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Abstract

In this paper, we develop a geometrically flexible technique for computational fluid–structure
interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart
valve function over the complete cardiac cycle. Due to the complex motion of the heart valve
leaflets, the fluid domain undergoes large deformations, including changes of topology. The pro-
posed method directly analyzes a spline-based surface representation of the structure by immers-
ing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our
method within an emerging class of computational techniques that aim to capture geometry on non-
boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify
this paradigm.

The framework starts with an augmented Lagrangian formulation for FSI that enforces kine-
matic constraints with a combination of Lagrange multipliers and penalty forces. For immersed
volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure in-
terface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object
surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from
opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty
method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the
leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients
through the structure without the conditioning problems that accompany strong penalty forces,
we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to
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the structure geometry, there is a significant error in the approximation of pressure discontinuities
across the shell. This error becomes especially troublesome in residual-based stabilized methods
for incompressible flow, leading to problematic compressibility at practical levels of refinement.
We modify existing stabilized methods to improve performance.

To evaluate the accuracy of the proposed methods, we test them on benchmark problems and
compare the results with those of established boundary-fitted techniques. Finally, we simulate
the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological
conditions, demonstrating the effectiveness of the proposed techniques in practical computations.

Keywords: Fluid–structure interaction, Bioprosthetic heart valve, Immersogeometric analysis,
Isogeometric analysis, B-splines and NURBS, Nitsche’s method, Weakly enforced boundary
conditions, Penalty-based contact
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1. Introduction

Heart valves are passive structures that open and close in response to hemodynamic forces,
ensuring proper unidirectional blood flow through the heart. At least 280,000 diseased heart valves
are surgically replaced annually [1, 2]. By far the most popular surgical replacements are the bio-
prosthetic heart valves (BHV), which are fabricated from biologically derived materials, with the
design goal of mechanical similarity to native valves. Like native valves, BHVs are composed of
thin flexible leaflets that are pushed open by blood flow in one direction and closed by flow in the
other direction. BHVs have more natural hemodynamics than the older “mechanical” prostheses
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designs, which are comprised of rigid leaflets and require life-long anticoagulation therapy [2].
However, the durability of a typical BHV remains limited to about 10–15 years, with failure re-
sulting from structural deterioration, mediated by fatigue and tissue mineralization [1–3]. While
much effort has gone into developing methods to mitigate mineralization, methods to extend dura-
bility remain largely unexplored. A critical part of such efforts to improve the design of BHVs is
understanding the stresses acting on leaflets over the complete cardiac cycle.

Some previous computational studies on heart valve mechanics have used (quasi-)static [4, 5]
and dynamic [6] structural analysis, with assumed pressure loads on the leaflets. This produces de-
formation and stress distributions that can be used to understand the mechanical behavior of BHVs.
However, the assumed pressure load only crudely approximates the interaction between blood and
valvular structures. A purely structural analysis is only applicable to static pressurization of a
closed valve, which represents only a portion of the full cardiac cycle. It is therefore important
to develop a computational framework that is able to simulate the dynamics of heart valves inter-
acting with hemodynamics—a method for computational fluid–structure interaction (FSI)—which
considers the complete mechanical environment of the valve and applies more accurate tractions
to the leaflets during the entire cardiac cycle.

Many FSI methods employ boundary-fitted approaches, where the fluid problem is solved on
a mesh that deforms around a Lagrangian structure mesh, matching it at the shared interface. The
fluid problem on the deforming domain is said to be posed in an arbitrary Lagrangian–Eulerian
(ALE) coordinate system [7–9]. In the FSI literature, the term ALE is sometimes reserved for nu-
merical methods using finite elements in space and finite differences in time, distinguishing them
from methods that use space–time finite elements, such as the deforming-spatial-domain/stabilized
space–time (DSD/SST) technique [10, 11]. Boundary-fitted FSI methods have been applied to
challenging classes of real-world problems, including cardiovascular [12–17], parachute [18–24],
and wind turbine [25–27] applications. The history, state-of-the-art, and practical applications of
ALE and DSD/SST methods for FSI are covered thoroughly by Bazilevs et al. [28]. Boundary-
fitted methods have the advantage of satisfying kinematic constraints by construction but, for sce-
narios that involve large translational and/or rotational structural motions, the boundary-fitted fluid
mesh can become severely distorted if it is continuously deformed from a single reference config-
uration, harming both the conditioning of the discrete problem and the accuracy of its solution.

Applying boundary-fitted methods to complex engineered systems may therefore require spe-
cialized solution strategies to maintain fluid mesh quality. One approach is remeshing, in which all
or part of the fluid domain is automatically re-discretized in space when mesh distortion becomes
too extreme [29–32]. Mesh management is complicated further if the structure moves into and out
of contact with itself, changing the topology of the fluid domain. For some applications, it may be
sufficient to use specialized contact algorithms that modify the problem to enforce a small mini-
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mum separation between surfaces that would otherwise come into contact [33]. In our application
to a heart valve, however, the ability of the structure to close and block flow is an essential aspect
of the problem. Recent work [34, 35] has extended DSD/SST methods to include true changes of
topology without remeshing, but has so far only been applied to problems in which the boundary
motion is known beforehand and prescribed. While the rigid motions of hinged mechanical pros-
thetic heart valves have been successfully studied with boundary-fitted methods [36, 37], it is our
opinion that maintaining mesh quality would become prohibitively difficult in a boundary-fitted
simulation of a native or bioprosthetic heart valve, where flexible leaflets deform and contact each
other in complex patterns that cannot be parameterized by a small set of variables.

For these reasons, non-boundary-fitted approaches have become a popular alternative for com-
putational FSI [38–44], and are the focus of the present contribution. The first non-boundary-
fitted approach to become widely known for computational fluid dynamics (CFD) was Peskin’s
immersed boundary method [45, 46]. In non-boundary-fitted methods, a separate structural dis-
cretization is arbitrarily superimposed onto (or immersed into) a background fluid mesh. Such
methods are particularly attractive for applications with complex moving boundaries, because they
alleviate the difficulties of deforming the fluid mesh. Non-boundary-fitted methods can also han-
dle change of fluid domain topology (e.g. structural contact) without special treatment in the fluid
subproblem. Contact algorithms [47–50] developed in structural dynamics can be adopted directly
for the structure subproblem. However, the non-boundary-fitted approach suffers from reduced
accuracy of the solution near the fluid–structure interface. Dirichlet boundary conditions cannot
be imposed strongly on the discrete solution space, because this space cannot interpolate functions
given on an arbitrary immersed boundary. To apply interface conditions, one must devise a suitable
method for weak enforcement.

Another limitation of many non-boundary-fitted FSI techniques developed to-date has been
failure to faithfully represent the geometry of the immersed structure, and, consequently, the fluid
domain from which it is hewn. The importance of eliminating geometrical error in mechanical
analysis has reached broader recognition with the advent of isogeometric analysis (IGA) [51], in
which the spline bases used by designers (e.g. NURBS [52] or T-splines [53]) are also used to con-
struct discrete solution spaces for analysis purposes. IGA has already been employed to great ef-
fect in conjunction with boundary-fitted FSI technologies [54]. Researchers in the IGA community
have begun to tackle the challenge of preserving geometry in non-boundary-fitted computational
methods [55, 56], but the current literature on this topic suffers from ambiguous terminology. The
cited works interpret the existing terms “immersed boundary”, “fictitious domain”, and “embedded
domain” inclusively and use them interchangeably while describing novel technologies for exactly
capturing complex design geometries in simple background meshes. Through personal commu-
nications with numerous colleagues, however, we have realized that the interpretations of these
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terms can vary greatly; members of the computational mechanics community at large may or may
not associate one or more of these terms with specific problem classes and/or numerical methods.
Further, all of these terms predate the more recent goal of precisely capturing immersed geometry

in a non-boundary-fitted background mesh. We therefore introduce a new term: immersogeo-
metric analysis. The present study applies this emerging paradigm to FSI problems, by directly
immersing NURBS surface representations of solid objects into a background fluid mesh.

The association between non-boundary-fitted methods and cardiovascular applications goes
back to Peskin’s original work [57] in 1972 and has been amplified by many publications in the in-
tervening decades. Borazjani [58] compiled a current and thorough literature review and computed
one of the most sophisticated and realistic heart valve analyses to date, using the curvilinear im-
mersed boundary (CURVIB) method [59, 60]. Our work follows most directly from the fictitious
domain method devised by Baaijens [61] and applied to heart valves by de Hart [62]. Baaijens
and de Hart used Lagrange multipliers to enforce kinematic constraints between finite element
discretizations of the fluid and thin immersed structures.

Prior simulations of heart valve FSI have suffered from a number of shortcomings. De Hart’s
implementation of the fictitious domain method does not contain any contact model and, while
the author notes that the FSI kinematics alone should prevent the structure from self-intersecting,
he found that, in practical discretizations, the weak constraint enforcement afforded by Lagrange
multipliers still allowed significant penetrations. Further, de Hart’s computations relied on symme-
try assumptions that do not hold in the relevant flow regime [58]. Borazjani included contact in a
computation of a full valve, but neither author satisfactorily computed the closed state of the valve,
in which the leaflets must oppose a steep pressure gradient to enforce nearly hydrostatic flow.

In this work, we derive several related variational formulations from an augmented Lagrangian
framework for FSI proposed by Bazilevs et al. [63]. The variational equations are the sum of fluid
and structure subproblems, with additional terms to enforce the kinematic constraint of velocity
continuity at the fluid–structure interface. One additional term enforces the constraint through a
Lagrange multiplier defined on the interface, while another term augments this constraint enforce-
ment with a penalty to increase convexity of the formulation about the subset of the solution space
satisfying the kinematic constraint.

For immersed volumetric objects, we follow the idea given in Bazilevs et al. [63] to formally
eliminate the multiplier field, arriving at a method for weak enforcement of Dirichlet boundary
conditions. This method of weak enforcement may be viewed as an extension of Nitsche’s method
[64]. We implement this with an adaptive quadrature rule, to accurately integrate over the fluid
domain. As an added benefit, imposing the Dirichlet boundary conditions weakly in fluid dynamics
allows the flow to slip on the solid surface when the wall-normal mesh size is relatively large.
This effect mimics the thin boundary layer that would otherwise need to be resolved with spatial
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refinement, allowing more accurate solutions on coarse meshes [65–69]. In a non-boundary-fitted
method, the fluid mesh is arbitrarily cut by the structural boundary, producing a boundary layer
discretization of inferior quality compared to the boundary-fitted case. Therefore, the weakly
enforced Dirichlet boundary conditions are crucial to obtaining more accurate fluid solutions when
the non-boundary-fitted approach is used.

To model the valve leaflets we utilize immersed shell structures. We study various interpreta-
tions of the augmented Lagrangian framework applied to vanishingly-thin structures immersed in
non-boundary-fitted fluid discretizations. We find that our extension of Nitsche’s method reduces
to a penalty method. This penalty method may be sufficient to accurately compute quantities of in-
terest for some problem types, but applications (such as the BHV) with large pressure jumps across
the thin shell reveal shortcomings of the penalty approach. To counteract steep pressure gradients
through the structure without the conditioning problems that accompany strong penalty forces, we
introduce the additional unknowns to approximate the multiplier field. Further, since the fluid dis-
cretization is not tailored to the structure geometry, there is an inherent error in the approximation
of pressure discontinuities across the shell. Our fluid formulation uses residual-based stabilization
derived from a variational multiscale (VMS) analysis [70, 71]. This stabilization interacts with
the large pressure error near the shell, leading to problematic compressibility at practical levels of
refinement. To counteract this artificial compression, we weaken stabilization near the immersed
shell structure.

While the immersogeometric concept does not, in principle, limit the choice of background
mesh solution spaces to splines, we elect to use NURBS bases to construct fluid and structure so-
lutions in this work, due to the desirable mathematical properties of these spline functions. NURBS
function spaces can have higher continuity than the approximation spaces found in traditional finite
element analysis. For the fluid subproblem, this continuity provides special benefits in turbulent
flow simulation [72, 73] and, for the structure subproblem, it eliminates the need for extra ro-
tational degrees of freedom in thin shell formulations [74] and better represents sliding contact
between smooth surfaces [75]. The advantages of using spline bases in contact problems were
demonstrated in the context of heart valve leaflet coaptation by Morganti et al. [76].

The paper is organized as follows. In Section 2, we introduce the augmented Lagrangian frame-
work for FSI and relate it to Nitsche’s method. In Section 3, we employ an adaptive quadrature
technique to implement Nitsche’s method for flow around immersed geometries, testing it on the
benchmark problem of 2D flow over a cylinder. Section 4 addresses the difficulties of enforcing
constraints when the structure becomes infinitesimally thin. We discuss the computational methods
implied by various interpretations of the augmented Lagrangian in this limit and present results for
the benchmark problems corresponding to idealizations of open and closed heart valves. In Sec-
tion 5, we combine our FSI technology with a penalty-based dynamic contact algorithm for shell
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structures, allowing us to compute a realistic FSI simulation of a bioprosthetic heart valve. Section
6 draws conclusions and provides a graphical representation (Figure 34) of the interrelations be-
tween ideas, methods, and computations presented throughout the paper. The reader may find this
conceptual map helpful while navigating the body of the paper.

2. Augmented Lagrangian framework for FSI

Our starting point is the augmented Lagrangian framework for FSI introduced by Bazilevs et
al. [63]. We consider (Ω1)t and (Ω2)t to be regions (subsets of Rd, d ∈ {2, 3}) occupied by an
incompressible fluid and an elastic solid, respectively, at time t, with (Γ1)t and (Γ2)t to be their
corresponding boundaries. These regions meet at a shared interface, (ΓI)t. Let u1 and p denote the
fluid velocity and pressure, respectively, and u2 denote the velocity of the structure. We impose
the kinematic constraint that u1 = u2 on (ΓI)t through the addition of the following augmented
Lagrangian terms: ∫

(ΓI)t

λλλ · (u1 − u2) dΓ +
1
2

∫
(ΓI)t

β|u1 − u2|
2 dΓ , (1)

where λλλ is a Lagrange multiplier and β ≥ 0 is a penalty parameter to increase convexity around
the feasible region defined by the constraint. The variational problem is: Find u1 ∈ Su, p ∈ Sp,
u2 ∈ Sd, and λλλ ∈ S` such that for all test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd, and δλλλ ∈ V`

B1({w1, q}, {u1, p}; û) − F1({w1, q}) +

∫
(ΓI)t

w1 · λλλ dΓ +

∫
(ΓI)t

w1 · β(u1 − u2) dΓ = 0 , (2)

B2(w2,u2) − F2(w2) −
∫

(ΓI)t

w2 · λλλ dΓ −

∫
(ΓI)t

w2 · β(u1 − u2) dΓ = 0 , (3)∫
(ΓI)t

δλλλ · (u1 − u2) dΓ = 0 , (4)

where Su, Sp, Sd, and S` are the function spaces for the fluid velocity, fluid pressure, structural
velocity, and Lagrange multiplier solutions, respectively, and Vu, Vp, Vd, and V` are the cor-
responding weighting function spaces. B1, B2, F1, and F2 are the semi-linear forms and linear
functionals corresponding to the fluid and structural mechanics problems, respectively, and are
given by

B1({w, q}, {u, p}; û) =

∫
(Ω1)t

w · ρ1

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u
)

dΩ

+

∫
(Ω1)t

εεε(w) : σσσ1 dΩ +

∫
(Ω1)t

q∇∇∇ · u dΩ , (5)
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F1({w, q}) =

∫
(Ω1)t

w · ρ1f1 dΩ +

∫
(Γ1h)t

w · h1 dΓ , (6)

B2(w,u) =

∫
(Ω2)t

w · ρ2
∂u
∂t

∣∣∣∣∣
X

dΩ +

∫
(Ω2)t

εεε(w) : σσσ2 dΩ , (7)

F2(w) =

∫
(Ω2)t

w · ρ2f2 dΩ +

∫
(Γ2h)t

w · h2 dΓ , (8)

where ρ1 and ρ2 are the fluid and structural densities, respectively, û is the velocity of the fluid
domain (Ω1)t, σσσ1 and σσσ2 are the fluid and structural Cauchy stresses, respectively, εεε(·) is the sym-
metric gradient operator given by εεε(w) = 1

2 (∇∇∇w +∇∇∇wT ), f1 and f2 are the applied body forces and
h1 and h2 are the applied surface tractions on the fluid and structure, respectively, (Γ1h)t and (Γ2h)t

are the boundaries where the surface tractions are specified,
∂(·)
∂t

∣∣∣∣∣
x̂

is the time derivative taken with

respect to the fixed spatial coordinate x̂ in the referential domain (which does not follow the motion

of the fluid itself), and
∂(·)
∂t

∣∣∣∣∣
X

is the time derivative holding the material coordinates X fixed. The

gradient∇∇∇ is taken with respect to the spatial coordinate x of the current configuration. We assume
that the fluid is Newtonian with dynamic viscosity µ, and Cauchy stress σσσ1 = −pI + 2µεεε(u1).

Bazilevs et al. [63] demonstrate how the multiplier, λλλ, may be formally eliminated by substi-
tuting an expression for the fluid–structure interface traction in terms of the other unknowns. This
leads to the following variational formulation for the coupled problem: find u1 ∈ Su, p ∈ Sp, and
u2 ∈ Sd such that for all w1 ∈ Vu, q ∈ Vp, and w2 ∈ Vd

B1({w1, q}, {u1, p}; û) − F1({w1, q}) + B2(w2,u2) − F2(w2)

−

∫
(ΓI)t

(w1 − w2) ·σσσ1(u1, p) n1 dΓ

−

∫
(ΓI)t

δσσσ1(w1, q) n1 · (u1 − u2) dΓ

+

∫
(ΓI)t

(w1 − w2) · β(u1 − u2) dΓ = 0 . (9)

Further manipulations arrive at a formulation for weak imposition of Dirichlet boundary conditions
on the fluid problem,

B1({w1, q}, {u1, p}; û) − F1({w1, q}) −
∫

(ΓI)t

w1 ·σσσ1n1 dΓ

−

∫
(ΓI)t

δσσσ1n1 · (u1 − u2) dΓ

+

∫
(ΓI)t

w1 · β(u1 − u2) dΓ = 0 , (10)
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and a traction boundary condition for the structure problem that is a combination of the fluid
Cauchy stress and a penalty force:

B2(w2,u2) − F2(w2) +

∫
(ΓI)t

w2 · (σσσ1n1 + β(u2 − u1)) dΓ = 0 . (11)

This approach to weak imposition of Dirichlet boundary conditions in fluid mechanics was first
proposed by Bazilevs and Hughes [65] and further refined in Bazilevs et al. [66, 67]. It may be
interpreted as an extension of Nitsche’s method [77], which is a consistent and stabilized method
for imposing constraints on the boundaries by augmenting the governing equations with additional
constraint equations. While Nitsche’s method may be motivated independently of the augmented
Lagrangian formulation, we find that some cases require us to revisit Eqs. (2)–(4) and account for
the multipliers directly. The solution techniques for the fluid subproblem (10) are discussed in
Section 3, which follows.

3. Nitsche’s method for flow around immersed geometries

In a non-boundary-fitted method, the elements of the fluid discretization may extend into the
interior of an immersed object. Imposing Dirichlet boundary conditions is no longer straightfor-
ward given that the basis functions are non-interpolating at the object boundaries. In order to
enforce essential boundary conditions, one can either modify the basis functions so they vanish at
the interface [78] or augment the governing equations with additional constraint equations. In this
work we choose the latter approach.

In this section, we formally eliminate the Lagrange multiplier from Eqs. (2)–(4), as mentioned
in Section 2 and detailed by Bazilevs et al. [63], to yield the fluid subproblem (10), which cor-
responds to an application of Nitsche’s method to the boundary condition on the fluid–structure
interface. This method has significant shortcomings when the thickness of the structure falls be-
low the element size of the background fluid discretization and a different approach is required
to improve our numerical method for the target application of bioprosthetic heart valve analysis.
Nevertheless, the elimination of the multiplier field in the current section allows us to develop
and test a fully-discrete immersogeometric formulation for the fluid subproblem without imme-
diately facing the various technical complications associated with discretizing the multiplier field
and approximating solution kinks and discontinuities induced by thin immersed structures.

3.1. Semi-discrete fluid formulation with weak boundary conditions

Consider a collection of disjoint elements {Ωe}, ∪eΩ
e ⊂ Rd, with closures covering the fluid

domain: Ω1 ⊂ ∪eΩe. Note that Ωe is not necessarily a subset of Ω1. {Ωe}, Ω1, and ΓI remain
time-dependent, but we drop the subscript t for notational convenience. The mesh defined by {Ωe}
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deforms with a velocity field ûh and the boundary ΓI moves with velocity u2. We consider discrete
velocity and pressure spacesVh

u andVh
p of both trial and test functions supported on these elements

and pose the semi-discrete problem of finding uh
1 ∈ V

h
u and ph ∈ Vh

p such that for all wh
1 ∈ V

h
u and

qh ∈ Vh
p

BVMS
1

(
{wh

1, q
h}, {uh

1, ph}; ûh
)
− FVMS

1

(
{wh

1, q
h}
)

−

∫
ΓI

wh
1 ·

(
−phn1 + 2µεεε(uh

1)n1

)
dΓ

−

∫
ΓI

(
2µεεε(wh

1)n1 + qhn1

)
·
(
uh

1 − u2

)
dΓ

−

∫
(ΓI)−

wh
1 · ρ1

((
uh

1 − ûh
)
· n1

) (
uh

1 − u2

)
dΓ

+

∫
ΓI

τB
TAN

(
wh

1 −
(
wh

1 · n1

)
n1

)
·
((

uh
1 − u2

)
−

((
uh

1 − u2

)
· n1

)
n1

)
dΓ

+

∫
ΓI

τB
NOR

(
wh

1 · n1

) ((
uh

1 − u2

)
· n1

)
dΓ = 0 , (12)

where (ΓI)− is the “inflow” part of ΓI, on which (uh
1 − ûh) · n1 < 0. Note that ΓI may cut through

element interiors. The constants τB
TAN and τB

NOR correspond to a splitting of the penalty, β, into the
tangential and normal directions, respectively. The forms BVMS

1 and FVMS
1 are the VMS discretiza-

tions of B1 and F1, respectively, given by

BVMS
1 ({w, q}, {u, p}; û) =

∫
(Ω1)t

w · ρ1

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u
)

dΩ

+

∫
(Ω1)t

εεε(w) : σσσ1 dΩ +

∫
(Ω1)t

q∇∇∇ · u dΩ

+
∑

e

∫
Ωe∩Ω1

(
(u − û) · ∇∇∇w +

∇∇∇q
ρ1

)
· u′ dΩ

+
∑

e

∫
Ωe∩Ω1

∇∇∇ · wρ1τC∇∇∇ · u dΩ

−
∑

e

∫
Ωe∩Ω1

w · (u′ · ∇∇∇u) dΩ

−
∑

e

∫
Ωe∩Ω1

∇∇∇w
ρ1

:
(
u′ ⊗ u′

)
dΩ

+
∑

e

∫
Ωe∩Ω1

(
u′ · ∇∇∇w

)
τ ·

(
u′ · ∇∇∇u

)
dΩ , (13)
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and

FVMS
1 ({w, q}) = F1({w, q}) , (14)

where

u′ = τM

(
ρ1

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u − f
)
−∇∇∇ ·σσσ1

)
. (15)

Equations (13)–(15) correspond to the ALE–VMS formulation of the Navier–Stokes equations of
incompressible flows [79]. The additional terms may be interpreted both as stabilization and as a
turbulence model [73, 80–85]. The specific form of VMS stabilization that we use was presented
and applied to FSI problems by Bazilevs et al. [54]. The stabilization parameters are

τM =

( Ct

∆t2 + (u − û) ·G(u − û) + CIν
2G : G

)−1/2

, (16)

τC = (τMtrG)−1 , (17)

τ =
(
u′ ·Gu′

)−1/2 , (18)

where ∆t is the time-step size, ν = µ/ρ1 is the kinematic viscosity, CI is a positive constant derived
from an appropriate element-wise inverse estimate [86–89], G generalizes the notion of element
size to physical elements mapped from a parametric parent element by x(ξ):

Gi j =

d∑
k=1

∂ξk

∂xi

∂ξk

∂x j
, (19)

trG is the trace of G, and the parameter Ct is typically equal to 4 [73, 82]. Note that we have
modified the usual formulation, so that integrals are taken only over intersections of elements with
Ω1. Accurate evaluation of such integrals for general immersed geometries is the primary practical
challenge associated with this formulation. An approach to computing these integrals is discussed
in Section 3.2.

Remark 1. The fluid mesh motion given by ûh may at first appear superfluous in the context of non-
boundary-fitted methods. However, a single computation might gainfully combine a boundary-
fitted, deforming-mesh treatment of some structures with a non-boundary-fitted treatment of oth-
ers. The fluid–solid interface-tracking/interface-capturing technique (FSITICT) proposed in Tez-
duyar et al. [90] is a more general method in that category. In the FSITICT, the distribution of
the fluid–solid interfaces between the interface-tracking (boundary-fitted) and interface-capturing
(non-boundary-fitted) techniques can change during the computation. The interface-capturing
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technique is used wherever and whenever it can be used. The test computations reported in
Wick [91] were based on a special-case implementation of the FSITICT, where the distribution
of the fluid–solid interfaces between the interface-tracking and interface-capturing methods does
not change during the computation. An example of FSITICT relevant to our application would
be immersion of non-boundary-fitted heart valve leaflets into a boundary-fitted discretization of
the interior of a flexible artery, as first attempted by de Hart [62]. In computations with a fixed
background fluid mesh, one can simply set ûh = 0 in the above formulations.

Remark 2. The final term of Eq. (13) does not follow from VMS analysis. It is an additional
residual-based stabilization term that is included to provided extra stabilizing dissipation near
sharp solution gradients, while maintaining variational consistency with the exact solution. It was
introduced by Taylor et al. [92] and bears resemblance to the discontinuity-capturing directional
dissipation (DCDD) [93] and YZβ [94, 95] stabilization techniques.

The terms from the second to the last line of Eq. (12) are responsible for the weak enforcement
of kinematic and traction constraints at the boundaries of the immersed geometries. It was shown
in earlier work [65–69] that imposing the Dirichlet boundary conditions weakly in fluid dynamics
allows the flow to slip on the solid surface when the wall-normal mesh size is relatively large. This
effect mimics the thin boundary layer that would otherwise need to be resolved with spatial re-
finement, allowing more accurate solutions on coarse meshes. In the non-boundary-fitted method,
the fluid mesh is arbitrarily cut by the structural boundary, leaving a boundary layer discretization
of inferior quality compared to the boundary-fitted case. Therefore, in addition to imposing the
constraints easily in the context of non-boundary-fitted approach, we may obtain more accurate
fluid solutions as an added benefit of using the weak boundary condition formulation (12).

Remark 3. Equation (12) includes an “inflow” stabilization term that is not associated with
Nitsche’s approach. This term is added to better satisfy the inflow boundary condition and to
enhance the stability of the formulation, without affecting consistency or adjoint consistency. See
Bazilevs et al. [65] for details. To ensure balanced interface tractions between the fluid and struc-
ture, we append the corresponding reaction force term∫

(ΓI)−
w2 · ρ1

((
uh

1 − ûh
)
· n1

) (
uh

1 − u2

)
dΓ (20)

to the left-hand side of structure subproblem, Eq. (11).

In Eq. (12), the parameters τB
TAN and τB

NOR must be sufficiently large to stabilize the formula-
tion, but not so large as to degenerate Nitsche’s method into a pure penalty method, which entails
the disadvantages of losing variational consistency and having an ill-conditioned stiffness matrix.
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Based on previous studies of weakly-enforced Dirichlet boundary conditions in fluid mechanics
[65–67], we expect these parameters to scale as

τB
(·) =

CB
I µ

h
(21)

where h is a measure of the element size at the boundary and CB
I is a dimensionless constant. How-

ever, in the case of an immersed boundary, neither the appropriate definition of h nor the principle
for deriving CB

I is straightforward. In subsequent sections, we investigate different penalty values
through numerical experiments.

Remark 4. A more sophisticated approach to determine the values of the stabilization parameters
for Nitsche’s method is to solve local eigenvalue problems. See Hughes and Harari [96], Embar et
al. [97], and Ruess et al. [56, 98] for more details.

3.1.1. Backflow stabilization

Unsteady CFD computations may sometimes diverge due to flow reversal on outflow bound-
aries. This is known as backflow divergence and is frequently encountered in cardiovascular sim-
ulations. In some problems studied in this paper, we encounter this backflow divergence and an
outflow stabilization method originally proposed in Bazilevs et al. [99] is applied to compensate
for it. The backflow stabilization method was further studied and found to be the least intrusive
and computationally expensive of all the techniques examined in Esmaily-Moghadam et al. [100].
The method adds the following term to the left-hand side of Eq. (12):

nout∑
a=1

−γ∫
Γa

1

wh
1 · ρ1

{(
uh

1 − ûh
)
· n1

}
−

uh
1 dΓ

 (22)

where {Γa
1}

nout
a=1 are the outflow portions of the fluid domain boundary, γ is a dimensionless non-

negative scalar controlling the strength of the stabilization, and

{(
uh

1 − ûh
)
· n1

}
−

=
1
2

((
uh

1 − ûh
)
· n1 −

∣∣∣∣(uh
1 − ûh

)
· n1

∣∣∣∣) (23)

is the component of velocity pointing opposite the outward-facing normal of the fluid domain.

3.1.2. Choice of discrete spaces

The stabilized VMS formulation given by Eq. (13) circumvents the Babuška–Brezzi stability
considerations [101, 102] that would otherwise limit the useful choices of discrete spaces for saddle
point problems such as incompressible flow [103]. We therefore have great freedom in our choices
of Vh

(·). For all computations presented in this paper, we use the same scalar discrete space to
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Figure 2: The functions P1(d) and F(d) for k1 = 2 and h = 1.
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Figure 3: Symmetrical geometry results in asymmetrical contact forces.
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Ω=Ωphys+Ωfict α = 0.0

α = 1.0

Figure 4: The fictitious domain approach: the physical domain ⌦phys is extended by the fictitious domain ⌦fict into
an embedding domain ⌦ to allow easy meshing of complex geometries. The influence of ⌦fict is penalized by ↵.

14

Figure 1: The physical domain of interest Ωphys is extended by the fictitious domain Ωfict into an embedding domain Ω

to allow easy meshing of complex geometries. The influence of Ωfict is penalized by α.

represent test and trial functions for the pressure and each Cartesian component of velocity. This
scalar space is the span of NURBS or B-spline basis functions defined on one or more d-variate
knot spaces forming a multi-patch isogeometric mesh. We refer the reader to Piegl and Tiller [52]
for a detailed construction of such bases and discussion of their properties.

3.2. The finite cell method and adaptive quadrature

A similar formulation of Nitsche’s method for immersed boundary FSI has been studied by
Benk et al. [104], who assume that the immersed boundary is a triangulated surface and use
methods from computational geometry to decompose the exterior parts of cut fluid elements into
polyhedrons with known quadrature rules. We apply instead an adaptive quadrature rule from the
finite cell method [105–107] that relies only on a test to determine whether or not an arbitrary
point lies inside of an immersed object. This relaxes Benk et al.’s assumption that the immersed
boundaries are triangulated.

The finite cell method, introduced by Parvizian et al. [108] and illustrated in Figure 1, is a
technique for solving partial differential equations posed on complex geometries by extending the
computational domain to a more tractable shape, such as a rectangular prism bounding the original
domain. The finite cell method discretizes this extended domain into elements and penalizes the
effects of the fictitious extension by modifying the problem’s coefficients to have extreme values
outside the domain of interest. This introduces discontinuities in coefficients along the boundary
of the original domain. Because the extended domain is discretized without respect to the origi-
nal geometry, these discontinuities may occur within elements. The standard Gaussian quadrature
rules typically applied to finite elements [109] assume that a polynomial can accurately approx-
imate the integrand, but this assumption is not true if the integrand is discontinuous. Düster et
al. [105] describe a method of automatically generating more accurate quadrature rules for finite
cell computations by dividing cut elements into sub-cells and applying standard quadrature rules
within the sub-cells. We apply the same method to the integrals over fluid portions of cut elements
in Eq. (13). For completeness, we restate this adaptive quadrature technique, specializing it to the
context of immersogeometric FSI. For a summary of recent developments in the finite cell method,
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we refer the interested reader to Schillinger and Ruess [107].
The quadrature scheme assumes that elements have d-dimensional rectangular parameteriza-

tions. The parameter space for each element may be partitioned into 2d equal sub-cells. Each
sub-cell may be likewise divided, as may its children, and so on, yielding a hierarchical 2d-tree. A
sub-cell at any level of this tree has an associated Gaussian quadrature rule. We may construct a
quadrature rule for the entire element by summing quadrature rules from disjoint sub-cells covering
the element. Not all sub-cells used for this rule need to be from the same level of the tree. Ideally,
we would use sub-cells from more refined levels of the hierarchy near the immersed boundary
while using larger cells away from the boundary, to reduce the computational cost due to inte-
gration. Such an adaptive quadrature rule may be generated by applying the following recursive
algorithm, with input 0 ≤ l ∈ Z, to a sub-cell covering the entire element:

1. Propose a set of Gaussian quadrature points and weights associated with the current sub-cell.

2. Count the numbers Nin and Nout of the corners of the sub-cell falling inside and outside of
the immersed structure.

3. If Nin = 0, Nout = 0, or l = 0, add the proposed quadrature points falling in the fluid domain
to the quadrature rule.

4. Otherwise, if Nin > 0, Nout > 0, and l > 0, discard the proposed points, divide the sub-cell
into 2d children, and apply this algorithm to each child, with input l − 1.

Figure 2 illustrates the terminal sub-cells and the adaptive quadrature points that result from ap-
plying this algorithm to a 2D circular boundary, with l = 3 levels of recursion. The adaptive
quadrature points outside the cylinder belong to the fluid domain and are used in the numerical
integration. The quadrature points inside the cylinder belong to the fictitious domain extension and
are discarded.

Remark 5. In the above algorithm, the geometry of the immersed structure is abstracted behind
an inside/outside test that maps spatial positions to truth values. The efficient implementation
of this mapping for general geometries is outside the scope of this paper, as we only consider
benchmark problems for which it is trivial. A more general implementation could cast rays from
a point and count intersections with the closed immersed surface geometry. The operation of ray-
surface intersection has been thoroughly optimized within the computer graphics community and
was applied to real-time rendering of NURBS surfaces as early as the 1980s [110].

3.2.1. Surface integrals

The surface integrals of Eq. (12) also require special treatment. We employ a variant of the ap-
proach used by Düster et al. [105] to integrate immersed boundary traction in finite cell solutions
of solid mechanics problems. We define a Gaussian quadrature rule with respect to a parameteri-
zation of the boundary of immersed geometry. This parameterization need not be informed by the
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Figure 2: The sub-cells (blue lines) used to generate an adaptive quadrature rule for a circular boundary, with l = 3
levels of recursion. The adaptive quadrature points outside the cylinder (marked in pink) belong to the physical domain
of interest and are used in the numerical integration. The quadrature points inside the cylinder (marked in green) belong
to the fictitious domain extension and are discarded.

fluid discretization, but we recommend ensuring that the physical space density of surface quadra-
ture points is reasonably high with respect to the fluid element size. The relevant integrals involve
traces of functions defined on the fluid domain. To evaluate these traces, we must be able to locate
the quadrature points of the surface in the parameter space of the background mesh. The physical
location, xg ∈ R

d, of an integration point can be obtained by evaluating the surface parameteriza-
tion. Finding the point ξg ∈ R

d that the fluid mesh parameterization maps to xg requires solving
a system of d equations to invert the mapping from the fluid mesh parameter space to physical
space. If the fluid is represented on a rectangular grid, this inversion is trivial. For more general
fluid discretizations, one may apply Newton’s iteration within parametric elements. It is usually
not necessary to attempt this iteration in every fluid element for each surface quadrature point. The
searching process can be streamlined by using element bounding boxes and assuming that each
surface quadrature point will most likely remain in the same background element or move to a
neighboring element between time steps in an unsteady calculation with moving boundaries.

3.3. Time integration of the fluid subproblem

We complete the discretization of the fluid subproblem by applying a time integration scheme
to Eq. (12). Our scheme falls within the family of generalized-α integrators, introduced by Chung
and Hulbert [111]. The generalized-α framework was first used for the unsteady Navier-Stokes
problem by Jansen et al. [112]. The particular integration scheme that we use in the current
work is detailed and applied to FSI problems in Bazilevs et al. [54]. The subset of generalized-α
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Figure 3: The domain and boundary conditions for the benchmark problem of 2D flow past a circular cylinder.

methods used in Bazilevs et al. [54] is parameterized by a single number, ρ∞, where 0 ≤ ρ∞ ≤ 1.
Following Bazilevs et al. [73], we use ρ∞ = 0.5 for all computations presented in this paper. The
generalized-α time integration is an implicit scheme and requires solution of a nonlinear algebraic
problem at each time step. For situations in which only the fluid subproblem is nontrivial (such as
the CFD benchmark problem studied in Section 3.4), we directly apply Newton’s iteration (with an
approximate tangent) to converge the residual of this algebraic problem. For coupled FSI, we apply
the same time integration scheme, but use more complicated solution strategies for the resulting
nonlinear problem. We defer presenting the details of these solution strategies until Section 4.6.

3.4. Flow around an immersed cylinder

In this section, we apply our immersogeometric implementation of Nitsche’s method to the
classic benchmark problem of 2D flow past a circular cylinder. The problem setup and computa-
tional domain are shown in Figure 3. The data given in the diagram is non-dimensional. We use
a unit density and define the viscosity in terms of the Reynolds number, µ = Re−1. We strongly
enforce the inflow and slip boundary conditions stated in Figure 3. For the no-slip, no-penetration
condition u1 = 0 on the surface of the circular cylinder, we compare the results of weak enforce-
ment, using our immersogeometric method, with results of strong enforcement, using a boundary-
fitted isogeometric mesh.

We expect that, for low Reynolds numbers, this problem will reach a stable steady state and,
for moderate Reynolds numbers, it will develop a time-periodic solution. These expectations are
characterized more precisely alongside our computed results in Section 3.4.3.

3.4.1. Immersogeometric discretizations

We test the Nitsche-based immersogeometric method on two discretizations of the fluid do-
main. Both meshes use quadratic B-spline elements. The first mesh, abbreviated herein as “M1”,
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Figure 4: The non-boundary-fitted, immersogeometric discretization M1.

contains 12240 elements, with refinement focused around the cylinder as shown in Figure 4. The
element size near the cylinder is 0.079. The second mesh, M2, is a uniform h-refinement of M1.
The inside/outside test required to adaptively generate quadrature rules for the exterior portions
of cut cells is, in this case, a trivial distance check from the cylinder’s center. The parametric
surface used to obtain a quadrature rule for surface integrals over ΓI, the surface of the cylinder,
is a quadratic NURBS circle divided into 256 knot spans in the circumferential direction, with
3-point Gaussian quadrature rules defined on each span. The circumference of this circle is π,
giving elements of arc length π/256 ≈ 0.012, which is significantly smaller than the element size
in either M1 or M2. For the non-boundary-fitted computations, we consistently use a time-step
size of ∆t = 0.1 when steady solutions are anticipated and ∆t = 0.05 when we expect periodicity.
This ensures that there will be at least 100 time steps per period in all periodic solutions. The
computations are initialized by linearly increasing the inflow velocity from zero to one over some
time interval. Details of the initialization procedure should not affect the steady or time-periodic
solutions that the system approaches.

Remark 6. We partition the fluid domain into sub-domains, for efficient parallel computation on
distributed-memory supercomputers. M1 is decomposed into 12 sub-domains, and M2 into 48. A
detailed technical explanation and scalability study of our parallelization strategy may be found in
Hsu et al. [113]. In the present computations, we have reduced continuity of the approximation
space to C0 at boundaries between sub-domains. While this is not technically necessary, it min-
imizes communication bandwidth while maintaining the benefits of higher continuity throughout
most of the domain. We find that the impact on quantities of interest is negligible, especially at
low Reynolds numbers.
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Figure 5: Boundary-fitted mesh BM1. The reference solutions are computed on BM2, which is a uniform refinement
of this mesh.

3.4.2. Boundary-fitted reference mesh

The problem at hand has been studied extensively by the CFD community (see, e.g. [114–
121]), but, to control for any discrepancies introduced by differences in fluid formulations or tur-
bulence models, we apply the same VMS formulation (13) to a boundary-fitted discretization of the
problem, with a strongly-enforced boundary condition on the surface of the cylinder. We first con-
struct the boundary-fitted mesh BM1 shown in Figure 5, then uniformly refine in space to obtain
BM2. Because quantities of interest computed using BM1 and BM2 match to within the precision
given in this paper, we consider BM2 to produce reliable reference solutions. BM2 contains 11376
quadratic NURBS elements and the wall-normal element size near the cylinder is 0.0173. The
resolution near the cylinder—where the exact solution will vary most rapidly in space and approx-
imations will benefit from h-refinement—is significantly greater than that of M1 or M2. By using
NURBS elements, we can exactly represent the circular boundary, completely eliminating geome-
try error. Time-step sizes in the range of ∆t = 0.05 and 0.025 are selected for the boundary-fitted
computations to ensure that there are roughly 200 time steps per period in periodic solutions. The
selected ∆t’s are smaller than those used in non-boundary-fitted computations due to the smaller
element sizes near the cylinder compared with that of M2.

Remark 7. At a first glance of Figures 4 and 5, it may seem that the non-boundary-fitted mesh
is much more refined than the boundary-fitted one. Zooming closer to the cylinder yet reveal
that near the cylinder, the non-boundary-fitted mesh resolution is lower than that of used in the
boundary-fitted case. However, due to the tensor-product structure of B-splines (and NURBS),
standard h-refinement by knot insertion near the immersed cylinder leads to global refinement,
which results in a large number of superfluous elements in our immersogeometric discretization.
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3.4.3. Comparison of results

We consider four quantities of interest for this problem, although some are relevant only in
certain flow regimes. We always measure the drag coefficient, CD, defined as 2FD/ρU2d, where
FD is the drag force or horizontal component of traction integrated over the cylinder surface, ρ is
the fluid density, U is the inflow velocity, and d is the diameter of the cylinder. For low Reynolds
number cases that reach steady solutions, we consider the bubble recirculation length, LW . LW

measures how far the stationary vortices occurring at low Reynolds numbers extend downstream
of the cylinder. It is defined precisely in Lima E Silva et al. [117]. At higher Reynolds numbers,
where flow symmetry breaks, leading to periodic solutions, we consider the lift coefficient, CL, and
the Strouhal number, St. CL is defined as 2FL/ρU2d, where FL is the lift force or vertical compo-
nent of traction integrated over the cylinder surface. St is given as f d/U, where f is the frequency
of vortex shedding. The vortex shedding only occurs if the Reynolds number is sufficiently high.
We identify the frequency of vortex shedding with the frequency of oscillation in CL. In periodic
solutions, the reported value of CL is the amplitude of its oscillation and the reported value of CD

is its time average.
The evaluations of CL and CD rely on computing the traction at the fluid–structure interface. A

naive evaluation of traction from the fluid Cauchy stress, −σσσ1n1, will converge poorly to the true
traction, so we prefer to use variationally-consistent, conservative definitions of traction [68, 122].
In the case of Nitsche’s method, the appropriate discrete traction on surfaces with weakly enforced
Dirichlet boundary conditions includes the penalty terms, matching the traction boundary condition
of the FSI structural subproblem (11):

th = −σσσh
1n1 − ρ1

{(
uh

1 − ûh
)
· n1

}
−

(
uh

1 − u2

)
+ τB

TAN

((
uh

1 − u2

)
−

((
uh

1 − u2

)
· n1

)
n1

)
+ τB

NOR

((
uh

1 − u2

)
· n1

)
n1 , (24)

where { · }− denotes the negative part of the bracketed quantity, that is, {A}− = A if A < 0
and {A}− = 0 if A ≥ 0. In this case, ΓI is stationary, so u2 = 0. On a surface with a strongly-
enforced Dirichlet condition, as seen in the boundary-fitted computation, the conservative traction
must satisfy ∫

(ΓI)t

wh
1 · t

h dΓ = BVMS
1 ({wh

1, q
h}, {uh

1, ph}; ûh) − FVMS
1 ({wh

1, q
h}) (25)

for all wh
1 in an expanded discrete velocity test space that does not strongly enforce the Dirichlet

condition. To obtain the ith component of the integral of this conservative traction over the bound-
ary (ΓI)t, we would evaluate the right-hand side of Eq. (25) with wh

1 = ei on (ΓI)t and qh = 0. The
desired wh

1 is straightforward to construct from shape functions that satisfy the partition of unity
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Table 1: Comparison of quantities of interest with various penalty values and l = 3 levels of adaptive quadrature on
mesh M1.

M1 Re = 40 Re = 80
CD LW CD CL St

τB = 102 1.611 2.26 1.413 ±0.252 0.159
τB = 103 1.611 2.26 1.411 ±0.250 0.159
Boundary-fitted 1.612 2.27 1.415 ±0.254 0.159
M1 Re = 100 Re = 200

CD CL St CD CL St
τB = 102 1.384 ±0.338 0.170 1.369 ±0.694 0.200
τB = 103 1.381 ±0.336 0.171 1.369 ±0.696 0.200
Boundary-fitted 1.386 ±0.341 0.170 1.378 ±0.706 0.200

Table 2: Comparison of quantities of interest with various penalty values and l = 3 levels of adaptive quadrature on
mesh M2.

M2 Re = 40 Re = 80
CD LW CD CL St

τB = 102 1.612 2.27 1.415 ±0.254 0.159
τB = 103 1.612 2.27 1.415 ±0.253 0.158
Boundary-fitted 1.612 2.27 1.415 ±0.254 0.159
M2 Re = 100 Re = 200

CD CL St CD CL St
τB = 102 1.386 ±0.341 0.170 1.378 ±0.706 0.200
τB = 103 1.386 ±0.341 0.170 1.378 ±0.705 0.200
Boundary-fitted 1.386 ±0.341 0.170 1.378 ±0.706 0.200

Table 3: Ranges of typical values of quantities of interest from the CFD literature [114–121]

Re = 40 Re = 80
CD LW CD CL St

Literature 1.52–1.63 2.24–2.32 1.34–1.44 ± 0.26 0.15–0.16
Re = 100 Re = 200
CD CL St CD CL St

Literature 1.33–1.43 ± 0.30–0.34 0.16–0.17 1.31–1.45 ±0.64–0.71 0.19–0.20

property.
First, using three levels of adaptive quadrature, we investigate the effects of different penalty

values. We consider only the case in which τB
NOR = τB

TAN = τB. In the current non-dimensional
setting, we state these penalty values without units. However, they have the physical interpretation
of traction per unit difference in speed (between fluid and structure), and the corresponding dimen-
sions of pressure per speed. Further, we would generally expect these values to increase with mesh
refinement, so the numbers given here should not be blindly transplanted into other computations
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(a) Re = 40 (b) Re = 100

Figure 6: Visualizations of velocity and pressure fields about a cylinder immersed in M1, showing both steady (Re =

40) and time-periodic (Re = 100) solutions. Results are obtained using τB = 102 and l = 3.

without first applying dimensional analysis and considering the relative level of refinement.
Tables 1 and 2 collect the results of applying τB = 102 and τB = 103 at various Reynolds

numbers for meshes M1 and M2. For comparison, we also give ranges of typical values for these
quantities from the CFD literature, specifically [114–121], in Table 3. Figure 6 displays several
snapshots of velocity and pressure fields computed using the immersogeometric method with τB =

102 and l = 3 on M1.
From this study, we find that the penalties of the order 101 are not consistently stable, while

penalties of the order 104 and higher become costly to compute with, due to their effect on the
conditioning of the problem. This suggests that, while we do not provide a formula for τB, it may
be chosen from within a wide range of computable values while still providing accurate results.
As long as the penalty is chosen such that the computation converges with a reasonable amount of
work, our Nitsche-based immersogeometric method achieves good agreement (at the quantity of
interest level) with our reference boundary-fitted computation. In some cases on M1 we see slightly
worse results with the higher value of τB. This is consistent with the idea that approaching strong
enforcement of Dirichlet boundary conditions on a mesh that is too coarse to resolve the boundary
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Table 4: Comparison of quantities of interest with penalty τB = 102 and different levels, l, of adaptive quadrature. The
l = 3 results are repeated from Table 2 for the reader’s convenience.

M2 Re = 40 Re = 80
CD LW CD CL St

l = 0 1.620 2.31 1.473 ±0.247 0.158
l = 3 1.612 2.27 1.415 ±0.254 0.159
Boundary-fitted 1.612 2.27 1.415 ±0.254 0.159
M2 Re = 100 Re = 200

CD CL St CD CL St
l = 0 1.477 ±0.335 0.169 1.613 ±0.631 0.199
l = 3 1.386 ±0.341 0.170 1.378 ±0.706 0.200
Boundary-fitted 1.386 ±0.341 0.170 1.378 ±0.706 0.200

layer will result in lower quality solutions. Some violation of the no-slip boundary condition can
in fact be desirable on a coarse mesh, as it imitates the presence of a boundary layer [65–69].

Finding that the penalty τB = 102 applied to discretization M2 produces quantities of interest
that largely agree with our boundary-fitted reference and results from the literature, we proceed to
consider the effect of adaptive quadrature with this value of the penalty parameter. These results
are collected in Table 4 and again compared with our reference computation. The degradation
of results in the absence of adaptive quadrature demonstrates the effects of error introduced by
under-integrating discontinuous functions. This degradation becomes more severe with increased
Reynolds number, suggesting that adaptive quadrature would be especially crucial in computations
involving turbulent flows. The agreement of the non-boundary-fitted results with those computed
on a refined, boundary-fitted reference mesh shows that the non-boundary-fitted methodology is
accurate, even when the boundary layer is composed of larger, haphazardly-cut elements.

Remark 8. The results in Table 4 demonstrate interesting correlations: removal of adaptive
quadrature consistently increases drag and decreases lift. This suggests that inadequate integra-
tion may tend to overestimate viscous forces and underestimate pressure forces, but we do not
investigate that question further in this paper.

4. Immersed shell structures

The preceding example involves flow around a bulky object. We would also like to study flow
around extremely thin immersed structures, such as heart valve leaflets. The method developed in
Section 3 could be applied if the thin structures were fully modeled as 3D solids and immersed
into a sufficiently refined fluid mesh. However, we would prefer a computationally more efficient
approach that models the solid as a two-dimensional manifold shell structure. Such a technique
would necessarily decouple the fluid resolution from the structure thickness.
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This presents a conceptual difficulty. The exact solution for the pressure around a shell structure
may be discontinuous at the structure. Since, for practical reasons discussed in Section 1, we
are committed to using a non-boundary-fitted method, the fluid discretization cannot be informed
by the structure’s position. This means that our fluid approximation space cannot be selected
in such a way that the pressure basis functions are themselves discontinuous at the immersed
boundary. This implies an inherent approximation error in the pressure field. This error will
converge slowly for polynomial bases [123]. Nonetheless, we believe that solutions of sufficient
accuracy for engineering purposes can be obtained in this fashion and we focus on developing a
robust method for obtaining these solutions.

4.1. Reduction of Nitsche’s method to the penalty method

Consider integrating the boundary terms of Eq. (12) over both sides of a thin immersed shell
structure. If the velocity and pressure approximation spaces are continuous through the vanishing
thickness of the shell (and the velocity approximation space is continuously differentiable), then
the dependence of the consistency and adjoint consistency terms on the normal vector will cause
contributions from opposing sides to cancel one another. The only remaining terms will be the
penalty and the inflow stabilization. In the case of an immersed shell structure, we may view
the inflow term as a velocity-dependent penalty. The Nitsche-type formulation given in Eq. (12)
therefore reduces to the following penalty method

BVMS
1

(
{wh

1, q
h}, {uh

1, ph}; ûh
)
− FVMS
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1, q
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)
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((
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)
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)
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·
((
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)
−
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1 − u2

)
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)
n1

)
dΓ

+

∫
ΓI

τB
NOR

(
wh

1 · n1

) ((
uh

1 − u2

)
· n1

)
dΓ = 0 (26)

when the approximation spaces Vh
u and Vh

p are sufficiently regular around the shell. This may be
seen as a thin-body analogue to the L2 penalization technique studied by Angot et al. [124].

Remark 9. Adaptive quadrature is not necessary for fluid elements intersecting only thin immersed
structures that are modeled geometrically as surfaces, because the integrands remain essentially
smooth when set to zero on a sub-domain of zero Lebesgue measure.

Remark 10. If the shell structure divides Ω1 into two sub-domains, ΩA
1 and ΩB

1 , we may solve
two independent problems for

(
uA

1 , pA
)

and
(
uB

1 , pB
)

but discretize both using the same mesh of
Ω1, in the spirit of the extended domain variant of the fluid–structure interface locator technique
(FSILT-ED) proposed by Tezduyar [125]. Each sub-domain could be integrated separately, using
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the adaptive quadrature rule developed in Section 3.2. This would produce a discontinuous fluid
Cauchy stress at the immersed surface, preventing the formulation from degenerating into a penalty
method and avoiding the interpolation error inherent to approximating a discontinuous pressure
with a continuous function. However, this extended domain technique would require additional
technical considerations to apply to general immersed structure geometries, and we do not pursue
it further in the present work.

To determine the velocity and pressure about an immersed valve in its closed state, a method
must be capable of developing nearly hydrostatic solutions in the presence of large pressure gra-
dients. Penalty forces will only exist if there are nonzero violations of kinematic constraints. A
pure penalty method rules out the desired hydrostatic solutions: every term that could resist the
pressure gradient to satisfy balance of linear momentum depends on velocity. Increasing β may
diminish leakage through a structure, but it is a well-known disadvantage of penalty methods that
extreme values of penalty parameters will adversely affect the numerical solvability of the resulting
problem. This motivates us to return to Eqs. (2)–(4) and develop a method that does not formally
eliminate the multiplier field.

4.2. Reintroducing the multipliers

Since the introduction of constraints tends to make discrete problems more difficult to solve,
we will only reintroduce a scalar multiplier field to strengthen enforcement of the no-penetration
part of the FSI kinematic constraint, rather than the vector-valued multiplier field of Eqs. (2)–
(4). The viscous, tangential component of the constraint will continue to be enforced by only the
penalty τB

TAN. This may be thought of as a formal elimination of just the tangential component of
the multiplier field, which also retains the ability to allow the flow to slip at the boundary, which
tends to produce more accurate fluid solutions, as discussed in Section 3.1. For clarity, we redefine
the FSI boundary terms on the mid-surface of the shell structure, Γt, rather than considering the
full boundary, ΓI. This means that constants in the current formulation may differ from those of
Eqs. (2)–(4) by factors of two. We arrive, then, at the formulation

B1({w1, q}, {u1, p}; û) − F1({w1, q}) +

∫
Γt

w1 · (λnn2) dΓ +

∫
Γt

w1 · β(u1 − u2) dΓ = 0, (27)

B2(w2,u2) − F2(w2) −
∫

Γt

w2 · (λnn2) dΓ −

∫
Γt

w2 · β(u1 − u2) dΓ = 0, (28)∫
Γt

δλnn2 · (u1 − u2) dΓ = 0, (29)

where λn is the new scalar multiplier field and, to emphasize the relation to Eqs. (2)–(4), the
penalty force has not been split into normal and tangential components. The consistency and
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adjoint consistency terms associated with eliminating the tangential component of the multiplier
have been omitted under the assumption that they will vanish after integrating over both sides of
the thin shell, as discussed in Section 4.1.

4.2.1. Implementation of the Lagrange multipliers

We wish to implement the constraint between the fluid and structure solutions in a way that is
minimally disruptive to the two subproblems, allowing existing methods for computational fluid
and solid mechanics to be applied to each. A monolithic solution for the velocities and multipli-
ers would limit our ability to quickly interchange fluid or structure formulations and, as a mixed
formulation, would require either special choices of approximation spaces [103] or additional sta-
bilization terms to satisfy the Babuška–Brezzi stability conditions. Appropriate approximation
spaces or stabilization terms are not obvious for the current case. Barbosa and Hughes [126] de-
veloped a stabilization scheme to circumvent the Babuška–Brezzi conditions when using Lagrange
multipliers to enforce Dirichlet boundary conditions on elliptic problems. While this has been suc-
cessfully applied to enforce kinematic constraints between bulky immersed bodies and Stokes flow
[127], several key terms in the formulation are linear in the boundary normal vector, and, for thin
immersed bodies, will cancel in the same manner as the consistency and adjoint consistency terms
of Nitsche’s method (cf. Section 4.1). This section discusses two alternative solution strategies for
implementing the Lagrange multipliers.

The unconstrained problem that follows from considering λn to be fixed in Eqs. (27)–(29) is
similar to that following from the penalty method. The multiplier simply enters each subproblem
as a prescribed boundary traction. We consider, then, an iterative strategy that updates λn between
solutions of such unconstrained problems.

Our starting point is the iterative method independently introduced by Hestenes [128] and
Powell [129] in 1969. This method attempts to minimize an augmented Lagrangian of the form

L(x, λ) = f (x) + λg(x) + β‖g(x)‖2 (30)

where x is the primal variable, λ is the multiplier, β > 0 is a penalty parameter, and f (x) is an
objective function that we seek to minimize, subject to the constraint g(x) = 0. The method
consists of starting with λ = 0 and repeating the steps

1. Solve x← arg min L(·, λ), where λ is treated as a fixed parameter.

2. Update the multiplier by λ← λ + βg(x),

until ‖g(x)‖ < ε. This algorithm may be characterized as a more robust implicit version of the well
known Uzawa iteration [130]. In Uzawa iteration, penalty forces are not included in the uncon-
strained minimization of step 1, and the size of β is consequently limited by stability considerations
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during the multiplier update of step 2, potentially leading to very slow convergence [131–133]. We
may attempt to devise a related algorithm for our problem by representing the field λn with samples
at quadrature points of Γt and repeating the following steps:

1. Solve for approximate fluid and structure velocities uh
1 and uh

2, treating λn as fixed data.
We discuss specific solution strategies for this unconstrained (but still coupled) problem in
Section 4.6.

2. Update the multiplier field by λn ← λn + τB
NOR(uh

1 − uh
2) · n2, where λn and uh

i are evaluated at
the quadrature points of Γt,

until
(∫

Γt
|(uh

1 − uh
2) · n2|

2 dΓ
)1/2

< ε.
However, if the approximation spaces are not selected in a stable way, there may not be a

solution to the discrete problem and the iteration may never converge to arbitrary ε. In the limit
that the quadrature rule over Γt is exact, it is clear that attainable values of ε will be bounded
below by the error inherent to interpolating functions in the structure’s discrete velocity space
with those in the non-matching trace of the fluid’s discrete velocity space. We observe that, in
some cases, specifically those discussed in Section 4.4, the iteration converges linearly. However,
for more general fluid and structure geometries, the procedure does not appear to converge. It
may be possible, and practically effective, to formulate a variety of ad hoc termination criteria,
such as h-dependent formulas for ε that account for the mismatch between fluid and structure
discrete velocity spaces, but, for problems in which the iterative procedure will not converge, we
consider only the case of applying a single iteration within each time step and using the updated
λn as the initial guess for the (severely truncated) iteration within the next time step. In this case,
the multiplier becomes an accumulation of penalty tractions from previous time steps. This is
equivalent to replacing the multiplier and normal penalty terms∫

Γt

(w1 − w2) · (λnn2) dΓ +

∫
Γt

((w1 − w2) · n2) τB
NOR ((u1 − u2) · n2) dΓ (31)

by a penalization of (a backward Euler evaluation of) the time integral of pointwise normal velocity
differences on the immersed surface Γt∫

Γt

{
τB

NOR

∆t
(w1(x, t) − w2(x, t)) · n2(x, t)

×

∫ t

0

(
u1(ϕτ(ϕ−1

t (x)), τ) − u2(ϕτ(ϕ−1
t (x)), τ)

)
· n2(ϕτ(ϕ−1

t (x)), τ) dτ
}

dΓ , (32)

where ϕτ(X) gives the spatial position at time τ of material point X ∈ Γ0 and the measure dΓ

corresponds to the integration variable x ∈ Γt. That the time integral in Eq. (32) is evaluated using
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the backward Euler method is demonstrated in the following exposition. First define (at fixed X)

I(t) =
τB

NOR

∆t

∫ t

0
(u1(τ) − u2(τ)) · n2(τ) dτ . (33)

The time rate-of-change of the integral I will be its integrand

İ =
τB

NOR

∆t
(u1 − u2) · n2 . (34)

We approximate I at time tn+1+α f by

In+1+α f = In+α f + ∆tİn+1+α f (35)

where In+α f is an accumulation of previous single-iteration approximations to λn and ∆tİn+1+α f

is the current time step’s penalty forcing, which is the penalty τB
NOR times the α-level1 velocity

difference between the structure and fluid. Eq. (35) is precisely the backward Euler algorithm for
computing I. Thus the term of Eq. (32) is accounted for in a fully implicit manner within the
discrete solution process, using a manifestly stable time integrator. An order of accuracy is lost
relative to the generalized-α scheme, but, in our application, other considerations have driven the
time step down to small enough values for this distinction to have few practical implications; we
are primarily concerned with stability.

Integrating a constraint residual in time is not a new concept for approximation of a Lagrange
multiplier. The differential equation given in Eq. (34) resembles the method of artificial com-
pressibility, devised by Chorin [134] in 1967 and widely used since to simulate incompressible
flows (see, e.g., Brooks and Hughes [80]). In this method, the approximated Lagrange multiplier
p representing the pressure evolves through time in an analogous way to I:

∂t p = −
1
δ
∇∇∇ · u1 , (36)

where the constraint is ∇∇∇ · u1 = 0 (instead of (u1 − u2) · n2 = 0), 1/δ is the penalty parameter, and
the difference in sign is due to the arbitrary choice of sign with which λλλ enters the augmented La-
grangian formulation (1). A physical interpretation of this, similar to Chorin’s original formulation
of Eq. (36) in terms of a fictitious density variable, is that we are penalizing a displacement pene-
tration of the fluid through the leaflet, using the penalty τB

NOR/∆t. This interpretation makes clear
how penalizing the time integral of velocity prevents the steady creep of flow through a barrier.

1See Bazilevs et al. [54] for a discussion of generalized-α time integration using this notation.
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4.3. Relation to the feedback method of enforcing Dirichlet boundary conditions

The degeneration of Nitsche’s method to a velocity penalty and the continuous interpretation
of our algorithm for computing Lagrange multipliers may both be interpreted as special cases of
an existing framework for enforcing Dirichlet boundary conditions on the unsteady Navier–Stokes
equation. Goldstein et al. [135] proposed to apply concentrated surface forcing of the form

f(xs, t) = α

∫ t

0
u1(xs, τ) dτ + βu1(xs, t) , (37)

for all xs on a stationary solid boundary (i.e. u2 = 0) with (dimensional) parameters α ≤ 0 and
β ≤ 0. Goldstein et al. interpret this method, which we will refer to as the feedback method, in
the context of control theory, arguing heuristically that it provides negative feedback in the case of
constraint violation. This method was investigated further by Goldstein et al. [136] and Fadlun et
al. [137].

The penalty formulation that follows from applying Nitsche’s method to thin immersed struc-
tures is the feedback method with α = 0 and β < 0, while the time-continuous interpretation of
our single-iteration Lagrange multiplier approximation corresponds to the feedback method with
α < 0 and β = 0 in the normal direction and α = 0 and β < 0 in the tangential direction. Be-
cause we integrate the feedback terms implicitly, the choice of time step relative to α and β is not
subject to the stability restriction given by Goldstein et al. [135, Eq. (5)] for the case of explicit
time marching. If the iterative approximation of multipliers is formulated to include a relaxation
factor, r ≤ 1, in the multiplier update (i.e. λn ← λn + rτB

NOR(uh
1 − uh

2) · n2, as originally proposed
by Hestenes [128]), then the time-continuous interpretation of the single iteration case would, for
r < 1, be the feedback method with α < 0 and β < 0. This possibility may lead to enhanced
stability, but is not investigated in the present work.

4.4. Managing pressure approximation error with stabilization

Due to the poor approximation properties of a pressure space that does not allow discontinuities
on the surface of the shell, we expect the pressure to converge slowly with refinement. In problems
with large pressure jumps, unphysical compression incurred by the poorly-approximated pressure
will ruin even the qualitative character of solutions. In Section 4.4.1, we use a model problem to
show that this effect becomes practically important in the analysis of heart valves. Then, in Section
4.4.2, we introduce and test a proposed solution.

4.4.1. A demonstration of the effect of pressure approximation error

We now consider a simplified model of a closed valve, with fluid properties and boundary
conditions similar to those found in cardiovascular applications. We show that we cannot develop
hydrostatic solutions with a reasonable spatial discretization and practical time step.
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Figure 7: The computational mesh used for the closed-valve model problem.

Consider an axis-aligned 2 cm × 2 cm × 2 cm cube, filled with an incompressible Newtonian
fluid of density ρ1 = 1.0 g/cm3 and viscosity µ = 3.0 × 10−2 g/(cm s). The vertical faces have
a no-slip boundary condition, the bottom has a zero-traction outflow boundary condition, and the
top has a pressure traction of 120 mmHg. The length scale, fluid properties, and pressure differ-
ence produce conditions comparable to those surrounding a closed aortic valve in diastole. Now
consider immersing a rigid, impermeable horizontal plate into this cube, blocking its entire cross
section at a distance of 1.1 cm from the bottom. The exact solution for this problem should be
hydrostatic, with a discontinuous pressure at the location of the plate. However, in an immerso-
geometric discretization, the continuity of the pressure approximation functions through the plate
means that the discontinuity of the exact solution cannot be reproduced in a computation.

Remark 11. The plate’s height of 1.1 cm is deliberately selected so that the plate will never co-
incide with an element boundary for any uniform division of the cube into 2n elements in the
z-direction. This may be seen by considering the fact that 0.110 is a repeating fraction in binary.
Even if a discontinuous pressure basis is used, the discontinuities will not be located on the struc-
ture.

We now compute a solution to this problem, starting from homogeneous initial conditions for
the velocity and using Lagrange multipliers to enforce the no-penetration condition on the shell.
For the mesh, we use a trivariate C1-continuous quadratic B-spline patch, uniformly refined into
8 × 8 × 32 elements. The quadrature rule for surface integrals over the immersed plate is a sum of
Gaussian quadrature rules on 40×40 quadrilaterals, evenly dividing a 3 cm × 3 cm square surface,
cutting through the channel as shown in Figure 7. Surface quadrature points falling outside of
the channel do not contribute to integrals. We find that, if large flow velocities develop with the
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Figure 8: The z-component of velocity, in cm/s, for a highly unphysical steady-state flow solution through a blocked
channel, as computed with ∆t = 10−4 s and no modifications to fluid stabilization terms. The fluid spuriously com-
presses to meet the velocity constraint imposed by the barrier while maintaining a large downward flow through the
channel.

given boundary conditions, backflow divergence may occur, and we apply the outflow stabilization
discussed in Section 3.1.1 to both traction boundaries, with γ = 0.5.

We consider the time step ∆t = 10−4 s practical for computing dynamic FSI at the time scale of
a cardiac cycle. Computing with this time step and using the iterative multiplier approximation of
Section 4.2.1, we see a highly unphysical behavior. Figure 8 shows the vertical velocity component
on a slice of the resulting solution, after the volumetric flow rate through the top of the cube
reached a steady value (t > 0.01 s). While the Lagrange multipliers enforce the constraint very
effectively2, there is still a significant flow through the top face of the cube. The steady-state
volumetric flow rate is 355.2 mL/s, which is unacceptable for simulation of a valve structure that
exists primarily to block flow. This would be a typical flow rate through an open aortic valve,
during systole [138]. The flow rate varies between cross-sections of the channel, which obviously
violates the incompressibility condition.3 The compression caused by local pressure approximation
error pollutes the entire velocity solution.

2As discussed in Section 4.2.1, we do not always expect the constraint to fully converge, since we have not selected
a stable discretization, but, in this simple problem, the iteration converges at a roughly linear rate. This is not, in
general, expected or found in calculations with different immersed geometries.

3The VMS formulation discretely satisfies global mass conservation for any reasonable test space (which may be
seen by setting q = 1 and w = 0 in Eq. (13)). However, we have no guarantee of local mass conservation.
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Table 5: The effect of sshell on apparent leakage due to volume loss.

sshell Volumetric flow rate
1 355.2 mL/s
104 4.037 mL/s
108 4.048 × 10−2 mL/s

4.4.2. A proposed solution

The pressure gradient is approximated especially poorly in a neighborhood of the immersed
surface. It appears in the fine scale velocity of the VMS formulation, where it is scaled by τM. We
may diminish the influence of this poorly approximated quantity by locally reducing the value of
τM. Due to the inverse relationship between τM and τC, this will also increase the penalization of
volume loss in a neighborhood of the immersed surface. We therefore modify the definition of τM

in Eq. (16) to be

τM =

(
s
( Ct

∆t2 + (u − û) ·G(u − û) + CIν
2G : G

))−1/2

, (38)

which affects all quantities defined in terms of τM, such as u′ and τC. The new factor s > 1
is dimensionless and allowed to vary in space. For most of the domain, s = 1, but, in an O(h)
neighborhood near the shell, we may make it larger, with the effect of reducing τM. To smooth
the transition between larger and smaller values of s, we define it as a nodal variable, using the
pressure approximation space. For nodes corresponding to pressure basis functions with supports
intersecting the shell (i.e. containing quadrature points for the integration rule on Γt), this nodal
variable is set to sshell ≥ 1. For all other nodes, it is set to the usual value of 1. If the pressure shape
functions form a partition of unity, then s will be uniformly equal to sshell on elements intersecting
the shell.

Remark 12. From stability and convergence analysis of analogous stabilized methods for the
steady Stokes and Oseen problems, we see that, for stability and asymptotic convergence, τM is
subject only to upper bounds. It is typically chosen to saturate these bounds, to reduce constants
in the error estimate [84]. However, for flow conditions and approximation spaces of interest, we
may improve the qualitative character of solutions at coarse discretizations by reducing τM in the
vicinity of thin immersed structures (by using sshell > 1).

We now test this preliminary solution by applying it to the model problem of the previous
section. We investigate the effect of sshell at the practical time-step size of 10−4 s. In Table 5, we
compare sshell = 1, sshell = 104, and sshell = 108, finding that volumetric flow scales roughly like(
sshell

)−1/2
, tending to zero as sshell increases.

Remark 13. An undesirable consequence of increasing sshell is that the weakened stabilization
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near the immersed surface harms the conditioning of the discrete problem. Due to the simplistic
nature of the blocked tube model problem, conditioning is not a significant issue, but applying the
modified stabilization terms to more complex calculations, such as those presented in Section 5.4,
increases the cost of sufficient iterative solution of the linear problem at each Newton step. The
development of a suitable preconditioner may avert this difficultly, but is beyond the scope of the
current work.

4.5. Treatment of shell structure mechanics

In this section, we give concrete form to the structure subproblem (11). We assume that the
structure is a thin shell, represented mathematically by its mid-surface. Further, we assume this
surface to be piecewise C1-continuous and apply the Kirchhoff–Love shell formulation and isoge-
ometric discretization studied by Kiendl et al. [74, 139, 140].

4.5.1. Basic kinematics of a Kirchhoff–Love shell

The spatial coordinates of the shell mid-surface in the current and reference configurations are
given by the parametric mappings x(ξ1, ξ2) and X(ξ1, ξ2), respectively. Assuming the range {1, 2}
for Greek letter indices, we define bases

gα =
∂x
∂ξα

, (39)

g3 =
g1 × g2

||g1 × g2||
, (40)

and

Gα =
∂X
∂ξα

, (41)

G3 =
G1 ×G2

||G1 ×G2||
, (42)

in the current and reference configurations, which yield metric tensors

gαβ = gα · gβ , (43)

Gαβ = Gα ·Gβ , (44)

and curvature coefficients

bαβ = −gα ·
∂g3

∂ξβ
=
∂gα
∂ξβ
· g3 , (45)

Bαβ = −Gα ·
∂G3

∂ξβ
=
∂Gα

∂ξβ
·G3 . (46)
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Using kinematic assumptions and mathematical manipulations given in Kiendl [140], we split
the in-plane Green-Lagrange strain Eαβ into membrane and curvature contributions

Eαβ = εαβ + ξ3καβ , (47)

where

εαβ =
1
2

(gαβ −Gαβ) , (48)

καβ = Bαβ − bαβ , (49)

are the membrane strain and curvature tensors, respectively, at the shell mid-surface, ξ3 ∈

[−hth/2, hth/2] is the through-thickness coordinate and hth is the shell thickness, which may, in
general, be a function of the mid-surface material coordinates.

4.5.2. St. Venant–Kirchhoff material model

For the purposes of this paper, we assume a St. Venant–Kirchhoff material, in which the second
Piola-Kirchhoff stress, S, is computed from a constant elasticity tensor, �, applied to E. We are well
aware of the shortcomings of this material model under states of high compression [141], but these
are precluded in the current situation, as transverse normal stress is neglected by the Kirchhoff–
Love shell model, and the computations presented in this paper do not involve significant in-plane
compression. The in-plane stresses due to extension and bending are integrated through the shell
thickness to obtain

nαβ = Cαβγδεγδhth , (50)

mαβ = Cαβγδκγδ
h3

th

12
. (51)

Using the above notation, we specialize the generic structural subproblem by defining

B2(w,u) =

∫
Γt

w · ρ2hth
∂u
∂t

∣∣∣∣∣
X

dΓ +

∫
Γ0

(n : δεεε + m : δκκκ) dΓ , (52)

F2(w) =

∫
Γt

w · ρ2hthf dΓ +

∫
Γt

w · hnet dΓ , (53)

where Γ0 and Γt are the shell mid-surface in the reference and deformed configurations, respec-
tively, hnet = h(ξ3 = −hth/2) + h(ξ3 = +hth/2) sums traction contributions from the two sides of the
shell. For isotropic materials, the material tensor may be derived from a Young’s modulus, E, and
Poisson ratio, ν.
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4.5.3. Isogeometric shell discretization

We discretize shell structures isogeometrically, using C1-continuous quadratic B-spline patches
to represent both the reference configuration and the approximate displacement solution. The
details of this discretization are given in Kiendl et al. [74, 140]. A noteworthy aspect of this
discretization is the fact that it requires no rotational degrees of freedom; our C1-continuous ap-
proximation space (for a single patch) is in H2, so we may directly apply Galerkin’s method to the
forms defined in Eqs. (52) and (53). It should be noted that for complex structures, the continuity
of the geometrical mapping is often reduced to the C0 level (e.g. geometries comprised of multiple
patches). The problem of reduced continuity across patch boundaries can be resolved by applying
linear constraint equations for simple geometries [74], or through the bending strip method [139].

4.6. Time integration and fluid–structure coupling

We apply the same implicit generalized-α scheme that we use for the fluid subproblem in
Section 3.3 to coupled FSI problems. Given our variational formulation for the coupled problem,
it would be possible, in principle, to simultaneously solve for the fluid, structure, and multiplier
solutions at each time step, in a monolithic fashion. However, as discussed in Section 4.2.1, we
use an iterative scheme for updating the Lagrange multiplier unknowns, wherein an unconstrained
problem with a constant multiplier field is solved one or more times within each time step. For
the unconstrained problem, we opt to derive separate tangent matrices for the fluid and structure
problems, considering the solution variables of each (along with the multipliers) to be constant in
the other’s linearization. This is not equivalent to a full linearization of the problem, as it discards
some information regarding the coupling of the subproblems. However, the ability to isolate the
structural tangent makes the method more modular, easing the implementation of new material
models.

For the unconstrained problems at each step of the iteration described in Section 4.2.1, we ap-
ply what is called, in the terminology of Tezduyar and Sathe [24], a block-iterative approach. This
approach alternates between solving for increments of the fluid and structure solutions. Schemati-
cally, consider Rf(uf, us) to be the nonlinear residual for the fully-discrete fluid subproblem at a par-
ticular time step, which depends on the discrete fluid and structure solutions, uf and us. Likewise,
Rs(uf, us) is the residual for the discrete structure subproblem. Then the block-iterative procedure
to find a root of (Rf,Rs) is to start with guesses for uf and us, then repeat the steps

1. Assemble Rf(uf, us) and a (typically approximate) tangent matrix, Af ≈ ∂Rf/∂uf.

2. Solve the linear system Af∆uf = −Rf for the fluid solution increment.

3. Update the fluid solution: uf ← uf + ∆uf.

4. Assemble Rs(uf, us) and As ≈ ∂Rs/∂us.

5. Solve As∆us = −Rs for the structure solution increment.
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6. Update the structure solution: us ← us + ∆us.

until Rf and Rs are sufficiently converged. Note that this resembles Newton’s iteration with an
inexact tangent, wherein off-diagonal blocks of the tangent matrix for the combined system, Af (∂Rf/∂us)

(∂Rs/∂uf) As

  ∆uf

∆us

 = −

 Rf

Rs

 , (54)

are neglected. However, the update of the fluid solution in step 3 distinguishes block iteration from
an inexact tangent method. For the computations in this paper, we use the generalized minimum
residual method (GMRES) [142] to approximate the solution of step 2 and the conjugate gradient
method [143] to approximate the solution of step 5. To ensure predictable running times and
avoid stagnation in pathological configurations, we typically select the resolution of the nonlinear
algebraic solution by choosing a fixed number of iterations rather than a percentage by which the
residual must be reduced. This may be interpreted as a predictor–multi-corrector scheme based on
Newton’s method [54]. While it is possible that error from isolated, poorly-solved time steps can
pollute the future of a solution, we find that, within reasonable limits, quantities of engineering
interest are typically more sensitive to spatial and temporal discretizations than nonlinear solution
tolerance.

Remark 14. The block-iterative procedure is widely held to be applicable only when the struc-
ture’s density is much higher than that of the fluid, which is not the case in cardiovascular appli-
cations. Van Brummelen [144] investigated this issue analytically, using a model problem, and
found that subiterative algorithms alternating between solutions of fluid and structure subproblems
become unstable if the fluid is too dense. He further determined that refinement in time cannot
resolve this instability if the fluid is incompressible. In the present work, we apply block iteration
to couple a structure and incompressible fluid of equal density. However, we are applying block
iteration to a problem in which the fluid and structure are coupled using a finite penalty rather than
a true constraint. Recall that the Lagrange multiplier field is held fixed in the problem to which we
apply block iteration. We find that, for this penalty-coupled problem, block iteration remains ro-
bust at practically large penalty values. If τB

(·) → ∞ at fixed ∆t, the procedure becomes ineffective,
but our experience indicates that convergence of the block iterative procedure can be improved by
simply reducing the time step. An analysis of the continuous interpretation of our fluid–structure
coupling algorithm using the model problem established by van Brummelen may provide more
precise conditions for the stability of our approach.

4.7. 2D heart valve benchmark

We now test our immersogeometric method for thin-shell FSI on a heart-valve-inspired bench-
mark problem investigated previously by Gil et al. [145], Hesch et al. [41], and Wick [91]. To test
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Figure 9: Geometry and boundary conditions of the 2D heart valve benchmark. Not to scale. The inflow profile is
given by Eq. (55).

the methods developed in this paper, we compute this problem using both our immersogeometric
technique for FSI and strong kinematic constraint enforcement on an isogeometric boundary-fitted
fluid mesh.

4.7.1. Description of the problem

The problem consists of two cantilevered elastic beams immersed in a 2D channel filled with
incompressible Newtonian fluid, as shown in Figure 9. The fluid and structure have equal densities
of ρ1 = ρ2 = 100. The viscosity of the fluid is µ = 10. Gil et al. studied a variety of material
models for the beams while Hesch et al. used a nearly incompressible neo-Hookean material, with
Young’s modulus E = 5.6 × 107 and Poisson ratio ν = 0.4. In this paper we use the St. Venant–
Kirchhoff model described in Section 4.5.2 with E = 5.6 × 107 and Poisson ratio ν = 0.4. The top
and bottom sides of the channel have no-slip boundary conditions, the left end has a prescribed,
time-dependent velocity profile, and the right end is a traction-free outflow. The velocity Dirichlet
condition on the left end of the channel is given by the formula

u1 (ye2, t) =

 5(sin(2πt) + 1.1)y(1.61 − y)e1 , t > 0
0 , otherwise

, (55)

where the origin of the spatial coordinate system is at the bottom left corner of the domain. At
times t < 0, the fluid and structure are at rest. Taking the channel width of 1.61 as a characteristic
length scale and the peak inflow speed of 6.8 as a characteristic flow speed, the Reynolds number
is approximately 110.

38



Figure 10: The reference configuration of the boundary-fitted mesh for the 2D valve problem, with leaflets highlighted
in magenta and areas of softened mesh highlighted in green.

4.7.2. Boundary-fitted reference computation

The mesh for the boundary-fitted reference computation is shown in Figure 10. The fluid
domain consists of 7626 quadratic B-spline elements. Each beam consists of 31 quadratic B-spline
elements and is coincident with a line of C0 continuity in the fluid B-spline space, permitting
strong enforcement of fluid–structure kinematic constraints. We use a time-step size of ∆t = 0.005
for the boundary-fitted computation. The selected spatial and temporal resolutions ensure that the
displacement history of the upper beam tip changes negligibly (∼ 0.001 length units) with further
refinement in both space and time.

The fluid mesh deforms according to the solution of a fictitious isotropic linear elastic problem
that takes the location of the beam as a displacement boundary condition. The velocity of this de-
formation enters into the fluid formulation (13) as ûh. This velocity is derived from displacements
of the mesh in consecutive time steps. Mesh quality is preserved throughout this deformation by
stiffening the fictitious material in response to compression: the material tensor is modified such
that the mesh Young’s modulus, Emesh, scales inversely with the square of the Jacobian determi-
nant, Jξ, of the mesh’s parametric mapping in the previous time step. More detailed discussions of
Jacobian-based mesh stiffening can be found in [28, 54, 146–149]. In the present problem, we also
find it necessary to soften the fictitious material governing the deformation of elements between the
leaflets. This is accomplished by making its Young’s modulus (prior to Jacobian-based stiffening)
1000 times smaller than that of the material adjacent to the leaflets. The regions of softened mesh
are highlighted in green in Figure 10. A snapshot of the resulting deformed mesh at time t = 0.5 is
in Figure 11. The non-smooth deformation visibly demonstrates the effect of the jump in fictitious
material parameter.

The parabolic inflow profile given by (55) is represented exactly, using the trace space of the
B-spline basis functions. Under the assumption that the geometrical mapping from the B-spline
parameter ξ2 to the physical y-coordinate is time-independent, linear, and invertible at the inflow
face of the domain, the velocity profile may be applied by first pre-computing x-direction velocity
coefficients for the left-most row of control points such that the resulting B-spline curve inter-
polates the function y(1.61 − y) at its Greville abscissae. These coefficients may be scaled by
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Figure 11: The deformation of the boundary-fitted fluid mesh at t = 0.5.

5(sin(2πt) + 1.1) during the computation, to obtain the desired velocity profile at time t.

4.7.3. Immersogeometric computations

We test three immersogeometric discretizations of the problem. The first, which we refer to
here as M1, evenly divides the fluid domain into 128 × 32 quadratic B-spline elements and each
beam into 64 quadratic B-spline elements. The other two discretizations are uniform refinements of
M1: M2 contains 256× 64 fluid elements and 128 shell elements in each beam, while M3 contains
512 × 128 fluid elements and 256 shell elements in each beam. As in the reference computation,
the inflow velocity profile is captured exactly on these meshes. We refine in time alongside spatial
refinement, using ∆t = 0.01 with M1, ∆t = 0.005 with M2, and ∆t = 0.0025 with M3.

Because the trace of the background discrete fluid velocity function space along the moving
immersed beam does not include arbitrary functions from the beam’s velocity space, the iterative
method described in Section 4.2.1 for computing pointwise values of a Lagrange multiplier field
will not converge. We therefore use the single-iteration truncation of this algorithm, which is inter-
preted as a modified continuous problem and related to the earlier feedback method of Goldstein et
al. [135] in Section 4.2.1. Following the guideline given by Eq. (21), we scale the penalty parame-
ters τB

(·) inversely with mesh size, choosing τB
(·) = 104 on M1, τB

(·) = 2×104 on M2, and τB
(·) = 4×104

on M3. The stabilization adjustments of Section 4.4.2 are employed, with sshell = 106.

4.7.4. Comparison of results

Figure 12 shows the x- and y-direction displacements of the upper beam tip for the boundary-
fitted and immersed computations. The displacement histories computed using our immersogeo-
metric method on M1, M2, and M3 converge toward the boundary-fitted result. Figure 13 shows
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Figure 12: The x- and y-displacements of the upper leaflet tip, computed on the immersed and boundary-fitted meshes.

Figure 13: The deformed immersed structure and fixed background fluid mesh, from the immersogeometric computa-
tion on M2, at t = 0.5.

the deformed immersed beam and fixed background fluid mesh, from the immersogeometric com-
putation on M2, at t = 0.5. Comparisons of the pressure contours at time t = 0.5 are given in
Figure 14, showing agreement between the immersogeometric and boundary-fitted flow fields in
regions outside of an O(h) neighborhood of the immersed beams. Velocity streamlines at t = 0.5
for the background mesh M1 are shown in Figure 15, demonstrating that the velocity field remains
smooth on this coarse mesh, in spite of the pressure error evident from Figure 14. This is in con-
trast to the findings of Baaijens [61], who observed excessive pollution effects in the velocity field
when discretizing the pressure about an immersed beam with a continuous approximation space.
Compare the velocity streamlines of our Figure 15 with Figure 2 of the cited reference. Baaijens
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(a) Immersed M1 (b) Immersed M2

(c) Immersed M3 (d) Boundary-fitted reference

Figure 14: Pressure contours at t = 0.5, from immersogeometric computations on M1, M2, and M3, along with the
boundary-fitted reference. Large pointwise pressure errors are confined to an O(h) neighborhood of the immersed
structure, becoming increasingly localized with spatial refinement.

concluded that the use of a discontinuous pressure space “appears to be mandatory” [61, p. 749],
but, in the present computations, the use of sshell > 1 diminishes the pollution effects of the local-
ized pressure interpolation error, as demonstrated also in Section 4.4.2, allowing acceptable results
with continuous and equal-order pressure/velocity pairs.

It is important to remember that the “pressure” plotted in Figure 14 corresponds to the coarse
scale solution variable ph in the semidiscrete VMS formulation. It omits the fine scale contribution
p′ = −ρ1τC∇ · u1, which dominates near the beams for sshell = 106. The coarse scale pressure
solution ph cannot be interpreted physically as mechanical pressure (i.e. −1

3 tr σσσ1) in the band of
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(a) Immersed M1 (b) Immersed M2

(c) Immersed M3 (d) Boundary-fitted reference

Figure 15: Velocity streamlines superimposed on a velocity magnitude contour plot, at t = 0.5, from immersogeomet-
ric computations on M1, M2, and M3, and the boundary-fitted reference.

elements immediately adjacent to the immersed shell structure.

5. Application to a bioprosthetic heart valve

In this section, we use the thin shell immersogeometric FSI method developed in Section 4 to
simulate an aortic bioprosthetic heart valve (BHV) and the surrounding blood flow during a cardiac
cycle. The aortic valve regulates flow between the left ventricle of the heart and the ascending aorta.
Figure 16 provides a schematic depiction of its position in relation to the surrounding anatomy.
As mentioned in Section 4.5, the weak form of Kirchhoff–Love shell theory requires the shell
geometry to be C1-continuous. We first describe our strategy of mapping a given valve leaflet
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Figure 16: A schematic drawing illustrating the position of the aortic valve relative to the left ventricle of the heart and
the ascending aorta.

geometry to a quadratic B-spline patch. We then address the issue of contact between leaflets. A
benefit of using an immersogeometric FSI method is that the contact formulation can be added
to the structure subproblem without needing to consider the fluid. We develop a penalty-based
dynamic contact algorithm in Section 5.2 and test it in Section 5.3 to show that this method is
sufficient for our purposes. Finally, we proceed to compute FSI for the BHV in Section 5.4.

5.1. Valve model

We model the geometry of the prosthetic valve using three quadratic B-spline patches—one for
each leaflet. The spline surface for a single leaflet is based on a 23-mm BHV design4 by Edwards
Lifesciences, supplied in the form of a quadrilateral mesh. The spline surface, parameterized as
a square in the knot space with (u, v) ∈ [0, 1] × [0, 1], is specialized for aortic valve leaflets by
degenerating the two edges of spline space (u = 0 and u = 1) to the two commissure points, as
illustrated in Figure 17. We fit the physical space of the B-spline patch to the quadrilateral mesh
surface in two stages. To avoid oscillations at the edges, we first fit a piecewise C1-continuous
spline curve to the edges, with C0 points (repeated knots) at the commissure points. We then fit
the interior physical space of the B-spline patch to the interior of the leaflet surface, holding the
boundary control points fixed.

The fitting of both the edges and the interior is performed by minimizing the `2-norm of the
Euclidean distances between the vertices of the given quadrilateral mesh, {xi}, and their projections
onto the spline curve or surface, {xp

i }. The control points of the fitted spline, {C j}, are therefore the
solution of

min
∑

i

∣∣∣xi − xp
i

∣∣∣ 2
≡ min

∑
i

∣∣∣∣∣∣∣ xi −
∑

j

N j(ξ
p
i )C j

∣∣∣∣∣∣∣
2

(56)

4This type of pericardial BHV is fabricated from bovine pericardium sheets that are chemically fixed after being
die-cut and mounted onto a metal frame to form the leaflets. As a result, the given geometries are without internal
stress and can be used directly as stress-free configurations.
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Figure 17: Generic mapping for an aortic valve leaflet using a B-spline patch, where two edges in the parametric space
are degenerated to commissure points.

where N j is the basis function associated with the j-th control point and ξp
i (in R for curves and R2

for surfaces) is the parametric location corresponding to the projected point xp
i . The parameters of

projected points are determined from the condition that the difference between an input point, xi,
and its projection, xp

i , should be normal to the curve or surface being fit. Thus ξp
i is the solution of

the nonlinear system (xi − xp
i ) · ∂xp

i
∂ξ

p
i

= 0, which can be found by Newton’s iteration. To solve the
minimization problem of Eq. (56), we start with an initial guess of {C j}, then repeat the steps

1. Compute projected points, {xp
i }, and their parameters, {ξp

i }, with the control points, {C j},
fixed.

2. Solve the linear least-squares problem for {C j} that is implied by holding {ξi} fixed in
Eq. (56),

until a norm of the change in control point values from one iteration to the next is smaller than
some tolerance. The control mesh and the physical images of knot spans of the resulting BHV
mesh, prior to any refinement (knot insertions) for analysis purposes, are shown in Figure 18. The
refined mesh, which is comprised of 1404 quadratic B-spline elements, is shown in Figure 19.

Remark 15. This method of fitting a B-spline patch to the leaflet can be used for patient-specific
valve geometries from in-vivo imaging. The degeneration of two edges to the commissure points
provides a physical connection that can be used to map the collagen architecture either in a patient-
specific way or in an average sense. More details on mapping the collagen architecture and calcu-
lating its average using this method can be found in Aggarwal et al. [150].

Remark 16. The use of small, degenerated elements is not intuitively appealing and indeed ap-
pears to inhibit convergence of the nonlinear structure subproblem (11) to machine precision, with
our relatively straightforward implementations of Galerkin’s method and Newton’s iteration. In
practice, however, we can reduce the residual sufficiently to obtain meaningful simulation results.
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Figure 18: Left: Control mesh. Right: The physical images of knot spans in the BHV mesh, prior to analysis refine-
ments.

Figure 19: Refined B-spline mesh for analysis purposes. It is comprised of 1404 quadratic elements. The pinned
boundary condition is applied to the leaflet attachment edge.

The absolute residual norm below which convergence breaks down is more than nine orders of
magnitude smaller than the norm of typical external forcing on the valve.

5.2. Contact algorithm

Contact between leaflets is an essential feature of a functioning heart valve. We find that it
occurs during both the opening and closing phases. While the kinematic constraint of continuous
velocity through the fluid and structure should technically obviate any special treatment of struc-
tural contact, weak enforcement of the fluid–structure kinematic constraint allows some structural
interpenetration and we find that additional enforcement of structural non-penetration improves the
quality of solutions. In this section, we describe the penalty method that we use to model contact
and address its physical plausibility. The penalty method has been widely used to handle contact
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problems [48–50, 75, 151] because of its conceptual simplicity and because it is straightforward to
implement.

To handle the contact between leaflets using the penalty method, we wish to penalize the pen-
etration of the leaflets. Because the leaflets are modeled as shell structures, it is not immediately
clear how penetration should be defined; a shell has no interior in which to detect penetrating
geometry. However, an aortic valve leaflet, operating under normal anatomical conditions, will
contact other leaflets on only one side, motivating the following definition of penetration.

Consider leaflets S 1 and S 2 to be smooth parametric surfaces in R3. For x1 ∈ S 1, with surface
normal n1 determining the side on which contact will occur, we say that x1 contacts leaflet S 2 if
the following conditions are met:

1. There exists a point x2 ∈ S 2 with normal n2 such that (x1 − x2) is perpendicular to S 2. We
call x2 the closest point on S 2 to x1, but, without additional assumptions on S 2, the defining
conditions guarantee neither that x2 is unique nor that it minimizes |x1 − x2|. In practice,
we determine x2 by iteratively solving the nonlinear problem of finding ξ = (ξ1, ξ2) in the
parameter space for S 2 such that

(x1 − x2(ξ)) ·
∂x2(ξ)
∂ξ1

= 0

(x1 − x2(ξ)) ·
∂x2(ξ)
∂ξ2

= 0

. (57)

2. |x1 − x2| < c, where c > 0 is a parameter chosen to avoid false positive contact of distant
geometry. We assume that penalties will be strong enough to prevent penetrations larger than
c.

For a contacting point x1, its signed penetration is defined as d = (x2 − x1) · n2. We consider x1

to penetrate S 2 if d > −h, where c > h ≥ 0 indicates a minimum desired distance between the
contacting sides of S 1 and S 2. When d > 0, we add the condition that |n1 · n2| > α, for some
0 ≤ α < 1. Choosing α > 0 allows a hinge-like boundary between S 1 and S 2 that can open through
angles larger than 270◦ without immediately incurring a contact penalty. This notation is illustrated
for a pair of contacting points in Figure 20.

Non-penetration is enforced weakly, by penalizing d > −h. To motivate our contact algorithm,
consider adding the following term∫

S 1

((
(w2)2 − (w2)1

)
· n2

) (
kd+) dΓ (58)

to the left-hand side of Eq. (11). This term tests a penetration residual against a difference of
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Figure 20: Illustration of contact notation.

weighting functions, (w2)1 and (w2)2, where (w2)i is the structure weighting function on surface i.
The term is not a rigorous formulation because the change-of-variables to integrate (w2)2 over S 1

is not precisely defined and the definition of d is ambiguous. With some regularity assumptions
on S 1 and S 2, and c sufficiently small, we could treat the leaflets as manifolds and use the tubular
neighborhood theorem of differential geometry to assert the existence of a well-behaved mapping
between contacting regions, but we do not have a constructive estimate for the bound on c, and
prefer to disambiguate our formulation in an ad hoc manner, by simply detailing our discrete
implementation below.

We test for penetration and apply penalty forces at a discrete set of contact points, {x1
1, . . . , x

n
1} ⊂

S 1. For the subset {x jk
1 } contacting {x jk

2 } ⊂ S 2, we apply opposing forces on S 2, conserving linear
momentum. To conserve angular momentum, the contact forces between x1 and x2 are along their
separation x1−x2, which is, by construction, parallel to n2. The force on x1 is f1 = −w(Pk(d))n2 and
the force on x2 is f2 = −f1, where w is a weight associated to x1 and Pk(d) penalizes penetration.
For our computations, we use the penalty function

Pk(d) =


k

2h (d + h)2 , d ∈ (−h, 0)
kh/2 + kd , d ≥ 0
0 , otherwise

, (59)

where k decides the strength of the position penalty. The behavior of Pk on the interval −h < d < 0,
illustrated in Figure 21, ensures that the penalty activates smoothly as contact begins, helping us
to resolve the nonlinearity through Newton’s iteration. Motivated by Eq. (58), we choose {x j

1}

to be Gaussian integration points on elements of S 1 and weight forces using the corresponding
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Figure 21: The function Pk(d) for k = 2 and h = 1.

integration rule. In general, we expect the contact parameters to scale like

k = c1E/∆x (60)

h = c2∆x (61)

where ∆x is a measure of the structural element size. In this paper, however, we focus on a single
application and use values determined effective through numerical experiments.

The above method does not preserve geometrical symmetries. To see this, consider contacting
planes at an angle; the directions of contact forces depend on the choice of S 1 and S 2, as shown in
Figure 22. To ensure that results are independent of this arbitrary distinction, we compute forces
with both choices and sum the results. To prevent the introduction of contradictory constraints by
this double application of our algorithm, we continuously re-evaluate the contact points {x jk

2 } over
time and throughout the nonlinear iteration5 at each time step.

Remark 17. In the terminology of Sauer and De Lorenzis [152], our method of symmetrizing the
contact forces is a classical two-pass contact algorithm. We could alternatively consider omitting
the forces on {x jk

2 } during each application of the contact algorithm, which would correspond to
the double half-pass technique proposed by Sauer and De Lorenzis [152]. This does not, in gen-
eral, enforce momentum balance, but the cited study found the double half-pass algorithm to be
more stable and computationally efficient, while recovering momentum balance to high accuracy
at reasonable levels of refinement.

5Our linearization does not account for nonlinearity arising from the dependence of the parameters of the clos-
est point on the displacement solution, but the resulting inexact tangent appears practically effective in spite of this
omission.
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S1

S2
Figure 22: Symmetrical geometry results in asymmetrical contact forces.

5.3. Dynamic simulation of a heart valve, with prescribed pressure loading

To test the suitability of our contact algorithm for the simulation of an aortic valve, we apply
a physiological transvalvular pressure load in a dynamic simulation of a BHV. This eliminates the
complexity associated with FSI while exercising the contact method at appropriate velocities and
pressures. Further, we can expect to produce symmetrical results in this simplified setting, while
the same cannot be assumed of FSI calculations [58]. Our testing loosely emulated the dynamic
simulation by Kim et al. [6], but, due to differences in geometry and material parameters, we do
not expect to precisely reproduce the results of the cited study.

5.3.1. Description of the problem

This simulation uses the valve geometry discussed in Section 5.1 and an isotropic St. Venant–
Kirchhoff material with E = 107 dyn/cm2 and ν = 0.45. The order of magnitude of the Young’s
modulus is chosen to give a comparable stiffness (at small strains) to the Fung model assumed by
Kim et al. [6]. The Poisson ratio is chosen to approximate incompressibility. The thickness of
the leaflets is 0.0386 cm and the density is 1.0 g/cm3. We use the contact algorithm discussed in
Section 5.2, setting the parameters to k = 108 dyn/cm3, h = 0.005 cm, α = 0.7, and c = 0.1 cm.
The time-step size used in the dynamic simulation is 0.0001 s and the pinned boundary condition
is applied to the leaflet attachment edge as shown in Figure 19.

In accordance with the expected contact pattern and the convention established in Section 5.2,
the surface normal, n, points from the aortic to the ventricular side of each leaflet. We model the
transvalvular pressure (i.e. pressure difference between left ventricle and aorta) with the traction
−P(t)n, where P(t) is the pressure difference at time t, taken from the profile used by Kim et al. [6]
and reproduced in Figure 23. The duration of a single cardiac cycle is 0.76 s.

As in the computations of Kim et al. [6], we use damping to model the viscous and inertial
resistance of the surrounding fluid. We apply a traction of −Cv, where v is the leaflet velocity and
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Figure 23: Transvalvular pressure applied to the leaflets as a function of time. The duration of a single cardiac cycle
is 0.76 s.

C = 80 g/(cm2 s). This value of C is selected to ensure that the valve opens at a physiologically
reasonable time scale when the given pressure is applied.

5.3.2. Results and discussion

The deformation and strain distribution of the leaflets at several points in the cardiac cycle
(after reaching a periodic solution) is illustrated in Figure 24. The opening begins in a manner that
is qualitatively similar to the results computed by Kim et al. [6], but the fully-open state differs, in
that the belly regions of the leaflets do not snap through to become concave toward the ventricular
side. We find that this snap-through behavior (with our choice of constitutive model) is sensitive
to the level of damping and slight variations in the leaflet geometry. The purpose of the present
computation, however, is largely to test the robustness of the contact algorithm in the impacting
and closed states, so we do not dwell on the details of the fully-open configuration. The pressurized
diastolic state exhibits much greater sagging of the belly region; this is presumably because our
simplified material neglects the stiffening of true tissue under strain. The important conclusion for
our contact algorithm is that the results do not show noticeable penetrations under physiological
pressure levels and there are no spurious asymmetries. Note that in our computation, no symmetry
planes are assumed between the leaflets. The symmetric pattern is obtained as a result of the
symmetric implementation of the contact algorithm described at the end of Section 5.2. We may
therefore proceed to FSI simulation with the same contact parameters and conclusively attribute
any asymmetries in the FSI results to the effects of the fluid.
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t = 0.0 s t = 0.198 s

t = 0.008 s t = 0.202 s

t = 0.05 s t = 0.3 s

t = 0.17 s t = 0.75 s

Figure 24: Deformations of the valve from a cycle of the dynamic computation, colored by maximum in-plane prin-
cipal Green-Lagrange strain (MIPE, the largest eigenvalue of E), evaluated on the aortic side of the leaflet. Note the
different scale for each time. Time is synchronized with Figure 23. The initial condition at t = 0 s comes from the
preceding cycle and is not the stress-free configuration.

5.4. FSI simulation

In this section, we immerse the BHV model of Section 5.1 into a pressure-driven incompress-
ible flow through a rigid channel. The fluid properties are the same as those used in the blocked
channel model problem of Figure 7: ρ1 = 1.0 g/cm3 and µ = 3.0×10−2 g/(cm s). These parameters
model the physical properties of human blood[153, 154]. As in the structural dynamics computa-
tion of Section 5.3, the valve leaflets have material properties E = 107 dyn/cm2 and ν = 0.45. The
thickness and density of the leaflets are again 0.0386 cm and 1.0 g/cm3, respectively.
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Figure 25: A view of the fluid domain into which the valve is immersed.

5.4.1. Parameters of the numerical scheme

In this study, we compare the results of using ∆t = 1.0 × 10−4 s and ∆t = 0.5 × 10−4 s. The
results of Section 4.4 indicate that, to compute solutions without excessive volume loss, we must
modify sshell. Taking Table 5 as a guide for the effects of sshell on volumetric flow through a closed
valve, we choose sshell = 106. With the complex time-dependent geometry of the immersed leaflets,
the iterative approximation of Lagrange multipliers discussed in Section 4.2.1 does not converge.
We therefore opt to use the single-iteration approximation of multipliers. Section 4.2.1 discusses
this approximation and compares it to the method of artificial compressibility for incompressible
flows and also to a penalization of the displacement difference between the fluid and structure.
We find that results are relatively insensitive to the tangential FSI penalty, τB

TAN, but conditioning
and nonlinear convergence improve with lower values. For the heart valve, we use a value of
τB

TAN = 2.0 × 102 g/(cm2 s). The no-penetration boundary condition is more critical to the valve’s
behavior, and, in the computations that follow, we use the higher value of τB

NOR = 2.0 × 103 g/(cm2

s).

5.4.2. Channel geometry

The channel geometry, shown in Figure 25, is a circular tube of diameter 2.3 cm and length
16 cm, with a three-lobed dilation near the valve to model the aortic sinus. It is comprised of
quadratic NURBS patches, allowing us to exactly represent the circular portions. We use a multi-
patch design to avoid including a singularity at the center of the cylindrical sections. Cross-sections
of this multi-patch design are shown in Figure 26. The mesh contains a total of 57600 quadratic
NURBS elements. Refinement is focused near the valve and sinus, as shown in Figure 25. The
mesh is also clustered toward the wall to better capture boundary-layer phenomena. The modeling
of the sinus, magnified in Figure 27, does not include the flexible wall in the human aorta, but
the experiments of Bellhouse and Bellhouse [155] determined that the presence of such a channel
dilation near the valve plays an important role in the valve’s dynamics.

Remark 18. As in the benchmark computations of Sections 4.7 and 4.4.1, we use comparable
spatial resolutions for the fluid and structure meshes. The shell structure elements are used to
define the surface quadrature rule for fluid–structure interface integrals in Eq. (12).
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Figure 26: Cross-sections of the fluid mesh, taken from the cylindrical portion and from the sinus.

Figure 27: The sinus, magnified and shown in relation to the valve leaflets (pink) and rigid stent (blue).

5.4.3. Boundary and initial conditions

The nominal outflow boundary is 11 cm downstream of the valve, located at the right end of
the channel, based on the orientation of Figure 25. The nominal inflow is located 5 cm upstream at
the left end of the channel. The designations of inflow and outflow are based on the prevailing flow
direction during systole, where the valve is open and the majority of flow occurs. In general, fluid
may move in both directions and there is typically some regurgitation during diastole. An idealized
left ventricular pressure profile, shown in Figure 28, is applied as a traction boundary condition at
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Figure 28: The idealized left ventricular (LV) pressure profile applied to the nominal inflow of the fluid domain. The
duration of a single cardiac cycle is 0.86 s.

the inflow. The duration of a single cardiac cycle used in the FSI computation is 0.86 s. The traction
−(p0 +RQ)n1 is applied at the outflow, where p0 is a constant physiological pressure level, Q is the
volumetric flow rate through the outflow (with the convention that Q > 0 indicates flow leaving the
domain), R > 0 is a resistance constant, and n1 is the outward facing normal of the fluid domain.
This resistance boundary condition and its implementation are discussed in Bazilevs et al. [99]. In
the present computation, we use p0 = 80 mmHg and R = 70 (dyn s)/cm5. These values ensure
a realistic transvalvular pressure difference of 80 mmHg in the diastolic steady state (where Q is
nearly zero) while permitting a reasonable flow rate during systole. Such boundary conditions are
sufficient to demonstrate the robustness of our thin shell FSI and contact methodologies under the
range of relevant flow regimes, but the resistance outflow boundary condition is relatively crude,
neglecting several important physical phenomena. Section 5.4.4 points out how this simplified
outflow boundary condition affects our solution. For a discussion of more realistic cardiovascular
outflow boundary conditions, see Vignon-Clementel et al. [156]. At both inflow and outflow, we
apply the backflow stabilization discussed in Section 3.1.1, with γ = 0.5. On the walls of the
channel, we strongly enforce the Dirichlet condition u1 = 0.

The left ventricular pressure profile of Figure 28 deliberately coincides with p0 at t = 0. In this
way, we may begin from an initial condition of u1 = 0, u2 = 0, and λn = 0: a stationary, stress-free
state. While the fluid–structure interface multiplier, λn, is independent of previous history in the
continuous formulations (27)–(29), our use of the previous time step’s fluid–structure traction as
an initial (and, in the single-iteration scheme, only) guess for the multiplier introduces a history
dependence, so the initial value of λn becomes significant.

To properly seal the gap between the pinned edge of the valve and the channel wall, we extend
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Figure 29: Computed volumetric flow rate through the top of the fluid domain, during a full cardiac cycle of 0.86 s,
with ∆t = 1.0 × 10−4 s and ∆t = 0.5 × 10−4 s.

the pinned edges of the valve leaflets with a rigid stent, as shown in Figure 27. It is important to
note that our immersogeometric method does not require this stent to exactly match the channel
wall; it extends outside of the fluid domain, much like the rigid plate in the model problem of
Section 4.4.

5.4.4. Results and discussion

We now discuss the results of computing with the setup described above. We compute for
several cycles from the homogeneous initial condition, until reaching a time-periodic solution.
We first consider the volumetric flow through the channel and how its features follow from our
boundary conditions. Next, we examine finer features of the fluid solution field. Finally, we com-
pare the deformations of the valve leaflets to the results of the pressure-driven structural dynamics
computation of Section 5.3.

Figure 29 shows the volumetric flow rate through the top of the tube throughout the cardiac
cycle. Magnitudes of computed flow rate during systole and diastole are comparable to typical
aortic flow rates, but we discuss below several unusual features of the computed profile. The
most striking feature of the computed flow profile is the oscillation during diastole. This is a
reverberation of the fluid hammer impact on the closing valve. This is a physical phenomenon,
not a computational artifact, and is the source of the S2 heart sound, marking the beginning of
diastole [157, 158]. A similar decaying flow rate oscillation has been observed in vitro with flow
loop experiments [159–161]. Further, the frequency of the computed oscillation (about 40 Hz)
is within the range of observed aortic heart sound frequencies in patients with recently-implanted
bioprosthetic aortic valves [162]. However, the magnitude of our computed oscillation is larger
and it decays more slowly.
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Figure 30: The electrical circuit that is analogous to the valve model of this paper (when the valve is closed).

One may suspect that this prominent oscillation is the result of insufficient fluid–structure cou-
pling, but, if this was the source of the oscillation, we would expect a significant difference between
the computations with ∆t = 1.0 × 10−4 s and ∆t = 0.5 × 10−4 s, due to the twofold stiffening of
the “displacement” penalty coefficient, τB

NOR/∆t, at the smaller time step. With the simplified fluid
boundary conditions that we have applied, the oscillation in flow rate is most plausibly a con-
sequence of the physical model, not the numerical method. In the analysis of closed hydraulic
systems (such as the cardiovascular system), it is common to consider analogous electrical circuits
[163]. The “circuit” that we are modeling is shown in Figure 30. The closed elastic valve acts
as a hydraulic accumulator, which is analogous to an electrical capacitor6. The inertia of the fluid
acts like an inductor. These components, in series with the resistance of viscous forces and the
boundary condition, are driven by a pressure difference, which fills the role of a time-varying volt-
age source in the electrical analogy. The exponentially decaying current oscillation observed in
Figure 29 is qualitatively similar to the transient response of the corresponding RLC circuit to a
sudden change in voltage. A more sophisticated model might include inductance and capacitance
in the boundary conditions, to represent the inertia of blood outside of the computational domain
and the Windkessel effect from large elastic arteries. The amplitude of the oscillation may also
be exaggerated by our leaflet material model, which approximates the stiffness of a bioprosthetic
valve about zero strain. The recruitment of collagen fibers in biological soft tissue leads to an
exponential stiffening with strain that we have not attempted to model in this work, so the storage

6When current reverses and the valve opens, it will behave more like a resistor. Its overall behavior is not like that of
any standard electrical circuit component; the typical analogy between valves and diodes would omit the capacitance
in the closed state.

57



of a given amount of energy requires greater strain with our simplified valve.
Another physiologically unrealistic feature of the computed flow profile is the relatively flat

flow rate during systole. Typically, the aortic flow rate reaches a rounded peak. This discrepancy
may again be attributed to the simplified boundary conditions. Because the left ventricular pressure
in our idealized pressure profile is constant for most of systole and the external flow loop is modeled
only by a resistance and pressure difference, we expect the velocity of flow to asymptotically
approach a terminal value at which the resistance of viscous forces and the boundary condition
exactly balance the difference between the left ventricular pressure and p0. This is in contrast to the
physiological setting, in which flow contributes to a stored pressure as large arteries temporarily
expand to accommodate the systolic output of the left ventricle. In the electrical analogy, these
arteries act like a reservoir capacitor, smoothing the cardiac output.

The small rise in flow rate at the end of the cycle may seem counter-intuitive, given that the left
ventricular pressure is still less than p0. However, this flow corresponds to the valve returning to its
stress-free configuration as the transvalvular pressure goes back to zero. In the electrical analogy,
this corresponds to the current released by the capacitor (valve) discharging as the external voltage
(pressure) difference is removed.

We now look at the details of the fluid solution fields. In Figure 31, we show several snapshots
of the fluid velocity field computed with the smaller time-step size of ∆t = 0.5×10−4 s. As the valve
opens, we see a transition to turbulent flow. This turbulence is exaggerated, in comparison to the
physiological case [164], by the flow rate plateau at peak ejection. The valve begins to close under
forward flow, as shown by the snapshot at t = 0.32 s. The snapshot at t = 0.35 s illustrates the fluid
hammer effect that initially excites the oscillation evident in the flow rate. After 0.7 s, the S2 heart
sound is decayed and the solution becomes effectively hydrostatic. The fluid solution at t = 0.7 s
is, however, not trivial. In Figure 32, we show a slice and iso-surface of the corresponding pressure
field. The pressure below the valve is nearly zero, as prescribed by the left ventricular profile, and
the pressure above the valve is around 106000 dyn/cm2 (80 mmHg), which is the value chosen for
p0 in the outflow boundary condition. The iso-surface is at p = 40 mmHg, halfway between the
pressures above and below the valve. It clearly displays the shape of the closed tri-leaflet valve and
rigid stent. A careful examination of this figure reveals small pressure oscillations near the valve,
visible in both the slice and iso-surface. This is possibly a result of the weakened fluid stabilization
near the structure.

The loading produced by the fluid differs significantly from the uniform pressure load pre-
scribed in the computation of Section 5.3. Figure 33 shows the deformations and strain fields of
the leaflets at several points during the cardiac cycle. The deformations during systole are markedly
different from those computed using only structural dynamics. Specifically, the leaflets remain par-
tially in contact while opening in the FSI simulation, whereas they immediately separate when a
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t = 0.025 s t = 0.045 s t = 0.055 s

t = 0.15 s t = 0.32 s t = 0.34 s

t = 0.35 s t = 0.7 s t = 0.86 s

Figure 31: Volume-renderings of the fluid velocity field at several points during a cardiac cycle. The time t is synchro-
nized with Figure 28 for the current cycle.
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Figure 32: Pressure at time t = 0.7 s, shown on a slice and with an iso-surface at p = 40 mmHg.

pressure load is applied in the structural dynamics computation. The strain field at time t = 0.35
s is also interesting in that the strain near the commissure points is significantly higher than it is
at t = 0.7 s. This is due to the effect of the fluid hammer striking the valve as it initially closes.
This phenomenon is completely neglected by both quasi-static and pressure-driven dynamic com-
putations, as neither accounts for the inertia of the fluid. The FSI solution does not preserve the
geometrical symmetry of the initial data. This loss of symmetry is typical of turbulent flow and was
observed as well in the heart valve FSI computations of Borazjani [58]. This result underscores
the importance of computing FSI for the entire valve, without symmetry assumptions.

6. Conclusions

This paper develops several variations of immersogeometric FSI within a variational frame-
work based on the augmented Lagrangian Eq. (1). Prior work has connected this framework to
an extension of Nitsche’s method for fluid mechanics [63]. We apply this formulation to the CFD
benchmark of 2D flow over a cylinder in Section 3.4. When applied to FSI for thin shell structures,
modeled geometrically as surfaces, our immersogeometric implementation of Nitsche’s method
reduces to the penalty method. The penalty method may be effective for some problems, where
pressure gradients are not too large. However, we find that for applications such as heart valves,
where large pressure gradients develop across thin structures, the penalty method has undesirable
properties. We attempt to correct its deficiencies by retaining the Lagrange multiplier as a solution
variable. We consider an iterative approximation of the multiplier, based on the work of Hestenes
[128] and Powell [129]. For computations in which this method does not converge, we reduce it
to the degenerate case of a single iteration in each time step. In that limit, it becomes analogous to
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t = 0.025 s t = 0.32 s

t = 0.045 s t = 0.34 s

t = 0.055 s t = 0.35 s

t = 0.15 s t = 0.7 s

Figure 33: Deformations of the valve from the FSI computation, colored by maximum in-plane principal Green-
Lagrange strain (MIPE, the largest eigenvalue of E), evaluated on the aortic side of the leaflet. Note the different scale
for each time.

Chorin’s method of artificial compressibility [134], where the multiplier field solves an auxiliary
differential equation in time. The forcing due to the immersed structure may also be interpreted as
an application of the feedback method of Goldstein et al. [135].

We find that the approximation error that comes from representing a pressure discontinuity
with continuous basis functions leads to poor local mass conservation near the discontinuity. This
allows large velocity errors to develop in the rest of the domain. In Section 4.4, we introduce
a preliminary work-around that modifies stabilization terms near the immersed structure. This
appears to limit local compression without rendering the formulation unstable.

Figure 34 summarizes the interrelationships between the various FSI technologies developed
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Figure 34: A graphical map of the interrelated ideas, methods, and results of this paper. Arrows indicate conceptual
flow from ideas to numerical methods to specific computations. Branch-points in this flow are highlighted in green
and computations are highlighted in red.

in this work. Combined with a penalty-based contact algorithm for shell structures, these technolo-
gies allow us to simulate the dynamics of a BHV immersed and coupled in a cyclic, pressure-driven
flow, with physiologically realistic pressure differences. We note that as is typically the case in FSI,
different problem features demand different computational strategies.

6.1. Limitations and further work

The current work motivates a number of refinements and extensions that we allude to through-
out the body of the paper and summarize below.

• The FSI methods of this paper rely on penalty parameters. We have suggested guidelines,
such as Eq. (21), for scaling these penalties with the approximation spaces and physical
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parameters, but we have not introduced explicit formulas. The appropriate definition of mesh
size, “h”, is not clear for the case of immersed boundaries. We have, in the computations of
this paper, simply used constant penalties deemed effective through numerical experiments.

• We would like to develop a stable formulation to solve for the fluid–structure interface mul-
tiplier. As noted above, there is no obvious way to develop an inf–sup stable approximation
space for the multiplier field, but we may be able to work within the framework of stabilized
methods [126].

• The suppression of momentum stabilization near immersed shell structures that we develop
in Section 4.4 is practically effective but aesthetically unappealing and not thoroughly stud-
ied. A theoretical study of the underlying approximation issue may reveal a more elegant
solution. Alternatively, because the methods from this paper for enforcing the fluid–structure
kinematic constraint are largely independent of the specific formulation for the fluid subprob-
lem, they may easily be combined with variational fluid solvers that do not directly invoke
the pressure. For example, the use of a divergence-conforming approximation space for the
fluid velocity could be modified to include concentrated boundary forces, while completely
eliminating the problem of poor pressure approximation. The Lagrange multiplier (pressure)
would no longer be needed to enforce a constraint that is built directly into the solution space.
The emerging technology of divergence-conforming B-splines has been successfully applied
to unsteady Navier–Stokes and would allow us to combine the advantages of isogeometric
discretization with pointwise mass conservation [165].

• We discuss the lack of physical realism in our heart valve model at length in Section 5.4.4. To
experimentally validate our method for valve simulation, we will need to introduce a more
realistic material model for the valve leaflets and more sophisticated boundary conditions for
the fluid domain.

• We also plan to use the hierarchical B-spline or NURBS refinement [55]. By hierarchically
refining near the structure, one would be able to better resolve the pressure jump and the
boundary layer. This could lead to improved results.

• As explained in Remark 1, the proposed immersogeometric framework may be combined
with boundary-fitted ALE FSI, to study a BHV implanted in an elastic artery. Preliminary
results have been reported in Hsu et al. [166].

7. Acknowledgements

Funding for this work was supported by NIH/NHLBI grants R01 HL108330 and HL119297,
and FDA contract HHSF223201111595P. T.J.R. Hughes was supported by grants from the Office

63



of Naval Research (N00014-08-1-0992), the National Science Foundation (CMMI-01101007), and
SINTEF (UTA10-000374) with the University of Texas at Austin. M.-C. Hsu and Y. Bazilevs were
partially supported by ARO grant No. W911NF-14-1-0296. D. Kamensky was partially supported
by the CSEM Graduate Fellowship. D. Schillinger was partially supported by the German Re-
search Foundation (Deutsche Forschungsgemeinschaft, DFG) under grants SCHI 1249/1-1 and
SCHI 1249/1-2. We thank the Texas Advanced Computing Center (TACC) at the University of
Texas at Austin for providing HPC resources that have contributed to the research results reported
in this paper. We would also like to thank Dr. Laura De Lorenzis at Technische Universität Braun-
schweig for helpful discussions on the contact problem and related algorithms.

References

[1] F. J. Schoen and R. J. Levy. Calcification of tissue heart valve substitutes: progress toward
understanding and prevention. Ann. Thorac. Surg., 79(3):1072–1080, 2005.

[2] P. Pibarot and J. G. Dumesnil. Prosthetic heart valves: selection of the optimal prosthesis
and long-term management. Circulation, 119(7):1034–1048, 2009.

[3] R. F. Siddiqui, J. R. Abraham, and J. Butany. Bioprosthetic heart valves: modes of failure.
Histopathology, 55:135–144, 2009.

[4] W. Sun, A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under
quasi-static loading. J Biomech Eng, 127(6):905–914, 2005.

[5] F. Auricchio, M. Conti, A. Ferrara, S. Morganti, and A. Reali. Patient-specific simulation
of a stentless aortic valve implant: the impact of fibres on leaflet performance. Computer

Methods in Biomechanics and Biomedical Engineering, 17(3):277–285, 2014.

[6] H. Kim, J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart
valves using a stress resultant shell model. Annals of Biomedical Engineering, 36(2):262–
275, 2008.

[7] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian finite element
formulation for incompressible viscous flows. Computer Methods in Applied Mechanics

and Engineering, 29:329–349, 1981.

[8] J. Donea, S. Giuliani, and J. P. Halleux. An arbitrary Lagrangian–Eulerian finite element
method for transient dynamic fluid–structure interactions. Computer Methods in Applied

Mechanics and Engineering, 33(1-3):689–723, 1982.

[9] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian–Eulerian
methods. In Encyclopedia of Computational Mechanics, Volume 3: Fluids, chapter 14. John
Wiley & Sons, 2004.

64



[10] T. E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations in-
volving moving boundaries and interfaces – the deforming-spatial-domain/space–time pro-
cedure: I. The concept and the preliminary numerical tests. Computer Methods in Applied

Mechanics and Engineering, 94(3):339–351, 1992.

[11] T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou. A new strategy for finite element compu-
tations involving moving boundaries and interfaces – the deforming-spatial-domain/space–
time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with
drifting cylinders. Computer Methods in Applied Mechanics and Engineering, 94(3):353–
371, 1992.

[12] A. Figueroa, I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor.
A coupled momentum method for modeling blood flow in three-dimensional deformable
arteries. Computer Methods in Applied Mechanics and Engineering, 195:5685–5706, 2006.

[13] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Fluid–structure inter-
action modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm
shapes. Computer Methods in Applied Mechanics and Engineering, 198:3613–3621, 2009.

[14] Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, and J. Isaksen.
Computational fluid–structure interaction: Methods and application to cerebral aneurysms.
Biomechanics and Modeling in Mechanobiology, 9:481–498, 2010.

[15] K. Takizawa, Y. Bazilevs, and T. E. Tezduyar. Space–time and ALE-VMS techniques for
patient-specific cardiovascular fluid–structure interaction modeling. Archives of Computa-

tional Methods in Engineering, 19:171–225, 2012.

[16] C. C. Long, M.-C. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluid–structure
interaction simulations of the Fontan procedure using variable wall properties. International

Journal for Numerical Methods in Biomedical Engineering, 28:512–527, 2012.

[17] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Computer modeling of
cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized
Space–Time formulation. Computer Methods in Applied Mechanics and Engineering,
195:1885–1895, 2006.

[18] K. Takizawa, C. Moorman, S. Wright, T. Spielman, and T. E. Tezduyar. Fluid–structure
interaction modeling and performance analysis of the Orion spacecraft parachutes. Interna-

tional Journal for Numerical Methods in Fluids, 65:271–285, 2011.

[19] K. Takizawa, S. Wright, C. Moorman, and T. E. Tezduyar. Fluid–structure interaction mod-
eling of parachute clusters. International Journal for Numerical Methods in Fluids, 65:286–
307, 2011.

65



[20] K. Takizawa, T. Spielman, and T. E. Tezduyar. Space–time FSI modeling and dynami-
cal analysis of spacecraft parachutes and parachute clusters. Computational Mechanics,
48:345–364, 2011.

[21] K. Takizawa and T. E. Tezduyar. Computational methods for parachute fluid–structure in-
teractions. Archives of Computational Methods in Engineering, 19:125–169, 2012.

[22] T. E. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space–time finite element techniques for
computation of fluid–structure interactions. Computer Methods in Applied Mechanics and

Engineering, 195:2002–2027, 2006.

[23] T. E. Tezduyar, S. Sathe, J. Pausewang, M. Schwaab, J. Christopher, and J. Crabtree. In-
terface projection techniques for fluid–structure interaction modeling with moving-mesh
methods. Computational Mechanics, 43:39–49, 2008.

[24] T. E. Tezduyar and S. Sathe. Modelling of fluid–structure interactions with the space–
time finite elements: Solution techniques. International Journal for Numerical Methods in

Fluids, 54(6–8):855–900, 2007.

[25] Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger. 3D simulation of
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[98] M. Ruess, D. Schillinger, A. I. Özcan, and E. Rank. Weak coupling for isogeometric anal-
ysis of non-matching and trimmed multi-patch geometries. Computer Methods in Applied

Mechanics and Engineering, 269:46–731, 2014.

[99] Y. Bazilevs, J. R. Gohean, T. J. R. Hughes, R. D. Moser, and Y. Zhang. Patient-specific
isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to im-
plantation of the Jarvik 2000 left ventricular assist device. Computer Methods in Applied

Mechanics and Engineering, 198:3534–3550, 2009.

[100] M. Esmaily-Moghadam, Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, A. L. Marsden,
and Modeling of Congenital Hearts Alliance (MOCHA). A comparison of outlet boundary
treatments for prevention of backflow divergence with relevance to blood flow simulations.
Computational Mechanics, 48:277–291, 2011.
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