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Abstract: This paper describes a comprehensive and high-fidelity finite element
meshing approach for patient-specific arterial geometries from medical imaging
data, with emphasis on cerebral aneurysm configurations. The meshes contain both
the blood volume and solid arterial wall, and are compatible at the fluid-solid inter-
face. There are four main stages for this meshing method: 1) Image segmentation
and geometric model construction; 2) Tetrahedral mesh generation for the fluid vol-
ume using the octree-based method; 3) Mesh quality improvement stage, in which
edge-contraction, pillowing, optimization, geometric flow smoothing, and mesh
cutting are applied to the fluid mesh; and 4) Mesh generation for the blood vessel
wall based on the boundary layer generation technique. The constructed meshes
are extensively employed in a fully-coupled fluid-structure interaction analysis of
vascular blood flow. This paper presents several case studies of hemodynamics in
patient-specific cerebral aneurysms.
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1 Introduction

Nowadays approximately 3-6% of the population is estimated to have unruptured
cerebral aneurysms [Rinkel, Djibuti, and Algra (1998)]. Since research on the
specific risk for rupture has no clear conclusion yet, clinical decision-making is
largely based on epidemiological studies of risk factors for subarachnoid hem-
orrhage. These studies identify three important factors for aneurysm formation
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and rupture: hypertension, smoking, and family history [Isaksen, Egge, Waterloo,
Romner, and Ingebrigtsen (2002)]. Further evidence suggests that the risk for rup-
ture increases for aneurysms that are large in size and have a small neck/fundus
ratio [Uiije, Tamano, Sasaki, and Hori (2001)].

Aneurysms rupture when tension inside the arterial wall exceeds the strength of ar-
terial tissue. This suggests that, given the appropriate solid model for the aneurysm
wall, wall tension can be reasonably estimated using numerical simulation [Isak-
sen, Bazilevs, Kvamsdal, Zhang, Kaspersen, Waterloo, Romner, and Ingebrigtsen
(2008)]. Furthermore, computational methods can be used to estimate the effect of
variability in the material parameters, wall thickness, and blood flow rates on the
distribution and peaks of maximum wall tension. In order to do so accurately, a
coupled fluid-structural simulation that accounts for the interaction between blood
flow and movement of the arterial wall should be employed. This, in turn, ne-
cessitates the development of advanced mesh generation techniques that produce
quality meshes of the fluid and solid subdomains. For proper discretization of the
fluid domain there is a need for a refined mesh in a layer near the arterial walls. This
boundary layer mesh is generally needed for proper estimation of the fluid flow and
in particular for accurate prediction of surface tractions acting on the wall, i.e. nor-
mal stresses and shear stresses. These tractions are important for proper prediction
of the arterial wall response. In addition the wall shear stresses are important for
the arterial wall cell structure and influence the growth of aneurysms.

However, generating three-dimensional fluid-structure meshes directly from medi-
cal imaging data, like Computed Tomography (CT) and Magnetic Resonance Imag-
ing (MRI), still remains a challenge. In this work we have designed a set of compre-
hensive procedures, which allow us to generate high-fidelity finite element meshes
of patient-specific arterial geometries from volumetric imaging data. The unique
feature of our approach is that the meshes contain both the blood volume and solid
arterial wall. This is in contrast to just the blood volume meshes, which preclude
the analyst from using three-dimensional solids to describe the arterial wall. The
meshes are compatible at the fluid-solid interface, which, in principle, is not nec-
essary, yet significantly simplifies analysis. Our meshing approach consists of four
main stages:

• Image processing - Semi-automatic image segmentation was applied for iden-
tifying and segmenting the aneurysm geometry from three dimensional (3D)
computed tomography angiography (CTA) images.

• Tetrahedral mesh generation for the fluid volume - We choose the octree-
based isocontouring method to construct tetrahedral meshes for the fluid vol-
ume from medical imaging data.
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• Mesh quality improvement - The mesh quality from the first two stages may
not be good enough for finite element simulations, therefore post-processing
techniques are adopted to improve the mesh quality, including edge contrac-
tion, optimization, pillowing, smoothing and mesh cutting.

• Mesh generation for the blood vessel wall - Given the mesh from the previous
stage, a boundary layer generation technique is utilized to construct meshes
for the blood vessel wall.

The remainder of this paper is organized as follows: Section 2 reviews the related
work on mesh generation and blood flow simulation. The detailed mesh generation
algorithm is described in Section 3. Section 4 briefly describes the fluid-structure
analysis procedures employed in the simulation of cerebral aneurysms. Section 5
shows the meshing and simulation results for four aneurysm models. Conclusion
and future work are given in Section 6.

2 Previous Work

Tetrahedral Mesh Generation: Octree-based, advancing-front-based and Delau-
nay like techniques were widely used for tetrahedral mesh generation. For the
octree-based technique, the cube containing the geometric model is recursively
subdivided until the desired resolution is reached [Shephard and Georges (1991)].
Advancing front methods begin from a boundary and move a front from the bound-
ary towards the empty space within the domain [Lohner and Parikh (1988)]. The
Delaunay criterion guarantees that no node is contained within the circumsphere
of any tetrahedra of the mesh, which is called “empty sphere”. The triangles or
tetrahedra are refined locally by inserting new nodes to maintain the Delaunay cri-
terion. Various techniques were investigated to define new nodes [Chew (1997)].
Sliver exudation [Cheng, Dey, Edelsbrunner, Facello, and Teng (2000)] was devel-
oped to remove these slivers. A deterministic algorithm [Cheng and Dey (2002)]
was presented to generate a weighted Delaunay mesh without poor quality tetrahe-
dra including slivers. Shewchuk (2002) solved the problem of enforcing boundary
conformity by constrained Delaunay triangulation (CDT).

Because many 3D objects are sampled in volumetric data, Fujishiro, Y. Maeda, and
Takeshima (1996) extended the Marching Cubes algorithm (MC) [Lorensen and
Cline (1987)] to extract tetrahedral meshes between two isosurfaces directly from
volume data. The extraction process was accelerated by using a Branch-on-Need
octree as an auxiliary data structure. Marching Tetrahedra (MT) was proposed for
interval volume tetrahedralization [Nielson and Sung (1997)] as a different algo-
rithm. Zhou, Chen, and Kaufman (1997) generated a multi-resolution framework
by combining recursive subdivision and edge-bisection methods.
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Quality Improvement: There are three categories of algorithms for mesh im-
provement [Owen (1998)]: local coarsening/refinement by deleting/ inserting points,
local remeshing by face/edge swapping, and mesh smoothing by relocating ver-
tices. Laplacian smoothing, in its simplest form, relocates the vertex position at the
average of its neighbor nodes. Although Laplacian smoothing generally works well
for meshes in convex regions, it may produce distorted or even inverted elements
near concavities in the mesh. In order to avoid the creation of inverted elements,
Field (1988) constrained the node movement. The contribution of each neighboring
node in the average function was considered in [George and Borouchaki (1998)].
The Laplacian operator was discretized by using Voronoi cells and the mixed Fi-
nite Element/Finite Volume method [Meyer, Desbrun, Schroder, and Burr (2002)].
Using the finite difference method [Xu, Pan, and Bajaj (2003)], the discretized
format was able to solve surface modeling problems. Hansbo (1995) developed
methods which extend to anisotropic meshes. Furthermore, people searched an
optimization technique to improve the mesh quality instead of relocating vertices
based on a heuristic algorithm. The optimization algorithm measures and attempts
to optimize the quality of the surrounding elements to a node, which is similar
to a minimax technique used to solve the circuit design problem [Charalambous
and Conn (1978)]. The optimization-based smoothing yields better results but is
more expensive than Laplacian smoothing. Therefore, a combined Laplacian and
optimization-based approach was recommended in [Canann, Tristano, and Staten
(1998)], which generally uses Laplacian smoothing and only uses optimization-
based smoothing when necessary.

Boundary Layer Generation: Techniques for generating boundary layers can be
classified into two categories: Eulerian methods and Lagrangian methods. Eule-
rian methods describe the interface using an explicit surface representation such as
level set methods [Osher and Fedkiw (2003)], volume-of-fluid methods [Harvie and
Fletcher (2000)] and phase-field methods [Chen (2002)]. They have been widely
used for their simplicity and robustness, but the accuracy may be low if there are
singularities and topological changes. Lagrangian methods trace the interface us-
ing an implicit representation, e.g. marker particle [Rider and Kothe (1995)] and
front tracking methods [Glimm, Grove, Li, and Tan (2000)]. They generally of-
fer higher accuracy at lower cost and perform better than implicit representations.
However, existing Lagrangian techniques often suffer from growing oscillations or
self-intersections [Sethian (1999)].

Blood Flow Simulation: Simplified geometries were adopted in initial attempts
to simulate blood flow in arteries. This approach was restricted because it is unable
to represent complex flow phenomena in real blood vessels. Taylor, Hughes, and
Zarins (1998) first used real-life geometries to simulate blood flow, and established
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the concept of patient-specific cardiovascular modeling, which opened the door
for designing predictive tools of vascular modeling and treatment planning. Al-
though dramatic improvements in the computational results were obtained in [Tay-
lor, Hughes, and Zarins (1998)], the blood vessel wall was assumed to be rigid.
However, the flexible and rigid wall computations [Torii, Oshima, Kobayashi, Tak-
agi, and Tezduyar (2006)] indicated that the rigid wall assumption precludes pres-
sure wave propagation and overestimates wall shear stress. While several methods
can be used to include the effect of the moving wall in computations, the arbitrary
Lagrangian-Eulerian (ALE) approach was the most prevalent [Farhat and Geuzaine
(2004)]. Applications of ALE to hemodynamics were discussed in [Formaggia,
Gerbeau, Nobile, and Quarteroni (2001)]. The other techniques partially include
the coupled momentum method [Figueroa, Vignon-Clementel, Jansen, Hughes,
and Taylor (2006)], the immersed finite element method [Liu, Liu, Farrell, Zhang,
Wang, Fukui, Patankar, Zhang, Bajaj, Lee, Hong, Chen, and Hsu (2006)], and the
space-time finite element method [Tezduyar (2003)].

3 Meshing Algorithm

There are four main steps in our mesh generation algorithm starting from the input
patient-specific imaging data: data acquisition and image processing, octree-based
tetrahedral meshing for fluid volume, quality improvement, and boundary layer
generation.

3.1 Data Acquisition and Image Processing

The 16 bit CTA data sets are RAW images with a size of 512x512xN. N represents
the number of images in the DICOM series, which in this case equals to the num-
ber of images acquired in the axial direction. A lot of image processing techniques,
especially segmentation, have been developed and applied to medical imaging data
[Goncalves, Tavares, and Jorge (2008); Zhang, Cheng, Oh, Spehar, and Burgess
(2008); Yang, Tang, Yuan, Kerwin, Liu, Canton, Hatsukami, and Atluri (2008)].
In our study, the RAW image data volume was loaded into the open source ap-
plication ITK-SNAP which includes a level-set implementation of active contour
segmentation [Yushkevich, Piven, Hazlett, Smith, Ho, Gee, and Gerig (2006)]. A
region of interest containing the aneurysm and the connecting vessels was man-
ually identified, and several seed points for the segmentation were set inside the
aneurysm. The seed points were inflated until they reached a region of different
image intensity, and eventually grew together into one shape filling the aneurysm
and connecting vessels. All the segmented models were visually evaluated, and in
some cases manual corrections were made to obtain satisfying results. The geome-
tries were exported as StereoLithography (STL) files used as input for the mesh
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generation.

3.2 Octree-Based Tetrahedral Meshing for Fluid Volume

The tetrahedral meshing method in this paper is based on a top-down octree sub-
division and isocontouring method [Zhang, Bajaj, and Sohn (2005)]. We aim to
construct crack-free, self-intersection free, no hanging nodes, and valid tetrahedral
meshes from imaging data. For each octree cell, we calculate a minimizer point
using a Quadratic Error Function:

QEF(~x) = ∑
i

[~ni · (~x−~pi)]
2 , (1)

where pi, ni are the position and unit normal vectors of the interaction points. Here
we analyze two kinds of edges: the sign change edge with two endpoints on differ-
ent sides of the isosurface, and the interior edge with two endpoints inside the fluid
volume. In the uniform case, both of them are shared by four cells, and we calcu-
late one minimizer point for each of them. For each sign change edge, we connect
the four obtained minimizer points and its interior endpoint to construct a pyramid
as shown in Fig. 1(a). Similarly as shown in Fig. 1(b), we obtain a diamond for
each interior edge. In the adaptive case, the sign change edge or the interior edge
is shared by either four or three cells. Therefore, we obtain four or three minimizer
points. A pyramid or a tetrahedron is constructed for a sign change edge, and a
diamond or two tetrahedra are constructed for an interior edge. The next step is to
split the pyramid or diamond into tetrahedra.

(a) (b)
Figure 1: (a) A pyramid formed by analyzing the sign change edge; (b) a diamond
formed by analyzing the interior edge.

There are two ways to split a pyramid into tetrahedra by choosing different diag-
onals. In this paper, for the aim of generating good quality meshes without self-
intersection, if the quadrilateral formed by the four minimizer points is concave,
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the diagonal containing the concave point is used to split the pyramid. Otherwise,
we compare the aspect ratios and choose the diagonal which gives us better aspect
ratio. Splitting a diamond to tetrahedra also has two ways. As shown in Fig. 2(a),
one is to choose a diagonal of the quadrilateral, similar to the pyramid case, split
the quadrilateral into two triangles, and then connect the two triangles with the two
endpoints of the analyzed edge. The other way is to connect the two endpoints and
each pair of adjacent minimizer points as shown in Fig. 2(b). Both ways generate
four tetrahedra for each interior edge, but the second way turns out to be better due
to its robustness. Ideally, the two endpoints of an interior edge are on the different
sides of the obtained triangles. However, there are some special cases that they are
on the same side. The second method not only works in all the possible cases, but
also outperforms the first one even when it is valid. For a typical case that all the
four minimizer points are in the center of the each cell, the worst edge ratio using
the first method is

√
2 while the worst edge ratio using the second method is 2√

3
(the edge ratio here is the ratio of the longest edge to the shortest edge). Therefore
the second method is adopted to split the diamond.

(a) (b)
Figure 2: (a) Splitting a diamond into four tetrahedra by the first way; (b) Splitting
a diamond by the second way.

3.3 Quality Improvement

We choose the edge-ratio, Joe-Liu parameter [Liu and Joe (1994)], and minimum
volume bound as criteria to measure the quality of constructed tetrahedral meshes.
The edge-ratio of a tetrahedron is the length ratio of the longest edge over the
shortest edge. The definition of Joe-Liu parameter is

Joe−Liu parameter =
22(1− 1

d )×3
d−1

2 × | s | 2d
∑0≤i< j≤3 | ei j |2

, (2)
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where d is the space dimension (d = 3 for a tetrahedral), | s | denotes the element
volume, and | ei j | are the lengths of the edges connecting vertices i to j. Poor
quality meshes may lead to poorly conditioned stiffness matrices and make the
following analysis difficult, therefore edge contraction, pillowing, and smoothing
are used to improve the quality of the constructed tetrahedral meshes for the fluid
volume.

3.3.1 Edge Contraction

Edge contraction is used to remove the non-manifold situation. For example, the
mesh may have some non-manifolds where more than two boundary triangles share
the same edge on the surface. Since the following steps like boundary layer gen-
eration and pillowing can not handle the non-manifold mesh, we have to use the
edge contraction approach to remove them. Contracting an edge is the operation
that removes an edge and simultaneously merges its two endpoints. For tetrahedral
meshes, there are two cases which we should pay attention to: (1) if the edge has
only one vertex lying on the boundary, we should only merge the edge to the bound-
ary endpoint; and (2) if the edge has one endpoint with the valence number four,
we should remove all the elements sharing this vertex before the edge contraction
operation is carried out.

3.3.2 Pillowing

Mesh quality improvement will be limited if all the four vertices of one tetrahedron
are on the surface, or three vertices of one triangle are on the surface but the triangle
is inside the volume. The pillowing technique can eliminate these two situations
by generating a new surface parallel to the original one. Vertices used to be on the
original surface are now inside the mesh and can be freely moved. For each triangle
V1V2V3 on the boundary surface, a duplicated triangle V ′1V ′2V ′3 is constructed. These
two triangles form a prism V1V2V3−V ′1V ′2V ′3. Then we split the prism into three
tetrahedra. To avoid the diagonal conflict problem, we always split the prisms by
connecting the diagonal from the smallest vertex index in the triangle V1V2V3 to the
largest vertex number in the triangle V ′1V ′2V ′3.

3.3.3 Optimization-Based Geometric Flow Smoothing

We choose the optimization-based smoothing to improve the worst element of the
mesh, and use the geometric flow smoothing [Zhang, Xu, and Bajaj (2006)] to im-
prove the overall mesh quality. Sometimes the two methods are used alternately.
In optimization, the Laplacian smoothing operation is used to improve the mini-
mum volume bound of the mesh, which measures the minimum volume of all el-
ements surrounding a node. To avoid inverted elements or elements with negative
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volume, we use a “smart” Laplacian smoothing operation which relocates points
only if the minimum volume of the local mesh is improved. In the geometric flow
smoothing, the interior vertex is moved towards the mass center using its neigh-
boring elements. For each boundary vertex, we calculate the mass center using its
neighboring boundary triangles, and then project the mass center onto its tangent
plane. In this way the surface feature is preserved, and the overall aspect ratio of
the mesh is significantly improved. However, this method is heuristic and may in-
troduce invalid elements. Therefore we add one constraint: for each relocation we
will keep the original position if the movement makes the neighboring minimum
volume worse.

3.3.4 Mesh Cutting

The aneurysm model has both inlets and outlets. Due to the request from the fluid-
structure interaction (FSI) simulation, all the vertices on each inlet/outlet have to be
coplanar. Hence in this step we use one plane to cut the inlet/outlet branch to make
sure that all the vertices are coplanar. We first calculate the center, the average nor-
mal direction and the radius for each inlet/outlet surface, then use the center and the
average normal to define the cutting plane. There are five cases to cut one tetrahe-
dron using a plane. In Fig. 3(a), since all the four vertices are outside of the cutting
plane, all we have to do is to simply delete this element. In Fig. 3(b), because there
is only one vertex inside the fluid volume, we calculate the three intersection points
and connect them with the interior vertex. In Fig. 3(c), the tetrahedron has two
vertices inside the fluid volume, so we calculate the intersection points and split
the two quadrilaterals using the diagonal containing the smaller index. In Fig. 3(d),
the tetrahedron has three vertices inside the fluid volume, and similarly we split
the three quadrilaterals as in Fig. 3(c). The last case (Fig. 3(e)) is with all the four
vertices inside the fluid volume, so we just keep this element. Generally, mesh cut-
ting makes the mesh quality around the inlet/outlet plane worse. Therefore after
cutting, we have to improve the mesh quality again especially for the region around
the inlet/outlet. We add two additional constraints to the smoothing: the vertices on
the boundary curve of the inlet/outlet plane are restricted to move along the curve,
and the vertices inside the plane can only move on that plane.

3.4 Boundary Layer Generation

The blood vessel wall of the aneurysms is constructed by growing one or more
boundary layers based on the fluid mesh. Suppose the boundary layer thickness
is t, and we want to construct n boundary layers. We begin by duplicating all the
triangles on the surfaces that need to generate a boundary layer, which creates two
identical overlapping faces. The original one will provide the surface mesh on the
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(a) (b)

(c) (d) (e)
Figure 3: Five cases for cutting a tetrahedron using a plane. (a)-(e) show the case
with zero, one, two, three, and four vertices inside the fluid volume, respectively.

model boundary, and the duplicated one is then relocated by moving each vertex
along the normal direction for a distance t. The new boundary layer mesh is formed
after connecting the original vertex to the duplicated one. After the first step, the
original and duplicated triangles define a prism. Each prism will then be subdivided
into three tetrahedra, which is similar to the procedures in pillowing. If all of the
newly generated tetrahedra are in good quality, the boundary layer generation is
done. However, if the vertices are near sharp corners or the cutting planes, the
normal may intersect with its neighbors. In this case, the generated tetrahedra may
intersect with others and lead to bad quality meshes. To avoid such situations, we
need to adjust the normal direction of these vertices by taking the average of their
neighboring normals.

4 Fluid-Structure Interaction Simulation

The blood flow is governed by the incompressible Navier-Stokes equations posed
on a moving domain. The Arbitrary Lagrangian-Eulerian (ALE) formulation is
used, which is a popular approach for vascular blood flow applications. The ar-
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terial wall is modeled as a three-dimensional isotropic hyperelastic solid in the
Lagrangian description. At the interface between the blood and the elastic wall,
velocity and traction compatibility conditions are assumed to hold. The motion of
the fluid domain is governed by the equations of linear elasticity subject to dis-
placement boundary conditions coming from the motion of the arterial wall. The
density, and dynamic viscosity of the fluid are 1 g/cm3 and 0.04 g/(cm · s), respec-
tively. The density, Young’s modulus, and Poisson’s ratio of the arterial wall in
the reference configuration are 1 g/cm3, 107dyn/cm2, and 0.45, respectively. The
arterial wall thickness is taken to be approximately 0.018 cm. Pulsatile velocity is
applied at the inlet branch and resistance boundary conditions are set at the outlet
branches. The resistance boundary conditions are posed such that physiological
pressure levels are attained in the simulations.

The discretization for both the fluid and solid consists of linear tetrahedral ele-
ments. The meshes for the fluid and solid are compatible at the interface. The
discrete fluid formulation makes use of the recently proposed residual-based vari-
ational multiscale method [Bazilevs, Calo, Cottrel, Hughes, Reali, and Scovazzi
(2007)]. The solid and fluid mesh motion equations are discretized using the
Galerkin approach. The time-dependent equations are solved using the generalized-
time integrator developed for fluid-structure interaction in [Bazilevs, Calo, Hughes,
and Zhang (2008)]. A monolithic solution strategy is adopted in which the incre-
ments of the fluid and solid variables are obtained in a simultaneous fashion (see
[Bazilevs, Calo, Zhang, and Hughes (2006)], [Bazilevs, Calo, Hughes, and Zhang
(2008)] for details). The effect of the mesh motion on the fluid equations is omitted
from the tangent matrix for efficiency, as advocated in [Bazilevs, Gohean, Hughes,
Moser, and Zhang (2009)].

5 Results and Discussion

We apply our meshing techniques to four cerebral aneurysm models. From the CTA
RAW imaging data, we construct tetrahedral meshes using the octree-based iso-
contouring method. Then we utilize the edge contraction to remove non-manifold
situations. After pillowing, the optimization-based smoothing is used to improve
the minimum volume of the mesh, and then geometric flow smoothing is adopt
to improve the overall quality of the mesh. Three planes are defined to cut the
aneurysms, and the geometric flow is used again to improve the quality near the
cutting plane. After that, the fluid volume is of good quality, and boundary layers
are constructed for the solid part of the aneurysms. The final meshes of the four
models are presented in Figs. 5-8, and Fig. 4 shows the histogram of the edge-ratio,
Joe-Liu parameter, and volume. Tab. 1 lists the best/worst edge ratio, the best/worst
Joe-Liu parameter, and the minimal/maximal volume for the four models.
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(a)

(b) (c)
Figure 4: The histogram of (a) the edge-ratio, (b) the Joe-Liu parameter, and (c)
the element volume of four aneurysm models.

Table 1: The three quality criteria of four aneurysm models.

Vertex Tetra Edge-ratio Joe-Liu parameter Volume
Number Number (best, worst) (best, worst) (min, max)

Model 1 64029 354114 (1.05, 29.72) (1.0, 4.48×10−3) (1.35×10−4, 1.30)
Model 2 25116 136881 (1.06, 26.30) (1.0, 1.48×10−3) (9.50×10−5, 3.86)
Model 3 125874 719193 (1.05, 27.77) (1.0, 3.28×10−3) (2.60×10−5, 0.80)
Model 4 60933 338419 (1.06, 16.90) (1.0, 6.82×10−4) (2.20×10−5, 1.53)

The constructed meshes are employed in the fluid-structure interaction simulations.
Fig. 5(c) and Figs. 6-8(b) show blood flow streamlines at the peak systole for Mod-
els 1, 2, 3, and 4. The flow appears to be complex with several vortical features
present, yet not turbulent. Fig. 5(d) and Figs. 6-8(c) show the blood vessel shear
stress at the fluid-solid interface. The wall shear stress tends to arrive at the max-
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imum near the region where the jet of blood coming from the inflow impinges on
the aneurysm wall. Fig. 5(b) shows the displacement configuration of Aneurysm 1
incurred during the cycle.

(a) Tetrahedral mesh (b) Displacement

(c) Velocity streamlines (d) Wall shear stress
Figure 5: The constructed mesh with boundary layer and the simulation results for
Aneurysm 1.

6 Conclusion and Future Work

In this paper, we have developed a comprehensive approach to generate high-
fidelity finite element meshes for the FSI simulation of cerebral aneurysms. A
series of techniques are applied to obtain these high quality meshes, including im-
age processing, mesh generation, quality improvement, plane cutting, and bound-
ary layer generation. Fluid-structure interaction analysis predicts arterial wall dis-
placement that is in good agreement with that reported by other researchers and
observed in practice. Flow streamlines suggest that the flow is unsteady and com-
plex, yet not turbulent. The wall shear stress distribution is also very reasonable.
Uniform thickness is used in our mesh generation procedure. In the future, we can
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(a) Tetrahedral mesh (b) Velocity streamlines (c) Wall shear stress
Figure 6: The constructed mesh with boundary layer and the simulation results for
Aneurysm 2.

(a) Tetrahedral mesh (b) Velocity streamlines (c) Wall shear stress
Figure 7: The constructed mesh with boundary layer and the simulation results for
Aneurysm 3.

(a) Tetrahedral mesh (b) Velocity streamlines (c) Wall shear stress
Figure 8: The constructed mesh with boundary layer and the simulation results for
Aneurysm 4.
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construct one thickness function according to the simulation results, instead of us-
ing uniform thickness. In this way, we include the feedback from simulation results
to adjust the geometric model to increase the computational accuracy. In addition,
we will work on 20 new aneurysm models, and extract statistic information from
them to predict the risk for aneurysm rupture.
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