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Isogeometric blended shells for dynamic analysis: simulating aircraft
takeoff and the resulting fatigue damage on the horizontal stabilizer

Ning Liu · Manoj R. Rajanna · Emily L. Johnson · Jim Lua · Nam Phan ·
Ming-Chen Hsu

Abstract Aircraft horizontal stabilizers are prone to fatigue
damage induced by the flow separation from aircraft wings
and the subsequent impingement on the stabilizer structure
in its wake, which is known as a buffet event. In this work,
the previously developed isogeometric blended shell ap-
proach is reformulated in a dynamic analysis setting for the
simulation of aircraft takeoff using varying pitch angles. The
proposed Kirchhoff–Love (KL) and continuum shell blend-
ing allows the critical structural components of the aircraft
horizontal stabilizer to be modeled using continuum shells
to obtain high-fidelity 3D stresses, whereas the less criti-
cal components are modeled using computationally efficient
KL thin shells. The imposed aerodynamic loads are gener-
ated from a hybrid immersogeometric and boundary-fitted
computational fluid dynamics (CFD) analysis to accurately
record the dynamic excitation on the stabilizer external sur-
face. Specifically, the entire aircraft except for the wings and
stabilizers is immersed into a non-boundary-fitted fluid do-
main based on the immersogeometric analysis (IMGA) con-
cept for computational savings, whereas the mesh surround-
ing the aircraft wing and stabilizers is boundary-fitted to ac-
curately compute the aerodynamic loads on the stabilizer.
The obtained time histories of the loads are then applied
to dynamic blended shell analysis of the horizontal stabi-
lizer, and the high-fidelity stress response is evaluated for
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subsequent fatigue assessment. A simple frequency-domain
fatigue analysis is then carried out to evaluate the buffet-
induced fatigue damage of the stabilizer. The results from
both the steady-state and dynamic nonlinear blended shell
analyses of a representative horizontal stabilizer demon-
strate the numerical accuracy and computational efficiency
of the proposed approach.

Keywords isogeometric analysis · Kirchhoff–Love shell ·
continuum shell · buffet–induced fatigue damage · aircraft
takeoff simulation

1 Introduction

Aircraft horizontal stabilizers are vulnerable to fatigue fail-
ure caused by the flow separation from aircraft wings and
the subsequent impingement on the stabilizer structure in
its wake, which is known as a buffet event. In the com-
putational community, one of the traditional approaches to
model such an event is to perform boundary-fitted compu-
tational fluid dynamics (CFD) analysis to obtain the time
histories of the aerodynamic loads, followed by structural
analysis of the stabilizer to obtain stress results for fatigue
evaluation. In terms of the structural analysis, solid or solid-
like shell elements in standard finite element (FE) methods
are frequently employed in order to get accurate 3D stress
predictions for multiaxial fatigue evaluation [1, 2]. However,
they are typically very computationally expensive. In cases
where thin shell elements (e.g., Kirchhoff–Love (KL) shells
[3, 4]) are employed, the transverse stress and strain com-
ponents cannot be accurately obtained. On the CFD analysis
side, in order to obtain high-fidelity CFD loads on the struc-
ture, three prerequisites are needed: (a) a watertight geom-
etry for analysis-suitable mesh generation, (b) a boundary-
fitted mesh to accurately approximate the geometry, and (c)
a proper numerical projection technique to map the CFD
loads to the structure. This results in several challenges. For
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one thing, the geometry cleanup process often consumes the
majority of the design-to-analysis time and significant man-
ual effort to obtain a satisfactory geometry to start with. For
another, data loss is sometimes unavoidable during the pro-
jection process for the CFD loads.

In order to bypass the time-consuming geometry cleanup
process and avoid the approximation error that arises from
the FE mesh generation, the concept of isogeometric anal-
ysis (IGA) [5] has gained significant attention in the past
decade and become a widely used method especially for
the simulation of structures comprised of complicated ge-
ometries [6–16]. A notable benefit of using the IGA-based
description is that the underlying computational model is
geometrically exact and is described by high-order basis
functions, which allows faster solution convergence with
fewer elements [17–19]. In the analysis of shell-like struc-
tures, a large variety of IGA shell formulations of the KL
type [3, 4, 20, 21] and the continuum type [22–26] has
been developed. Moreover, efficient coupling formulations
for multi-patch analysis [27–30] have been presented to re-
alize direct analysis on multi-patch NURBS models. These
approaches have also been recently extended to a blended
shell formulation [31, 32] that allows patch coupling be-
tween various shell types. From the perspective of dynamic
analysis, IGA shells have been applied across a wide range
of applications, including wind turbine blades [33–40] and
heart valves [12, 41–48].

In this context, we propose to extend the previously de-
veloped isogeometric blended shell approach [31] to the
dynamic analysis setting to analyze the effects of time-
dependent buffet loads acting on the aircraft horizontal sta-
bilizer. The proposed formulation is applicable to both non-
conforming and non-smooth patch interfaces in the coupling
of isogeometric shells of different types. In the modeling
of the aircraft horizontal stabilizer for dynamic analysis,
the use of the blended shell approach allows us to deploy
continuum shell elements only at critical locations to ac-
curately predict the 3D stress information and incorporate
KL thin shells in less critical regions to improve the com-
putational efficiency. On the other hand, to facilitate realis-
tic aerodynamic load generation, an FE-based, hybrid im-
mersogeometric [49] and boundary-fitted analysis (IMGA-
BF) approach is adopted to obtain the CFD loads during the
takeoff simulation. The FE-based compressible flow simula-
tions using only boundary-fitted mesh has been successfully
applied to simulate full-scale aircraft aerodynamics prob-
lems [50, 51]. Given that aircraft components (e.g., fuselage
and engine) are often geometrically complex and their cor-
responding CAD models are “dirty” in the sense that the
constituting B-rep surfaces are usually either non-watertight
or overlapped with each other, the use of immersogeomet-

ric analysis (IMGA) [42, 49, 52–56] bypasses the geome-
try cleanup process and does not require a boundary-fitted
mesh for analysis, which significantly improves the anal-
ysis flexibility. For components that require high solution
accuracy in terms of flow or load prediction, the standard
boundary-fitted approach is adopted. This hybrid approach
allows the solution to be both computationally efficient and
numerically accurate. The use of finite elements for fluids
and IGA for shells also allows us to transfer the load through
L2- projection of the traction and globally conserves forces
and moments acting on the structure [34].

After the time histories of the high-fidelity 3D stresses
are obtained from the dynamic blended shell analysis, a
simple frequency-domain fatigue analysis is carried out to
assess the buffet-induced fatigue damage and structural in-
tegrity of the stabilizer. While time-domain fatigue methods
are generally considered more accurate and can handle arbi-
trary loading sequences, they are relatively computationally
expensive and are not well suited for large amounts of data
characterized by high frequencies, as is the case in buffet-
induced structural vibration. On the contrary, frequency-
domain methods characterize the structural response using
power spectral density (PSD) functions and are able to pro-
vide a fast evaluation of the resulting fatigue damage on
the structure. Furthermore, as opposed to the time-domain
methods that essentially describe the structural response as
a function of time, the frequency-domain counterparts pro-
vide additional valuable insight about the characteristics of
the structure such as the frequency range related to a buffet
event, which is meaningful in the design viewpoint. In the
present study, the equivalent von Mises stress method [57]
is adopted to convert the multiaxial stress states into a uni-
axial stress for quick fatigue assessment. While a multiaxial
fatigue damage model is more appropriate to process the 3D
stress data, it is out of the scope of the current study and
the use of the simple frequency-domain fatigue analysis is
merely intended to demonstrate the complete workflow of
the computational framework.

This paper is structured as follows. In Section 2, the
extension of the isogeometric blended shell approach for
dynamic analysis is presented. A brief discussion on the
adopted hybrid IMGA-BF approach for CFD analysis and
the Arbitrary Lagrangian–Eulerian (ALE) framework for
pitching aircraft simulation is also given. The developed
blended shell formulation is then applied in Section 3 to
dynamic analysis of a representative horizontal stabilizer to
demonstrate the numerical accuracy and efficiency of the
method, followed by a dynamic analysis and fatigue eval-
uation of the stabilizer subjected to a series of realistic aero-
dynamic loads generated from the aircraft takeoff simula-
tion. Finally, in Section 4, conclusions about the proposed
method are drawn.
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2 The proposed approach

The proposed modeling approach consists of two parts, one
being the extension of the isogeometric blended shell ap-
proach [31] to compute the dynamic structural response for
fatigue evaluation, and the other being the use of a hybrid
IMGA-BF approach for variable angle of attack CFD analy-
sis to obtain high-fidelity structural loads. This work focuses
more on the former to efficiently model the aircraft stabilizer
and obtain 3D stress results without compromising compu-
tational efficiency, while the latter is briefly discussed.

2.1 Isogeometric blended shell formulation

In the proposed structural description, an isogeometric
blended shell approach is utilized to couple isogeometric
shells of different types though a penalty-based formulation.
This penalty formulation enforces the displacement and ro-
tational continuities in a variational manner and is applica-
ble to non-conforming and non-smooth interfaces. The in-
volved isogeometric shell formulations consist of a KL shell
type [4, 27] for efficient computation of non-critical struc-
tures and a continuum shell type [22] to obtain high-fidelity
3D stress responses of critical structures. The formulation is
briefly introduced in the following, with more details avail-
able in Liu et al. [31].

The variational formulation of the isogeometric contin-
uum shell can be expressed through the principle of virtual
work, where the contribution of the body force is neglected
for brevity:

δW = δW int−δWext =

∫
Ω0

δE : S dΩ−
∫
Γh

0

δu·h dΓ = 0 , (1)

where W is the total work, W int is the internal work, Wext is
the external work, δ indicates the variation with respect to
the virtual displacement variable δu, S is the second Piola–
Kirchhoff stress tensor, E is the Green–Lagrange strain ten-
sor, Ω0 is the shell volume in the undeformed configuration,
h is the surface traction, and Γh

0 is the undeformed boundary
where h is applied.

Without loss of generality, let patch ΩA be a continuum
shell patch and patch ΩB be a KL shell patch (see Figure 1).
These patches are connected at an interfaceL, which is cho-
sen to be the midsurface edge of the KL shell body. The goal
of the formulation is to provide both displacement and rota-
tional continuities across the interface L. Specifically, we
augment the principle of virtual work by the penalty contri-
bution:

δW = δW int + δWpd + δWpr − δWext = 0 , (2)

where δWpd and δWpr are the displacement and rotational
penalty contributions, respectively. The coupling conditions

are enforced across the entire interface through an integra-
tion over the thickness domain T in order to properly con-
strain the interfacial continuum shell kinematics. Specifi-
cally, the displacement continuity is enforced by penalizing
the relative motion of displacements at the corresponding
through-thickness locations of ΩA and ΩB as follows,

δWpd =

∫
L

∫
T
αd

(
uA − uB

)
·
(
δuA − δuB

)
dT dL , (3)

with uA and uB the displacements at the corresponding
through-thickness locations onΩA andΩB, respectively, and
αd the displacement penalty parameter. Moreover, the rota-
tional continuity can be imposed by expanding the rotational
penalty work δWpr as:

δWpr =∫
L

∫
T
αr

((
gA

3 · aB
3 − g̊A

3 · åB
3

) (
δgA

3 · aB
3 + gA

3 · δaB
3

)
+

(
gA

n · aB
3 − g̊A

n · åB
3

) (
δgA

n · aB
3 + gA

n · δaB
3

))
dT dL ,

(4)

with aB
3 the unit vector normal to the KL shell reference sur-

face, gA
3 the surface normal of the continuum shell, gA

n the
in-plane covariant unit vector normal to the penalty plane
L×T , as illustrated in Figure 1, and αr the rotational penalty
parameter. Geometric variables indicated by ˚(·) refer to the
undeformed configuration.

Taking variations of δW with respect to the discrete
nodal displacements and adding the contribution of the dy-
namic problem, Eq. (2) becomes,

R =Mü + Cdu̇ + Fint − Fext + Fpd + Fpr = 0 , (5)

with R being the residual vector and Fint,Fext,Fpd, and Fpr

denoting the internal, external, displacement, and rotational
penalty forces, respectively. The first two terms on the right-
hand side of the first equality sign in Eq. (5) account for the
dynamic contributions, where M is the mass matrix, ü is the
acceleration, Cd is the damping matrix, and u̇ is the velocity.

a3

at

an

displacement coupling

rotation coupling

g3

gn

gt

ΩA

ΩB

LT

Kirchhoff-Love shell

continuum shell

Fig. 1: An illustration of the blended coupling interface between a con-
tinuum shell and a KL shell.



4 Ning Liu et al.

For dynamic simulations, the generalized-α method
[58–60] is adopted for time integration. Specifically, the so-
lution field at a given time instance can be obtained by inter-
polation between the two neighboring time steps tn and tn+1

as follows,

uα = α f un+1 + (1 − α f )un , (6)

u̇α = α f u̇n+1 + (1 − α f )u̇n , (7)

üα = αmün+1 + (1 − αm)ün , (8)

where α f and αm are interpolation factors, and the subscript
α denotes interpolated variables. The displacement and ve-
locity fields at the time step tn+1 can be calculated based on
the Newmark update in the following,

un+1 = un + ∆tu̇n +
1
2

(∆t)2 ((1 − 2β)ün + 2βün+1) , (9)

u̇n+1 = u̇n + ∆t ((1 − γ)ün + γün+1) , (10)

where β and γ are the Newmark parameters and ∆t is the
time increment (i.e. ∆t = tn+1 − tn).

Accordingly, the residual force vector in Eq. (5) is
rewritten using the α-level interpolated variables and solved
for the acceleration field using:

dRα
dün+1

∆ün+1 = −Rα . (11)

Assuming a linear damping model with a constant viscous
damping matrix Cd, Eq. (11) is further expanded as,(
αmM + α fγ∆tCd + α fβ(∆t)2K(uα)

)
∆ün+1

= −Müα − Cdu̇α − Fint
α + Fext

α − Fpd
α − Fpr

α , (12)

with the interpolation factors and Newmark parameters de-
termined with improved numerical dissipation,

αm =
2 − ρ∞
1 + ρ∞

, α f =
1

1 + ρ∞
,

β =
(1 − α f + αm)2

4
, γ =

1
2
− α f + αm , (13)

where ρ∞ is the numerical dissipation parameter that falls
in the range of [0, 1], and ρ∞ = 0.5 is employed in the cur-
rent study. Readers are referred to Kiendl et al. [4] for more
detailed explanation of the generalized-α linearization ap-
proach applied to shell problems.

With regards to the determination of the penalty param-
eters αd and αr, traditional penalty approaches suffer from
the problem-specific empirical selection of the penalty pa-
rameter: the enforced constraints cannot be sufficiently sat-
isfied in the case of a relatively low penalty parameter, and
the system becomes ill-conditioned if the penalty parameter
is too large. This work incorporates a single and universal
selection of the penalty parameter α that can be applied to
both the displacement and rotational continuity imposition

independent of the problem definition. The penalty parame-
ter [31] takes the material properties, the elemental in-plane
dimensions, and the shell thickness into consideration and
can be expressed in the following form

αd = α
E

h (1 − ν2)
, αr = α

E t2
h

12 h (1 − ν2)
, (14)

where E is the Young’s modulus, ν is the Poisson’s ratio,
th is the shell thickness, and h is the element size parameter
determined by averaging the corresponding element sizes on
the two patches in the direction of the penalty curve L.

2.2 Hybrid immersogeometric and boundary-fitted
CFD analysis

A hybrid IMGA-BF computational framework [49] based
on stabilized finite element methods for compressible flows
[61–66] is used in the current work to accurately pre-
dict the buffet loads on the horizontal stabilizer of the air-
craft. The stabilized finite element method has been thor-
oughly validated for simulating aircraft aerodynamics prob-
lems [65, 66]. The recently proposed IMGA approach [49]
directly makes use of a B-rep CAD model by immers-
ing it into a fluid mesh and can therefore handle differ-
ent geometric configurations (e.g., pylons and stores) with-
out geometry cleanup and remeshing. However, it can be
challenging to obtain high solution accuracy if the mesh
is not sufficiently refined. On the other hand, the tradi-
tional boundary-fitted approach adds boundary layers sur-
rounding the structure, which is more labor-intensive but
provides higher accuracy. In order to obtain a good bal-
ance between computational efficiency and solution accu-
racy, we combine the two approaches to construct a uni-
fied hybrid IMGA-BF framework to accurately predict air-
craft buffet loads on the stabilizer for dynamic simulation.
The IMGA approach is used for non-critical parts of the
aircraft to avoid time-consuming geometry cleanup, and
the boundary-fitted approach is applied to critical structural
components to ensure the high quality of the flow solu-
tion (cf. Figure 2). This combination achieves the maximum
level of modeling efficiency, solution accuracy, and geomet-
ric flexibility, and we can effectively and accurately cap-
ture the turbulent flow generation and separation as well as
the vortex shedding that impinges on the stabilizer struc-
tures. Note that this hybrid IMGA-BF framework can also
handle moving domain problems using the ALE approach
[49, 61], and the mixed ALE/IMGA computation falls under
the concept of the Fluid–Solid Interface-Tracking/Interface-
Capturing Technique (FSITICT) [67], which is the fluid–
structure interaction (FSI) version of the Mixed Interface-
Tracking/Interface-Capturing Technique (MITICT) [68].

Following this idea, the B-rep CAD model of the aircraft
components (fuselage, engine, etc.) except for the wing and
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Full-scale aircraft BF surfaces Immersed surfaces

Fig. 2: The hybrid IMGA-BF surfaces and mesh of the full-scale aircraft for CFD analysis: boundary-fitted mesh around the aircraft wing and
horizontal stabilizers, and IMGA mesh for the fuselage.

stabilizer are directly immersed into a non-boundary-fitted
mesh of the background fluid domain, whereas a boundary-
fitted mesh is generated at the aircraft wings and horizon-
tal stabilizers to accurately capture the flow separation and
its impingement on the stabilizer structure. Subsequently, an
aircraft takeoff CFD simulation is carried out using time-
dependent pitch angle data to record the aerodynamic loads
on the external surface of the stabilizer for dynamic struc-
tural analysis and high-fidelity 3D stress prediction. The
traction loads are transferred at the fluid–structure interface
from the fluid discretization to the integration points of the
structural discretization through L2-projection, which glob-
ally conserves forces and moments acting on the structure.

3 Numerical results

In this section, the developed isogeometric blended shell
formulation is applied to model the dynamic response of
a representative horizontal stabilizer. The accuracy of the
dynamic blended shells is first verified by comparing the
dynamic steady-state solution of the stabilizer under a con-
stant uniform traction load with the solutions obtained from
a set of static analysis conditions using Abaqus and an iso-
geometric pure KL shell model [31]. The applicability of
the developed blended shells is further demonstrated via se-
quential CFD-structural analysis, where the time-dependent
aerodynamic loads acting on the horizontal stabilizer are ob-
tained from a hybrid IMGA-BF CFD analysis of the entire
aircraft and subsequently applied to the stabilizer for dy-
namic structural analysis. A simple frequency-domain fa-
tigue analysis is then carried out based on the obtained time

histories of the 3D stresses to demonstrate the full workflow
of the simulation framework.

3.1 Validation studies of the dynamic blended shell
formulation

The developed isogeometric blended shell formulation is ap-
plied to perform both static and dynamic nonlinear anal-
ysis of a representative horizontal stabilizer with internal
structures, as illustrated in Figure 3, where the highlighted
patch is modeled using continuum shells and the rest of the
patches are modeled using KL shells. The stabilizer has root
and tip chord lengths of 3.19 m and 0.7 m, respectively,
and a tail semi-span of 6.75 m. The model is comprised
of 6 skin patches, 10 rib patches, and 5 spar patches, mod-
eled using bicubic NURBS with a total of 71 penalty curves
for coupling. An isotropic aluminium material model is em-
ployed with E = 71.7 GPa and ν = 0.33. The thickness of

x
z

y

Root airfoil
Clamped end

Tip airfoil

Continuum shell
g2

g1

g3

Fig. 3: A schematic of the horizontal stabilizer geometry used in anal-
ysis. The highlighted patch is modeled using isogeometric continuum
shells and the rest of the patches are modeled using isogeometric KL
shells.
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Fig. 4: Steady-state results of the dynamic blended shell analysis: (a) Displacement field contour plot for blended shell model. (b) Time history of
the tip displacement compared with the static analysis result. (c) The through-thickness Cauchy stress comparison at the center of the continuum
shell patch compared with the static analysis result [31].

Table 1: Solution accuracy and efficiency comparison between the
Abaqus reference solution, the pure KL shell model (denoted as KL),
and the proposed blended shell model (denoted as BL).

Method Number of
elements

Number of
DOFs

Converged
z-displacement (m)

Abaqus S4 44,410 261,720 −0.401
KL 13,744 50,331 −0.399

BL (Static) 13,744 52,761 −0.399
BL (Dynamic) 13,744 52,761 −0.399

the skin, ribs, and spars are assumed to be 0.04 m, 0.01 m,
and 0.01m, respectively. The penalty parameter value of α =
103 is used, as it has been determined via a variety of shell
benchmark problems [27, 31] that this value holds well over
a wide range of engineering applications. A uniform down-
ward traction of 100 kPa is applied to the stabilizer skin with
the root section clamped. To obtain a steady-state solution
using dynamic analysis, a damping coefficient of Cd = 1000
kg/(m2s) is applied for the entire stabilizer. This value en-
sures that the stabilizer reaches the steady state within a rea-
sonable amount of time. A time step size of 1× 10−3 is used
in this simulation.

The obtained dynamic blended shell analysis results are
compared against the static analysis results from an Abaqus
model constructed using S4 shell elements as well as a pure
isogeometric KL shell model. The deformed configuration
of the stabilizer at steady state is shown in Figure 4a. The
time history of the tip displacement is plotted in Figure 4b
and compared with the static analysis displacement results.
After the solution reaches steady state, the dynamic analy-
sis results reach a good agreement with the static analysis
results. The number of elements and the number of degrees
of freedom (DOFs) required for all the simulations are listed

in Table 1. Based on the obtained results, it is obvious that
the developed blended shell approach is computationally ef-
ficient compared to the Abaqus model, in that only less than
20% the number of DOFs required by Abaqus for conver-
gence is needed to achieve the same level of accuracy. An-
other important takeaway is that the use of the continuum
shell patch does not compromise computational efficiency
when utilized in the context of the blended shell approach,
as is observed by the same number of elements and the rel-
atively close number of DOFs required for convergence in
the blended shell and the pure KL shell models.

The through-thickness stresses at the center of the con-
tinuum shell patch are extracted and displayed in Figure 4c
for capability demonstration. As seen from the results, both
the in-plane and out-of-plane components of the Cauchy
stresses from dynamic analysis match very well with the
static results, which further verifies the numerical accuracy
of the dynamic blended shell approach. The ability to com-
pute the full-scale Cauchy stress tensor at critical locations
offers the possibility for accurate multiaxial fatigue assess-
ment [1, 2] without compromising solution efficiency.

3.2 Aircraft takeoff simulation, dynamic analysis, and
fatigue evaluation

Now that the developed isogeometric blended shell formu-
lation is numerically verified, it is further applied to study
the dynamic response of the stabilizer subjected to simu-
lated CFD loads. An aircraft takeoff simulation using the
hybrid IMGA-BF CFD analysis is performed to obtain re-
alistic aerodynamic loads on the stabilizer surface, which is
subsequently applied to the blended shell stabilizer model
and the full 3D stresses at locations of interest are com-
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Fig. 5: The overall framework to perform dynamic analysis of the horizontal stabilizer: CFD simulation setup, exchange of CFD load data, and
structural simulation setup.
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Fig. 6: Time history of the total force magnitude acting on the left
horizontal stabilizer obtained using the CFD simulation.
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puted for fatigue evaluation. To perform the CFD simula-
tion, we assume conditions where the aircraft is cruising at
a certain speed and perform a pitch or sudden takeoff ma-
neuvering. In this case, an inflow velocity of 168 m/s, pres-

sure of 56,688 Pa, and temperature of 258.4 K are applied
at the far-field boundaries of the computational domain. To
perform the takeoff simulation, we pitch the entire fluid do-
main at the rate of two degrees per second and handle the
moving domain problem using the ALE approach. An illus-
tration of the hybrid mesh used in the present simulation can
be found in Figure 2, and the overall computational frame-
work is demonstrated in Figure 5, which also shows the
CFD analysis setup, flow conditions, and the time history
of the aircraft pitch angle. The hybrid IMGA-BF computa-
tional mesh is comprised of 14,383,139 linear tetrahedral el-
ements. For the boundary-fitted surfaces, the size of the first
element in the wall-normal direction is 0.01 m, and 10 lay-
ers of boundary-layer elements are generated with a growth
ratio of 1.2. The fluid element size near the immersed sur-
face is 0.05 m. Note that only the CFD traction loads on
the left horizontal stabilizer of the aircraft are extracted and
projected onto the IGA skin surface to study the dynamic
responses of the blended shell structure. The same material
properties as described in Section 3.1 are adopted, and the
damping effects due to air are assumed to be negligible.

Figure 6 shows the total fluid force magnitude acting on
the left horizontal stabilizer of the aircraft. The correspond-
ing time history of the tip displacements of the stabilizer
under the fluid traction load obtained using structural sim-
ulation is plotted in Figure 7. The results clearly demon-
strate the severity of the wake of the unsteady flow hitting
the stabilizer at higher aircraft pitch angles. Under the dy-
namic CFD loads, the horizontal stabilizer vibrates severely
at higher pitch angles, and the amplitude of the vibration
increases with increasing aircraft pitch angle. To illustrate
the flow behavior, Figure 8 shows the fluid velocity contour
along the midplane of the horizontal stabilizer, and Figure 9
shows the contour plot of the fluid traction magnitude acting
on the horizontal stabilizer at different time instances and
pitch angles. Figure 10 shows the deformation of the stabi-
lizer overlapped with the reference configuration at various
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Time = 1 s, Pitch angle = 0° Time = 3 s, Pitch angle = 4° Time = 5 s, Pitch angle = 8°

Time = 7 s, Pitch angle = 12° Time = 9 s, Pitch angle = 16° Time = 11 s, Pitch angle = 20°

Fig. 8: Fluid flow contour along the midplane of the horizontal stabilizer at different time instances.

Traction
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Time = 1 s, Pitch angle = 0° Time = 4 s, Pitch angle = 6° Time = 7 s, Pitch angle = 12°

Time = 9 s, Pitch angle = 16° Time = 10 s, Pitch angle = 18° Time = 11 s, Pitch angle = 20°
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Fig. 9: Contour plot of the fluid traction magnitude acting on the horizontal stabilizer at different time instances.

time instances. The 3D stresses at all the integration points
of the continuum shell patch are extracted, and the equiva-
lent von Mises stresses are then calculated to facilitate a sim-
ple frequency-domain fatigue damage evaluation. The time
histories of the 3D stresses and the corresponding equivalent
stress at the location with the highest stress value of the con-
tinuum shell patch, which is evaluated in both the in-plane
and through-thickness directions, are plotted in Figures 11
and 12, respectively.

A simple frequency-domain fatigue damage analysis is
carried out based on the obtained time history of the stresses.

Specifically, the Fast Fourier Transform (FFT) technique is
employed in the first step to convert the time-domain sig-
nals to frequency domain in terms of power spectral den-
sities (PSD) (cf. Figure 13). A number of numerical strate-
gies are adopted during the process to obtain a stable con-
version, including mean removal and Hanning window to
smoothen abrupt ends and reduce leakage in the resulting
Fourier transform. In the next step, Dirlik’s probability dis-
tribution of stress cycles [69] is computed and a fatigue dam-
age intensity index D at every integration point is cumu-
latively assessed based on the corresponding S-N look-up
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Time = 1 s, Pitch angle = 0° Time = 4 s, Pitch angle = 6° Time = 7 s, Pitch angle = 12°

Time = 9 s, Pitch angle = 16° Time = 10 s, Pitch angle = 18° Time = 11 s, Pitch angle = 20°

Fig. 10: Displacement magnitude contour of the horizontal stabilizer at different time instances overlapped with the reference configuration (light
gray edges). The deformation is scaled up 5 times for visualization.
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Fig. 11: The 3D Cauchy stress time histories at the location with the highest stress value of the continuum shell patch. Note that the vertical axes
are scaled to clearly visualize the data for each stress component.

curves. Dirlik’s probabilistic distribution p(σ) can be writ-
ten in the following form,

p(σ) =
1√
m0

(
D1

Q
e−

Z
Q +

D2Z
R2 e−

Z2

2R2 +
D3

Z
e−

Z2
2

)
, (15)

where

D1 =
2(Xm − γ2)

1 + γ2 , D2 =
1 − γ − D1 + D2

1

1 − R
,

D3 = 1 − D1 − D2 , Z =
σ√
m0

,

Q =
1.25(γ − D3 − D2R)

D1
, R =

γ − Xm − D2
1

1 − γ − D1 + D2
1

,

Xm =
m1

m0

√
m2

m4
, γ =

m2√
m0m4

. (16)

The spectral moments m0, m1, m2 and m4 of a signal Gxx( f )
are given as,

mi =

∫ ∞

0
f iGxx( f )d f . (17)
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Fig. 12: The computed time history of the von Mises stress at the loca-
tion with the highest stress value on the stabilizer.
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Fig. 13: The response power spectral density (PSD).

The cumulative fatigue damage intensity index D per unit
time can be written as,

D =
∫ ∞

0

νa p(σ)
N f (σ)

dσ , (18)

with νa the expected peak occurrence frequency, νa =
√

m4
m2

,
and N f the corresponding fatigue life. In the current study, a
representative S-N curve for general aluminium alloy mate-
rials is employed,

σa
vm · Nf = C , (19)

with a and C being material parameters, a = 4.10, C =
3.15 × 1014, and σvm the equivalent von Mises stress.

Finally, the fatigue life in terms of time can be obtained
by taking the reciprocal of D. Using the above approach, the
fatigue life at the location with the highest stress value on
the continuum shell patch is computed as 3.47 × 105 hrs.
Note that the location of the continuum shell patch in this
study is not necessarily representative of the most critical
location of the stabilizer. A full fatigue evaluation of the en-
tire stabilizer, or at least at critical regions, is needed in order
to assess the component-level integrity and identify critical

locations. Also note that an idealized stabilizer structure is
considered in this work, and as a result, the reported fatigue
life may not represent a realistic scenario. The above calcu-
lation is intended to demonstrate the complete workflow of
the developed computational framework.

4 Conclusion

An isogeometric blended shell approach is developed for ef-
ficient prediction of the 3D stresses and buffet-induced fa-
tigue evaluation of aircraft horizontal stabilizers. The key
feature of the method is the deployment of continuum shells
only at critical locations for accurate 3D stress prediction
and the use of KL shells at other non-critical regions to im-
prove computational efficiency. A dynamic nonlinear anal-
ysis of a representative aircraft horizontal stabilizer is em-
ployed to demonstrate the numerical accuracy and compu-
tational efficiency of the developed approach. After that, a
hybrid IMGA-BF CFD analysis of flow over the full-scale
aircraft is performed to generate realistic aerodynamic loads
on the stabilizer external surface for dynamic analysis, and
a frequency-domain fatigue analysis is subsequently carried
out to assess the buffet-induced fatigue damage and remain-
ing fatigue life. The proposed approach offers the possibility
to model high-fidelity structural response and buffet-induced
fatigue damage in large-scale aircraft structures within a
manageable amount of time.
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