificially reducing the
sound speed by a significant factor, reporting that the fluid density variations
introduced by this deliberate modeling error were negligible. Other commer-
cial analysis software for heart valve FSI analysis may be usable through
“black box” coupling algorithms [48] that connect independent finite element
analysis and CFD programs without access to their internal details. Special-
ized methods are required for stable and efficient black box coupling of fluids
to thin, light structures such as heart valve leaflets [49,50]. Astorino et al. [51]
applied a novel black box coupling algorithm to FSI analysis of an idealized
aortic valve. Remeshing functionality in ANSYS software has also recently
allowed for boundary-fitted simulations of heart valves [52].
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1.2 Immersogeometric analysis

Following the majority of the studies cited in Section 1.1, our own work has
employed an immersed approach to heart valve FSI analysis. The goal of
immersed methods has always been to simplify the construction of analysis-
suitable computational models from available geometric data specifying the
domain of a PDE system. Traditional immersed boundary analysis eases this
process by allowing subproblems to be discretized separately, then coupled
through a numerical method.

Another technology for simplifying computational model generation is iso-
geometric analysis (IGA) [53]. IGA is based on the insight that many ge-
ometries in engineering design are specified in spline spaces that can be en-
riched, then used to approximate PDE solutions. These spline spaces also
have desirable mathematical properties, including control over smoothness,
improved approximation power [54], and straightforward constructions of dis-
crete de Rham complexes [55,56]. Benefits of these properties are evident in
fluid and structural analyses, including studies of incompressible flow [57–60],
thin shells [61–64], extreme mesh distortion [65], and contact [66, 67]. IGA
encounters difficulties, though, when faced with realistic engineering designs.
Foremost among these are:

1. Many designs of volumes are specified in terms of bounding spline surfaces.
If analysts wish to solve PDEs in such volumes, then IGA, as originally
conceived, is inapplicable.

2. Spline surfaces in designs are frequently trimmed along curves that do not
conform to the parametric supports of the spline space’s basis functions.
The analysis space suggested by standard IGA is therefore not fitted to
the boundaries of the PDE domain.

These challenges could be addressed by changing the way in which engineering
products are designed: designers could transition to geometry representations
that are analysis-suitable. Changing the habits of designers throughout indus-
try, though, would require an incredible feat of mass persuasion. Undeterred,
creators of analysis-suitable design technologies (e.g., [68–70]) have succeeded
at incorporating their work into some major commercial design platforms. It
remains doubtful, though, that analysis-suitable design will become standard
any time soon. Further, many designs specified in past formats will remain
relevant long into the future.

One way to make IGA practical without changing the design process is to
incorporate immersed boundary methods. Difficulty 1 can be alleviated by
creating a convenient unfitted analysis space covering the volume of interest,
then using an immersed boundary method to enforce the desired boundary
conditions on the spline surfaces. Difficulty 2 can be addressed by using the
natural isogeometric solution space, and treating the trim curves as immersed
boundaries. Promising work in both of these directions has been carried out
using an immersed boundary approach called the finite cell method [71–75].
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In addition to patching weaknesses of IGA, direct application of immersed
boundary techniques to design geometries can eliminate the meshing and
consequent geometrical approximation1 from traditional immersed boundary
analysis. In [77], we introduced the term immersogeometric analysis (IMGA)
to describe this symbiotic union of immersed boundary and isogeometric
technologies.2

1.3 Structure and content of this chapter

Section 2 states the coupled PDEs that we use to model the FSI system.
Section 3 describes the isogeometric spatial discretizations for the fluid and
structure subproblems. Section 4 completes the discretization with a semi-
implicit coupling scheme that we call the dynamic augmented Lagrangian
(DAL) method. Section 5 demonstrates the accuracy of the proposed meth-
ods, looking at both norm convergence and quantities of interest in nonlinear
benchmark problems. Section 6 applies DAL-based IMGA to BHV FSI simu-
lation and compares the results to in vitro experimental work. Finally, Section
7 sketches some future developments that may improve on the technology de-
scribed in this chapter, connect it to clinical practice, and apply it to other
FSI problems.

2 Mathematical model of FSI

We model BHV leaflets as Kirchhoff–Love thin shells. We model the sur-
rounding fluid as incompressible and Newtonian. The subproblems are cou-
pled through kinematic and dynamic conditions on the fluid–solid interface.
The thin structure is modeled geometrically as a 2D surface embedded in
the 3D fluid domain. We state the model in a weak form, which is both
suggestive of finite-dimensional approximations and conducive to including
distributional forces from immersed boundaries.

Remark 1. We do not include a condition that the structure cannot inter-
sect itself. Inclusion of such a constraint would be redundant in light of FSI
kinematics, since a continuous velocity field is defined throughout the fluid–
structure continuum [78]. While it is, in practice, useful to include some spe-

1 In practice, immersogeometric methods must frequently approximate integrals over
the domain geometry, which may be considered a type of geometrical approximation
[76, Sections 4.3 and 4.4], but this is conceptually distinct from the direct alteration
of domain geometry that occurs in traditional mesh generation.
2 The word “immersogeometric” was originally coined in 2014 by T. J. R. Hughes,
while traveling in Italy; it is derived from the Italian word immerso, meaning “im-
mersed”.
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cialized treatment of structure-on-structure contact in a numerical method,
we consider that a feature of the discretization, not the mathematical model.

2.1 Augmented Lagrangian formulation of FSI

We start from the augmented Lagrangian framework for FSI introduced by
[79], and specialize to the case of thin structures. The region occupied by
fluid at time t is (Ω1)t ⊂ Rd. The structure geometry at time t is modeled by
the hypersurface Γt ⊂ (Ω1)t. Let u1 denote the fluid’s velocity and p denote
its pressure. Let y denote the structure’s displacement from some reference
configuration, Γ0, and u2 ≡ ẏ denote the velocity of the structure. The fluid–
structure kinematic constraint, u1 = u2 on Γt, is enforced by the augmented
Lagrangian ∫

Γt

λλλ · (u1 − u2) dΓ +
1

2

∫
Γt

β|u1 − u2|2 dΓ , (1)

where λλλ is a Lagrange multiplier and β ≥ 0 is a penalty parameter. The
resulting variational problem is: Find u1 ∈ Su, p ∈ Sp, y ∈ Sd, and λλλ ∈ S`
such that, for all test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd, and δλλλ ∈ V`

B1({u1, p}, {w1, q}; û)− F1({w1, q})

+

∫
Γt

w1 · λλλ dΓ +

∫
Γt

w1 · β(u1 − u2) dΓ = 0 , (2)

B2(y,w2)− F2(w2)

−
∫
Γt

w2 · λλλ dΓ −
∫
Γt

w2 · β(u1 − u2) dΓ = 0 , (3)∫
Γt

δλλλ · (u1 − u2) dΓ = 0 , (4)

where Su, Sp, Sd, and S` are the trial solution spaces for the fluid velocity,
fluid pressure, structural displacement, and interface Lagrange multiplier so-
lutions. Vu, Vp, Vd, and V` are the corresponding test spaces. B1, B2, F1, and
F2 are forms defining the (weak) fluid and structure subproblems.

2.2 Fluid subproblem

The fluid subproblem is incompressible and Newtonian:
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B1({u, p}, {w, q}; û) =

∫
(Ω1)t

w · ρ1

(
∂u

∂t

∣∣∣∣
x̂

+ (u− û) · ∇∇∇u

)
dΩ

+

∫
(Ω1)t

εεε(w) : σσσ1(u, p) dΩ +

∫
(Ω1)t

q∇∇∇ · u dΩ

− γ
∫

(Γ1h)t

w · ρ1 {(u− û) · n1}− u dΓ , (5)

F1({w, q}) =

∫
(Ω1)t

w · ρ1f1 dΩ +

∫
(Γ1h)t

w · h1 dΓ , (6)

where ρ1 is the fluid mass density, εεε is the symmetric gradient operator,
σσσ1(u, p) = −pI + 2µεεε(u), where µ is the dynamic viscosity, f1 is a prescribed
body force, and h1 is a prescribed traction on Γ1h ⊂ ∂Ω1. (Ω1)t deforms
from some reference configuration, (Ω1)0, according to the velocity field û,
which need not equal u1. ∂(·)/∂t|x̂ indicates time differentiation with respect
to a fixed point x̂ from (Ω1)0. The last term of (5) is not usually considered
to be part of the weak Navier–Stokes problem, but it enhances the stability
of the problem in cases where flow enters through the Neumann boundary
Γ1h [80]. The function {·}− isolates the negative part of its argument. The
coefficient γ ≥ 0 controls the strength of this stabilizing term and n1 is the
outward-facing normal to Ω1.

2.3 Thin structure subproblem

Following the Kirchhoff–Love thin shell kinematic hypotheses (see, e.g., [61,
62,64]), B2 and F2 are defined as

B2(y,w) =

∫
Γt

w · ρ2hth
∂2y

∂t2

∣∣∣∣
X

dΓ +

∫
Γ0

∫ hth/2

−hth/2

DwE : S dξ3dΓ (7)

and

F2(w) =

∫
Γt

w · ρ2hthf2 dΓ +

∫
Γt

w · hnet dΓ , (8)

where ρ2 is the structure mass density, f2 is a prescribed body force, hth is
the thickness of the shell, ξ3 is a through-thickness coordinate, and we have
referred the elasticity term to the reference configuration. E is the Green–
Lagrange strain tensor [81, (2.67)] corresponding to the displacement y, DwE
is its functional derivative in the direction w, and S is the second Piola–
Kirchhoff stress tensor [81, (3.63)], depending on E. The last term of F2

sums the prescribed tractions on the two sides of Γt. ∂(·)/∂t|X indicates time
differentiation with respect to a fixed material point. The Green–Lagrange
strain E is simplified to depend entirely on the shell structure’s midsurface
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displacement, y : Γ0 → Rd, using Kirchhoff–Love shell kinematic assumptions
[61,64], thus reducing the dimension of the PDE domain.

Any material model that accepts a Green–Lagrange strain E and returns
a 2nd Piola–Kirchhoff stress S can be used directly in the structure subprob-
lem defined above. In the work summarized by this chapter, we model BHV
leaflets as hyperelastic, meaning that S = ∂Ψ/∂E, where Ψ maps strains to
energy densities [81, Chapter 6].

3 Discretization of subproblems

Distinct fluid and structure subproblems may be isolated from the coupled
problem stated in Section 2 by setting the test function corresponding to
the other subproblem and the test function corresponding to the kinematic
constraint to zero. Each of these subproblems may be discretized by adapting
existing techniques for computational fluid and structural dynamics.

3.1 Fluid subproblem

The fluid subproblem may be isolated by setting w2 = δλλλ = 0, which yields
(2), in which the structure velocity u2 and the Lagrange multiplier λλλ should
be viewed as prescribed data. We describe two ways of discretizing this sub-
problem: the variational multiscale (VMS) approach3 (Section 3.1.1) and the
divergence-conforming B-spline approach (Section 3.1.2).

3.1.1 Variational multiscale formulation

Issues of discrete stability and turbulence modeling are simultaneously ad-
dressed by the variational multiscale (VMS) [83] formulation of [58]. In short,
it substitutes an ansatz for subgrid velocities and pressures into the weak fluid
subproblem. This ansatz is consistent with the strong form of the Navier–
Stokes equations, so that the formulation smoothly transitions to high-order-
accurate direct numerical simulation as approximation spaces are refined.

The mesh-dependent VMS formulation is posed on a collection of disjoint
fluid elements {Ωe} such that Ω1 = ∪eΩe. {Ωe}, Ω1, and Γ remain time-
dependent, but, when there is no risk of confusion, we drop the subscript

3 We use of the term “VMS” in this chapter to refer to the specific VMS formulation
explained in Section 3.1.1, applied to equal-order pressure–velocity discretizations.
Our choice of terminology should not be taken to mean that the concept of VMS
analysis is incompatible with div-conforming B-splines, which is demonstrably [82]
not true.
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t to simplify notation. The superscript h indicates association with discrete
spaces defined over these elements. The mesh {Ωe} deforms with velocity ûh.
Let Vhu and Vhp be discrete velocity and pressure spaces defined over {Ωe}.
The semi-discrete VMS fluid subproblem is: Find uh1 ∈ Vhu and ph ∈ Vhp such

that, for all wh
1 ∈ Vhu and qh ∈ Vhp ,

BVMS
1 ({uh1 , ph}, {wh

1 , q
h}; ûh)− FVMS

1 ({wh
1 , q

h})

+

∫
Γ

wh
1 · (λn2) dΓ +

∫
Γ

wh
1 · β(uh1 − u2) dΓ = 0 , (9)

where

BVMS
1 ({u, p}, {w, q}; û) =

∫
Ω1

w · ρ1

(
∂u

∂t

∣∣∣∣
x̂

+ (u− û) · ∇u

)
dΩ

+

∫
Ω1

εεε(w) : σσσ1 dΩ +

∫
Ω1

q∇ · u dΩ

− γ
∫
Γ1h

w · ρ1 {(u− û) · n1}− u dΓ

−
∑
e

∫
Ωe

(
(u− û) · ∇w +

1

ρ1
∇q
)
· u′ dΩ

−
∑
e

∫
Ωe
p′∇ ·w dΩ

+
∑
e

∫
Ωe

w · (u′ · ∇u) dΩ

−
∑
e

∫
Ωe

1

ρ1
∇w : (u′ ⊗ u′) dΩ

+
∑
e

∫
Ωe

(u′ · ∇w) τ · (u′ · ∇u) dΩ , (10)

and

FVMS
1 ({w, q}) = F1({w, q}) . (11)

The forms BVMS
1 and FVMS

1 are semi-discrete counterparts of B1 and F1. u′

is the fine scale velocity ansatz,

u′ = −τM
(
ρ1

(
∂u

∂t

∣∣∣∣
x̂

+ (u− û) · ∇u− f

)
−∇ · σσσ1

)
, (12)

and p′ is the fine scale pressure,

p′ = −ρ1τC∇ · u . (13)
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The stabilization parameters τM, τC, and τ are defined as

τM =

(
s

(
4

∆t2
+ (u− û) ·G(u− û) + CI

(
µ

ρ1

)2

G : G

))−1/2

, (14)

τC = (τMtrG)
−1

, (15)

τ = (u′ ·Gu′)
−1/2

, (16)

where ∆t is a timescale associated with the (currently unspecified) temporal
discretization, CI is a dimensionless positive constant derived from element-
wise inverse estimates [84, 85], and G generalizes element size to physical
elements mapped through x(ξξξ) from a parametric parent element: Gij =
ξk,iξk,j . s is a dimensionless field such that, in most of Ω1, s = 1, but,
in an O(h) neighborhood of Γ , s = sshell ≥ 1. We introduced this field
in [77] to improve mass conservation near immersed boundaries. A theoretical
motivation for this scaling is given in [86], and a numerical investigation of
its effect is given in [77].

3.1.2 Divergence conforming B-splines

A way to totally eliminate mass loss and obtain pointwise divergence-free
velocity solutions is to discretize the fluid in a divergence-conforming (or
div-conforming) manner, such that the divergence of every vector-valued
function in the discrete velocity space is a member of the discrete pres-
sure space. If this property is satisfied, then weak mass conservation im-
plies strong (pointwise) mass conservation. A discretization of this type
was developed for Stokes and Navier–Stokes flows by Evans and Hughes
[59,60,87]. Evans and Hughes used B-splines to construct velocity and pres-
sure spaces with the necessary properties, then directly posed the weak prob-
lem B1({uh1 , ph}, {wh

1 , q
h}; 0) = F1({wh

1 , q
h}) over these discrete spaces. A

caveat to the above reasoning is that, to truly obtain velocities that conform
to the incompressibility constraint, one would need to solve the discrete alge-
braic problem exactly, which is impractical for realistic problems. We demon-
strate in the 3D numerical examples of Sections 6.2 and 6.3, however, that
the benefits of divergence-conforming discretizations persist through common
approximations in the assembly and solution of the algebraic problem.

Evans and Hughes used Nitsche’s method to enforce no-slip boundary
conditions. For the computations of this chapter, the regularity of the fluid
velocity solution is at most H3/2−ε(Ω1) and we use, for simplicity, a weakly-
consistent penalty method, altering the problem to be

B1({u1, p}, {w1, q}; 0) + Cpen

∫
Γpen

(u1 − g) ·w1 dΓ = F1 ({w1, q}) , (17)
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where Cpen > 0 is a penalty parameter and g is the desired velocity on
Γpen ⊂ ∂Ω1.

Construction for rectangular domains

Suppose, for now, that Ω1 is an axis-aligned d-dimensional rectangle. Then
physical space can serve directly as a d-variate B-spline parameter space.4

Define a d-variate scalar B-spline space for the pressure on Ω1. Then, for
1 ≤ i ≤ d, we can k-refine the pressure space once in the ith parametric
direction to obtain a scalar space for the ith Cartesian velocity component.
Due to well-known properties of B-splines under differentiation [88], the ith

partial derivative of the ith velocity component will then be in the pressure
space. The scalar basis functions of the velocity component spaces can be
multiplied by their respective unit vectors to obtain a vector-valued basis for
the discrete velocity space. The divergence of a velocity will therefore be a
sum of d scalar functions in the pressure space.

Precise definitions are given in [59, Section 5.2]. In the notation of the cited

reference, the velocity space is R̂T h and the pressure space is Ŵh. Following
the terminology of [59], if the pressure space has polynomial degree k′ in all
directions, the entire pressure–velocity discretization is said to be of degree k′,
despite the presence of (k′+1)-degree polynomials in the velocity component
spaces.

Generalization to non-rectangular domains

Div-conforming B-splines are not limited to rectangular domains. A point X
in a rectangular parametric domain Ω̂ may be mapped to a point x in a non-
rectangular physical domain Ω by x = φφφ(X). Vector-valued velocity basis

functions defined on Ω̂ are then pushed forward using the Piola transform.
For arbitrary parametric-space velocity function û, its pushforward u is

u(x) =
1

J(X)
F(X)û(X) , (18)

where

F =
∂φφφ

∂X
⇐⇒ FiJ =

∂φi
∂XJ

= φi,J , (19)

and J = det F. Using Nanson’s formula [81, (2.54)] and integration by parts,
we get the Piola identity

4 For readers unfamiliar with the construction and basic properties of B-splines, a
comprehensive explanation can be found in [88].
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div u =
1

J
DIV û , (20)

where

div u =
∂uj
∂xj

= uj,j and DIV û =
∂ûB
∂XB

= ûB,B . (21)

We would like the divergence of every pushed-forward velocity function to
exist in the pushed-forward pressure space. For every û in the parametric
velocity space, there exists q̂ in the parametric pressure space such that q̂ =
DIV û. Then, recalling (20), the parametric pressure space function should
be pushed forward by

q(x) =
1

J(X)
q̂(X) . (22)

Div-confomring B-splines may be used on even wider classes of geometries by
joining deformed rectangular patches together with a discontinuous Galerkin
approach [59, Section 6.5].

Stabilizing advection

The Galerkin discretization used by Evans and Hughes can be straightfor-
wardly augmented to include SUPG stabilization [89]. However, the pressure
gradient in the momentum equation residual removes the property of the
Galerkin approximation that the error in the velocity solution is independent
of pressure interpolation error [60, (6.32)]. This property is valuable in the
presence of immersed boundaries that induce large discontinuities in the ex-
act pressure solution. In this work, we stabilize div-conforming discretizations
with O(h) streamline diffusion: we add

+
∑
e

(τρ1u
h
1 · ∇uh1 ,u

h
1 · ∇wh

1 )L2(Ωe) (23)

to B1({wh
1 , q

h}, {uh1 , ph}), where {Ωe}Nel
e=1 are the Nel Bézier elements of the

B-spline mesh and

τ =

{(
uh1 ·Guh1

)−1/2
uh1 ·Guh1 > 0

0 otherwise
. (24)

While this is only weakly consistent, we do not expect high convergence rates
from immersed boundary discretizations of the type considered here, due to
low regularity of the exact solution.
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3.2 Structure subproblem

Setting w1 = δλλλ = 0 isolates the structure subproblem (3), in which u2 and λλλ
are considered prescribed data. This problem can be stably discretized using
a Bubnov–Galerkin method. However, for B2(y,w) to remain bounded, y
and w need to be in H2(Γ ). It is sufficient for discrete spaces to be in C1(Γ ).
Traditional finite element spaces do not satisfy this requirement. However,
isogeometric spline spaces can be made C1 if geometry allows. Typical BHV
leaflet geometries can be accurately modeled by C1 spline surfaces, so, for
the purposes of this chapter, the semidiscrete structure subproblem amounts
to choosing Vy in (3) to be (and enrichment of) the smooth spline space used
to model the geometry. The implementation of such discretizations is doc-
umented exhaustively in [64]. We augment this discretization with penalty-
based contact, as described in [77], as mentioned in Remark 1.

4 Dynamic augmented Lagrangian coupling

The augmented Lagrangian coupling the subproblems is discretized using a
semi-implicit time integration scheme, in which the penalty is treated im-
plicitly and the Lagrange multiplier is updated explicitly. We call this the
dynamic augmented Lagrangian (DAL) method. DAL circumvents difficulties
with fully-implicit coupling, while forbidding leakage through the structure
in steady-state solutions and retaining the stability that eludes fully-explicit
approaches.

4.1 Separation of normal and tangential coupling

The constraint that u1 = u2 on Γ can be separated into no-penetration

u1 · n2 = u2 · n2 (25)

and no-slip
u1 − (u1 · n2) n2 = u2 − (u2 · n2) n2 , (26)

where n2 is normal to Γ . These constraints are enforced by normal and
tangential components of λλλ.

No-penetration is critical to the qualitative structure of solutions. No-slip
is less essential, and strong enforcement may even be detrimental to solution
quality on coarse meshes [90–94]. We therefore discretize these constraints
differently. For no-penetration, we discretize a scalar multiplier field, λ =
λλλ·n2. For no-slip, we approximate the tangential component of λλλ by a weakly-
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consistent penalty force. Because Γt can cut through the fluid domain in
arbitrary ways, we do not attempt to construct inf-sup stable combinations
of velocity and multiplier spaces. Instead, we circumvent the inf-sup condition
by regularizing the no-penetration constraint residual:

(u1 − u2) · n2 → (u1 − u2) · n2 −
r

β
λ , (27)

where r ≥ 0 is a dimensionless constant. Much as the slip penalization can
be derived as a degernate case of Nitsche’s method [77, Section 4.1], the
regularization of the no-penetration constraint can be viewed as a degenerate
case of strongly-consistent Barbosa–Hughes stabilization [95].

The problem we discretize in time is then: Find u1 ∈ Su, p ∈ Sp, y ∈ Sd,
and λ ∈ S` such that, for all test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd, and
δλ ∈ V`

B1({w1, q}, {u1, p}; û)− F1({w1, q}) +B2(w2,y)− F2(w2)

+

∫
Γt

(w1 −w2) · λn2 dΓ

+

∫
Γt

(w1 −w2) · τBNOR ((u1 − u2) · n2) n2 dΓ

+

∫
Γt

(w1 −w2) · τBTAN ((u1 − u2)− ((u1 − u2) · n2) n2) dΓ

+

∫
Γt

δλ ·
(

(u1 − u2) · n2 −
rλ

τBNOR

)
dΓ = 0 , (28)

where we split the penalty term into normal and tangential components. We
propose to scale the tangential penalty like

τBTAN = CTAN
µ

h
, (29)

where CTAN is a dimensionless O(1) constant and h is a measure of the fluid
element diameter, with units of length. We propose that the normal penalty
scale like

τBNOR = max

{
C inert

NOR

ρ1h

∆t
,Cvisc

NOR

µ

h

}
, (30)

where C inert
NOR and Cvisc

NOR are dimensionless constants and ∆t is a time scale
from the temporal discretization.
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4.2 Time integration algorithm

We now state the time-marching procedure for the coupled system. The algo-
rithm computes approximate solutions discrete time levels, indexed by n and
separated by steps of size ∆t. At time level n, the discrete fluid velocity is
defined by a coefficient vector Un, the fluid time derivative by U̇n, the fluid
pressure by Pn, and the structure displacement, velocity, and acceleration
by Yn, Ẏn, and Ÿn. The multiplier at level n is λn, considered a function
with domain Γt, and represented discretely as a set of samples at quadrature
points of a (Lagrangian) integration rule on Γt. Consider solution variables
at level n known. The first step of DAL is to construct a system of equations
for all (n + 1)-level fluid and structure unknowns, with λn+1 kept equal to
λn:

Res
(
Un+αf , U̇n+αm ,Yn+αf , Ẏn+αf , Ÿn+αm ,Pn+1, λn+1(= λn)

)
= 0 ,

(31)

Un+1 = Un +∆t
(

(1− γ)U̇n + γU̇n+1
)

, (32)

U̇n+αm = U̇n + αm

(
U̇n+1 − U̇n

)
, (33)

Un+αf = Un + αf
(
Un+1 −Un

)
, (34)

Yn+1 = Yn +∆tẎn +
∆t2

2

(
(1− 2β)Ÿn + 2βŸn+1

)
, (35)

Ẏn+1 = Ẏn +∆t
(

(1− γ)Ÿn + γŸn+1
)

, (36)

Ÿn+αm = Ÿn + αm

(
Ÿn+1 − Ÿn

)
, (37)

Ẏn+αf = Ẏn + αf

(
Ẏn+1 − Ẏn

)
, (38)

Yn+αf = Yn + αf
(
Yn+1 −Yn

)
, (39)

where αm, αf , β, and γ are time integration parameters. Res(. . .) is the
algebraic residual corresponding to the discretization of (28) with δλ = 0.
This penalty-coupled problem is resolved by block iteration, which alternates
between solving for fluid and structure increments, as described further in
Section 4.3. (31)–(39) are based on the generalized-α method [96]. Follow-
ing [97, Section 4.4], we work within a subset of generalized-α methods, pa-
rameterized by ρ∞ ∈ [0, 1], which controls numerical damping and defines
the free parameters as

αm =
1

2

(
3− ρ∞
1 + ρ∞

)
, αf =

1

1 + ρ∞
, (40)

γ =
1

2
+ αm − αf , β =

1

4
(1 + αm − αf )

2
. (41)
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The backward Euler method can also be conveniently implemented within
the generalized-α predictor–multi-corrector scheme of [97] by setting the
generalized-α parameters to αm = αf = γ = β = 1 and modifying the
displacement predictor.

Note that, because the multiplier is fixed in (31)–(39), the (regularized)
α-level constraint residual

Rn+α =
((

uh1
)n+αf −

(
uh2
)n+αf

)
· nn+αf

2 − rλn+1

τBNOR

(42)

is not necessarily zero on Γt+αf . To motivate the development of the mul-
tiplier update step in DAL, consider the case of r = 0. If Rn+α = 0 and
r = 0, then the normal component of the α-level penalty force, τBNORR

n+α,
will be zero and the normal α-level fluid–structure force will be due only to
the Lagrange multiplier, λn+1. This suggests the explicit update

λn+1 ← λn+1 + τBNORR
n+α , (43)

in which λn+1 is set equal to the α-level fluid–structure forcing. (31)–(39) are
of course no longer satisfied with the updated λn+1, but one may attempt to
iterate the steps

1. Solve (31)–(39) with λn+1 fixed.
2. Update λn+1 by (43).

until ‖Rn+α‖L2(Γt) is converged to some tolerance. As explained in [77, Sec-
tion 4.2.1], the r = 0 case of this iteration corresponds to the classic aug-
mented Lagrangian algorithm of [98,99]. For r = 0, though, the convergence
criterion of ‖Rn+α‖L2(Γt) < ε is too strict to arrive at a non-locking solution;
it effectively demands pointwise constraint satisfaction between non-matching
velocity spaces of the fluid and structure. We found, accordingly, that the it-
eration does not typically converge, but circumvented this difficulty by trun-
cating to a single pass, leading to the semi-implicit time marching scheme
of first solving (31)–(39) with λn+1 = λn, then updating λn+1 by (44) and
continuing directly to the next time step, i.e.,

λn+1 = λn + τBNORR
n+α . (44)

This augmented-Lagrangian-based explicit multiplier update is the distin-
guishing feature of DAL. Use of r = 0 is effective for transient problems, but
may to run into difficulties in the steady limit, when the Lagrange multi-
plier and velocity discrete spaces are not chosen stably. Choosing r > 0 can
improve robustness. In that case, (44) is an implicit formula, but it can be
recast in explicit form:

λn+1 =
λn + τBNOR

((
uh1
)n+αf −

(
uh2
)n+αf

)
· nn+αf

2

1 + r
. (45)
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Some caution is warranted, however, in perturbing the kinematic constraint.
Section 4.4.4 provides an illustrative example of the effects of this consistency
error.

4.3 Block iterative solution of the implicit problem

The implicit step of DAL amounts to a penalty regularization of fluid–
structure coupling, with a prescribed loading λnnn+αf along Γn+αf . The
penalty value can be moderate, rendering the regularized problem much eas-
ier to solve. A simple block-iterative procedure turns out to be practical, even
for applications with light structures and heavy, incompressible fluids.

Consider Rf(uf, us) to be the nonlinear residual for the fully-discrete fluid
subproblem at a particular time step, which depends on discrete fluid and
structure solutions, uf and us. Likewise, Rs(uf, us) is the residual for the
discrete structure subproblem. The block-iterative procedure to find a root
of (Rf, Rs) is to start with guesses for uf and us and repeat

1. Assemble Rf(uf, us) and a(n approximate) tangent matrix, Af ≈ ∂Rf/∂uf.
2. Solve the linear system Af∆uf = −Rf for the fluid solution increment.
3. Update the fluid solution: uf ← uf +∆uf.
4. Assemble Rs(uf, us) and As ≈ ∂Rs/∂us.
5. Solve As∆us = −Rs for the structure solution increment.
6. Update the structure solution: us ← us +∆us.

until Rf and Rs are sufficiently converged. To ensure predictable run-times
and avoid stagnation in pathological configurations, we typically choose a
fixed number of iterations rather than a convergence tolerance. While it is
possible that error from isolated, poorly-solved time steps can pollute the
future of an unsteady solution, we find this ad hoc procedure effective for
predicting quantities of engineering interest.

4.4 Discussion

We summarize here some alternate interpretations and qualitative analysis
from [77,100] of the algorithm stated in Section 4.2.

4.4.1 Modified equation interpretation of DAL

When r = 0, the multiplier becomes an accumulation of penalty tractions
from previous time steps. This is equivalent to replacing the multiplier and
normal penalty terms
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Γt

(w1 −w2) · (λn2) dΓ

+

∫
Γt

((w1 −w2) · n2) τBNOR ((u1 − u2) · n2) dΓ (46)

by a penalization of (a backward Euler approximation of) the time integral
of pointwise normal velocity differences on the immersed surface Γt∫

Γt

{
τBNOR

∆t
(w1(x, t)−w2(x, t)) · n2(x, t)∫ t

0

(
u1(ϕϕϕτ (ϕϕϕ−1

t (x)), τ)− u2(ϕϕϕτ (ϕϕϕ−1
t (x)), τ)

)
·n2(ϕϕϕτ (ϕϕϕ−1

t (x)), τ) dτ
}
dΓ , (47)

where ϕϕϕτ (X) gives the spatial position at time τ of material point X ∈ Γ0

and dΓ indicates integration over x ∈ Γt. To see this, first define (at fixed X)

λreg(t) =
τBNOR

∆t

∫ t

0

(u1(τ)− u2(τ)) · n2(τ) dτ . (48)

Then

˙(λreg) =
∂λreg

∂t

∣∣∣∣
X

=
τBNOR

∆t
(u1 − u2) · n2 . (49)

The normal forcing on Γ in the implicit step of the semi-implicit time inte-
grator is

(λreg)
n+1

= (λreg)
n

+∆t ˙(λreg)
n+1

(50)

where (λreg)
n

is a sum of all previous approximations of λ and ∆t ˙(λreg)
n+1

is the current time step’s penalty forcing. Thus the forcing (47) is accounted
for in a fully implicit manner, using the stable backward Euler method.

For r > 0, we can draw a similar analogy, in which λreg advances through
time by backward Euler integration of

1

(1 + r)

∂λreg

∂t

∣∣∣∣
X

=
τBNOR

∆t
(u1 − u2) · n2 −

r

∆t(1 + r)
λreg . (51)

Intuitively, the additional term causes a decay of λreg in the absence of con-
straint violation, which highlights its stabilizing effect.
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4.4.2 Analogy to artificial compressibility

The differential equation given in (49) closely resembles the method of artifi-
cial compressibility [101]. In that scheme, the approximated Lagrange multi-
plier p representing pressure in an incompressible flow evolves in an analogous
way to λreg (in the case r = 0):

∂tp = −1

δ
∇ · u1 , (52)

where the constraint is ∇ · u1 = 0 (instead of (u1 − u2) · n2 = 0), 1/δ is
the penalty parameter. A physical interpretation of DAL for FSI, similar to
Chorin’s original formulation of (52) in terms of a fictitious density variable, is
that, for r = 0, DAL penalizes displacement of the fluid through the structure.
This interpretation makes clear how penalizing the time integral of velocity
prevents the steady creep of flow through a barrier.

4.4.3 Relation to feedback boundary conditions

The time-continuous interpretation of DAL with r = 0 may be interpreted
as a special case of an existing framework for enforcing Dirichlet boundary
conditions on the unsteady Navier–Stokes equation. Goldstein et al. [102]
proposed to apply concentrated surface forcing of the form [102, (3)]

f(xs, t) = α

∫ t

0

u1(xs, τ) dτ + βu1(xs, t) , (53)

for all xs on a stationary solid boundary with parameters α ≤ 0 and β ≤
0. Goldstein et al. interpreted this method, which we refer to here as the
feedback method, in the context of control theory, arguing heuristically that
it provides negative feedback in the case of constraint violation.

The initial implementation of [102] used a spectral fluid discretization and
applied smoothing to filter concentrated forces, reducing pollution effects
from the global nature of the spectral basis functions (cf. [103, Chapter I,
Section 2]). Goldstein and collaborators continue to use this methodology
for DNS of turbulent flows [104–109]. Saiki and Biringen [110,111] extended
the concept of feedback forcing to finite difference fluid discretizations, us-
ing bilinear interpolation within grid cells to evaluate velocity at quadrature
points of the immersed boundary and also to distribute concentrated feed-
back forces to grid points. [110] was the first application of the approach to
moving boundaries, in which (53) becomes (cf. [110, (1)] and (47))
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f(ϕϕϕt(Xs), t) = α

∫ t

0

(u1(ϕϕϕτ (Xs), τ)−U2(Xs, τ)) dτ

+ β (u1(ϕϕϕτ (Xs), τ)−U2(Xs, τ)) , (54)

where ϕϕϕt(Xs) represents the position at time t of a material point Xs on
the moving boundary with velocity U2(Xs, t). This naturally leads to FSI,
and a recent series of papers [112–116] demonstrated that feedback forcing
is robust and accurate for simulating light, flexible, immersed structures.
A related approach has been used in the commercial code LS-DYNA [41]
for decades, to study automobile airbag inflation and other challenging FSI
problems [117–120], including heart valve simulation [42–45]. We have seen no
documentation explicitly relating it to the feedback method, and assume that
it was devised independently. The repeated rediscovery of this formulation
by engineers studying difficult CFD and FSI problems suggests an inherent
robustness to the approach.

4.4.4 Qualitative effects of multiplier stabilization

The case of r > 0 is less physically intuitive than the r = 0 case. To provide
some intuition for the influence of r, consider a model of plug flow through
a blocked tube: a rigid barrier blocks a channel with slip boundaries, filled
with a fluid assumed to have a velocity, ue1, that is constant across space,
but may vary with time.

The ends of the channel are subject to pressures P1 and P2, which define
the pressure drop, ∆P = P1−P2. Suppose that the Lagrange multiplier field
takes on a single constant value across the barrier. Then the steady solution of
the semi-implicit time integration procedure described in Section 4.2 reduces
to the conditions

1. Steadiness: λn+1 = λn = λ∞ ⇒ λ∞ =
(
λ∞ + τBNORu

)
/(1 + r).

2. Equilibrium: λ∞ + τBNORu = ∆P .

Leakage is then given by u = r∆P
τBNOR(1+r)

, which asymptotes to inverse scaling

with the penalty parameter as r →∞ and to zero as r → 0. For fixed r > 0,
steady leakage converges to zero with refinement at the same rate as it would
for a pure penalty method, but, if r is an adjustable parameter, one may
reduce the steady-state leakage arbitrarily without impacting the solvability
of the discrete problem at each time step.

5 Numerical experiments

We demonstrate, through numerical experiments, that the DAL method is
convergent. We summarize here results from [77, 86], considering both con-
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vergence of solutions in Sobolev norms for simple problems, and convergence
of quantities of interest in more complicated problems.

5.1 Navier–Stokes flow with immersed boundaries

Consider, first, Navier–Stokes flow with Dirichlet conditions on immersed
boundaries.

5.2 Taylor–Green vortex

The Taylor–Green vortex is a solution to the 2D Navier–Stokes equations
posed on the domain Ω = [−π, π]2 with periodic boundary conditions and
no external forcing:

uTG(x, t) = (sin(x1)cos(x2)e1 − cos(x1)sin(x2)e2) e−2µt/ρ . (55)

We construct an interesting test problem by prescribing u = uTG as an initial
condition at t = 0 and also as a time-dependent Dirichlet boundary condition
on a closed immersed boundary Γ , then adding a body force fx = e1. The
body force induces a pressure gradient in the region enclosed by Γ without
perturbing the velocity solution there. The velocity outside of the region
enclosed by Γ is no longer equal to uTG for t > 0. There are jumps in the
pressure and velocity derivatives along Γ , so the regularity of the velocity
solution is representative of typical applications. We have not derived an
exact solution on the entire domain, but one can easily measure error in a
subset Ωerr of the region enclosed by Γ . In this section, we consider low
Reynolds number flow, and choose µ = 0.01. A high Reynolds-number test
is carried out in Section 5.2.2.

We choose Γ = ∂
(
(−π, π)2

)
. To avoid special behavior associated mesh-

aligned immersed boundaries, we distort the background mesh, as shown in
Figure 1. Figure 2 illustrates the problem setup. Div-conforming B-splines
of degree k′ = 1 are used to discretize the velocity and pressure spaces, and
backward Euler integration is applied in time. Error convergence is shown in
Figure 3, displaying nearly first-order rates.

5.2.1 Translating Taylor–Green vortex

Adding a uniform velocity to an initial condition in a periodic domain yields
a Galilean transformation of the original solution. In this section, we add
v = −0.87e1 − 0.5e2 to the initial condition of the Taylor–Green vortex and
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Fig. 1: The non-rectilinear mesh of Ω avoids grid alignment with Γ .

translate Γt at the same velocity. The solution at time T is shown in Figure 4.
Figure 5 indicates that convergence on Ωerr remains intact.

5.2.2 Infinite Reynolds number

To demonstrate the robustness at realistic Reynolds numbers, we repeat the
test of Section 5.2.1 with µ = 0. The exact solution becomes tangentially
discontinuous at Γt. This behavior is captured reasonably well, as shown in
Figure 6. The nearly-linear convergence rates in L2(Ωerr) and H1(Ωerr) are
maintained, as shown in Figure 7, despite the fact that the H1(Ω) norm of
the exact solution is not well-defined. This example uses r = 0, for reasons
explained in [86].

5.3 2D non-coapting valve

This section considers a 2D valve-inspired benchmark problem investigated
previously by [121–124]. The structure does not contact itself, so it is straight-
forward to compute converged solutions using verified body-fitted methods,
making the problem a valuable benchmark for new immersed approaches.

5.3.1 Description of the problem

The problem consists of two cantilevered elastic beams immersed in a 2D
channel filled with incompressible Newtonian fluid, as shown in Figure 8.
The fluid and structure have equal densities of ρ1 = ρ2 = 100. The viscosity
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Fig. 2: Simultaneous velocity magnitude (left) and pressure (right) snapshots
of the Navier–Stokes Taylor–Green problem, with annotations describing the
problem setup.
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Fig. 3: Convergence of the L2(Ωerr) and H1(Ωerr) errors for r = 0 and r = 0.1
for Navier–Stokes flow with a stationary boundary and positive viscosity.

is µ = 10. The structure is a St. Venant–Kirchhoff material with Young’s
modulus E = 5.6 × 107 and Poisson ratio ν = 0.4. The top and bottom of
the channel have no-slip boundary conditions, the right end is traction-free,
and the left end has a prescribed, time-dependent velocity profile,

u1 (ye2, t) =

{
5(sin(2πt) + 1.1)y(1.61− y)e1 , t > 0
0 , otherwise

, (56)

where the origin of the spatial coordinate system is at the bottom left corner
of the domain. The parameter γ in (5) is set to zero.
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Fig. 4: Annotated snapshot of velocity magnitude at time T for Navier–Stokes
flow with moving boundaries and positive viscosity.
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Fig. 5: Convergence of the L2(Ωerr) and H1(Ωerr) errors for r = 0 and r = 0.1
for Navier–Stokes flow with moving boundaries.

5.3.2 Body-fitted reference computation

The mesh for the body-fitted reference computation is shown in Figure 9.
We use generalized-α time integration with ρ∞ = 0.5 and a time step of
∆t = 0.005. The selected resolution ensures that the displacement history of
the upper beam tip changes negligibly with further refinement.

The fluid mesh deforms from one time step to the next according to the
solution of a fictitious isotropic linear elastic problem that takes the location
of the beam as a displacement boundary condition. The velocity of this de-
formation enters into (10) as ûh. Mesh quality is preserved throughout the
deformation with Jacobian-based stiffening [97,125–129]. In the present prob-
lem, we also find it necessary to soften the fictitious material governing the
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Fig. 6: Annotated snapshot of velocity magnitude at time T for Navier–Stokes
flow with moving boundaries and zero viscosity.
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Fig. 7: Convergence of the L2(Ωerr) and H1(Ωerr) errors for r = 0 for Navier–
Stokes flow with moving boundaries and zero viscosity.

deformation of elements between the leaflets. The resulting deformed mesh
at time t = 0.5 is shown in Figure 10.

5.3.3 Immersogeometric computations

We test three immersogeometric discretizations of the problem, using the
VMS fluid formulation. The first, M1, evenly divides the fluid domain into
128 × 32 quadratic B-spline elements and each beam into 64 quadratic B-
spline elements. The other two are uniform refinements of M1. We refine also
in time, using ∆t = 0.01 with M1, ∆t = 0.005 with M2, and ∆t = 0.0025
with M3.
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Fig. 8: Geometry and boundary conditions of the 2D heart valve benchmark.

Fig. 9: The reference configuration of the body-fitted mesh for the 2D valve
problem, with leaflets highlighted in magenta and areas of softened mesh
highlighted in green.

Fig. 10: The deformation of the body-fitted fluid mesh at t = 0.5.

The time integration of the fluid–structure coupling is done using DAL
with r = 0 and generalized-α parameters determined by ρ∞ = 0.5. Following
(29) and the low-Reynolds number branch of (30), we scale penalty parame-
ters τB(·) inversely with mesh size, choosing τB(·) = 104 on M1, τB(·) = 2×104 on
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Fig. 11: The x- and y-displacements of the upper leaflet tip, computed on
the immersed and body-fitted meshes.

M2, and τB(·) = 4×104 on M3. VMS parameters are scaled near the structure

using sshell = 106.

5.3.4 Comparison of results

Figure 11 shows the x- and y-displacements of the upper beam tip for the
body-fitted and immersed computations. Displacement histories from M1,
M2, and M3 converge toward the body-fitted result. Comparisons of pressure
contours at time t = 0.5 are given in Figure 12, showing general agreement
between immersogeometric and body-fitted flow fields. Velocity streamlines
at t = 0.5 for M1 are shown in Figure 13.

5.4 Benchmark testing with div-conforming B-splines

To verify the IMGA implementation using div-conforming B-splines for the
fluid subproblem, we again use the 2D benchmark problem defined in Section
5.3. Although the problem domain is rectangular, we demonstrate conver-
gence with distorted fluid meshes by deforming the interior of the parametric
domain, as shown in Figure 14. For the coarsest mesh, M1, the B-spline knot
space is subdivided into 32×128 Bézier elements and div-conforming B-spline
velocity and pressure spaces of degree k′ = 1 are defined on this mesh. The
meshes M2 and M3 are uniform refinements of M1.

Normal-direction Dirichlet boundary conditions on mesh boundaries are
enforced strongly, while tangential boundary conditions are enforced by
penalty. For computations on mesh M(N + 1), penalty parameters are
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(a) Immersed M1 (b) Immersed M2

(c) Immersed M3 (d) Body-fitted reference

Fig. 12: Pressure contours at t = 0.5, from immersed boundary computations
on M1, M2, and M3, along with the body-fitted reference.

τBNOR = τBTAN = Cno slip = 1000× 2N . We use the backward Euler method in
time, with ∆t = 1.0× 10−2 × 2−N .

Figures 15 and 16 compare x- and y-displacement histories of the upper
beam tip in the three immersogeometric computations and the body-fitted
reference. Figure 17 shows snapshots of the computed pressure and velocity
solutions. Refinement of immersogeometric discretizations clearly brings this
quantity of interest closer to the boundary-fitted reference curve.

6 Application to BHV FSI analysis

We first review some valve simulations using DAL-based IMGA. Section 6.3
then describes an initial effort toward validating the mathematical model for
BHV FSI put forward in Section 2.
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(a) Immersed M1 (b) Immersed M2

(c) Immersed M3 (d) Body-fitted reference

Fig. 13: Velocity streamlines superimposed on a velocity magnitude contour
plot, at t = 0.5, from immersogeometric computations on M1, M2, and M3,
and the body-fitted reference.

Fig. 14: The physical image of the B-spline parameter space, showing the
mesh of unique knots (thin lines) for M1 in relation to the beams (thick
lines).

6.1 Overview of BHV simulations

All of the computations reviewed in this section use the VMS discretization of
the fluid subproblem described in Section 3.1.1 and DAL for fluid–structure
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Fig. 18: Snapshots of the valve FSI computation from [77], showing valve
deformations and volume renderings of fluid velocity magnitude.

coupling. Some of them incorporate phenomena that are beyond the scope
of the mathematical problem stated in Section 2, such as deforming arteries.
However, these BHV simulations illustrate the versatility and practical ef-
fectiveness of DAL and IMGA, so we summarize the results while providing
citations for additional details.

We introduced the initial variant of DAL in [77], along with the adjust-
ments to VMS and contact penalty needed to effectively simulate a BHV. A
crude BHV model immersed in a rigid artery illustrated the effectiveness of
the numerics, although the use of an unrealistic pinned boundary condition on
the attached edges of the leaflets led to qualitatively incorrect deformations.
Further, the rigid artery and resistance outflow boundary condition provided
no hydraulic compliance, causing an abnormal flow rate history [77, Figure
28]. Some snapshots of the valve deformations and velocity fields are rendered
in Figure 18.

The model of [77] was augmented with hydraulic compliance in a follow-up
publication [130], by modeling the artery wall as an elastic solid. Unlike the
immersed valve, the fluid–artery interface was discretized with a boundary-
fitted method, which is a special case of FSITICT [123,131]. The compliance
of the elastic artery led to more realistic flow rates [130, Figure 8].

[132] realized the potential of IMGA to streamline the design-through-
analysis process for BHVs. A parametric design-through-analysis framework
was used to generate an analysis-suitable T-spline [133] model of a BHV
and IMGA allowed for the BHV design geometry to be directly immersed
into a discretization of an artery and lumen. The BHV model incorporated
a realistic stent geometry, clamped boundary conditions representative of
typical industrial BHVs (cf. patent illustrations in [134]), and a soft tissue
constitutive model. A snapshot of the resulting BHV FSI simulation is shown
in Figure 19.
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Fig. 19: Snapshot of the valve FSI computation from [132], showing valve
deformation and volume rendering of fluid velocity magnitude.

6.2 Div-conforming BHV simulation

We now look at a BHV simulation using div-conforming B-splines in the
fluid subproblem. A capability that is not verified by the div-conforming FSI
benchmark testing in Section 5.4 is effective simulation of closing heart valves.
In principle, div-conforming B-splines should prevent mass loss altogether,
but, in practice, for 3D problems, one generally does not solve the discrete
algebraic problem exactly, calling this result into question.

6.2.1 Test problem definition

A variant of the BHV geometry constructed in [77, Section 5.1] is immersed
in a cylindrical fluid domain of radius 1.25 cm and height 3 cm. Rigid ex-
tensions are added to the leaflets, blocking flow passing around the attached
boundaries of the leaflets. The fluid subproblem posed on the cylindrical
domain has traction boundary conditions on the ends and no-slip and no-
penetration conditions on the sides. The bottom of the cylinder is subject to
a time-dependent flux condition h1 = P (t)e3, with

P (t) =

P1 t < T1

at+ b T1 ≤ t ≤ T2

P2 t > T2

. (57)

P1 = 2 × 104 dyn/cm2, T1 = 0.05 s, P2 = −105 dyn/cm2, T2 = 0.1 s,
a = (P2 − P1)/(T2 − T1), and b = P1 − aT1. The top face is subject to the
Neumann condition h1 = 0. The Neumann boundary stabilization is set to
γ = 1. Properties of the fluid are ρ1 = 1 g/cm3 and µ = 4 cP. The valve
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is modeled as an incompressible neo-Hookean material with shear modulus
µs = 600 kPa and density ρ2 = 1 g/cm3. The shell thickness is hth = 0.04
cm. The attached edges of the leaflets are subject to a clamped boundary
condition. The fluid and structure are initially at rest at time t = 0. This
problem is not intended to be a realistic FSI model of a BHV, but rather
to exhibit the similar flow conditions, and demonstrate robustness of div-
conforming B-splines.

6.2.2 Discretization

The cylindrical fluid domain is discretized using a B-spline knot space Ω̂1 =
[−1, 1]2 × [−1, 2]. A point X in this knot space is mapped to the physical
domain Ω1 by

φ1 = RX1

√
1− 1

2
X2

2 , φ2 = RX2

√
1− 1

2
X2

1 , φ3 = LX3 , (58)

with R = 1.25 cm and L = 1 cm. The knot space is evenly subdivided into
42 × 42 × 40 knot spans and div-conforming B-spline velocity and pressure
spaces of degree k′ = 1 are defined on this mesh. The no-penetration con-
straint on the sides of the cylinder is enforced strongly and the no-slip con-
dition is enforced weakly by velocity penalization, with penalty Cno slip = 10
dyn/cm2/(cm/s). Penalty values are τBNOR = 1000 dyn/cm2/(cm/s), τBTAN =
10 dyn/cm2/(cm/s), and r = 0. The backward Euler method is used in time
with ∆t = 5.0× 10−4 s.

6.2.3 Results

The the valve opening is illustrated in Figure 20. The closed state is shown in
Figure 21. The flow rate history through the bottom of the cylinder is given
in Figure 22, indicating that the valve blocks flow. These results illustrate the
basic soundness of using div-conforming B-splines as a fluid discretization for
BHV FSI simulations. We now take a closer look at the mass conservation in
the computed solutions. Because we use an iterative solver to approximate
the fluid increments in the block iteration, ∇ ·uh1 is not exactly zero. For the
results presented above, we solve for fluid increments with a Krylov method,
to a relative tolerance of 10−2 for the preconditioned residual. Even with this
loose tolerance, there is no disastrous mass loss. We now recompute one step
at a time when the valve is closed, under a large pressure jump, with a range of
relative tolerances. For this experiment, we use the un-preconditioned resid-
ual to measure convergence, so that results generalize more readily to other
iterative solvers. The residual is assembled in centimeter–gram–second (CGS)
units, without any scaling to compensate for the difference in units between
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t = 0.01 s t = 0.02 s t = 0.04 s

Fig. 20: Velocity magnitude is plotted on a slice, using a color scale ranging
from 0 (blue) to ≥ 200 cm/s (red).

Fig. 21: Pressure is plotted on a slice, using a color scale ranging from ≤
−1.1× 105 dyn/cm2 (blue) to ≥ 104 dyn/cm2 (red).
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Table 1: The effect of relative tolerance in the approximate inversion of Af

on mass conservation.

Solver tolerance ‖∇ · u1‖L2(Ω1) (CGS units)
10−1 3.9× 10−5

10−2 1.2× 10−5

10−3 3.0× 10−7

10−4 2.0× 10−8

10−5 1.2× 10−9

10−6 2.4× 10−10

10−7 4.3× 10−11

entries of the momentum and continuity equation residuals. The velocity di-
vergence L2 norms of the solutions to this time step are collected in Table 1.
As expected, velocity divergence approaches zero as the tolerance decreases.

6.3 Simulating an in vitro experiment

This section serves both to further illustrate the application of div-conforming
B-splines to realistic problems and to argue that the modeling assumptions
from Chapter 2 can represent the dynamics of an artificial heart valve im-
mersed in fluid, by summarizing the validation effort detailed in [86, Section
7].

6.3.1 Description of the experiment

The validation experiment uses a latex valve in an acrylic tube. We con-
structed the valve by gluing latex leaflets to an aluminum stent. Leaflet are
cut from a flat sheet of latex with thickness 0.054 cm. The valve is shown in
Figure 24. The acrylic tube, illustrated in Figure 23, has an inner diameter
varying between 2 and 3 cm along the length of the tube, and is roughly the
size of a typical human ascending aorta. A hole is included in the side of the
tube, for capturing images with a borescope.

Water is pumped through the tube using a flow loop system similar to
the bioreactor detailed in [135]. Volumetric flow rate through the tube is
measured using an ultrasonic flow meter. We use the IMGA with DAL and
div-conforming B-splines to simulate only the segment of tubing containing
the artificial aortic valve.
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Fig. 23: A to-scale diagram of the tube, showing its relation to the valve and
stent.

6.3.2 Mathematical model of the experiment

This section specifies an instance of the mathematical problem stated in
Section 2 that models the experiment described in Section 6.3.1.

Fluid subproblem

The mathematical model simplifies the geometry of the region occupied by
fluid. Ω1 is the image of a parametric space Ω̂1 = (−1, 1)2 × (−1, 4.5) ⊂ R3

under the mapping φφφ, which is defined by

φ1 = R(X3)X1

√
1− 1

2
X2

2 , φ2 = R(X3)X2

√
1− 1

2
X2

1 , φ3 = LX3 ,

(59)

where L = 1 cm and R(X3) is defined by

R(X3) =


Rin X3 < z1

Rout X3 > z2

(Rout −Rin)sin2
(
π(X3−z1)
2(z2−z1)

)
+Rin otherwise

, (60)

with z1 = −0.45 cm, z2 = 0, Rin = 1 cm, and Rout = 1.4025 cm.
The lateral sides of Ω1 are subject to no-slip and no-penetration condi-

tions. The inflow face of the domain is subject to a time-dependent plug flow
condition with experimentally measured volumetric flow rate. The outflow
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Fig. 24: A visual comparison of the physical valve and its computational
model.

is a homogeneous Neumann boundary with γ = 1. The fluid velocity initial
condition is u0

1 ≡ 0. To model water, the viscosity of the fluid is µ = 1 cP
and the density is ρ1 = 1.0 g/cm3.

Structure subproblem

The latex leaflets are modeled as incompressible neo-Hookean material with
shear modulus µs = 8.7× 106 dyn/cm2 (based on uniaxial stretching exper-
iments). The geometry of the stress-free reference configuration Γ0 is speci-
fied by manually selecting B-spline control points to approximate the pattern
used to cut the leaflets out of the latex sheet. The leaflets are therefore flat
in Γ0. These leaflets are deformed into a static equilibrium configuration Γ ′0,
(a discrete approximation of) which is shown in Figure 24. The boundary
corresponding to the attached edge is subject to a strongly-enforced clamped
boundary condition. In a slight abuse of the notation introduced in Chapter 2,
the leaflets are considered to be initially at rest in the deformed configuration
Γ ′0, rather than the stress-free configuration Γ0.

6.3.3 Discretization of the mathematical model

The fluid parametric domain Ω̂1 is split evenly into 64 × 64 × 99 Bézier
elements, used to define div-conforming B-spline spaces of degree k′ = 1.
No-slip and inflow Dirichlet boundary conditions are enforced by velocity
penalization, with penalty-constants of Cno slip = 10 dyn/cm2/(cm/s) and
Cinflow = 1000 dyn/cm2/(cm/s). No-penetration on the lateral sides of the
flow domain is enforced strongly. The structure is discretized with a 936-
element quadratic B-spline mesh. The equilibrium configuration Γ ′0 is ap-
proximated by driving a dynamic simulation with mass damping from Γ0 to
a steady solution. The attached edges of the leaflets are then clamped into this
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t = 0.11 s t = 0.029 s

t = 0.039 s t = 0.084 s

Fig. 25: Several snapshots of the computed solution, compared with experi-
mental images. At each time instant, the computed solution is shown in the
left-hand frame and at the bottom of the right-hand frame. The experimen-
tal results are shown in the top of the right-hand frame. Colors indicate fluid
velocity magnitude on a slice. Color scale: 0 (blue) to ≥200 cm/s (red).

configuration. The FSI penalty parameters are τBNOR = 1000 dyn/cm2/(cm/s)
and τBTAN = 10 dyn/cm2/(cm/s). The DAL stabilization parameter r is set
to zero. Backward Euler time integration is used with ∆t = 2.5× 10−4 s.

6.3.4 Comparison of results

We now compare computational and experimental results. Experimental re-
sults are a sequence of images taken through a borescope. Figure 25 compares
the computed deformations at several time points with images collected in
the experiment. For direct comparison with experimental images, the com-
puted deformations are rendered using perspective, from a vantage point
corresponding to the tip of the borescope in the experiment.
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The main qualitative difference between these sets of images is in the de-
gree of symmetry of the leaflet deformations during the transition to the
fully open state. This difference is expected, given that the initial condition
to the computer simulation is symmetrical while the physical valve is not.
Asymmetry is mainly due to experimental errors introduced by manually
gluing each initially-flat leaflet into the stent. The qualitative agreement of
results indicates that the modeling assumptions of Section 2 are not wildly
inappropriate for predicting the deformations of BHV leaflets immersed in
physiological flow fields, and may be able to predict quantities of interest re-
lated to deformation (such as strain) with practical accuracy. The computed
results also agree with qualitative features of artificial valve leaflet deforma-
tions observed in other in vitro experiments. The computed solution at time
t = 0.029 s shows the opening process, as characterized by reversal of leaflet
curvature, beginning primarily near the attached edge, as observed by Iyen-
gar et al. [136]. Hsu et al. [132] found that this behavior is not captured by
simulations using only structural dynamics.

7 Conclusions and further work

This chapter reviews the development, verification, and application of a novel
numerical method combining IMGA and DAL to simulate thin structures
with spline-based geometries immersed in viscous incompressible fluids. We
find that this method is sufficiently robust to survive application to FSI
analysis of BHVs functioning under physiological conditions.

The method described here is not limited to BHV simulation. We have also
applied it to IMGA of the hydraulic arresting gears that help dissipate the
kinetic energy of fixed-wing aircraft landing on short runways. Initial results,
published in [137], compare favorably with earlier body-fitted simulations of
such devices [138]. The flexibility provided by immersogeometric FSI analysis
allowed for automated optimization of the device geometry.

Despite its successful application to BHV FSI and other problems, the
DAL method outlined here can be improved. The present guidelines for se-
lecting free penalty parameters are based on imprecise dimensional analysis.
More precise and rational selection of parameters will likely stem from fur-
ther numerical analysis of linear model problems, building on the initial work
of [86]. Another undesirable aspect of the method presented in this disserta-
tion is the trade-off between conservation and stability parameterized by the
stabilization coefficient r (introduced in Section 4.1). A possible improve-
ment is to apply the inconsistent stabilization of r > 0 only to fine scales
of the interface Lagrange multiplier, while retaining strong consistency on
coarse scales. Initial work on this was published in [139] and is analyzed in a
forthcoming paper [140].
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Lastly, the promising initial results of immersogeometric FSI analysis using
div-conforming B-spline discretizations of the fluid subproblem indicate that
div-conforming B-splines merit further investigation. Casquero et al. [141]
have also recently applied div-conforming B-splines in conjunction with the
immersed-boundary numerical approach of [142–144] and efficient solvers
from [145]. The ideas of immersogeometric FSI analysis and div-conforming
B-spline flow discretizations appear to enjoy a symbiotic connection, in that
the strong mass conservation of structure preserving flow discretizations im-
proves the quality of immersogeometric FSI solutions, while the application of
div-conforming B-splines to increasingly complicated and realistic problems
motivates the development of more powerful implementations.
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action and multi-body contact: Application to aortic valves. Computer Methods
in Applied Mechanics and Engineering, 198:3603–3612, 2009.
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66. L. De Lorenzis, İ. Temizer, P. Wriggers, and G. Zavarise. A large deformation
frictional contact formulation using NURBS-based isogeometric analysis. Inter-
national Journal for Numerical Methods in Engineering, 87:1278–1300, 2011.

67. S. Morganti, F. Auricchio, D. J. Benson, F. I. Gambarin, S. Hartmann, T. J. R.
Hughes, and A. Reali. Patient-specific isogeometric structural analysis of aor-
tic valve closure. Computer Methods in Applied Mechanics and Engineering,
284:508–520, 2015.

68. M. A. Scott. T-splines as a Design-Through-Analysis Technology. PhD thesis,
The University of Texas at Austin, August 2011.

69. T. W. Sederberg, D.L. Cardon, G.T. Finnigan, N.S. North, J. Zheng, and T. Ly-
che. T-spline simplification and local refinement. ACM Transactions on Graph-
ics, 23(3):276–283, 2004.

70. T.W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCS.
ACM Transactions on Graphics, 22(3):477–484, 2003.

71. E. Rank, M. Ruess, S. Kollmannsberger, D. Schillinger, and A. Düster. Geo-
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