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This study aims to develop a two-dimensional dispersion relation-preserving Petrov-Galerkin
finite-element model for effectively resolving convective instability in the simulation of
incompressible viscous fluid flows in moving meshes. The developed test functions, which
accommodate better dispersive nature, are justified through the convection-diffusion
equation and the Navier-Stokes equations. For moving-boundary problems, the fluid flows
over an oscillating square cylinder and are investigated in the contraction-and-expansion
channel. Through several benchmark tests, the dispersion relation-preserving Petrov-Galerkin
finite-element model developed within the arbitrary Lagrangian-Eulerian formulation has
been shown to be highly reliable to investigate a wide range of incompressible flow problems
in moving meshes.

1. INTRODUCTION

The subject of resolving the computational difficulty related to the inherent
divergence-free velocity vector in incompressible Navier-Stokes equations, cast in
their primitive-variables form, has been a challenging simulation task for many
decades. Suppressing the predicted velocity oscillations due to the erroneous treat-
ment of advection terms has been known to be another major difficulty. Besides
the stability consideration, the prediction quality should also be judged from an
accuracy viewpoint. The enhanced stability by virtue of adopting the upwinding
approximation is often overshadowed by the numerically introduced cross-wind
diffusion error. This type of error may overspread the solution profile and thus
can contaminate the real physics, particularly, for a problem involving a steep gradi-
ent of the field variable. As a result, many researchers have attempted to improve the
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prediction accuracy and at the same time to acquire enhanced convective stability.
Many ideas have been spawned in the literature to alleviate the problem of accuracy
deterioration without sacificing numerical stability.

Petrov-Galerkin (PG) finite-element methods have been applied with great
success to solve the convection-diffusion equation. Among them, the streamline
upwind Petrov-Galerkin (SUPG) model of Brooks and Hughes [1] has been most
widely applied to predict the flow problem with a prevailing convection. In the pres-
ence of boundary and internal sharp layers, the predicted SUPG solution quality can
deteriorate further. To resolve the spurious oscillations of these types, Mizukami and
Hughes [2] modified the SUPG model and constructed stiffness matrix equations
which accommodate the maximum principle [3–5]. Instead of modifying the test
functions, Rice and Schnipke [6] and Hill and Baskharone [7] proposed a monotonic
finite-element model by integrating the convection term along the local streamline.
An exponential weighting function proposed by Ahues and Telies [4] was also shown
to be able to construct an M-matrix such that a high-gradient solution can be
smoothly captured. The present study is aimed to develop a new bi-quadratic
Petrov-Galerkin finite-element model to predict the unsteady incompressible
Navier-Stokes (NS) equations at high Reynolds numbers. To enhance the convective
stability and retain the dispersive nature, the dispersion relation-preserving (DRP)
theory [8] will be adopted in the derivation of the present two-dimensional mixed
finite-element model.

In Section 2 the incompressible Navier-Stokes equations are formulated within
the arbitrary Lagrangian-Eulerian (ALE) framework. In Section 3 the dispersion
relation-preserving theory is applied to solve the convection-diffusion equation so
that the dispersion error in the bi-quadratic finite elements can be minimized. In
order to verify the proposed dispersion relation-preserving Petrov Galerkin
(DRP-PG) finite-element model, in Section 4 several benchmark scalar transport
problems and in Section 5 Navier-Stokes problems are investigated. Attention will
focus on the scheme effectiveness. In Section 6, the flow fields over an oscillating
square and in the contraction-and-expansion channel are analyzed. In Section 7,
we conclude this study with some remarks.

2. WORKING EQUATIONS IN MOVING MESH

In a bounded domain, the incompressible Navier-Stokes equations cast in
primitive variables u and p are considered to investigate the flow motion in viscous
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Cd drag coefficient !Fd= 1
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f body force per unit volume
Fd drag force
Fl lift force
k diffusion coefficient defined in Eq. (5)

L characteristic length
Re Reynolds number (!u1L=n)
ug grid velocity vector [!(ug, vg)]
u1 characteristic velocity
a actual wavenumber vector
~aa effective wavenumber vector



fluids. Subject to the initial and boundary conditions, the dimensionless unsteady
elliptic-parabolic partial differential equations can be written as

r " u ¼ 0 ð1Þ

ut þ u "ru ¼ 'rpþ 1

Re
r2uþ f ð2Þ

In Eq. (2), the Reynolds number is defined by Re¼ u1L=n, where n is the kinematic
viscosity of the fluid and L and u1 are the user-specified characteristic length and
velocity, respectively. Specification of boundary velocities alone is known to be rig-
orous to close the system of Eqs. (1)–(2) [9]. Any specification of boundary pressure
will overdetermine the above elliptic-parabolic time-dependent incompressible NS
equations. In this study the continuity and momentum equations (1)–(2) will be
solved simultaneously by a mixed finite-element method in order to preserve the
mass conservation law unconditionally.

When simulating a time-varying physical problem, the transient incompressible
viscous equations need to be solved in the moving meshes. Within the arbitrary
Lagrangian-Eulerian framework [10], the geometric conservation law (GCL) [11] is
chosen to be the theoretical guidance to calculate the grid velocity ug shown in the fol-
lowing dimensionless working equations, which are formulated in moving meshes [12]:

r " u ¼ 0 ð3Þ

ut þ ðu' ugÞ "ru ¼ 'rpþ 1

Re
r2uþ f ð4Þ

Approximation of grid velocity by means of ug ¼ ðug; vgÞ½!ðxnew'xoldÞ=Dt; ðynew'
yoldÞ=Dt) has been shown in [13] to yield the GCL.

3. DISPERSION RELATION-PRESERVING FINITE-ELEMENT MODEL

Due to the resemblance of the linearized incompressible flow equations, the
convection-diffusion transport equation with constant diffusion coefficient k and
velocity vector u¼ (u, v) given below will be considered in a simply connected domain:

/t þ u/x þ v/y ¼ kð/xx þ /yyÞ ð5Þ

The solution vector for /̂/ is sought by demanding the residual defined by R ¼ /̂/tþ
u/̂/x þ v/̂/y ' kð/̂/xx þ /̂/yyÞ be orthogonal to the space of weighting functions. Within
the Petrov-Galerkin context, the test space Wi is chosen to be different from the trial
space Mi. By substituting /̂/ ¼

P
Miðn;gÞ/i, where Mi(i¼ 1, 2, . . . , 9) are the

bi-quadratic interpolation functions, into the weighted residuals statement, a matrix
equation in the nine-node isoparametric bi-quadratic element can be derived.

To develop a computationally stable and numerically accurate weighted-
residuals finite-element model, the test space is constructed by adding a rigorously
derived stabilizing term along the primary flow direction. The resulting weighting func-
tion for Eq. (5) in a domain ofmesh size h takes the formWi ¼ Mi þ shðqMi=qxkÞ, where



s is the undetermined Petrov-Galerkin upwinding coefficient. To eliminate possible
spurious pressure modes, the element featured with bi-quadratic basis function Mi

for u and continuous bi-linear basis function for p is adopted to satisfy the LBB
(or the inf-sup) condition. The finite-element approximation of /x, for example, takes
the following form:
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To develop an advection model accommodating the dispersion relation-
preserving property for the first-order derivative terms shown in Eq. (5), it is natural
to preserve their numerical dispersion relations. This relation can be derived by
conducting the spatial Fourier transform for the first-order derivative term. Thanks
to the underlying DRP theory [8], the dispersiveness, dissipation, group and phase
velocities for each wave component supported by the first-order derivative term
can be well modeled [14]. The modified equation analysis, which involves truncated
Taylor series, will be used together with the Fourier transform analysis [15] to get the
same or almost the same dispersion relations as /x and /y for the advective terms.

The Fourier transform and its inverse for a scalar /(x, y) can be respectively
expressed by

~//ða; bÞ ¼ 1

ð2pÞ2

Z þ1

'1

Z þ1

'1
/ðx; yÞ e'iðaxþbyÞ dxdy ð7Þ

/ðx; yÞ ¼
Z þ1

'1

Z þ1

'1
~//ða; bÞ eiðaxþbyÞ dadb ð8Þ

By performing the spatial Fourier transform on each term shown in the algebraic
equation for (6), the first component of the actual wavenumber vector a ½!ða; bÞ)
can be derived as

a * 'i

h
a1e

'iðahþbhÞ þ a2e
'ibh þ a3e

iðah'bhÞ þ a4e
'iah þ a5 þ a6e

iah
h

þ a7e
'iðah'bhÞ þ a8e

ibh þ a9e
iðahþbhÞ

i
ð9Þ

The right-hand side of Eq. (9), which is regarded as the effective wavenumber ~aa in
~aa ¼ ð~aa; ~bbÞ, is given by

~aa ¼ 'i

h
a1e

'iðahþbhÞ þ a2e
'ibh þ a3e

iðah'bhÞ þ a4e
'iah þ a5 þ a6e

iah
h
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iðahþbhÞ

i
ð10Þ



where i ¼
ffiffiffiffiffiffiffi
'1

p
. Similarly, the effective wavenumber ~bb for /y can be derived as

~bb ¼ 'i

h
b1e

'iðahþbhÞ þ b2e
'ibh þ b3e

iðah'bhÞ þ b4e
'iah þ b5 þ b6e

iah
h

þ b7e
'iðah'bhÞ þ b8e

ibh þ b9e
iðahþbhÞ

i
ð11Þ

Note that ~aa approximates a in the sense that it is the wavenumber of the Fourier
transform of the PG finite-element equation shown in (6).

To preserve dispersion, the value of ~aa is chosen to make it close to a over an
adequate wavenumber range. In the weak sense, the value of jah' ~aahj2 (or its inte-
grated error E) should approach zero over a wavenumber range that can adequately
define the entire period of the sine (or cosine) wave. For this reason, the wavelengths
should be larger than a length that is four times the mesh size h, or jahj< p=2. One
can therefore define E(a) in the range of 'p=2+ c1, c2+ p=2 as follows:

EðaÞ ¼
Z p=2

'p=2

Z p=2

'p=2
ah' ~aahj j2dðahÞdðbhÞ ¼

Z p=2

'p=2

Z p=2

'p=2
c1 ' ~cc1j j2dc1dc2 ð12Þ

where (c1, c2)¼ (ah, bh). To minimize E, the condition given by qE=qai¼ 0, where
i¼ 1–3, 5, 7–9, in the schematic in Figure 1, is enforced to derive seven algebraic
equations. For the sake of accuracy, Taylor series expansion on /i,1,j, /i,j,1, /i,1,

j,1 is performed to eliminate the leading error term shown in the modified equation.
By eliminating the coefficient for / and keeping the coefficient as 1 for /x, two more
algebraic equations can be derived. By virtue of the nine theoretically derived
algebraic equations, one can calculate the parameters s1–s9, summarized in
Table 1, by taking both the accuracy and the dispersion aspects into account. For
the detailed expression of s shown in Eq. (6) using the proposed DRP-PG finite-
element model, the reader can refer to [16].

Figure 1. Schematic of a bi-quadratic element. Corner nodes (1, 3, 7, 9), side nodes (2, 4, 6, 8), and center
node (5).

Table 1. Derived DRP-PG parameters for s1–s9

s7¼'2.240150 s8¼ 0 s9¼ 2.240150
s4¼ 0.560037 s5¼ 0 s6¼'0.560037
s1¼'2.240150 s2¼ 0 s3¼ 2.240150



4. VERIFICATION OF THE DRP-PG MODEL

4.1. Convection-Diffusion Problem of Smith and Hutton

The first benchmark problem will be investigated in a square, within which the
velocity field is prescribed as u¼ 2y(1–x2), v¼'2x(1–y2), as shown in the schematic
in Figure 2. Along the line '1+ x+ 0, y¼ 0, / is prescribed as [17]

/ð'1 + x + 0; y ¼ 0Þ ¼ 1þ tanh½10ð2xþ 1Þ) ð13Þ

On the boundaries of x¼'1, y¼ 1, and x¼ 1, / is specified as 1'tanh(10). Along
the line given by 0+ x+ 1, y¼ 0, a zero gradient condition for / is imposed.

Given the fixed grid size of Dx ¼ Dy ¼ 1=50, the finite-element solutions will be
calculated at k¼ 10'12, 10'10, 10'8, 10'6, 10'4, 10'2, and 10'1. Figures 3a and 3b
reveal the efficacy of the proposed finite-element model. The effects of the diffusivity
coefficient k and the number of elements are summarized in Figures 3c and 3d based
on the simulated solutions plotted at the exit boundary.

4.2. Mixing of Fluids with Different Temperatures

Mixing of warm and cold fluids in a domain of '4+ x, y+ 4 is also investi-
gated at k¼ 0. The problem schematic in Figure 4a has the analytical solution
/ðx; y; tÞ ¼' tanh½ðy=2Þ cosx t' ðx=2Þ sinxt) [18], where x(!vt=vtmax) denotes the
rotation frequency and vt[!sech2(r) tanh(r)] is the tangential velocity at the location
which is apart from (0, 0) with a distance of r. The vtmax is denoted as the maximum
tangential velocity, which is 0.385 for this problem.

The distribution given by /(x, y, t¼ 0)¼'tanh(y=2) will be transported by the
specified rotational velocity field (u¼'xy, v¼xx). Figure 4b shows the solution /(x,
y, t¼ 4) predicted at Dt¼ 0.01 and Dx¼Dy¼ 0.1. Due to the rotating velocity field,
the predicted / was seen to take a spiral form, and its value changed sharply near
the interface of the warm and cold fluids. The predicted finite-element solutions

Figure 2. Schematic of the Smith-Hutton problem considered in Section 4.1.



plotted in Figure 5 show good agreement with the analytical solutions for the four
cases investigated at the angles h of 0-, 45-, 90-, 135- in the schematic in Figure 4a.

5. VERIFICATION OF THE DRP-PG NAVIER-STOKES MODEL

5.1. Backward-Facing Step Flow Problem

To benchmark the Navier-Stokes finite-element model, the flow in a
backward-facing step channel, schematic in Figure 6a, is considered. The expansion

Figure 3. Predicted / solutions at different values of k for the problem considered in Section 4.2 using the
proposed DRP-PG finite-element model: (a) solution computed at k¼ 10'12; (b) solution contours com-
puted at k¼ 10'12; (c) solution profiles for /(0+x+ 1, y¼ 0) obtained at different values of k; (d) solution
profiles for /(0+ x+ 1, y¼ 0) obtained at k¼ 10'12 and different bi-quadratic elements.



ratio of the height of the backward-facing step, h, to the height of the downstream
channel, H, is h:H¼ 1:2. A fully developed flow profile is prescribed at the inlet. The
no-slip condition is imposed at the solid walls, and the traction-free condition [19] is
applied at the exit plane. The downstream channel length L is chosen to be L¼ 20 in
the current calculation. For the sake of comparison, we define x1, as shown in
Figure 6a, as the reattachment length of the recirculation region formed downstream
of the channel step. We also define x2 and x3 as the separation and reattachment
lengths of the upper eddy, respectively.

The problem with the boundary conditions schematic in Figure 6b will be
investigated at Re¼ 100, 200, 400, 600, and 800, where Re is defined on the basis
of the downstream channel height H and the average inlet velocity uavg. A parabolic
profile u(0.5+ y+ 1)¼ 24(1–y)(y–0.5) is specified at the channel inlet. A grid spacing
of 1=40 was used for each calculation. The lengths x1, x2, and x3 calculated at differ-
ent Reynolds numbers are tabulated in Table 2 and plotted in Figure 7a. The solu-
tions obtained at Re¼ 800 show good agreement with the other benchmark results
(normalized with H) in Table 3. Also, the benchmark solutions of Gartling [20]
for u at x¼ 7 and 15 are plotted in Figure 7b.

5.2. Flow Over a Square Cylinder

The region of current interest is related to the flow over a square cylinder
shown in Figure 8, where xu¼ 5, d¼ 1, xd¼ 20, and H¼ 13. The height of the square
cylinder (d) and the average velocity at the inflow boundary (u) are used to normalize
the length and the velocity, respectively. The boundary conditions involve prescrib-
ing the uniform inflow velocity (u¼ 1, v¼ 0), the no-slip condition (u¼ v¼ 0) on the
square surface, qu=qy¼ v¼ 0 at the upper and lower boundaries, and the traction-
free condition on the outlet boundary.

Figure 4. (a) Schematic of the angle h for the problem considered in Section 4.2, (b) Predicted solution
contours.



The forces acting on the square cylinder can be subdivided into the drag
coefficient (Cd) and the lift coefficient (Cl), which are defined respectively as
Fd=ð12 qu

2dÞ and Fl=ð12 qu
2dÞ, where Fd and Fl are known as the drag and lift forces

induced on the square cylinder. These two forces are obtained by appropriately inte-
grating the pressure and shear-stress resistances over the square prism. The lift force
fluctuation is directly associated with the eddy formation and eddy shedding, and
therefore its magnitude will be varied between a positive and a negative maximum.

The time histories ofCd,Cl, and other integral parameters show a periodic struc-
ture with a dominant harmonic at different Reynolds numbers. Each cycle involves a
pair of shedding eddies from the prism. The drag coefficient is oscillated at twice the

Figure 5. Comparison of analytic and predicted solutions for the problem considered in Section 4.2. The
angle h was defined in Figure 4a. (a) h¼ 0-; (b) h¼ 45-; (c) h¼ 90-; (d) h¼ 135-.



frequency of the lift coefficient, as the drag is not sensitive to the asymmetry of the
shedding. Table 4 summarizes some useful design parameters obtained at different
Reynolds numbers, such as the time-averaged drag coefficient ðCdÞ, the root-mean-
square lift coefficient (Cl,rms), and the Strouhal number (St). Here, Cl,rms is defined
as ðC2

l Þ
1=2, while the Strouhal number St is given by fd=u, where the vortex shedding

frequencies f (shown in Figure 9) are calculated from the power-spectrum analysis.
The present results show good agreement with the benchmark data given in
Tables 5 and 6.

6. NUMERICAL RESULTS

6.1. Flow Over a Square Cylinder Oscillating along the x Direction

Fluid flow over a square cylinder (prism), which is oscillated along the mean
flow direction, will be investigated at Re¼ 200. The purpose of performing this simu-
lation is to study the interaction between the vortex-shedding and the forced cylinder
oscillations. Also, the occurrence of lock-in phenomenon and the influence of

Figure 6. Schematic of backward-facing step problem considered in Section 5.1: (a) geometry and
illustration of two recirculation regions; (b) boundary conditions.

Table 2. Predicted reattachment and separation lengths (schematic in Figure 6a),
versus Reynolds numbers

Re

100 200 400 600 800

x1 1.4484 2.4967 4.1900 5.2032 5.7396
x2 — — — 4.3688 4.6500
x3 — — — 7.8390 10.0211



frequency and amplitude on the cylinder oscillations will be investigated. For the
sake of accuracy, a very fine grid is distributed near the edges of the cylinder because
of the large velocity and pressure gradients in this region. The dimensionless time
step Dt¼ 0.05 was selected for the case considered at Re¼ 200.

A square cylinder is forced to oscillate harmonically along the uniform flow as
shown in Figure 10. The displacement of the cylinder is given by x¼Asin(2pfct),
where A is the oscillation amplitude and fc is the cylinder oscillating frequency.
The boundary conditions are similar to those of the stationary case considered in
the previous section. The fixed cylinder corresponds to the case considered at
A¼ 0, and it is the reference case for the evaluation of numerical results, which will

Figure 7. Comparison of predicted solution with other predicted results: (a) reattachment lengths x1;
(b) u-velocity profiles at x¼ 7; (c) u-velocity profiles at x¼ 15.



Table 3. Comparison of dimensionless reattachment and separation lengths (schematic in Figure 6a), for
backward-facing step flow problem investigated at Re¼ 800

Lower eddy
reattachment

Upper eddy
separation

Upper eddy
reattachment

Authors x1=H x2=H x3=H

Without inlet channel Gartling [20] 6.10 4.85 10.48
Gresho et al. [21] (FDM) 6.08 4.84 10.46
Gresho et al. [21] (SEM) 6.10 4.86 10.49
Sani and Gresho [22] 6.22 5.09 10.25
Barton [23] 6.02 4.82 10.48
Keskar and Lyn [24] 6.10 4.85 10.48

With inlet channel Barton [23] 5.75 4.57 10.33
Wan et al. [25] 5.02 — —
Abide and Viazzo [26] 5.90 — —
Present 5.64 4.65 10.02

Figure 8. Schematic of computational domain and boundary conditions for flow over a square cylinder
considered in Section 5.2.

Table 4. Predicted parameters at different Reynolds numbers for flow
over a square cylinder

Re Cd Cdp Cl,rms St Dt

45 1.764 1.522 — — 0.05
50 1.696 1.487 — — 0.05
55 1.669 1.481 0.051 0.124 0.05
100 1.481 1.425 0.134 0.142 0.05
200 1.449 1.481 0.316 0.164 0.05



be presented later. We also define fo as the natural shedding frequency and fv as the
vortex-shedding frequency. The simulated natural shedding frequency fo¼ 0.164
shows good agreement with the reference values given in Table 6 at Re¼ 200.

A closer inspection of the flow reveals that the square motion can control the
instability mechanism that will result in a vortex shedding. Hence, the flow generated
by such a vortex shedding around a vibrating bluff body can cause a significant dif-
ference from the flow around a fixed cylinder to occur. When the cylinder is forced to
oscillate, two periodic motions, one with the vortex-shedding frequency fo and the

Figure 9. Predicted power spectrum for drag and lift coefficients at Re¼ 100 and 200: (a) drag coefficient
at Re¼ 100; (b) lift coefficient at Re¼ 100; (c) drag coefficient at Re¼ 200; (d) lift coefficient at Re¼ 200.

Table 5. Comparison of predicted Cd , Cl,rms, and St for flow over a
square cylinder at Re¼ 100

Authors Cd Cl,rms St

Okajima [27] — — 0.135
Davis and Moore [28] 1.640 — 0.153
Franke et al. [29] 1.610 — 0.154
Arnal et al. [30] 1.420 — 0.153
Li and Humphrey [31] 1.750 — 0.141
Sohankar et al. [32] 1.478 0.153 0.146
Pavlov et al. [33] 1.510 0.137 0.150
Wan et al. [25] 1.523 0.148 0.153
Present 1.481 0.134 0.142



other with the forced cylinder motion frequency fc, will interact with each other. This
interaction is responsible for the flow phenomena which are manifested by the ratio
fc=fo and the dimensionless maximum cylinder displacement A. These parameters
can be used to characterize various interference regimes. The relationship of fo, fc,
and fv shown in Figure 11 confirms the presence of the lock-in phenomenon that
was previously predicted by Steggel and Rockliff [34]. A flow regime with a strong
interaction, called the lock-in phenomenon, between the forced cylinder motion
and the natural vortex shedding describes the synchronization of the two oscilla-
tions. The natural vortex shedding adapts its frequency to that of the forced cylinder
motion. The occurrence of the lock-in phenomenon depends on the frequency (fc)
and the amplitude (A) of the forced cylinder motion. Each data point plotted in
Figure 11 is the result of a separate calculation, and the discrete points have been
connected by a line for better illustration of the plateau predicted in the vicinity
of fc=fo¼ 2, at which the lock-in phenomenon occurs. This graphical evaluation is
proper for demonstrating the interaction between frequencies fc and fv. When there
is no interaction, the vortex-shedding frequency fv and the natural frequency fo
observed over the fixed cylinder are of equal magnitude. The value of fc at which
the lock-in phenomenon occurs depends on the amplitude A.

Table 6. Comparison of predicted Cd , Cl,rms, and St for flow over a
square cylinder at Re¼ 200

Authors Cd Cl,rms St

Okajima [27] — — 0.140
Davis and Moore [28] 1.710 — 0.165
Franke et al. [29] 1.600 — 0.157
Steggel and Rockliff [34] 1.466 0.353 0.154
Sohankar et al. [32] 1.462 0.377 0.150
Pavlov et al. [33] 1.560 0.376 0.156
Present 1.449 0.316 0.164

Figure 10. Schematic of flow over a square cylinder, oscillating along the x direction, considered in
Section 6.1.



6.2. Flow in a Time-Varying Contraction-and-Expansion Channel

In the two-dimensional contraction-and-expansion channel schematic in
Figure 12a, the height of the contraction and expansion are represented as h and
H, respectively. The Reynolds number is defined by Re¼ uh=n, where u is the aver-
age u velocity in the contraction channel and n is the kinematic viscosity of the work-
ing fluid. All the results were calculated in nonuniform grids, as shown in Figure 12b,

Figure 11. Determination of frequency range in which lock-in occurs, by plotting fc=fv and fv=fo against
fc=fo at Re¼ 200: (a) fc=fv versus fc=fo; (b) fv=fo versus fc=fo.

Figure 12. Illustration of contraction-and-expansion problem considered in Section 6.2: (a) computational
domain and boundary conditions; (b) mesh system.



at the dimensionless geometric parameters xu¼ 4, d¼ 2, xd¼ 100, h¼ 1, and H¼ 5.
Since there are no proper data for comparison, the simulated u-velocity profiles
are compared with the results obtained from the CFD-ACEþ commercial software
[35]. The compared results in Figure 13 show very good agreement.

It has been observed that the flow pattern is symmetrical about the centerline
of the channel at the Reynolds number below its critical value. There exists only a
single stable flow pattern in which the regions of recirculating flow, which occurs
in the vicinity of the channel walls immediately downstream of the expansion, have
the same size at the two channel sides. The critical Reynolds number, above which
the flow behavior becomes substantially different from that observed below this
value, depends on the channel geometry, which is characterized by the dimensionless
expansion ratio E. This ratio is defined as the ratio of the channel height at the
downstream end of the expansion, H, to the upstream channel height of the contrac-
tion, h. Here, we consider E¼H=h¼ 5 for all the calculations.

The regions of recirculation became large, extending farther downstream of the
expansion location, as the Reynolds number is increased. The predicted results show
that the solutions obtained at Re¼ 50, 100, and 200 are asymmetric, with the
detached flow being directed toward one or the other channel wall. In these cases,
one of the two recirculation regions appearing immediately downstream of the
expansion becomes larger at the expense of the other. When the flow pattern
becomes no longer symmetric, a process known as the bifurcation is said to occur.

The contraction part of the contraction-and-expansion channel is then forced
to oscillate. The schematic of the vibration is shown in Figure 14. The displacement
of the contraction channel h is given by h¼Asin(2pfct), where A is the oscillation

Figure 13. Comparison of predicted u-velocity profiles (circles -) and CFD-ACEþ results (solid curves)
for the purpose of comparison: (a) Re¼ 50; (b) Re¼ 100; (c) Re¼ 200.



amplitude and fc is the vibration frequency. Here, the case, featured with A¼ 0.2 and
fc¼ 100, investigated at Re¼ 100, will be considered. With the oscillation of the con-
traction part, the flow field shown in Figure 15a becomes turbulent and gradually
transits into a periodic steady state. The power spectrum of the periodic steady state
Cl shown in Figure 15b shows that the frequency of the flow field is equal to the fre-
quency of the oscillating duct. This implies that the nonlinear behavior is not strong
enough and the bifurcation phenomenon in the flow field is dominated by the forced
oscillation. The predicted streamline contours over one complete oscillation period
are plotted in Figure 16, from which it is observed that the downstream flow is asym-
metric and complex.

Figure 14. Schematic of the oscillatory contraction section.

Figure 15. Predicted time-evolving solutions for the case considered at Re¼ 100: (a) lift coefficient;
(b) power spectrum.



7. CONCLUDING REMARKS

The present study developed a bi-quadratic Petrov-Galerkin finite-element
model for solving the unsteady convection-diffusion transport equation and the
incompressible Navier-Stokes equations in both stationary and moving meshes.
To enhance the convective stability and retain the dispersive nature, the dispersion
relation-preserving theory was employed to develop a two-dimensional mixed
finite-element model. Two scalar problems amenable to exact solutions were investi-
gated for the sake of verification. The simulated results were shown to be in perfect
agreement with the exact solutions, thus demonstrating the integrity of the present
method. The Navier-Stokes fluid flows in a backward-facing step channel and over

Figure 16. Predicted streamline contours over a complete contraction oscillation period (T¼ 1=fc) for the
case considered at Re¼ 100, A¼ 0.2, and fc¼ 100: (a) t¼ 1T=10; (b) t¼ 3T=10; (c) t¼ 5T=10; (d) t¼ 7T=10;
(e) t¼ 9T=10.



a square cylinder were also investigated at different Reynolds numbers. The pre-
dicted DRP-PG finite-element solutions agreed perfectly with the benchmark solu-
tions. The incompressible flow problem with a moving boundary was analyzed
within the arbitrary Lagrangian-Eulerian framework. The problem for the flow over
an oscillating square cylinder was chosen for verification purposes. From the simu-
lated results, it was observed that the present method is highly reliable and can be
applicable to study moving-boundary problems numerically. The method was also
applied to understand the internal flow in a partially oscillating channel. From the
predicted results, it was noticed that the flow field downstream of the contraction-
and-expansion part was asymmetric and complex.
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