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Abstract Flow problems with moving boundaries and
interfaces include fluid–structure interaction (FSI) and a
number of other classes of problems, have an important
place in engineering analysis and design, and offer some
formidable computational challenges. Bringing solution
and analysis to them motivated the Deforming-Spatial-
Domain/Stabilized Space–Time (DSD/SST) method
and also the variational multiscale version of the Arbi-
trary Lagrangian–Eulerian method (ALE-VMS). Since
their inception, these two methods and their improved
versions have been applied to a diverse set of challenging
problems with a common core computational technology
need. The classes of problems solved include free-surface
and two-fluid flows, fluid–object and fluid–particle inter-
action, FSI, and flows with solid surfaces in fast, linear
or rotational relative motion. Some of the most challeng-
ing FSI problems, including parachute FSI, wind-turbine
FSI and arterial FSI, are being solved and analyzed with
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the DSD/SST and ALE-VMS methods as core technolo-
gies. Better accuracy and improved turbulence model-
ing were brought with the recently-introduced VMS ver-
sion of the DSD/SST method, which is called DSD/SST-
VMST (also ST-VMS). In specific classes of problems,
such as parachute FSI, arterial FSI, ship hydrodynamics,
fluid–object interaction, aerodynamics of flapping wings,
and wind-turbine aerodynamics and FSI, the scope and
accuracy of the FSI modeling were increased with the
special ALE-VMS and ST FSI techniques targeting each
of those classes of problems. This article provides an
overview of the core ALE-VMS and ST FSI techniques,
their recent versions, and the special ALE-VMS and ST
FSI techniques. It also provides examples of challeng-
ing problems solved and analyzed in parachute FSI, ar-
terial FSI, ship hydrodynamics, aerodynamics of flap-
ping wings, wind-turbine aerodynamics, and bridge-deck
aerodynamics and vortex-induced vibrations.

Keywords Parachute · Artery · Flapping wings ·MAV ·
Wind turbine · Ship hydrodynamics · Vortex-induced
vibrations · FSI · Space–time · ALE · VMS

1 Introduction

Flows with moving boundaries and interfaces include
fluid–structure interaction (FSI), fluid–object interac-
tion (FOI), fluid–particle interaction (FPI), free-surface
and multi-fluid flows, and flows with solid surfaces in
fast, linear or rotational relative motion. These problems
are frequently encountered in engineering analysis and
design, pose some of the most formidable computational
challenges, and have a common core computational
technology need. That crucial need motivated the de-
velopment of the Deforming-Spatial-Domain/Stabilized
Space–Time (DSD/SST) method [1; 2; 3; 4; 5; 6; 7; 8],
which is a general-purpose interface-tracking (moving-
mesh) technique, as a core computational technology.
The DSD/SST method is an alternative to the Arbi-
trary Lagrangian–Eulerian (ALE) finite element formu-
lation [9], which is the most widely used moving-mesh
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technique, with increased emphasis on FSI in recent
years (see, for example, [10; 11; 12; 13; 14; 15; 16; 17;
18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32;
33; 34; 35; 36; 37; 8; 38; 39; 40; 41; 42]). Though less
widely used than the ALE formulation, over the past 20
years the DSD/SST method has been applied to some
of the most challenging moving-interface problems. The
classes of problems solved with the DSD/SST method
since its inception include the free-surface and multi-fluid
flows [1; 3; 43; 44; 45; 46], FOI [1; 2; 3; 47; 44; 48; 46],
aerodynamics of flapping wings [49; 50; 51; 52; 53], flows
with solid surfaces in fast, linear or rotational relative
motion [44; 45; 54; 55; 28; 56], compressible flows [44],
shallow-water flows [45; 57], FPI [44; 58; 59; 60; 45], and
FSI [47; 61; 49; 62; 63; 64; 65; 66; 67; 68; 5; 69; 70; 71;
72; 73; 74; 75; 76; 77; 78; 79; 80; 81; 82; 83; 84; 85; 86;
87; 88; 89; 90; 91; 92; 6; 93; 94; 95; 96; 97; 98; 7; 99; 100;
101; 102]. Very recently, a new version of the DSD/SST
method that can address the computational challenges
involved in topology changes, such as contact between
solid surfaces, was introduced in [103] with the name
“ST-TC.”

In the DSD/SST formulation, as it was originally en-
visioned, the ST computations are carried out one ST
“slab” at a time, where the “slab” is the slice of the
ST domain between the time levels n and n + 1. The
basis functions are continuous within a ST slab, but dis-
continuous from one ST slab to another. The original
DSD/SST method [1] is based on the SUPG/PSPG sta-
bilization, where “SUPG” and “PSPG” stand for the
Streamline-Upwind/Petrov-Galerkin [104] and Pressure-
Stabilizing/Petrov-Galerkin [1; 105] methods. Starting
in its very early years, the DSD/SST method also in-
cluded the “LSIC” (least-squares on incompressibility
constraint) stabilization. New versions of the DSD/SST
method have been introduced since its inception, includ-
ing those in [5], which have been serving as the core nu-
merical technology in the majority of the ST FSI com-
putations carried out in recent years. The most recent
DSD/SST method is the ST version [6; 7] of the residual-
based variational multiscale (RBVMS) method [106; 107;
108; 109]. It was named “DSD/SST-VMST” (i.e. the
version with the VMS turbulence model) in [6], which
was also called “ST-VMS” in [7]. The original DSD/SST
method was named “DSD/SST-SUPS” in [6] (i.e. the
version with the SUPG/PSPG stabilization), which was
also called “ST-SUPS” in [8].

The ALE-VMS formulation [98; 28] is a moving-
domain extension of the RBVMS formulation, originally
proposed in [108] and successfully applied to simulation
of turbulent flows and FSI in [12; 110; 18; 16; 23; 24;
109; 111; 39; 112]. An important additional feature of the
ALE-VMS methodology is weak enforcement of essential
boundary conditions. Weakly enforced essential bound-
ary conditions were introduced in [113]. Weak boundary
conditions produce significantly more accurate solutions
than strongly enforced boundary conditions on meshes

with insufficient boundary-layer resolution [114; 109; 30],
which is almost always the case in practice. The ALE-
VMS method with weakly enforced boundary conditions
is the main computational technology behind the ALE-
VMS computations presented in this article.

The Mixed Interface-Tracking/Interface-Capturing
Technique (MITICT) [45] was introduced primarily for
FOI with multiple fluids (see, for example, [115; 116]).
The MITICT was successfully tested in [46], where the
interface-tracking technique used was an ST formula-
tion, and the interface-capturing method was the Edge-
Tracked Interface Locator Technique (ETILT) [45]. It
was also tested in [117] by using a moving Lagrangian
interface technique [118] for interface tracking and the
ETILT for interface capturing.

In this article, the ALE-VMS formulation is described
in the context of the MITICT technique, in which the
air-water interface is captured using the level set ap-
proach [119]. The level set function, which is convected
with the flow, is used for separating the air and wa-
ter subdomains. The Navier–Stokes equations of incom-
pressible flows are employed in both air and water sub-
domains. The Navier–Stokes and level set equations are
written in an ALE frame [9]. The rigid object is described
using balance equations of linear and angular momen-
tum. The ALE technique is employed to track the in-
terface between the moving fluid domain (consisting of
air and water subdomains) and the rigid object. Appli-
cation of the ALE-VMS formulation to free-surface flow
and FOI may be found in [120; 25; 29; 32].

Moving-mesh methods require mesh update methods.
Mesh update typically consists of moving the mesh for as
long as possible and remeshing as needed. With the key
objectives being to maintain the element quality near
solid surfaces and to minimize frequency of remeshing, a
number of advanced mesh update methods [121; 43; 122;
45; 5] were developed to be used with the DSD/SST
method, including those that minimize the deformation
of the layers of small elements placed near solid surfaces.

An ST method will naturally involve more computa-
tional cost per time step than an ALE method, but it
gives us the option of using higher-order basis functions
in time, including the NURBS basis functions, which
have been used very effectively as spatial basis functions
(see [123; 12; 16; 124]). This of course increases the or-
der of accuracy in the computations [89; 6; 7], and the
desired accuracy can be attained with larger time steps,
but there are positive consequences beyond that. The
ST context provides us better accuracy and efficiency in
temporal representation of the motion and deformation
of the moving interfaces and volume meshes, and better
efficiency in remeshing. This has been demonstrated in a
number of 3D computations, specifically, flapping-wing
aerodynamics [50; 51; 52; 53], separation aerodynamics
of spacecraft [100], and wind-turbine aerodynamics [56].

There are some advantages in using a discontinu-
ous temporal representation in ST computations. For
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a given order of temporal representation, we can reach
a higher order accuracy than one would reach with a
continuous representation of the same order. When we
need to change the spatial discretization (i.e. remesh) be-
tween two ST slabs, the temporal discontinuity between
the slabs provides a natural framework for that change.
There are advantages also in continuous temporal repre-
sentation. We obtain a smooth solution, NURBS-based
when needed. We also can deal with the computed data
in a more efficient way, because we can represent the data
with fewer temporal control points, and that reduces the
computer storage cost. These advantages motivated the
development of the ST computation techniques with con-
tinuous temporal representation (ST-C) [125].

The core and special ALE-VMS and ST FSI meth-
ods mentioned above were essentially all motivated by
the need for the solution and analysis of specific classes
of challenging problems, such as parachute FSI, arterial
FSI, aerodynamics of flapping wings, ship hydrodynam-
ics and FOI, and wind-turbine aerodynamics and FSI.
This can be seen from the ALE-VMS and ST articles
cited in the first paragraph, especially the articles since
2008, and will also be seen from the examples we will
present in this paper. In the case of the parachute FSI,
the special methods were motivated also by the need for
supporting the design process for the NASA spacecraft
parachutes.

An overview of the core and special methods will be
provided in Sections 2 and 3. Examples of the challenging
problems solved will be presented in Section 4, and the
concluding remarks will be given in Section 5.

2 Core Methods

2.1 DSD/SST Methods

The DSD/SST method, given in its DSD/SST-SUPS (or
ST-SUPS) form by the the equation below,

∫

Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ

+

∫

Qn

εεε(wh) : σσσ(uh, ph)dQ−
∫

(Pn)h

wh · hhdP

+

∫

Qn

qh∇∇∇ · uhdQ+

∫

Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n

)
dΩ

+

(nel)n∑

e=1

∫

Qe
n

1

ρ

[
τSUPGρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)

+ τPSPG∇∇∇qh
]
· rM(uh, ph)dQ

+

(nel)n∑

e=1

∫

Qe
n

νLSIC∇∇∇ ·whρrC(uh)dQ = 0. (1)

has all the ingredients of the semi-discrete SUPG/PSPG
finite element formulation. That includes the test func-
tions, domain integrations, stress terms that have been
integrated by parts, boundary integrations, and the
SUPG, PSPG and LSIC stabilization terms with sta-
bilization parameters τSUPG, τPSPG and νLSIC (see [5]
for the definitions). The stabilization is residual based,
where the residuals of the momentum equation and in-
compressibility constraint, rM(uh, ph) and rC(uh), ap-
pear as factors in the stabilization terms.

In an ST formulation, the domain and boundary in-
tegrations are those associated with the ST slab (see Fig-
ure 1). The velocity and pressure (uh and ph) and the

tn, Ωn

tn+1, Ωn+1

t

x

Qn Pn

(wh)−n

(wh)+n

(wh)−n+1

(uh)+n

(uh)−n

Fig. 1: ST slab.

corresponding test functions (wh and qh) are continu-
ous in space but discontinuous from one ST slab to an-
other. While this increases the number of unknowns per
grid point and the computational cost per time step, it
also increases the accuracy of the formulation as can be
clearly seen in Figure 2. We note that the version of the
DSD/SST formulation that uses lower-order functions in
time would be comparable to an ALE method in terms
of the computational cost and algorithmic nature.

In addition, an ST method gives us the option of us-
ing higher-order functions in time in an ST slab (see Fig-
ure 3). Using higher-order functions in temporal repre-
sentation of the motion and deformation of the interfaces
gives us better accuracy. In addition, using higher-order
temporal functions in mesh motion and remeshing gives
us a more efficient way of managing the mesh update.

Because of the moving-mesh nature of the DSD/SST
method, the higher mesh resolution near fluid–solid in-
terfaces can follow the interface, yielding a higher ac-
curacy in resolving the boundary layers near solid sur-
faces. This concept is illustrated with the simple exam-
ple in Figure 4. On the other hand, in a typical interface-
capturing (nonmoving-mesh) method, there is no higher-
resolution mesh near fluid–solid interfaces to begin with.
This is illustrated in the hypothetical case shown in Fig-
ure 5. Even if one is willing to pay the price of using a
very high-resolution mesh everywhere in the domain and
that resolution is sufficient for some spheres, it may not
be sufficient for others.
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Fig. 2: Phase error, as a function of the nondimensional
wave number, for the DSD/SST formulation of the time-
dependent advection equation with linear functions in
space. Top: Lower-order in time. Bottom: Linear in time.
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Fig. 3: Higher-order temporal basis functions in Qen.

The conservative form of DSD/SST-VMST (or ST-
VMS) method is given as

∫

Qn

wh · ρ
(
∂uh

∂t
+∇∇∇ · (uhuh)− fh

)
dQ

+

∫

Qn

εεε(wh) : σσσ(uh, ph)dQ−
∫

(Pn)h

wh · hhdP

+

∫

Qn

qh∇∇∇ · uhdQ+

∫

Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n

)
dΩ

Fig. 4: Moving mesh for two spheres in a flow field. Mesh
resolution near the fluid–solid interface.

Fig. 5: In a nonmoving-mesh method, there is no higher-
resolution mesh near fluid–solid interfaces. Even if the
mesh resolution everywhere is sufficient for some spheres,
it may not be sufficient for others.

+

(nel)n∑

e=1

∫

Qe
n

τSUPS

ρ

[
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)

+∇∇∇qh
]
· rM(uh, ph)dQ

+

(nel)n∑

e=1

∫

Qe
n

νLSIC∇∇∇ ·whρrC(uh)dQ

+

(nel)n∑

e=1

∫

Qe
n

τSUPSrM(uh, ph) ·
(
∇∇∇wh

)
· uhdQ

−
(nel)n∑

e=1

∫

Qe
n

τ2SUPS

ρ
rM(uh, ph) ·

(
∇∇∇wh

)
· rM(uh, ph)dQ

= 0, (2)

and the convective form as

∫

Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ
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+

∫

Qn

εεε(wh) : σσσ(uh, ph)dQ−
∫

(Pn)h

wh · hhdP

+

∫

Qn

qh∇∇∇ · uhdQ+

∫

Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n

)
dΩ

+

(nel)n∑

e=1

∫

Qe
n

τSUPS

ρ

[
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)

+∇∇∇qh
]
· rM(uh, ph)dQ

+

(nel)n∑

e=1

∫

Qe
n

νLSIC∇∇∇ ·whρrC(uh)dQ

−
(nel)n∑

e=1

∫

Qe
n

τSUPSwh ·
(
rM · ∇∇∇uh

)
dQ

−
(nel)n∑

e=1

∫

Qe
n

τ2SUPS

ρ
rM(uh, ph) ·

(
∇∇∇wh

)
· rM(uh, ph)dQ

= 0, (3)

where τSUPS is defined in essentially the same way as
τSUPG is defined in [5].

Full discretization of a moving-mesh FSI formulation
leads to coupled, nonlinear equation systems that need
to be solved at every time step. The FSI coupling tech-
nique determines how the coupling between the equa-
tion blocks representing the fluid mechanics, structural
mechanics and mesh moving equations is handled. It is
essential to have a robust coupling method, especially
when the structure is light and therefore very sensitive
to the changes in the fluid mechanics forces. The coupling
method used with the DSD/SST formulation evolved
over the years from block-iterative coupling to a more ro-
bust version of block-iterative coupling, to quasi-direct
coupling and direct coupling (see [5] for the terminol-
ogy). The quasi-direct and direct coupling methods are
applicable to cases with nonmatching fluid and struc-
ture meshes at the interface, become equivalent to mono-
lithic methods when the interface meshes are matching,
and yield more robust algorithms for FSI computations
where the structure is light.

2.2 ALE-VMS Methods for FOI with Free Surface

We describe here the ALE-based MITICT formulation.
Let Vh denote the discrete trial function space for the
velocity-pressure-level set triple {uh, ph, φh} and let Wh

denote the discrete test function space for the linear mo-
mentum, continuity and level set equations {wh, qh, ηh}.
Let uCM and ωωω denote the rigid object center-of-mass ve-
locity and angular velocity, respectively. The ALE-VMS
formulation of FOI with free surface may be stated as
follows: find {uh, ph, φh} ∈ Vh, uCM, and ωωω, such that

∀{wh, qh, ηh} ∈ Wh,

∫

Ωt

wh · ρ
(
∂uh

∂t

∣∣∣∣
x̂

+
(
uh − vh

)
· ∇∇∇uh − fh

)
dΩ

+

∫

Ωt

εεε
(
wh
)

: σσσ
(
uh, ph

)
dΩ

−
∫

(Γt)h

wh · hh dΓ +

∫

Ωt

qh∇∇∇ · uh dΩ

+

nel∑

e=1

∫

Ωe
t

τSUPS

((
uh − vh

)
· ∇∇∇wh +

∇∇∇qh

ρ

)
·

rM
(
uh, ph

)
dΩ

+

nel∑

e=1

∫

Ωe
t

ρνLSIC∇∇∇ ·whrC(uh) dΩ

−
nel∑

e=1

∫

Ωe
t

τSUPSwh ·
(
rM
(
uh, ph

)
· ∇∇∇uh

)
dΩ

−
nel∑

e=1

∫

Ωe
t

∇∇∇wh

ρ
:
(
τSUPSrM

(
uh, ph

))
⊗

(
τSUPSrM

(
uh, ph

))
dΩ

+

∫

Ωt

ηh
(
∂φh

∂t

∣∣∣∣
x̂

+
(
uh − vh

)
· ∇∇∇φh

)
dΩ

+

nel∑

e=1

∫

Ωe
t

τSUPG

(
uh − vh

)
· ∇∇∇ηhrL

(
φh,uh

)
dΩ = 0,

(4)

d

dt
(muCM)−mg −

∫

ΓI

hh dΓ = 0, (5)

d

dt
(Jωωω)−

∫

ΓI

(x− xCM)× hh dΓ = 0. (6)

In the above coupled formulation, Ωt is the moving do-
main of the fluid mechanics problem, vh is the mesh ve-
locity, (Γt)h is the traction boundary, Ωet is the domain
of element e, ΓI is the interface between the fluid and the
rigid object in the current configuration, and rL

(
φh,uh

)
is the residual of the level set equation. For τSUPS, νLSIC
and τSUPG, the definitions given in [29] are used.

From the level set function φh, the fluid density and
viscosity are computed as

ρ = ρwHε(φ
h) + ρa(1−Hε(φ

h)), (7)

µ = µwHε(φ
h) + µa(1−Hε(φ

h)), (8)

where Hε is the regularized Heaviside function given by

Hε(φ) =





0 if φ ≤ −ε;
1
2

(
1 + φ

ε + 1
π sin

(
φπ
ε

))
if |φ| < ε;

1 if φ ≥ ε.
(9)

Here ρw and ρa are the densities of water and air, respec-
tively, µw and µa are the dynamic viscosities of water and
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air, respectively, and ε is the interface half-width, which
scales with the local mesh size (see [120; 25; 29; 32] for
details).

The fluid no-slip and no-penetration boundary con-
ditions on the surface of the rigid object are enforced
weakly [113; 114]. For this, the following terms are added
to the left-hand-side of Eq. (4):

−
neb∑

b=1

∫

Γ b
⋂
ΓI

wh · σσσ
(
uh, ph

)
n dΓ

−
neb∑

b=1

∫

Γ b
⋂
ΓI

(
2µεεε

(
wh
)
n + qhn

)
·
(
uh − vh

)
dΓ

−
neb∑

b=1

∫

Γ b
⋂
Γ−
I

wh · ρ
((

uh − vh
)
· n
) (

uh − vh
)

dΓ

+

neb∑

b=1

∫

Γ b
⋂
ΓI

τBTAN (I− n⊗ n) wh

· (I− n⊗ n)
(
uh − vh

)
dΓ

+

neb∑

b=1

∫

Γ b
⋂
ΓI

τBNOR

(
wh · n

) ((
uh − vh

)
· n
)

dΓ

−
neb∑

b=1

∫

Γ b
⋂
Γ−
I

wh
((

uh − vh
)
· n
)
φh dΓ, (10)

where the “inflow boundary” Γ−
I is defined as

Γ−
I =

{
x
∣∣ (uh − vh

)
· n < 0, ∀x ⊂ ΓI

}
. (11)

The last term in Eq. (10) enhances the stability of the
level set formulation. The details of the boundary sta-
bilization parameters τBTAN and τBNOR may be found
in [114].

The following definition is employed for the compu-
tation of the fluid traction vector hh acting on the rigid
object:

hh = −phn + 2µεεε
(
uh
)
n + τBTAN (I− n⊗ n)

(
uh − vh

)

+ τBNOR

((
uh − vh

)
· n
)
n.

(12)

The expression given in Eq. (12) is motivated by the
global linear-momentum conservation of the underlying
discrete formulation (see [109] for more details). Note
that the expression for the traction vector contains the
pressure and viscous traction terms as well as terms com-
ing from weak enforcement of no-slip and no-penetration
boundary conditions. The latter terms enhance the accu-
racy of the traction vector on coarser meshes, and vanish
with mesh refinement near the fluid–object interface.

The governing equations for the rigid object, Eqs. (5)
and (6), represent the balance of global linear and an-
gular momentum, respectively. Here m is the mass of
the object, J is its moment of inertia in the current
configuration, xCM is the center-of-mass position vector,

and g is the gravitational acceleration. The reference-
configuration rigid-object surface geometry (ΓI)0, m,
and reference-configuration inertia tensor J0 completely
specify a given rigid object. The inertia tensor in the
current configuration may be computed as

J = RJ0R
T , (13)

where R is the rotation matrix for the rigid object. The
rotation matrix is governed by an additional ordinary
differential equation:

d

dt
R = ωωω ×R, (14)

where the cross product is interpreted column-wise (for
derivation, see [126]). Integrating Eq. (14) in time using
a midpoint rule ensures that R remains a proper rotation
matrix at every time step (that is, RRT = RRT = I;
this result is due to [127]).

The fluid mesh at the interface moves with the rigid
object. In the interior of the fluid domain, the mesh up-
date method with Jacobian-based stiffening [121; 43; 122;
8], which protects the good quality of the boundary-layer
elements near the solid surface, is used.

To further stabilize the free-surface formulation, YZβ
discontinuity capturing, introduced in [128] and tested
in [128; 129; 130; 131; 132; 133], is employed in the
Navier–Stokes and level set equations. In the case of
the Navier–Stokes equations, β = 2 version is used,
which corresponds to the least intrusive definition. In
the case of the level set equation, β = 1 version is used.
The discontinuity-capturing parameters are residual-
based and isotropic. Alternative definitions, which are
not residual based, can be found in [134] in the context
of incompressible flows and in [135] in the context of in-
compressible flows with thermal coupling.

The generalized-α method (see [136; 137; 16]) is em-
ployed to integrate the free-surface equations is time.
The rigid-body equations are integrated with a midpoint
method to preserve the orthonormal property of the col-
umn vectors of R. At the level of the Newton–Raphson
iteration, the Navier–Stokes and level set equations are
solved simultaneously as a coupled 5×5-block system.
The rigid-body and mesh moving equations are handled
in a block-iterative fashion (see [138; 65; 5] for the termi-
nology). The level set redistancing and mass correction
are performed at the end of each time step. The benefits
of monolithic coupling between the Navier–Stokes and
level set equations are demonstrated in [29].

Remark 1 Linear and angular springs and dampers are
often used in combination with the rigid objects for the
modeling of mechanical systems. In this case the rigid-
object motion Eqs.(5) and (6) may be augmented as fol-
lows:

d

dt
(muCM) + CLuCM + KLyCM −mg −

∫

ΓI

hh dΓ = 0,

(15)
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d

dt
(Jωωω) + CAωωω + KAθθθ −

∫

ΓI

(x− xCM)× hh dΓ = 0,

(16)

where CL and KL are the linear damping and stiff-
ness matrices, respectively, CA and KA are their angu-
lar counterparts, yCM is the center-of-mass displacement
obtained from the kinematics relation

d

dt
yCM − uCM = 0, (17)

and θθθ is the angular displacement, which is a nonlinear
function of the entries of the rotation matrix R.

Remark 2 The linear damping and stiffness terms may
be replaced by their nonlinear counterparts, and coupling
between the linear and angular damping and stiffness
may also be introduced.

Remark 3 A single fluid formulation may be obtained
by setting the fluid density and dynamic viscosity to the
desired values, and omitting the solution of the level-set
equations all together.

3 Special Methods

A certain class of FSI problems might involve some spe-
cific computational challenges beyond those encountered
in a typical FSI problem. That requires development of
special FSI methods targeting those challenges. A good
number of special methods were developed in conjunc-
tion with the core ST FSI method to address the specific
computational challenges involved in parachute FSI [97],
patient-specific arterial FSI [92], aerodynamics of flap-
ping wings [51; 52], and wind-turbine aerodynamics [56].
The details on these special methods can be found in the
references cited above. Here we give three examples.

3.1 Homogenization Model for Ringsail Parachutes

Parachute FSI involves all the computational challenges
of a typical FSI problem. Spacecraft parachutes are most
of the time very large ringsail parachutes that are made
of a large number of gores, where a gore is the slice of
the canopy between two radial reinforcement cables run-
ning from the parachute vent to the skirt (see Figure 6).
Ringsail parachute gores are constructed from rings and
sails, resulting in a parachute canopy with hundreds of
ring gaps and sail slits (see Figure 7). The complexity
created by this geometric porosity makes FSI modeling
inherently challenging.

The Homogenized Modeling of Geometric Porosity
(HMGP) [5] and its new version, “HMGP-FG” [97], were
introduced to help us bypass the intractable complexi-
ties of the geometric porosity by approximating it with
an equivalent, locally varying homogenized porosity. In

Fig. 6: Parachute radial lines and gores.

Fig. 7: Rings, sails, ring gaps, and sail slits.

HMGP-FG, the normal velocity crossing the parachute
canopy under a pressure differential ∆p is modeled as

un = − (kF)J
AF

A1
∆p− (kG)J

AG

A1
sgn(∆p)

√
|∆p|
ρ

, (18)

where A1, AF and AG are defined in Figure 8, and (kF)J

Fig. 8: Areas used in HMGP-FG.

and (kG)J are the homogenized porosity coefficients for
each patch J , calculated in a one-time fluid mechanics
computation with an n-gore slice of the parachute canopy
(see Figure 9). Even in a fully open configuration, the
parachute canopy goes through a periodic breathing mo-
tion where the diameter varies between its minimum and
maximum values. The shapes and areas of the gaps and
slits vary significantly during this breathing motion (see
Figure 10). The porosity coefficients have very good in-
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Fig. 9: The two porosity coefficients for each patch are
calculated in a one-time fluid mechanics computation
with an n-gore slice of the parachute canopy, where the
flow through all the gaps and slits is resolved. Expect for
the first and last patches, each patch contains a gap or
a slit. See [5; 97] for details.

Fig. 10: The shapes and the areas of the slits vary sig-
nificantly during the canopy breathing motion.

variance properties with respect to these shape and area
changes, and this can be seen in Figure 11.

3.2 Flapping-Wing Motion Representation with
Higher-Order Temporal Functions

Computer modeling of the aerodynamics of flapping
wings requires an accurate temporal representation of
the motion and deformation of the wings. It also re-
quires robust and efficient ways of moving the mesh and
remeshing as needed. Special techniques to be used in
conjunction with the DSD/SST method have been de-
veloped (see [50; 51; 52]) based on using higher-order
functions (specifically NURBS basis functions) in time in
representing the wing motion and deformation, mesh mo-
tion, and remeshing. Using cubic NURBS basis functions
in temporal representation of the wing position gives us
a continuous representation of the acceleration, which in
turn gives us a continuous representation of the aerody-
namic forces. Using NURBS basis functions in temporal
representation of the mesh motion (see Figure 12) gives
us a very effective way of dealing with moving meshes.
This allows us to do mesh computations with longer time
in between, but get the mesh-related information, such
as the coordinates and their time derivatives, from the
temporal representation whenever we need it. Figure 13
illustrates how remeshing is handled in this approach.
We perform multiple knot insertions where we want to

Fig. 11: The porosity coefficients (kF)J and (kG)J for
each patch J , at different canopy shapes during the
breathing motion. The plots show good invariance for
these coefficients with respect to the shape changes.
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Fig. 12: Mesh motion is represented by using NURBS
basis functions in time. The temporal-control meshes are
the coefficients of the NURBS basis functions.

remesh, and that point in time becomes a patch bound-
ary. More details on how temporal NURBS basis func-
tions are used in mesh motion and remeshing can be
found in [50; 51].

3.3 Redistancing and Mass Conservation for the
Level-Set Formulation

Additional computational technology is employed to en-
hance the accuracy and robustness of the free-surface
flow formulation. The use of a regularized Heaviside func-
tion in the definition of the fluid density and viscosity
necessitates the level set to satisfy the signed-distance
function property near the air–water interface. To main-
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Fig. 13: Remeshing is handled by multiple knot insertion
where we want to remesh. That point in time becomes a
patch boundary.

tain the signed-distance property of the level set func-
tion, a redistancing procedure based on the Eikonal par-
tial differential equation is employed. The details of the
numerical formulation may be found in [120; 25; 29; 32].

Furthermore, both convection and redistancing of the
level set do not inherently conserve mass. Convergence to
a mass-conserving solution occurs only with mesh refine-
ment. Coarse (and not-so-coarse) mesh simulations may
suffer from significant water mass loss. (This depends
on the problem setup and boundary conditions. In the
case of liquids sloshing in closed containers, mass loss
may be significant. In problems with inflow and outflow
boundaries the effect may not be as pronounced.) This
effect is amplified when the equations are integrated for
a long time period, when seemingly small mass errors for
a given time step compound into a large mass error to-
ward the end of the computation. As a result, an explicit
mass correction procedure is necessary. To ensure mass
balance at every time step, after redistancing of the level
set, we modify the level set function by a global constant,
such that the following equations holds:

∫

Ωn+1

ρn+1 dΩ −
∫

Ωn

ρn dΩ

+∆tn+1

∫

Γn+1/2

ρn+1/2

(
uhn+1/2 − vhn+1/2

)
· nn+1/2 dΓ

= 0. (19)

In Eq. (19), the quantities are subscripted with a tem-
poral index and ∆tn+1 is the time step size. This is the
simplest technique that restores mass balance in the sim-
ulations. Other versions of mass correction are also pos-
sible: in [118; 139; 140] the authors proposed a total-
domain based mass conservation technique, validated it
experimentally in [141], and developed it in the context
of MITICT (with mass conservation for fluid-solid in-
terfaces) in [117]. A “chunk”-based (subdomain-based)
version of mass conservation was developed in [45; 46].

4 Examples

Several examples of computational analysis with the
methods described in the earlier sections are presented.
Examples in Sections 4.1–4.4 were computed with the
DSD/SST methods, and the examples in Sections 4.5–
4.8 with the ALE-VMS methods.

4.1 FSI Analysis of Spacecraft Parachutes

The first example, a parachute computation, serves the
purpose of comparing our computed results to data from
drop tests with a base parachute design and gaining con-
fidence in our parachute FSI model. Figure 14 shows
the parachute shape and flow field at an instant during
the computation and the comparison with the test data.
With that confidence, we can do simulation-based design

Fig. 14: Parachute shape and flow field at an instant
during the computation and comparison with the test
data. Here VD, VRH, TB, and TS are the descent speed,
horizontal speed, breathing period, and swinging period.

studies [97], such as evaluating the aerodynamic perfor-
mance of the parachute as a function of the suspension
line length (see Figure 15).

Spacecraft parachutes are typically used in clusters
of two or three parachutes. The contact between the
canopies of the parachute cluster is a computational chal-
lenge that we have addressed recently (see [97]). Fig-
ure 16 shows a cluster of three parachutes at three dif-
ferent instants during the FSI computation, with contact
between two of the parachutes.
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Fig. 15: A simulation-based parachute design study,
where the objective is to evaluate the aerodynamic per-
formance of the parachute as a function of the suspension
line length. See [97] for details of the study.

Spacecraft parachutes are also typically used in mul-
tiple stages, starting with a “reefed” stage where a ca-
ble along the parachute skirt constrains the diameter
to be less than the diameter in the subsequent stage.
After a certain period of time during the descent, the
cable is cut and the parachute “disreefs” (i.e. expands)
to the next stage. Computing the parachute shape at
the reefed stage and FSI modeling during the disreef-
ing involve additional computational challenges created
by the increased geometric complexities and by the rapid
changes in the parachute geometry. Figure 17 shows such
a disreefing (see [99]).

As an additional computational challenge, the ring-
sail parachute canopy might, by design, have some of
its panels and sails removed. The purpose is to increase
the aerodynamic performance of the parachute. In FSI
computation of parachutes with such “modified geomet-
ric porosity,” the flow through the “windows” created
by the removal of the panels and the wider gaps created
by the removal of the sails cannot be accurately mod-
eled with the HMGP and needs to be actually resolved.
This challenge was successfully addressed in the com-
putations reported in [102]. Figure 18 shows a cluster of
three parachutes with modified geometric porosity, at an
instant during the FSI computation.

4.2 Aerodynamic Analysis of Wind Turbines

Computer modeling of wind-turbine aerodynamics is
challenging because correct aerodynamic torque calcula-
tion requires correct separation-point calculation, which
requires an accurate flow field, which in turn requires
good mesh resolution and turbulence model. We de-
scribe from [54] how we computed the aerodynamics of
an actual wind-turbine rotor by using the DSD/SST-
SUPS and DSD/SST-VMST methods. Figure 19 shows,
from [23], the airfoil cross-sections of the wind-turbine
blade superposed on the blade. Figure 20 shows the full
wind-turbine rotor. Figure 21 shows the vorticity mag-
nitude, computed with the DSD/SST-VMST method.

Fig. 16: A cluster of three parachutes at three instants
during the FSI computation, with contact between two
of the parachutes.

In that figure, the blue and yellow correspond to low
and high vorticity values, and lighter and darker shades
of those two colors correspond to lower and higher val-
ues. Figure 22 shows time history of the aerodynamic
torque generated by a single blade, as computed with the
DST/SST-SUPS, DSD/SST-VMST, and ALE methods.

Including the tower in the model (see Figure 23) in-
creases the computational challenge because of the fast,
rotational relative motion between the rotor and tower.
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Fig. 17: Parachute disreefing from [99]: side view (top
and middle) and bottom view (bottom).

We address this additional challenge in [56] by using
NURBS basis functions for the temporal representation
of the rotor motion, mesh motion and also in remeshing.
This is essentially the same computational technology
described in Section 3.2 for modeling the aerodynamics
of flapping wings. We named this “ST/NURBS Mesh
Update Method (STNMUM)” in [56]. Figure 24 shows,
from [56], the vorticity magnitude, computed with the
DST/SST-VMST method and the STNMUM. In that
figure, the color range from blue to red corresponds to a
vorticity range from low to high, and lighter and darker
shades of a color correspond to lower and higher values.

4.3 Patient-Specific FSI Analysis of Cerebral Arteries
with Aneurysm

Patient-specific computer modeling of arterial FSI has
many challenges. They include calculating an estimated
zero-pressure arterial geometry, specifying the velocity
profile at an inflow boundary with non-circular shape,
using variable arterial wall thickness, building layers of
refined fluid mesh near the arterial walls, proper calcula-
tion of the wall shear stress (WSS) and oscillatory shear
index (OSI), and properly scaling the flow rate at the in-
flow boundary. Special techniques developed to address
these challenges can be found in [92]. Here we present
some computations from [92] for cerebral arteries with
aneurysm.

Fig. 18: A cluster of three parachutes with modified
geometric porosity, at an instant during the FSI compu-
tation reported in [102].

Fig. 19: Airfoil cross-sections of the wind-turbine blade
superposed on the blade (from [23]).

Fig. 20: Wind-turbine rotor.

Figure 25 shows the arterial lumen geometry ob-
tained from voxel data for three arterial models we con-
sider: Model 1, Model 2, and Model 3. Figure 26 shows,
as an example, the fluid mechanics mesh for Model 3, in-
cluding the layers of refined mesh near the arterial wall.
Figure 27 shows, for the three models, the streamlines
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Fig. 21: Vorticity magnitude, computed with the
DSD/SST-VMST method.
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Fig. 22: Time history of the aerodynamic torque gener-
ated by a single blade. Computed with the DST/SST-
SUPS (“SUPS”), DST/SST-VMST (“VMST”), and
ALE methods.

when the flow rate is maximum. Figures 28 and 29 show
the WSS and OSI for Model M6ACom from [92].

4.4 Aerodynamic Analysis of Flapping Wings of an
Actual Locust and an MAV

As a last set of examples from analyses with the ST
methods, we present from [51; 52] computational aero-
dynamics modeling of flapping wings of an actual lo-
cust and an MAV. The motion and deformation data
for the wings is extracted from the high-speed, multi-
camera video recordings of a locust in a wind tunnel at
Baylor College of Medicine (BCM), Houston, Texas. The
video recording is accomplished by using a set of track-
ing points marked on the forewings (FW) and hindwings
(HW) of the locust. The tracking points can be seen in

Fig. 23: Wind-turbine rotor and tower from [56].

Fig. 24: Vorticity magnitude, computed with the
DST/SST-VMST method and the STNMUM (see [56]).

Figure 30. How the wing motion and deformation data
is extracted from the video data and represented using
NURBS basis functions in space and time is described
in detail in [51]. Figures 31 and 32 show the wind tun-
nel photographs and the computational model at eight
points in time. Figure 33 show how the body and wings
compare for the locust and MAV models, and Figure 34
shows the length scales involved in the computations
with those models.



13

Fig. 25: Arterial lumen geometry obtained from voxel
data for Model 1, Model 2, and Model 3.

Figure 35 shows the streamlines from the locust com-
putation. Figures 36 and 37 show for the locust the vor-
ticity magnitude during the second flapping cycle. Fig-
ures 38 and 39 show for the MAV the vorticity magni-
tude during the third flapping cycle. In Figures 36–39,
the color range from blue to red corresponds to a vor-
ticity range from low to high, and lighter and darker
shades of a color correspond to lower and higher values.
Figures 40–42 show the lift and thrust generated by the
locust and MAV.

Fig. 26: Fluid mechanics mesh for Model 3. Mesh at the
fluid–structure interface (top) and inflow plane (middle
and bottom).
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Fig. 27: Streamlines for the three models when the vol-
umetric flow rate is maximum.

Fig. 28: WSS for Model-M6Acom from [92] when the
volumetric flow rate is maximum.

Fig. 29: OSI for Model-M6Acom from [92].

Fig. 30: Tracking points in the data set from the BCM
wind tunnel.
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Fig. 31: Comparison of computational model and wind
tunnel photographs at first four points in time. View-
ing angles are matched approximately. Wind tunnel pho-
tographs provided by BCM collaborators.

Fig. 32: Comparison of computational model and wind
tunnel photographs at last four points in time. View-
ing angles are matched approximately. Wind tunnel pho-
tographs provided by BCM collaborators.

Fig. 33: Locust body and wings (left) and MAV body
and wings (right).
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Fig. 34: Length scales involved in the computations with
the locust (top) and MAV (bottom) models.

Fig. 35: Locust. Streamlines colored by velocity magni-
tude in m/s at approximately 25% (top) and 50% (bot-
tom) of the second flapping cycle.

Fig. 36: Locust. Vorticity magnitude for the first four of
eight equally-spaced points during the second flapping
cycle.

Fig. 37: Locust. Vorticity magnitude for the last four of
the eight equally-spaced points during the second flap-
ping cycle.
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Fig. 38: MAV. Vorticity magnitude for the first four of
eight equally-spaced points during the third flapping cy-
cle.

Fig. 39: MAV. Vorticity magnitude for the last four of
eight equally-spaced points during the third flapping cy-
cle.
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Fig. 40: Total lift (top) and thrust (bottom) generated
over one cycle.
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Fig. 41: Lift (top) and thrust (bottom) generated on the
right FW.
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Fig. 42: Lift (top) and thrust (bottom) generated on the
right HW.
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4.5 The MARIN Dam Break Problem

Fig. 43: The MARIN dam break problem. Geometry def-
inition. The computational domain is a rectangular box
with dimensions 3.22 m × 1 m × 1 m. The object has
dimensions 0.2 m × 0.2 m × 0.4 m and is placed at the
back end of the tank. The water column, initially at rest,
has dimensions 1 m × 1 m × 0.55 m. The locations where
pressure and water height are sampled are also depicted.

The setup of the dam break problem, initially pro-
posed by the Maritime Research Institute Netherlands
(MARIN) [142], is depicted in Figure 43, and is taken
from [25]. The problem consists of a column of water,
initially at rest, that collapses under the action of gravity
and impacts a fixed rectangular container. We compute
the problem using two types of the spatial discretiza-
tion: linear tetrahedral finite elements and NURBS. The
quadratic NURBS mesh is significantly more coarse than
the linear tetrahedral mesh. Free-slip and no-penetration
boundary conditions are applied on all surfaces, includ-
ing the top of the tank. The problem is run until T = 6 s.

Snapshots comparing the solutions coming from
tetrahedral FEM and NURBS computations are given in
Figure 44. Large-scale features of the solution are very
similar in the two simulations, however the details of the
small-scale features are better represented on a much
finer tetrahedral grid, as expected.

Time series of the pressure at different locations on
the obstacle are shown in Figure 45. The first wave hits
the block at approximately t = 0.5 s, and the second,
much smaller wave arrives at the block at about t = 5 s.
The wave impact times and pressure peaks are pre-
dicted very well with both linear elements and quadratic
NURBS. Given that the NURBS mesh has about half of
the degrees-of-freedom of the linear FEM mesh in each
Cartesian direction, the accuracy of NURBS results is
remarkable; linear FEM is not capable of attaining such

Fig. 44: The MARIN dam break problem. Snapshots of
the free surface solution on the tetrahedral (left) and
NURBS (right) meshes at t = 1.0, 1.5, 2.0, 4.0, and 5.0 s.

accuracy at this level of resolution (see [25]), and requires
a finer mesh for comparable accuracy.

4.6 Fridsma Planing Hull

In this section we present our simulation results for the
Fridsma planing hull [143]. We give a detailed definition
of the hull geometry, present a mesh refinement study,
and assess the effect of hull speed on the drag force and
trim angle. Only flat-water (i.e., no waves), constant hull
speed cases are considered in this paper. The computa-
tional results presented are from [32].

The Fridsma hull geometry definition is given in Fig-
ure 46. The hull is comprised of idealized shapes: a bow
consisting of four ruled surfaces followed by a wedge-
shaped straight section with an constant deadrise angle
of 20◦. Analytical expressions for the bounding curves
for the ruled surfaces are provided in the figure. The rel-
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Fig. 45: The MARIN dam break problem. Time history
of the pressure at four locations on the obstacle. Exper-
imental data is from [142].

evant global geometry parameters are given in Table 1.
The hull mass, center of gravity, and moment of inertia
are summarized in Table 2. This data pertains to the
center of gravity located at 70% of the hull length, mea-
sured from the aft of the hull [143].
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Monday, December 5, 2011Fig. 46: Fridsma hull. Geometry definition. Top left: side
view. Top right: aft view. Bottom: top view.

Length (L) 114.3 cm
Beam (b) 22.86 cm
Height 14.2875 cm
Deadrise 20◦

Table 1: Fridsma hull. Global geometric parameters.

Mass (m) 7.257 kg
xcg 80.01 cm
zcg 6.721 cm
Gyradius (r) 25% L
Iyy = mr2 0.6165 kg m2

Table 2: Fridsma hull. Mass, center of gravity, and mo-
ment of inertia.

We perform a mesh convergence study at Froude
number Fr = 0.89501. The Froude number is defined as

Fr =
u√
gL

, (20)

where u is the hull speed, g is the magnitude of grav-
itational acceleration, L is the hull length. The Froude
number represents the significance of inertial forces rela-
tive to gravity. At this chosen Froude number, according
to [143], the trim angle reaches its maximum. A conver-
gence study was performed on a sequence of four meshes.
The coarsest mesh is shown in Figure 47. The figure also
shows the water and air subdomains in the undisturbed
configuration. The mesh is dense near the hull surface
and in the wake. The hull is fixed in the direction of
travel, and the corresponding velocity is set at the inflow
of the computational domain together with the level set

1 In [143] the results are reported in terms of the Speed-

Length Ratio (SLR), u/
√
L, which is a dimensional quantity.

Here we chose to report the results in terms of the Froude
number, which is non-dimensional.
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Fig. 47: Fridsma hull. Coarsest mesh with water and air
domains shown.

Fig. 48: Fridsma hull. Free surface colored by the flow
speed relative to the hull speed in m/s.

function. The hull is allowed to pitch, and displace in
the vertical direction. At the outflow a hydrostatic pres-
sure profile is imposed as a traction boundary condition.
On the side, bottom, and top boundaries of the computa-
tional domain free-slip boundary conditions are imposed.
Figure 48 shows the deformed free surface colored by the
flow speed relative to the hull speed. The hull rises up
and develops a trim angle such that the bow is higher
than the aft. Note the presence of the “rooster tail” fea-
ture, which is typical for planing hulls. Also note that the
rooster tail feature goes all the way to the outflow bound-
ary, which suggests that a longer-domain simulation may
be needed in the future. Figure 49 shows convergence of
the drag force and trim angle. The drag force is non-
dimensionalized by the gravitational force. From the re-
sults we see that the drag force converges quickly to the
experimental value. On the other hand, the trim angle is
underestimated by 12% with respect to the experimen-
tal data, and does not improve with mesh refinement.
Possible causes for this may be the choice downstream,
lateral, and bottom boundary locations. Errors in the
experimental data are also possible.
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Fig. 49: Fridsma hull. Convergence of the drag force and
trim angle with mesh refinement and comparison with
experimental results.

We also examine the effect of the hull speed on the
drag force and trim angle is studied. In addition to the
Fr = 0.8950 case, we consider Fr = 0, Fr = 0.5925, and
Fr = 1.190 cases. The simulations are started impulsively
in the configuration depicted in Figure 47. In the case
of Fr = 0, although the hull speed is zero, a non-zero
trim angle develops such that the hull is in equilibrium
with the hydrostatic forces. In all other cases, there is
a rapid transient followed by a largely steady-state re-
sponse. The steady-state drag force and trim angle are
plotted as a function of Froude number, and compared
to the experimental results in Figure 50. Accurate pre-
diction of the drag force is attained in all cases. The
trim angle is predicted very well for the first two Froude
number cases, and a deviation from the experiment by
10%–12% is seen in the remaining two cases.

4.7 DTMB 5415 Navy Combatant in Head Waves

Here we present the simulation of the DTMB 5415 Navy
combatant at lab scale from [29]. This ship has been
investigated by other researchers, both experimentally
and computationally (see, e.g., [144; 145; 146]).
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Fig. 50: Fridsma hull. Steady-state drag force and trim
angle as a function of Froude number. Comparison with
experimental results.

The length of the ship hull is 5.72 m. The ship mass,
center of gravity and inertia tensor are computed by
meshing the ship interior and performing a direct com-
putation. The total ship volume is 1,366 m3. The ship
mass is equal to 532.3 kg. It is obtained by multiply-
ing the volume of the ship below the water line by the
constant water density. The center of gravity and the in-
ertia tensor are computed assuming the ship’s effective
density (i.e., the ship mass divided by its total volume),
which results in

X0 =




2.761
0

0.280


 m (21)

and

J0 =




7.256E-2 2.69E-7 5.35E-2
2.69E-7 2.89 -2.44E-8
5.35E-2 -2.44E-8 2.91


 kg m2, (22)

respectively.
We compute the ship in head waves, meaning the

waves that travel in the direction opposite to that of the
ship. We assume that the ship speed is Uin = 1.873 m/s,

which gives the Froude number of 0.25 based on the ship
length. The ship was allowed to move vertically, to pitch
and to roll, while the rest of the rigid body degrees-of-
freedom were constrained.

We make use of the linear Airy waves [147] to pre-
scribe inlet boundary conditions. The Airy waves may be
derived using potential theory, and are specified as fol-
lows: Given, the wave amplitude, wave length and water
depth, Aw = 0.2 m, Lw = 5.72 m and h = 3.49 m, respec-
tively, we compute k = 2π/Lw, the angular wavenum-

ber, ω =
√
gk tanh(kh), the wave phase speed, and

Av = ωAw

sinh(kh) , the velocity amplitude. With these def-

initions, the Airy waves are given by

u =Av cosh(kz) cos(kx− ωt) + Uin (23)

v =0 (24)

w =Av sinh(kz) sin(kx− ωt) (25)

φ =Aw cos(kx− ωt) + h− z, (26)

where (u, v, w)T is the fluid velocity vector and the air-
water interface in the hydrostatic configuration is as-
sumed to be located at z = 0.

Figure 51 shows the snapshots of the ship negotiat-
ing high-amplitude waves. The bottom part of Figure 51
shows the ship partially submerged in water, which is
a result of the oncoming wave hitting the bow of the
ship. In this case, near the bow, the free surface expe-
riences topological changes, which necessitates the use
of an interface-capturing method to handle the air-water
interface for this class of problems.

4.8 Vortex-Induced Vibrations of a Bridge Deck

Here we present an example of a fluid-object interaction
simulation using a scaled model of the Hardanger bridge
deck section [148]. The bridge deck geometric model is
shown in Figures 52 and 53. This study was initiated
to examine the effect of the guide-vane-like vortex miti-
gation devices (VMDs) installed on the underside of the
bridge deck (see Figure 53 for a zoom on the guide vanes)
on the resulting wind aerodynamics and structural re-
sponse of the bridge. The height h, width b, and length
l of the deck scaled model are 0.0666 m, 0.366 m and
1.7 m, respectively.

The bridge deck section computational domain is
shown in Figure 54. The locations of the top, bottom,
and lateral walls are coincident with those of the wind
tunnel where the experiments took place. Note that there
is only a 2.5 cm gap between the tunnel wall and the side
of the bridge deck section.

All the geometric details of the model-scale bridge
deck are modeled in the computations, including the
hand and bicycle rails on the top of the deck, and the
maintenance rails in the front and rear of the deck. Com-
putations are performed for 2.6 m/s and 6.0 m/s wind
speed, with and without the VMDs. Figures 55 and 56
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(a) t=9.00 s

b) t=9.50 s

Fig. 51: DTMB 5415 in head waves. Snapshots of the ship
negotiating high-amplitude waves. The water surface is
colored by the fluid speed.

Fig. 52: Geometric model of the scaled Hardanger bridge
deck section.

show the mesh resolution used in this study. Boundary-
layer prismatic elements are used near all solid surfaces,
and tetrahedral elements are used elsewhere in the com-
putational domain. The mesh is refined near the deck
and downstream of it to better capture the wake turbu-
lence. The uniform wind speed is prescribed at the inflow
boundary, the traction vector is set to zero at the outflow
boundary, and the slip condition is set on the top, bot-

Fig. 53: Zoom on the geometric details of the bridge deck
section model. The guide-vane-like vortex mitigation de-
vices are located on the underside of the deck and are
shown in light red color.

Fig. 54: Bridge deck section computational domain and
boundary conditons.

Fig. 55: Aerodynamics mesh of the bridge deck section.
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Fig. 56: Zoom on the boundary layer mesh of the top
deck and rails.

tom, and lateral boundaries of the computational domain
(see Figure 54). The no-slip boundary condition on the
bridge deck surface is enforced weakly. The bridge deck
is modeled as a rigid object. For the bridge deck mass,
moment of inertia tensor, and stiffness and damping ma-
trices (see Eqs. (15) and (16)) the readers are referred
to [148]. The deck is allowed to displace vertically, and
undergo pitching and rolling motions.

Figure 57 shows drag and lift coefficients for cases
with and without the VMDs. The drag and lift coeffi-
cients are defined as

CD =
FD

1
2ρU

2hl
, (27)

and

CL =
FL

1
2ρU

2bl
, (28)

where FD and FL are the drag and lift forces, respec-
tively, ρ is the air density, and U is the inflow speed.
Computational results are compared with the experi-
mental measurements from [148] and reasonable agree-
ment is achieved.

Figure 58 shows the time history of angular displace-
ment of the bridge deck corresponding to the pitching
motion. The figure clearly shows that with the added
VMDs the bridge deck experiences smaller rotational
motions then without, which was also observed in the
wind tunnel tests.

To better understand the underlying mechanics, the
differences in the air flow with and without VMDs are
shown on a planar cut of the bridge deck in Figure 59.
The guide vanes keep the flow attached to the underside
of the deck, which delays flow separation and precludes
formation of large-scale vortical structures that drive the
bridge deck response.

Figure 60 shows the 3D view of the deck with guide
vanes, where air speed contours at a time instant are
plotted on a set of cuts along the deck length. Top and

Time (s)

C
D

0 5 10 15 20
0.2

0.4

0.6

0.8

1

1.2

1.4
Experiment: Without VMD
Experiment: With VMD

Computation: With VMD

Computation: Without VMD

Time (s)

C
L

0 5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Experiment: Without VMD
Experiment: With VMD

Computation: With VMD Computation: Without VMD

Fig. 57: Time history of the drag (top) and lift (bottom)
coefficients for cases with and without VMDs for 2.6 m/s
wind speed. Time-averaged experimental measurements
from [148] are plotted for comparison.
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Fig. 59: Instantaneous air speed contours on a planar cut
near the bridge deck for 2.6 m/s wind speed. Top: Case
without VMDs. Bottom: Case with VMDs.

bottom views are shown. The flow is turbulent and three-
dimensional, which underscores the importance of 3D
aerodynamics modeling and simulation for this class of
problems.

5 Concluding Remarks

Bringing solution and analysis to specific classes of FSI
problems with a common computational technology need
motivated the development of our core ALE-VMS and
ST FSI techniques, their recent versions, and the spe-
cial ALE-VMS and ST FSI techniques targeting spe-
cific classes of problems, such as parachute FSI, aero-
dynamics of flapping wings, wind-turbine aerodynamics
and FSI, and free-surface flow and FOI for ship hydro-
dynamics. We presented an overview of the core and
special ALE-VMS and ST FSI techniques. We also pre-
sented examples of different classes of challenging prob-
lems solved: spacecraft parachute FSI, ship hydrodynam-
ics, wind-turbine aerodynamics, patient-specific arterial
FSI, aerodynamics of flapping wings of an actual locust
and an MAV, and vortex-induced vibrations of a bridge
deck section. In some of the problems solved, we included
a comparison with the experimental data, and the com-
parison was always favorable. The examples show that in
a diverse set of engineering applications, with the scope
and power afforded by the core and special ALE-VMS

Fig. 60: Instantaneous air speed contours on a set of cuts
along the deck length for 2.6 m/s wind speed. Top and
bottom deck views are shown.

and ST FSI techniques, we can provide reliable analysis
and support the design process.
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