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Abstract

Fluid–structure interaction (FSI) analysis of a full-scale hydraulic arresting gear used to retard the
forward motion of an aircraft landing on an aircraft-carrier deck is performed. The simulations
make use of the recently developed core and special-purpose FSI techniques for other problem
classes, specialized to the present application. A recently proposed interactive geometry modeling
and parametric design platform for isogeometric analysis (IGA) is directly employed to create the
arresting gear model, and illustrates a natural application of IGA to this problem class. The fluid
mechanics and FSI simulation results are reported in terms of the arresting-gear rotor loads and
blade structural deformation and vibration. Excellent agreement is achieved with the experimental
results for the arresting gear design simulated in this work.

Keywords: Fluid–structure interaction; Hydraulic arresting gear; Isogeometric analysis;
Parametric design; NURBS; Hydrodynamic loading

1. Introduction

Military aircraft, during landing on the deck of an aircraft carrier, eject a “hook” that engages
a wire connected to a tape drum. The resultant tape-drum angular momentum is transferred to
the rotor inside a hydraulic energy absorber (or a hydraulic arresting gear). The rotor, which is
a steel structure several feet in diameter, accelerates rapidly, reaching speeds of 800 rpm. The
rotor acceleration is then arrested by the drag forces coming from the surrounding water inside the
arresting gear. This, in turn, puts the wire in tension and rapidly slows the aircraft forward motion.
The rotor speed and blade topology, geometry, and structural design play a critical role in the
performance of the device, both in its function to arrest the motion of landing aircraft, as well as in
its ability to withstand the internal hydrodynamic loads and perform multiple consecutive aircraft
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arrests without failure. As a result, accurate prediction of rotor loads and the structure response to
these loads is important, requiring advanced modeling and simulation, which we undertake in this
work.

Experimental study of the hydraulic arresting gear presents many challenges, which mainly
arise due to the large spatial scales and high rotor speeds involved in the device operation. The fact
that the device is completely enclosed complicates the situation further. However, the hydraulic
arresting gear lends itself nicely to analysis using computational fluid–structure interaction (FSI).
Computational FSI has matured significantly over the last decade and many core and special pur-
pose techniques were developed in this arena, which can be used to address the various challenges
involved in the arresting-gear problem (see, e.g., [1–37] and references therein for a sampling of
FSI methods developed in recent years.)

In addition to FSI, the present application lends itself nicely to Isogeometric Analysis
(IGA) [38, 39], which is a relative newcomer to the field of computational mechanics. The use of
IGA enables relatively simple construction of the arresting gear geometric and structural design, its
complete surface and volume parameterization, and analysis using the same underlying geometric
representation in terms of Non-Uniform Rational B-Splines (NURBS) [40] or T-splines [41, 42].

The paper is outlined as follows. In Section 2, we describe the geometry of the Virginia Tech
(VT) arresting gear design [43], which belongs to the Model 64 [44] energy absorber system.
We describe a novel technique for IGA analysis-suitable geometry construction of the arresting
gear design. We make use of a recently proposed interactive geometry modeling and parametric
design platform [45], which is based on the Rhino 3D CAD software [46] with an embedded
visual programming tool Grasshopper [47]. Rhino 3D gives the user access to complex geometry
modeling functionality with objects such as NURBS and T-splines, while Grasshopper is employed
for the generative algorithm approach to arresting-gear geometric design. In Section 3, we present
the governing equations involved in the FSI model and summarize the numerical formulations
employed. In Section 4, we present the results of standalone fluid and structural mechanics, and
FSI analyses of the VT arresting gear at full scale.

2. Geometry Modeling and Meshing for the Arresting Gear FSI Analysis

In this work we simulate the VT arresting gear design described in [43] and shown in Figure 1.
We consider a full-scale model with slightly simplified geometry, but with all the important struc-
tural components represented. The VT model has experimental data available for hydrodynamic
loads acting on the rotor operating at speeds ranging from 200 rpm to 800 rpm, which are typical
rotor speeds during the aircraft arrest. The availability of experimental data enables one to perform
methods validation at full scale, and to assess the computational effort needed for this challenging
problem class.
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Figure 1: Schematic representation of the VT hydraulic arresting gear [43].
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Figure 2: Left: Rotor cross-section with dimensions. Right: Rotor solid model.

Table 1: Arresting gear rotor dimensions.

Parameter Symbol Unit (in)
Hub thickness th 0.4

Hub height hh 7.96
Inner radius r 3.48
Outer radius R 21.75

Disc thickness td 1.0
Tip height ht 4.35

Blade thickness tb 0.348
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Figure 3: Generative algorithm for parametric geometry design of the arresting gear rotor expressed in a visual pro-
gramming interface Grasshopper.

Figure 4: Left: NURBS-based IGA model of the VT arresting gear, including rotor, stator, and outer casing. Right:
NURBS-based IGA model of the VT arresting gear with a zoom on the sliding interface between rotor and stator
domains.

The VT arresting gear design includes two main parts: A rotating turbine (rotor) and a station-
ary reel (stator). The rotor diameter is 43.5 in. Looking at half of the rotor and stator, there are
nine blades on the rotor side and eight vanes on the stator side, with a small gap present between
the rotor blades and stator vanes. The rotor cross-section geometry is shown in Figure 2, while the
key rotor geometric parameters and dimensions are summarized in Table 1.

Using this data input, the arresting gear fluid-mechanics-domain geometry is created with the
help of the interactive geometry modeling and parametric design platform described in [45]. The
generative algorithm employed for the rotor design is depicted in Figure 3. The algorithm, which
is implemented using the visual programming interface Grasshopper, takes the rotor parametric
input and, using the existing Rhino 3D functionality, constructs the underlying NURBS model
of the arresting gear geometry. The resulting rotor geometric model is shown in Figure 2. The
stator geometry is constructed in an analogous fashion. Figure 4 shows the complete arresting gear
geometry, as well as a view of the model interior showing the sliding interface design. The sliding
interface [48, 49] is needed for the fluid mechanics part of the FSI problem to account for the
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Figure 5: Rotor blade with clamped boundary conditions.

Figure 6: Tetrahedral mesh of the arresting-gear fluid-mechanics domain.

relative motion between the rotor and stator components. It is interesting to note that such objects
as sliding interfaces may also be modeled within the proposed design platform, which is an added
benefit of the approach employed.

In the FSI simulations, presented later in this article, the rotor blades are assumed to be flexible
shell structures. The blade structural components are also created inside the parametric design
platform. Figure 5 shows one of the blades superposed on the rotor model. Although the parametric
design platform was created to build analysis-suitable models for IGA, here we take advantage of
the modeling tool’s direct compatibility with automatic FEM mesh generation software, and create
the arresting-gear fluid-mechanics-domain mesh that consists of linear tetrahedral elements. The
finest mesh makes use of about 2 million tetrahedra, and is shown in Figure 6.
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3. Governing Equations and Numerical Methods

The hydrodynamics of the arresting gear is governed by the Navier–Stokes equations of in-
compressible flows, which are posed on a moving spatial domain and written in the Arbitrary
Lagrangian–Eulerian (ALE) frame [50] as follows:

ρ1

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u − f1

)
−∇∇∇ ·σσσ1 = 0, (1)

∇∇∇ · u = 0. (2)

Here ρ1 is the fluid density, u is the velocity, f1 is the body force per unit mass, and û is the velocity
of the fluid mechanics domain. The Cauchy stress, σσσ1, is given by

σσσ1 (u, p) = −pI + 2µε (u) , (3)

where p is the pressure, I is the identity tensor, µ is the dynamic viscosity, and ε (u) is the strain-rate
tensor defined as

ε (u) =
∇∇∇u +∇∇∇uT

2
. (4)

The time derivative in Eq. (1) is taken with respect to the fixed referential-domain coordinates x̂.
All space derivatives are taken with respect to spatial coordinates of the current configuration x.

The governing equations of structural mechanics are written in the Lagrangian frame [51] and
consist of the local balance of linear momentum:

ρ2

(
d2y
dt2 − f2

)
−∇∇∇ ·σσσ2 = 0. (5)

Here ρ2 is the structural mass density, f2 is the body force per unit mass, σσσ2 is the Cauchy stress,
and y is the unknown structural displacement. The time derivative in Eq. (5) is taken with respect
to the fixed material coordinates of the structure reference configuration.

Compatibility of the kinematics and tractions is enforced at the fluid–structure interface,
namely,

u −
dy
dt

= 0, (6)

σσσ1n1 +σσσ2n2 = 0, (7)

where n1 and n2 are the unit outward normal vectors to the fluid and structural mechanics domains,
respectively.
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To discretize the arresting-gear hydrodynamics, the ALE–VMS method [52, 53] and weakly
enforced essential boundary conditions [54–56] are employed. The former is an extension
of the residual-based variational multiscale (RBVMS) large eddy simulation (LES) turbulence
model [57] to moving domains using the ALE technique, while the latter acts as a “near-wall
model” in that it relaxes boundary-layer resolution requirements to achieve good accuracy of fluid
solution and loads prediction on meshes without excessive boundary-layer refinement [58–63].

In the arresting gear design the stator is located in close proximity of the rotor, leaving only
a small gap as the rotor blades pass the stator vanes during the device operation. To capture
the complex dynamics of arresting-gear rotor-stator interaction, the sliding-interface technique
from [48, 49] is employed. We note that a similar method, called the slip-interface technique,
was proposed more recently in the context of space–time FEM in [64], as an alternative to other
space-time methods [65–70] developed to address this class of computational challenges.

The structural mechanics of rotor blades (the stator vanes are assumed to be rigid) is modeled
using Kirchhoff–Love shells [71, 72]. These are discretized using IGA based on NURBS [38, 39]
and make use of only displacement degrees of freedom. Using rotation-free IGA shells to model
the blades presents a good combination of efficiency, since no rotational degrees-of-freedom are
employed, accuracy, since NURBS are a higher-order accurate discretization technique [73], and
robustness.

The coupled FSI problem is formulated using an augmented Lagrangian approach for FSI,
which was originally proposed in [35] to handle boundary-fitted mesh computations with non-
matching fluid–structure interface discretizations. The key feature of the method is formal elimi-
nation of the Lagrange multiplier variable, which results in weak enforcement of the fluid–structure
interface compatibility conditions using only primal variables (i.e., fluid velocity and pressure, and
structure displacement), and, as a consequence, leads to increased efficiency compared to classical
Lagrange-multiplier-based methods.

To accommodate the global rotor motion with superposed local blade elastic deformation, and
to maintain a moving-mesh discretization, the fluid domain mesh is updated as follows. While at
the fluid–structure interface the fluid mechanics mesh follows the motion of the blades, the outer
boundaries of the rotor subdomain are restricted to only undergo rigid rotation. This choice of
domain motion preserves the geometry of the sliding interface. The rest of the mesh motion is
obtained by solving the equations of elastostatics with Jacobian-based stiffening [4, 74–78].

The generalized-α method [79–81] is employed to advance to FSI equations in time, while
block-iterative coupling strategy [2–4, 32] is used to solve the coupled FSI system at each time
step.

For a comprehensive discussion of numerical discretization techniques, coupling strategies,
and application to a large class of problems in engineering we refer the reader to a recent book on
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Table 2: Element and time-step sizes employed in the mesh convergence study.

Mesh 1 Mesh 2 Mesh 3 Mesh 4
Element size (in) 3.0 2.0 1.0 0.5
Time step size (s) 7.5 × 10−4 5.0 × 10−4 2.5 × 10−4 1.25 × 10−4

Number of elements 16,395 49,644 314,462 2,008,047

Table 3: Rotor-torque values obtained in the mesh convergence study.

Torque (ft lb)
Mesh 1 Mesh 2 Mesh 3 Mesh 4 Exp.

200 rpm 4,690 6,294 6,215 6,116 6,196
400 rpm 17,734 23,714 26,559 24,730 24,782
600 rpm 37,726 50,963 59,948 56,924 55,760
800 rpm 63,991 87,302 107,043 104,733 99,128
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Figure 7: Rotor-torque values obtained in the mesh refinement study of the hydraulic arresting gear. Excellent mesh
convergence results are achieved for all rotor speeds. Note that the mesh corresponding to the blue curve gives
reasonably accurate results while consisting of only slightly over 300,000 elements.

computational FSI [32].

4. Simulations of the VT Arresting Gear Model

4.1. Mesh convergence study for the fluid mechanics simulation

We first perform standalone fluid mechanics computations assuming the structure is rigid and
rotor speed is prescribed. Four cases corresponding to rotor speeds ranging from 200 rpm to
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Figure 8: Left: Angular acceleration time history; Right: Rotor speed time history.

800 rpm at 200 rpm intervals are computed. Furthermore, mesh refinement in each case is per-
formed to assess the mesh resolution requirements in achieving the desired level of accuracy in the
rotor hydrodynamic torque prediction. Table 2 shows the element and time-step sizes employed in
the mesh convergence study. For this study the simulations are started impulsively and continued
until a statistically-stationary value of the rotor torque is achieved.

The results of the mesh refinement study are shown in Table 3 and Figure 7. Four meshes,
with the numbers of elements given in Table 2, are employed for each rotor speed simulated. In
all cases, good convergence of the numerical solution under mesh refinement is obtained. The
converged results are in very good agreement with the experimental torque data. Note that, a
coarse mesh of a little over 300,000 elements is already capable of producing accurate rotor loads,
especially for lower-rpm cases.

Remark 1. We also note that such an excellent comparison between the simulation results and
experimental data across a wide range of rotor speeds is achieved for this arresting gear model for
the first time. The numerical results presented in [43], for example, obtained with a commercial
code, showed a gross underestimation of the rotor torque without providing a good explanation
for the discrepancies observed. In our opinion these were likely due to several factors, the most
prominent being the lack of mesh resolution in combination with inadequate treatment of no-slip
wall boundary conditions.

4.2. Ramp-up simulation

In this section we present a standalone fluid mechanics arresting-gear ramp-up simulation,
which is representative of the device operation during the aircraft arrest. For this, we employ the
second finest mesh in Table 2, and prescribe time-dependent rotor speed. We assume the rotor
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Figure 9: Time history of the rotor hydrodynamic torque for the terminal rotor speed of 800 rpm. Experimentally
measured torque value at constant rotor speed of 800 rpm is plotted for comparison.

angular acceleration decreases from 670.2 rad/s2 to zero within 0.25 s, at which point the rotor
reaches the terminal speed of 800 rpm. Time history of the rotor acceleration and speed are plotted
in Figure 8. The resulting rotor torque time history is shown in Figure 9. Within 0.25 s, the
torque rapidly climbs to a statistically-stationary value that is consistent with the impulsive-start
simulation results presented in Table 3 and Figure 7.

Figure 10 shows the flow speed isosurfaces at four different time instants as the rotor spins
inside the arresting gear. The flow quickly transitions to turbulence and appears to be fully devel-
oped and statistically stationary soon after the terminal rotor speed is achieved. The full turbulent
cascade, from large vortices to small eddies, is present inside the arresting gear, which is causing
additional resistance to rotor motion. Instantaneous pressure contours on the rotor are shown in
Figure 11. Note that the pressure distribution is not symmetric, which is in part due to the unsteady,
turbulent nature of the flow, and in part due to the asymmetry of the arresting gear geometry stem-
ming from the different number of rotor blades and stator vanes employed. Additionally, although
the flow is unsteady and pressure fluctuates significantly, maximum pressure loads act somewhere
between the blade midspan and tip. Also note that the magnitude of the suction pressure is as high
as that of the positive stagnation pressure, and, in some cases, even exceeds it. These are important
considerations in case one is trying to create a low fidelity fluid mechanics model as a surrogate
for the high fidelity one.
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(a) t = 0.0875 s. (b) t = 0.015 s.

(c) t = 0.25 s. (d) t = 0.45 s.

Figure 10: Isosurfaces of water speed for the ramp-up simulation at different time instants showing the development
of complex, recirculating turbulent flow.

4.3. Mesh convergence study for the structural mechanics simulation

In this section we perform a mesh convergence study for the arresting gear blade structure.
We first compute the blade structural response under prescribed static constant pressure load. The
applied pressure of 139 psi is chosen to match the total rotor torque of 99,128 ft lb, which is
the experimentally reported value for the rotor speed of 800 rpm. We also perform the rotor
blade natural frequency computations. The blade is assumed to be clamped to the rotor hub and
disc, which results in the boundary conditions shown in Figure 5. The blade material properties
correspond to that of stainless steel, which is isotropic and has Young’s modulus of 29,007.5 ksi,
Poisson’s ratio of 0.27, and mass density of 499.4 lb/ft3. The blade is also assumed to have a
constant thickness of 0.348 in.

Both maximum displacement under the pressure load and blade fundamental frequency exhibit
good convergence with mesh refinement as shown in Figure 12. The third mesh, which is com-
prised of cubic NURBS and has about 300 control points, produces essentially converged values
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Figure 11: Pressure (in psi) on the rotor surface at a time instant after the terminal rotor speed is reached. Note that
the pressure solution is completely non symmetric, which is a consequence of the unsteady, turbulent nature of the
flow, and the asymmetry of the arresting gear geometry stemming from the different number of rotor blades and stator
vanes employed.
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Figure 12: Mesh convergence study for a single-blade structural mechanics simulation.

for both quantities, and is thus chosen for the FSI simulations presented in the sequel. Figure 13
shows contours of the blade displacement magnitude and maximum in-plane principal Green–
Lagrange strain (MIPE) for the pressure load case. Maximum displacement reaches 0.00935 in
at the top free edge. The highest MIPE is concentrated around the bottom clamped edge, and is
located directly below the region of maximum blade deflection.
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(a) Displacement magnitude. (b) MIPE.

Figure 13: Single-blade structural mechanics simulation.
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Figure 14: Fluid mechanics domain built with an assumption of a solid blade superposed with the blade structural shell
midsurface. This discretization choice creates a geometric and parametric mismatch between the fluid and structural
meshes at their interface. However, such situations are naturally handled in the FSI framework employed in this study.

4.4. FSI simulation

In this section we present FSI simulation results for the VT arresting gear model. In the model
the casing, the middle plate, and the stator vanes are assumed to be rigid, while the rotor blades
are assumed to be flexible. Because the fluid mechanics mesh is built with an assumption of a
solid blade, while a shell model is used for the blade structure, the fluid and structural meshes are
mismatched both geometrically and parametrically at their interface (see Figure 14). However, the
FSI framework employed here is naturally suited for such situations [35].

We perform FSI simulations using ramp-up conditions described in Section 4.2, which lead to
the terminal rotor speed of 800 rpm. We test two cases corresponding to the blade thickness of
0.348 in (Case 1) and 0.226 in (Case 2). Figure 15 shows instantaneous blade-structure deformed
configuration and the surrounding turbulent flow field for Case 1.

We extract the displacement histories for two spatial locations, labeled No. 271 and No. 288,
and shown in Figure 16. The displacement magnitude at both locations is shown, in the time
and frequency domains, in Figures 17 and 18. Although the thinner Case 2 exhibits displacement
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Figure 15: Rotor blade deflection contours superposed with the flow speed isosurfaces for Case 1.

271$288$

Figure 16: Two spatial locations on the blade midsurface where the displacement time history is analyzed.

levels that are 2.5 times larger than Case 1, the blade displacement magnitudes are relatively small
compared to the device length scale in both cases. The frequency of rotor-stator interaction (i.e.,
the frequency at which the rotor blade passes the stator vane) is 106.67 Hz. That frequency is
clearly visible in the frequency-domain displacement plots. Several harmonics of that frequency
are also excited in the blade response, which is especially pronounced for the thinner blade at
location No. 288. Contours of the blade displacement and MIPE are shown in Figures 19 and 20.

The rotor-torque time history, including comparison between the FSI and rigid-rotor simula-
tions, is shown in Figure 21. Due to the relatively small blade deformation, the mean values of
the torque are similar for the FSI and rigid-rotor simulations. As expected, the thinner blade gives
a more pronounced FSI effect. The frequency content, however, is quite different for the FSI and
rigid-rotor simulations, especially for Case 2. In the FSI computation much higher frequencies are
produced in the rotor-torque signal than in the rigid-rotor computation.
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Figure 17: Blade displacement magnitude at location No. 271.
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Figure 18: Blade displacement magnitude at location No. 288.

Remark 2. The computations reported in this work are carried out in a parallel computing en-
vironment on a cluster with compute nodes consisting of two eight-core Xeon E5-2680 2.7GHz
processors and 32GB of memory. A description of the parallelization strategy employed may be
found in [82]. Using Mesh 3 as an example, for both standalone fluid mechanics and FSI simula-
tions, the fluid mesh is partitioned into 18 subdomains using METIS [83], and each subdomain is
assigned to a processor core. The structural mesh for a single blade is not partitioned. However,
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(a) Case 1. (b) Case 2.

Figure 19: Contours of blade displacement magnitude. (A scaling factor of 100 is applied to the displacement for
visualization.)

(a) Case 1. (b) Case 2.

Figure 20: Contours of MIPE. (A scaling factor of 100 is applied to the displacement for visualization.)
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Figure 21: Rotor-torque time history for FSI and rigid-rotor simulations, the latter denoted by “CFD torque”.
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each blade is assigned to a different processor core to improve overall efficiency. For the simu-
lations in Figure 21b, we use three Newton iterations per time step, with 100 to 125 diagonally-
preconditioned-GMRES iterations. The standalone fluid mechanics and FSI computations take 1.8
and 2.7 hours, respectively, to run 500 time steps.

5. Conclusion

In this work we developed a “pipeline” for geometry modeling and predictive FSI simulation of
hydraulic arresting gears at full scale. A parametric modeling platform recently proposed in [45]
was adapted to generate analysis-suitable IGA models for this complex system. The FSI simula-
tions were carried out for the VT arresting gear model using a combination of IGA to discretize the
structural mechanics part, and FEM to discretize the hydrodynamics part of the coupled problem.
Careful mesh convergence studies were performed for standalone fluid and structural analyses of
the VT arresting gear model. One of the findings of the mesh convergence study was that despite
the underlying complexity of the turbulent flow inside the arresting gear, a relatively modest size of
fluid mechanics mesh was needed to accurately capture the rotor hydrodynamic loads. This good
accuracy is attributable to the use of the ALE-VMS technique with weakly enforced boundary
conditions as the underlying numerical methodology. The FSI simulations produced rotor blade
displacements that are relatively low compared to the device length scale. However, the vibra-
tional response predicted the presence of multiple highly pronounced frequencies, especially for
the thinner blade design. This finding is intriguing and needs to be investigated in the future work.
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