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Abstract
This work focuses on the heat flux prediction in hypersonic flow regimes using the finite-element based Streamline-Upwind
Petrov–Galerkin formulation enhanced with a discontinuity-capturing operator and weak enforcement of the Dirichlet bound-
ary condition. The numerical formulation is validated on several benchmark cases including Mach 14 compression corner at
15◦ and 24◦, 2D Mach 17 cylinder and 3D Mars Pathfinder re-entry vehicle at Mach 14. The numerical results are in very
good agreement with the experiments or data available in the literature, showing the robustness of the numerical framework.
Moreover, the newly proposed weak imposition of the no-slip boundary condition at the surface shows great potential for
near-wall modeling of high-speed compressible flows.
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1 Introduction

One of the main challenges faced by engineers during the
design process of a hypersonic aircraft is the severe aero-
dynamic heating it experiences throughout its mission [40].
In the hypersonic regime, the interaction of air friction
and complex flow phenomena, such as shock–shock and
shock wave-boundary layer interactions, generates a signif-
icant amount of heat and conventional methods to provide a
single-point temperature and heat flux values is insufficient.
In recent years,the progress has been made in advancing
numerical methods for aerothermal analysis of hypersonic
flows [12, 29–32] and the accurate heat flux prediction was
identified as one of the key issues [25]. In [23–25] the authors
conducted an assessment of the classic finite volumes tech-
niques, showing the sensitivity of these methods to the mesh
topology and inviscid flux functions in predicting heat trans-
fer. The finite element based methods, on the other hand,
do not exhibit these behaviour and can be considered as a
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promising alternative for hypersonic flows modeling [7, 8].
While both methods can handle very complex geometries
[43], the finite elements allows a simplified implementation
of boundary conditions and higher-order accuracy, which are
nontrivial challenges in the context of finite volume methods
[11].

Significant progress has been made over the past decades
in the stabilized methods based on the Streamline-Upwind
Petrov–Galerkin (SUPG) formulation [5, 17, 44, 45] enhanced
with a discontinuity capturing (DC) operator [18, 27, 46–48,
52]. These methods have been successfully applied to vari-
ous compressible flow problems with traditional linear finite
elements and in a context of isogeometric analysis (IGA)
with non-uniform rationalB-splines (NURBS). This includes
simulations of a delta-wing [49, 50], aircrafts and rotocrafts
[34, 35, 50, 51, 55], missiles [39], gas turbines [4, 26, 54],
spacecraft parachutes [21, 41], re-entry vehicles in hyper-
sonic regime [9] and more recently the hypersonic flows in
thermo-chemical non-equilibrium [10, 22].

The selection of the stabilization parameters, including the
element length calculation, estimation of the constants, plays
a crucial role and require a careful balance between accuracy
and stability [13]. The review of the stabilization parameters
is outside of the scope of this article and the interested reader
is referred to a review article on the stabilized methods for
compressible flows in [19] and recent paper on stabilization
and discontinuity-capturing parameters in [42].



The current work extends the formulation presented in
[9] for hypersonic flows by introducing the weakly enforced
Dirichlet boundary conditions [4, 54]. The focus of this study
is to examine the performance of weakly imposed essential
boundary conditions in predicting heat flux in the hypersonic
regime. The rest of the article is structured as follows. The
mathematical formulation is described in Sect. 2, followed
by the numerical tests presented in Sect. 3. The conclusion
and future work are discussed in Sect. 4.

2 Numerical formulation

The set of compressible Navier–Stokes equations in conser-
vative form can be written as

∂tU + ∇ · F + S = 0, (1)

where ∂t represents the Eulerian time derivative and the vec-
tor of the conservative variablesU, source term S, flux vector
F, which consists of convective flux Fconv , pressure flux Fp

and diffusive flux Fdi f f , are given by
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In Eq. 2, ρ is the density, u is the velocity vector, T is the
thermodynamic temperature, p is the pressure, b is a body
force, r is a heat source/sink, e = cvT is the internal energy,
cv is the specific heat at constant volume, κ is the thermal
conductivity, I is the identity tensor, and τ is the second order
viscous stress tensor defined as

τ = λ∇ · u + μ
(

(∇u) + (∇u)T
)

, (3)

where λ is the bulk viscosity and μ is the dynamic viscosity.
We also assume the equation of state for the ideal gas.

Together with Eq. 1, the Dirichlet boundary conditions
U = UG on a domain boundary �g are considered, where
UG = [ρ, ρgT , ρcv (Tw + g · g/2)]T , with g being the
prescribed velocity vector, and Tw being the prescribed wall
temperature.

Equation 1 can be also written in a quasi-linear form using
a set of pressure-primitive variables Y = [p, uT , T ]T as

A0 ∂tY + A∇ · Y = 0, (4)

where A0 = ∇YU is a transformation matrix from conserva-
tive to pressure-primitive variables, and the Jacobian matrix

A = Aconv+Ap+Adi f f = ∇UFA0. In Eq. 4, the source term
S is assumed to be zero. In this form, the Dirichlet boundary
conditions become Y = YG, where YG = [p, uT , T ]T .
The reader is referred to the appendix of [9] for the explicit
expressions of the matrices appearing in the quasi-linear
form, and [14] for comparison of different set of variables.

The semi-discrete variational form is obtained by applying
the method of weighted residuals to Eq. 4 with the integra-
tion by parts performed on the pressure and diffusive fluxes.
To stabilize the formulation the SUPG term is added on the
interior of each element [9, 54]. Moreover, due to the pres-
ence of strong shock waves in the flow, additional dissipation
is added through the discontinuity capturing (DC) operator
[1, 4, 9, 10, 27, 28, 54]. The final semi-discrete weak form
can be written as
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where i, j = 1 . . . nd are the indexes for the spatial dimen-
sion, d is the number of space dimensions, � ⊂ R

d is the
volumetric domain which is descritized using linear finite
elements as � = ∪nel

e=1�e. The natural boundary conditions
are enforced on �h ∈ � and the essential boundary con-
ditions are enforced on �g ∈ �. ni is the i th component
of outward unit surface normal vector n. In Eq. 5, Yh and
Wh are the solution and test functions from the finite dimen-
sional spaces Sh and Vh respectively. Res is the strong-form
residual. τττSUPG is the stabilization matrix in pressure-based
primitive variables [9]

τττSUPG



= A−1
0

(
4

	t2
I + Gi jAiA j + CI Gi jGklKikK jl

)− 1
2

,(6)

where 	t is the time step size, CI is a positive constant
derived from an appropriate element-wise inverse estimate
(CI = 3 for all cases presented in this work) and Gi j are the
components of the element metric tensor.KDC is a diagonal
diffusivity matrix for discontinuity capturing
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0 Res

Gi jUT
,i Ã
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) 1
2

A0, (7)

where CDC is a positive constant (CDC = 1 for all cases
presented in this work), and Ã−1

0 is the transformation from
conservative to entropy variables [6, 14]. Last five terms
in Eq. 5 originate from weak imposition of the Dirichlet
boundary conditions. In Eq. 5, τ B is a diagonal positive semi-
definite matrix of stabilization parameters [54] (in this work
a positive constant used in the definition of τ B is 4), and
{An}− = {Ai ni }− = MT{�n}−T−1M−1 [53]. Operator
{·}− isolates the part of a matrix-valued argument corre-
sponding to the eigenvalues with negative real parts. �n

is the diagonal matrix of the eigenvalues of An and T is
the transformation matrix constructed using the eigenvectors
as columns [53]. M is the Jacobian matrix ∂U/∂Ũ, where
Ũ = [ρ, uT , p]T , and defined as
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where γ is the adiabatic index and etot = e + u · u/2 is the
total energy.

Remark 1 We focus on the last term of Eq. 5 and consider
inflow and wall boundary conditions. We set the inflow
boundary conditions strongly on all the variables, which
implies Wh = 0 and U(Yh) = U(Yh

G). As a result, this
term does not contribute to the formulation. In the case of
wall boundary conditions, we set the temperature strongly
and velocity weakly. This results in U(Yh) − U(Yh

G) =
[0, ρ (u − g) , ρ (u · u/2 − g · g/2)]T . In addition, W5

h =
0. Because {Ân}− is a fully populated matrix, the weak
boundary condition terms will produce a contribution that
has a mismatch in the momentum and kinetic energy den-
sity.

The semi-discrete formulation defined in Eq. 5 is inte-
grated in time using the generalized-α method [3, 9, 20, 54]
(in this work the generalized-α parameter ρ∞ = 0.5). All
simulations are done with a constant time step. The Newton–
Raphson method is used to solve the resulting non-linear

system of equations. At each non-linear iteration, the linear
system is solved through the Generalized Minimal Residual
method (GMRES) [37]. The convergence criteria used for
non-linear and linear solvers is the three orders of magnitude
reduction in the norm of the residual.

3 Numerical results

In this section the numerical results for the compression cor-
ner, the cylinder and the Mars Pathfinder re-entry vehicle are
presented. The results are compared with available experi-
mental data and if no experimental data is available the results
are compared with numerical tests from the literature.

3.1 Compression corner

The compression corner in hypersonic flows belongs to a cat-
egory of cases associated with shock wave-boundary layer
interaction (SWBLI) problems [2]. It is characterized by a
flat plate section followed by an inclined section at a certain
angleα. The flowphysics is characterized by a primary shock
wave downstream the corner and a separation region, the size
of which varies depending on theMach number and the angle
α. The primary shock originates from the streamlines deflec-
tion due to the wedge angle α. The strong adverse pressure
gradient due to the primary shock wave compression cause
the flow to separate around the corner. A secondary shock
wave forms because of the flow separation. The strength of
the separation shock also depends on the Mach number and
the angle α. The separation shock strengthens the primary
shock, resulting in higher pressure and wall heat flux. The
impingement of the primary shock on the boundary layer
on the inclined section of the model creates a high pressure
region that compresses the boundary layer, making it thin-
ner, which generates high surface heat flux. Two compression
corner cases are considered, one at α = 15◦ and the other one
at α = 24◦. The flow for the compression corner at α = 15◦
remains attached and it does not separate at the corner, while
a wide separation region is observed for the case at α = 24◦.

3.1.1 Compression corner at 15◦

The compression corner at α = 15◦ is presented first. The
free-stream is characterized by a Mach number M∞ =
14.1 and a Reynolds number Re∞ = 2.6 × 105 [1/m].
At the inlet, p∞ = 10.02 [Pa], T∞ = 72.22 [K] and
u∞ = 2401.9253 [m/s] are imposed strongly. At the wall,
the no-slip boundary conditions are imposed weakly, while
the isothermal condition T = 297.22 [K] is only imposed
strongly. At the outflow, as demonstrated in [38], the bound-
ary integral is included for all flux terms, including the
viscous and heat transfer contributions. The temperature



Fig. 1 Coarse computational grid for the compression corner at α =
15◦

Fig. 2 Medium computational grid for the compression corner at α =
15◦

Fig. 3 Fine computational grid for the compression corner at α = 15◦

dependent viscosity is computed through the Sutherland law
defined as:

μ = μre f · T 1.5

T + S
, (9)

whereμre f = 1.458×10−6 [Pa·s] and S = 110.33 [K ]. The
thermal conductivity is obtained from the Prandlt number
definition as follows:

λ = μCp/Pr , (10)

where Pr = 0.72 and the specific heat at constant pressure
is constant and given as a function of the specific heat ratio
γ = 1.4 and the universal gas constant R, as Cp = γ R

γ−1 .
Three computational structured grids are considered for

this case. The elements are clustered close to the leading
edge of the model and close to the wall. The coarse grid has
125 elements in the streamwise direction and 35 elements in
the normal to the surface direction and is shown in Fig. 1. The
medium grid is 250 by 70 elements and is shown in Fig. 2.
The fine grid is 500 by 140 elements in the streamwise and
wall normal directions respectively and is shown in Fig. 3.
The grid convergence study is performedonnon-dimensional
coefficient for the surface heat flux defined as follows:

Ch = q

ρ∞u∞ (H∞ − Hwall)
, (11)

where H∞ and Hwall is the total enthalpy at the inflow and
the wall respectively. The simulations were done with a con-
stant time step of 1× 10−6 [s] until a steady-state solution is

Fig. 4 Distribution of the surface heat flux coefficient Ch for the com-
pression corner at α = 15◦

Fig. 5 Mach number contours for the compression corner at α = 15◦

obtained. The distribution of the surface heat transfer coef-
ficient is illustrated in Fig. 4. The results agree quite well
with the experiments data obtained by Holden [15] with
slight overprediction of the heat flux in the flat plate section,
but excellent agreement is obtained at the region where the
boundary layer is thinned by the compression generated by
the primary shock. Based on this study the medium mesh
is selected to vizualize the flow topology and also study
the 24◦ compression corner. The flow topology is shown in
Fig. 5.Noflow separation is observed as discussed earlier and
smooth solution is obtained throughout the domain, showing
the accuracy of the stabilization parameters and the discon-
tinuity capturing term.

3.1.2 Compression corner at 24◦

Next, the compression corner at α = 24◦ is investigated.
The boundary conditions and fluid properties are similar to
15◦ case. As suggested by [36], the three-dimensional effects
cannot be neglected and they strongly affect the prediction
of the extent of the separation region. The medium compu-
tational grid from 15◦ case is used with 25 elements in the
transverse direction and is shown in Fig. 6. The minimum
element size at the wall-normal direction is 5 × 10−5 [m]
and a constant time step of 1 × 10−6 [s] is used.



Fig. 6 Medium computational grid for the compression corner at α =
24◦

Fig. 7 Distribution of the surface heat flux coefficient Ch for the com-
pression corner at α = 24◦

Fig. 8 Mach number contours for the compression corner at α = 24◦

The heat flux distribution is shown in Fig. 7 and in a
good agreement with the experimental data [15], especially
in the separation region. Only the slight underprediction of
the peak heat flux can be observed further downstream. The
flow topology can be observed in Fig. 8, showing a wide sep-
aration region around the corner of the model. The numerical
solution accurately capture the impingment of the separation
shock on the primary shock and the thinning of the boundary
layer due to the high pressure.

Fig. 9 Computational grid for the cylinder case

3.2 Flow over a 2D cylinder

In this section the laminar cylinder case immersed in a
hypersonic flow is presented. This is a standard 2D bench-
mark case for hypersonic flows. The free-stream is defined
by a Mach number M∞ = 17 and a Reynolds number
Re∞ = 7.52 × 105. The free-stream conditions at the
inlet p∞ = 57.4 [Pa], T∞ = 200 [K], u∞ = 5000 [m/s]
are imposed strongly. The no-slip boundary condition is
imposed weakly at the wall, while the isothermal condition
Tw = 500 [K] is imposed strongly. At the outflow, as demon-
strated in [38], the boundary integral is included for all flux
terms, including the viscous and heat transfer contributions.
The temperature dependent viscosity is calculated using the
Sutherland law as in Eq. 9 and the thermal conductivity as
in Eq. 10. For this case a structured computational grid is
used and is shown in Fig. 9. The grid is characterized by
180 elements in the azimuthal direction and 140 elements in
the radial direction. The elements are clustered towards the
wall, where the smallest element size in a radial direction is
5 × 10−5 [m]. A constant time-step of 1 × 10−6 [s] is used.

The flow field developed around the 1 [m] radius cylin-
der, is shown in Fig. 10. The bow shock developed around
the cylinder, shows some oscillations towards the outlet
boundary. These small oscillations are grid related, since the
shock-grid alignment is progressively lostmoving away from
the stagnation region.

Thedistribution of the surface heat flux is shown inFig. 11.
The results obtained by the present formulation are compared
to the numerical data obtained using LAURA code by Quat-
trochi [33]. The results slightly underpredict the data from
Quattrochi in the region between the stagnation point and
the bottom part of the cylinder, while the peak heat transfer

Fig. 10 Mach number contours for the cylinder case



Fig. 11 Distribution of the surface heat flux for the cylinder case

predicted by the present formulation agrees quite well with
the one obtained in [33].

3.3 Mars Pathfinder re-entry vehicle

In this section the 3D Mars Pathfinder re-entry vehicle is
analysed. A detailed numerical and experimental aerother-
modynamics analysis of the re-entry vehicle in hypersonic
regime, have been carried out in [16]. The geometry of
this case is taken from the experimental model defined as
MP− 1 in [16]. The computational grid is shown in Fig. 12.
The grid is unstructured and contains a refinement section
around the capsule. The resolution of the boundary layer
grid is shown in Fig. 12b and it is characterized by 27 layers
with the smallest element size in the wall-normal direc-
tion of 1.25 × 10−5 [m]. The free-stream is characterized
by a Mach number M∞ = 10 and a Reynolds number
Re∞ = 3.187× 106. The free-stream conditions imposed at
the inlet strongly are p∞ = 130.5 [Pa], u∞ = 1415 [m/s],
T∞ = 51.63 [K]. The wall is isothermal at T = 300 [K],
which is imposed strongly, and the no-slip boundary con-

Fig. 13 Cross-sectional slice of theMach number contours for theMars
Pathfinder re-entry vehicle simulation

dition is imposed weakly. At the outflow, as demonstrated
in [38], the boundary integral is included for all flux terms,
including the viscous and heat transfer contributions. The
flow topology can be seen in Fig. 13. The flow field is mainly
characterized by a bow shock in front of the body. Behind the
vehicle two symmetric recirculation regions are observed.
A shear layer develops between the post shock region and
the recirculation region and an oblique shock wave develops
downstream the vehicle on the sting.

The surface heat transfer distribution is shown in Fig. 14
as a function of the curvilinear coordinate S/Rb, where Rb

is the vehicle radius. The results are compared to the exper-
imental data obtained by Hollis for the Test 293 Run 007
[16]. The numerical results are in a good agreement with the
experiment, mostly within the reported uncertainty, except
for the location of the shock wave on the sting, where the
results are slightly underpredicted. The slight overprediction
of heat transfer in the front part of the vehicle, downstream
the stagnation point, may be related to a coarser grid resolu-
tion at the shock location, with respect to the resolution right
in front of the stagnation point.

Fig. 12 Computational grid for the Mars Pathfinder re-entry vehicle



Fig. 14 Distribution of the surface heat transfer for theMars Pathfinder
re-entry vehicle simulation

4 Conclusion

The present work proposes the stabilized finite element for-
mulation enhanced with a weak imposition of the no-slip
boundary condition. The formulation is tested on the pre-
diction of the surface heat flux for vaarious benchmark
cases, including the compression corner at 15◦ and 24◦,
the 2D cylinder at Mach 17 and the 3D Mars Pathfinder
re-entry vehicle. The numerical results are compared with
the available experimental data and numerical data from in
the literature. The overall good agreement is obtained show-
ing the suitability of the stabilized formulation in predicting
essential quantities such as the heat transfer in the context
of hypersonic flows. The imposition of the no-slip boundary
condition in a weak way provides a promising alternative to
a classical imposition of the Dirichlet boundary condition.
A further investigation, however, is needed. Particular atten-
tion should be given to the weak imposition of the isothermal
condition at the wall. This will be the next step, where a
full comparison between the strongly imposed wall bound-
ary conditions and the weakly imposed boundary conditions
will be carried out.
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