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Abstract

The left ventricle of the heart is a fundamental structure in the human cardiac system that pumps oxygenated blood into the systemic
circulation. Several valvular conditions can cause the aortic and mitral valves associated with the left ventricle to become severely
diseased and require replacement. However, the clinical outcomes of such operations, specifically the postoperative ventricular
hemodynamics of replacing both valves, are not well understood. This work uses computational fluid–structure interaction (FSI) to
develop an improved understanding of this effect by modeling a left ventricle with the aortic and mitral valves replaced with bio-
prostheses. We use a hybrid Arbitrary Lagrangian–Eulerian/immersogeometric framework to accommodate the analysis of cardiac
hemodynamics and heart valve structural mechanics in a moving fluid domain. The motion of the endocardium is obtained from a
cardiac biomechanics simulation and provided as an input to the proposed numerical framework. The results from the simulations
in this work indicate that the replacement of the native mitral valve with a tri-radially symmetric bioprosthesis dramatically changes
the ventricular hemodynamics. Most significantly, the vortical motion in the left ventricle is found to reverse direction after mitral
valve replacement. This study demonstrates that the proposed computational FSI framework is capable of simulating complex
multiphysics problems and can provide an in-depth understanding of the cardiac mechanics.

Keywords: Fluid–structure interaction; Immersogeometric analysis; Cardiac biomechanics and hemodynamics; Bioprosthetic
heart valves; Aortic and mitral valve replacement

1. Introduction

In the cardiac system, the left ventricle (LV) is responsi-
ble for receiving oxygenated blood from the left atrium (LA)
and pumping it into the the human systemic circulation. The
two heart valves associated with the LV, the aortic valve (AV)
and the mitral valve (MV), work in coordination to ensure uni-
directional flow through the cardiac system. On the left side
of the heart, the higher pressure and associated increases in
cyclic loading make the AV and MV more susceptible to car-
diac diseases than the valves on the right side of the heart [1].
Valvular heart diseases [2] can severely deteriorate the nor-
mal function of these valves and fundamentally disrupt the car-
diac hemodynamics. For patients with severe valvular diseases,
heart valve replacement is one of the most viable intervention
options, resulting in around 75,000 prosthetic implants in the
United States and around 170,000 to 250,000 implants in the
world annually [3, 4]. Recently, surgical bioprosthetic heart
valves (BHVs), which are tri-radially symmetric devices that
are designed to mimic the anatomy of the AV, have become
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the predominant choice for valve replacement operations [5].
Although the anatomies of the AV and MV are entirely differ-
ent, it is a common practice to use the same BHV design (e.g.
Medtronic Mosaic valve [6]) for both aortic and mitral valve
replacements [7]. While the asymmetry of the native MV is be-
lieved to result in a circulatory flow pattern in the LV that aids
in the washout of ventricular blood during systole [8, 9], the re-
placement of the native MV with a symmetric BHV may alter
this flow pattern and negatively influence the cardiac hemody-
namics [10, 11]. Furthermore, the clinical outcomes after com-
bined aortic and mitral valve surgery are not well known [12].
In an effort to develop an improved understanding of these ef-
fects, this work proposes a computational fluid–structure inter-
action (FSI) framework for the simulation of LV with both the
AV and MV replaced with surgical BHVs.

The simulation of the intricate structures and function of the
cardiac system requires suitable modeling and analysis meth-
ods that can accurately capture the physical complexity of this
system. However, most of the previous LV simulations have
utilized simplified assumptions regarding the LV geometry, de-
formation, or boundary conditions [13–16], which significantly
reduce the feasibility of effectively replicating the in-vivo car-
diac motions or hemodynamics. In recent years, vascular sim-
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ulations (i.e. simulations of blood flows inside the vessels con-
nected to the heart) have reached a relatively mature state [17–
21] with even clinical applications [22–25]. At the same time,
cardiac hemodynamics simulations (i.e. simulations of blood
flows in the four chambers of the heart) still face many chal-
lenges, despite the advancements that have been made over the
last decade [26–30]. Some of these challenges include obtain-
ing the time-dependent large-scale heart-chamber deformation,
resolving the complex hemodynamics, and considering their in-
teractions with the structural mechanics of the heart valves [31].
As a result, realistic and robust numerical modeling of the car-
diac system requires advanced FSI formulations and method-
ologies.

To approach the computational challenges of this complex
system, traditional boundary-fitted methods for moving do-
main simulations, including the Arbitrary Lagrangian–Eulerian
(ALE) [32–34] and Space–Time (ST) [35–37] methods, have
been successfully applied to modeling the hemodynamics of
wall-bounded biomedical problems [38–42]. However, for sim-
ulations that consider the geometries and motions of the heart
valves, the large structural deformation of the valve leaflets can
severely distort the boundary-fitted fluid elements if they are
continuously deformed from a single reference configuration of
the computational domain. Sophisticated mesh management al-
gorithms are often required [43–45] to handle this type of prob-
lem. In addition, the heart valve experiences contact between
the leaflets. Some existing specialized contact algorithms ei-
ther impose a small distance to separate surfaces that would
otherwise come into contact [46] or prescribe locations where
the contact would occur [30, 47, 48]. While these assumptions
are often sufficient for some idealized scenarios, they are inad-
equate for general valvular FSI simulations.

In light of these limitations for cardiac applications, im-
mersogeometric analysis (IMGA) [49] was proposed as a ge-
ometrically flexible method to model and simulate heart valve
FSI problems [50–54]. This novel method makes direct use of
the CAD boundary representation (B-rep) of a complex design
structure by immersing it into a non-boundary-fitted discretiza-
tion of the surrounding fluid domain [55–59]. This approach
effectively deals with FSI problems involving structures with
complex motion that leads to large deformations of the fluid
domain, including changes of topology [60, 61]. Algorithms
developed for structural contact and impact problems [62, 63]
can also be directly adopted in the IMGA simulations. The vari-
ational formulation for immersogeometric FSI analysis was de-
rived using a dynamic augmented Lagrangian (DAL) approach
to weakly enforce kinematic and traction constraints [64, 65].
A hybrid ALE/IMGA methodology, in which a single compu-
tation combines both a boundary-fitted, deforming-mesh treat-
ment of some fluid–structure interfaces and a non-boundary-
fitted treatment of others, was also developed under the same
framework [50]. A comprehensive review of IMGA and its re-
cent developments and applications in heart valve simulations
can be found in Hsu and Kamensky [66].

In this work, based on the different types of deformation
present in the LV and BHV subproblems, we formulate an
FSI framework in which the LV is treated with a boundary-

fitted, deforming-mesh ALE approach and the BHVs are treated
with a non-boundary-fitted IMGA approach. Within this hy-
brid ALE/IMGA concept, a variety of advanced technologies
are seamlessly integrated, including geometry modeling [67],
fluid dynamics [68], structural mechanics [69, 70], and struc-
tural contact/impact [71]. Such a versatile technology is well
suited for the multiscale, multiphysics modeling environment
of cardiac flows. The detailed geometry and deformation in-
formation for the LV are obtained over the complete cardiac
cycle from a separate cardiac biomechanics simulation, which
is based on the technology proposed in Krishnamurthy et al.
[72], and used as an input to the cardiac FSI simulation. A
high-quality fluid domain finite element mesh is created and
deformed in time in a boundary-fitted fashion following the en-
docardial surface information obtained from the biomechanics
simulation of the LV. Using the corresponding annulus informa-
tion, we construct two BHVs, one attached to the aortic annulus
and one to the mitral annulus, and immerse them into the back-
ground LV fluid meshes. These two distinct approaches are in-
tegrated within our hybrid ALE/IMGA framework to solve for
the complex hemodynamics of the LV coupled to the structural
mechanics of the BHVs. Particular emphasis is placed on un-
derstanding the alteration in the left ventricular hemodynamic
pattern that may result from these valve replacements.

This paper is organized as follows. In Section 2, we present
the main constituents of the hybrid ALE/IMGA framework for
solving the cardiac and valvular FSI problem. Section 3 de-
tails the techniques for obtaining the LV geometry and its time-
dependent motion over a complete cardiac cycle, and the prob-
lem setup of the ventricular FSI simulation. The results are
presented in Section 4, in which we demonstrate and discuss
the LV flow pattern after bioprosthetic aortic and mitral valve
replacement. Finally, we draw conclusion and motivate future
research in Section 5.

2. Fluid–structure interaction methodology

In this section, we present the main constituents of the hy-
brid ALE/IMGA FSI framework for simulating cardiac prob-
lems. We start with the discussion of the DAL FSI framework.
We then provide a comprehensive overview on the numerical
formulations for all the subproblems in the FSI system. Finally,
we demonstrate how the numerical ingredients are integrated
together within the ALE/IMGA framework.

2.1. Mathematical model of the FSI problem

The LV FSI problem is governed by a partial differen-
tial equation (PDE) system, described using the augmented
Lagrangian framework, that consists of the fluid subproblem,
the structure subproblem, and a Lagrange multiplier constraint
problem to enforce the compatibility of kinematics and trac-
tions at the fluid–structure interface [49, 66, 73]. For a thin
structure Γt in a fluid domain Ωt, the FSI problem can be ex-
pressed as: Find a fluid velocity u1 ∈ Su and fluid pressure
p ∈ Sp, a structure displacement y ∈ Sy with its material time
derivative denoted as u2, and a Lagrange multiplier λλλ ∈ S` such
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that for all test functions w1 ∈ Vu, q ∈ Sq, w2 ∈ Vy, and
δλλλ ∈ V`,

B1({w1, q}, {u1, p}) − F1({w1, q}) + B2(w2, y) − F2(w2)

+

∫
Γt

(w1 − w2) · λλλ dΓ +

∫
Γt

δλλλ · (u1 − u2) dΓ

+

∫
Γt

(w1 − w2) · β(u1 − u2) dΓ = 0, (1)

where S(·) and V(·) are trial solution and test function spaces,
B(·, ·) and F(·) are functionals defining the fluid and structure
subproblems, denoted by subscript 1 and 2 respectively, and
β is a penalty parameter that enforces the compatibility of kine-
matics on the immersed thin structure. The presence of the
Lagrange multiplier and penalty terms facilitates the develop-
ment of certain numerical schemes based on the “augmented
Lagrangian” concept [73], as it is valid regardless of matching
or non-matching discretizations at the fluid–structure interface.
For this reason, although the augmented Lagrangian framework
was originally developed for boundary-fitted simulations, it can
be straightforwardly applied to the context of immersed inter-
face problems.

Remark 1. If the fluid and structural velocities and the corre-
sponding test functions are explicitly assumed to be continuous
(i.e., u1 = u2 and w1 = w2) at the interface, the second and third
lines of Eq. (1) drop out and the FSI formulation of Eq. (1) re-
duces to a form suitable for matching fluid–structure interface
meshes.

2.2. Hemodynamics
The fluid subproblem (hemodynamics) is governed by the

Navier–Stokes equations of incompressible flows on a moving
domain. The ALE formulation is adopted to account for the
motion of the deforming LV, which is tracked by a boundary-
fitted mesh that morphs with it. Advanced mesh moving tech-
niques [74–76] are used to preserve the mesh quality through-
out the entire cardiac cycle. The advantage of the ALE for-
mulation is that the kinematic constraints on the boundaries
are naturally satisfied by construction. The ALE formulation
has been proven effective in a variety of vascular flow simula-
tions [77, 78], for which comprehensive reviews can be found
in Takizawa et al. [79].

The ALE form of the Navier–Stokes equations is discretized
using a variational multiscale (VMS) approach [68, 80–84], in
which the stabilization parameter is modified to improve the
conservation of mass in the presence of an immersed thin struc-
ture [64]. We introduce a collection of disjoint fluid elements
{Ωe} such that Ω = ∪eΩe, and replace the semi-linear form B1
and linear functional F1 in Eq. (1) with their ALE–VMS coun-
terparts, which take the forms of

BVMS
1 ({w1, q}, {u1, p}) =∫

Ωt

w1 · ρ1

(
∂u1

∂t

∣∣∣∣∣
x̂

+ (u1 − û) · ∇∇∇u1

)
dΩ

+

∫
Ωt

εεε(w1) : σσσ1 dΩ +

∫
Ωt

q∇∇∇ · u1 dΩ

−
∑

e

∫
Ωe

t

(
(u1 − û) · ∇∇∇w1 +

∇∇∇q
ρ1

)
· u′1 dΩ

−
∑

e

∫
Ωe

t

p′∇∇∇ · w1 dΩ

+
∑

e

∫
Ωe

t

w1 · (u′1 · ∇∇∇u1) dΩ

−
∑

e

∫
Ωe

t

∇∇∇w1

ρ1
:
(
u′1 ⊗ u′1

)
dΩ

+
∑

e

∫
Ωe

t

(
u′1 · ∇∇∇w1

)
τ ·

(
u′1 · ∇∇∇u1

)
dΩ, (2)

and

FVMS
1 ({w1, q}) =

∫
Ωt

w1 · ρ1f1 dΩ +

∫
(Γh)t

w1 · h1 dΓ, (3)

where ρ1 is the fluid mass density, εεε is the symmetric gradient
operator, σσσ1(u1, p) = −pI + 2µεεε(u1), where µ is the dynamic
viscosity, f1 is a prescribed body force, h1 is a prescribed trac-
tion on Γh ⊂ ∂Ω, ∂(·)/∂t|x̂ indicates time differentiation with
respect to a fixed point x̂ from some reference configuration
Ω0, u′1 is the fine scale velocity ansatz,

u′1 = −τM

(
ρ1

(
∂u1

∂t

∣∣∣∣∣
x̂

+ (u1 − û) · ∇u1 − f1

)
− ∇ ·σσσ1

)
, (4)

p′ is the fine scale pressure,

p′ = −ρ1τC∇ · u1 , (5)

and the mesh {Ωe} deforms with velocity û. The detailed def-
inition of the stabilization parameters τM, τC, and τ can be
found in Kamensky et al. [64]. The first three terms of the
right hand side of Eq. (2) correspond to the standard Galerkin
form of the Navier–Stokes equations, and the rest of the terms
are the VMS entries, which can be interpreted both as a stabi-
lized formulation and a large-eddy simulation (LES) turbulence
model [68, 85–89].

Finally, the formulation of the fluid subproblem is enhanced
by a weakly enforced no-slip boundary condition operator on
the LV surface. Let (ΓD)t ∈ Γt be the part of the boundary where
Dirichlet velocity boundary conditions are applied. We replace
the traditional strong enforcement of Dirichlet boundary condi-
tions by adding the following weak-boundary-condition opera-
tor to the left hand side of the fluid subproblem:

−

∫
(ΓD)t

w1 · (−p n + 2µεεε(u1) n) dΓ

−

∫
(ΓD)t

(2µεεε(w1) n + q n) · (u1 − g) dΓ

−

∫
(Γ−D)t

w1 · ρ1 ((u1 − û) · n) (u1 − g) dΓ

+

∫
(ΓD)t

w1 · τ
B (u1 − g) dΓ. (6)
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The first two terms of the above equation are the consistency
and adjoint consistency terms, respectively [90]. The last two
terms provide additional numerical stabilities and help better
satisfy the no-slip and no-penetration boundary conditions by
penalizing the fluid velocity u1 toward the prescribe velocity g
on the Dirichlet boundary. The third term is imposed on (Γ−D)t,
which is the “inflow” part of (ΓD)t where (u1 − û) · n < 0. The
τB in the fourth term is chosen element-wise as τB = 4µ/hn,
where hn is the wall-normal element size at the boundary. This
definition ensures the stability of the formulation, yet does not
overshadow the consistency and adjoint consistency terms that
are responsible for the excellent robustness and accuracy of the
weak enforcement of boundary conditions. The formulation al-
lows the flow to slip on the boundary when the fluid mesh in the
boundary layer is coarse, which mimics the presence of a wall
function and therefore avoids the excessive resolution require-
ment of the boundary-layer meshes [68, 90–92].

2.3. Heart valve structure modeling

The BHV structures are modeled by an isogeometric hyper-
elastic thin shell formulation developed in Kiendl et al. [69].
The formulation is based on the Kirchhoff–Love assumption
with an arbitrary hyperelastic constitutive model. Let (Γsh)t ∈ Γt

denote the midsurface of the BHVs and (Γsh)0 being its ref-
erence configuration, the semi-linear form B2 and linear func-
tional F2 defining the nonlinear elasticity problem can be ex-
pressed as

B2(w2, y) =

∫
(Γsh)t

w2 · ρ2hth
∂2y
∂t

∣∣∣∣∣∣
X

dΓ

+

∫
(Γsh)0

∫ hth/2

−hth/2
Dw2 E : S dξ3dΓ , (7)

F2(w2) =

∫
(Γsh)t

w2 · ρ2hthf2 dΓ +

∫
(Γsh)t

w2 · h2 dΓ , (8)

where ρ2 is the structure mass density, hth is the shell thick-
ness, ∂(·)/∂t|X indicates the time derivative taken with respect
to a fixed material point X, ξ3 is the shell through-thickness
coordinate, f2 is a prescribed body force, h2 is the net fluid trac-
tion acting on the BHV leaflets, E is the Green–Lagrange strain
tensor depending entirely on the shell midsurface displacement
y, Dw2 E is the variation of E in the direction w2, and S is the
second Piola–Kirchhoff stress tensor. In this work, the BHV
leaflets are assumed to be incompressible and are modeled as a
Fung-type material. Specifically, S is computed as

S = 2
∂ψel

∂C
− plC−1 , (9)

where
ψel =

c0

2
(I1 − 3) +

c1

2

(
ec2(I1−3)2

− 1
)

. (10)

In the above equations, C = 2E + I is the left Cauchy–Green
deformation tensor, pl is a Lagrange multiplier that can be ana-
lytically determined using the plane stress condition to enforce
incompressibility, I1 = tr C, and c0, c1, and c2 are material pa-
rameters.

The Fung-type material model uses a combination of linear
and exponential functions of the first strain invariant [93–95]
to describe the tissue stiffening under tensile loading. For the
small strain regimes, such as those present in the open aortic
BHV configuration during LV systole, the tissue remains com-
pliant, since the unloaded collagen fibers are highly undulated
and only provide very low stiffness. The extracellular matrix
dominates the material stiffness, and is modeled here by the
incompressible neo-Hookean term proposed by Fan and Sacks
[96]. As the strain increases, the magnitude of the exponential
term begins to dominate, which mimics the drastic increase in
the stiffness of stretched biological tissues, such as when the
aortic BHV closes subject to the large transvalvular pressure
load during LV diastole.

Remark 2. In this work, the contact between the leaflets is as-
sumed to be frictionless and is modeled using a penalty-based
approach detailed in Kamensky et al. [49], in which a repulsive
force is applied to the leaflet structures that come into contact.
In our hybrid ALE/IMGA framework, since the discretization
of the BHVs are independent from the fluid, other existing con-
tact algorithms may be directly incorporated. For example, the
volumetric-potential-based algorithms developed by Kamensky
et al. [71, 97] are suitable options to model self contact and fric-
tions.

2.4. Fluid–structure coupling
The thin-shell BHV structures described in the previous

section are “immersed” into the background LV fluid mesh.
The coupling between the fluid and thin shell is achieved us-
ing the IMGA approach through a combination of the penalty
and the Lagrangian multiplier field shown in Eq. (1). The semi-
linear forms and linear functionals in the fluid and structure
subproblems are discretized in time using the generalized-α
method [98]. Note that the fluid–structure interface Γsh

t is not
conforming to the fluid mesh elements∪eΩ

e. Therefore, the La-
grange multiplier field on Γsh

t needs to be approximated in the
context of the non-boundary-fitted discretization. Following the
DAL approach [64, 66], the Lagrange multiplier is discretized
in space and updated semi-implicitly in each time step. In short,
in the case in which a thin shell is immersed into the fluid, the
tangential component of the Lagrange multiplier is eliminated
such that the non-sliding condition is only enforced by the tan-
gential component of the penalty, βTAN. The normal component
λ = λλλ · nsh is stored at the quadrature points of the thin shell Γsh

(with nsh being its unit outward normal vector) in the form of
a scalar, and is used together with the normal penalty βNOR to
enforce the no-penetration conditions. λ is updated in time by

λn+1 =
1

r + 1

(
λn + βNOR

(
un+α f

1 − un+α f

2

)
· nsh

)
, (11)

where n + α f is an intermediate time level between steps n and
n + 1 that is predicted by the generalized-α method. The con-
stant parameter r ≥ 0, which is inspired by the perturbed La-
grangian approach [99], ensures well-posedness in the steady
limit. Kamensky et al. [64, 100] analyzed the stability and ac-
curacy of this methodology as well as the choices of the param-
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eters. Following their recommendation, we set r = 10−5 for the
semi-implicit time integration scheme for Lagrange multiplier
in Eq. (11).

Remark 3. The hybrid ALE/IMGA framework falls under
the concept of the Fluid–Solid Interface-Tracking/Interface-
Capturing Technique (FSITICT) [101]. In such a paradigm,
interfaces that are feasible to track are tracked (e.g. the LV
motion), and those that are too challenging to track are cap-
tured (e.g. the BHVs). In the present work, the immersion
of the non-boundary-fitted BHV structures into a boundary-
fitted discretization of the deforming LV is a typical example of
FSITICT. The FSITICT was recently introduced to compress-
ible flow simulations with application to rotorcraft aerodynam-
ics [58].

3. Ventricular fluid–structure interaction simulation

In this section, we present the implementation details for
simulating blood flow inside an LV model in which the native
AV and MV are replaced with BHVs. Based on the LV motion
obtained from a cardiac biomechanics simulation, we use an
interactive geometry framework [67] to construct the fluid mesh
and BHV models, and specify the boundary conditions of the
FSI problem in a complete cardiac cycle.

3.1. Structural analysis of LV motion
The physiological LV wall motion used in this work is gen-

erated through a standalone structural simulation of the cardiac
mechanics [70, 72]. A brief summary of this technology is pre-
sented here. A biventricular cardiac model, which includes both
the left and the right ventricles, orifices, and valve annuli, is
constructed using cubic-Hermite finite element meshes. The
model dimensions, including the volume of both ventricles and
wall (myocardium) thickness, were adjusted using data from
available literature [102]. Although high order smoothness can
be achieved in the interior of Hermite elements, maintaining
continuity of the fields across element boundaries requires ad-
ditional mathematical constraints, especially at extraordinary
nodes that are connected to a non-regular number of edges (3, or
≥ 5). Following the work of Krishnamurthy et al. [72], a local-
to-global map [103] that transforms global ensemble derivatives
into local element derivatives is used to maintain the continu-
ity at extraordinary nodes. In addition, the accurate myocar-
dial fiber architecture is crucial to the physiological realism
of the LV structural mechanics. A coordinate frame interpo-
lation method is developed to maintain the consistency of the
fiber orientation within the elements, even in the presence of
extraordinary nodes [104]. The passive material properties of
the myocardial tissue are modeled by the hyperelastic consti-
tutive model [105]. This is a nonlinear hyperelastic constitu-
tive law for which the strain energy is an exponential function
of the right Cauchy–Green strain tensor in the fiber direction
and the transverse direction as separate terms. Using the three-
wall segment (TriSeg) model [106], the muscle contraction is
modeled as a time-dependent active stress that is added to the
passive stress in the 3D finite element formulation. Finally, to

obtain the deformation of the biventricular model for the com-
plete cardiac cycle, the 3D finite element model is coupled with
a lumped-parameter closed-loop circulation model that repre-
sents the rest of the cardiovascular system. For details on the
setup and numerical methodologies used for the cardiac struc-
tural model, we refer the readers to the cited literature.

3.2. Geometry modeling and mesh generation

For this cardiac flow study, the endocardial surface obtained
from the cardiac biomechanics simulation is used as an input
for the ventricular FSI simulation. Starting from the geometry
of the biventricular model described in Section 3.1, we extract
the portion that includes the full LV endocardium and the mi-
tral and aortic flow tracts, as show in Fig. 1(a). We then at-
tach an idealized aorta to the aortic annulus, and a cylindrical
LA extension to the mitral annulus to allow flow development
before the MV. The smooth annular connections, between the
idealized aorta and the aortic annulus, and between the cylin-
drical LA extension and the mitral annulus, are achieved via
cubic spline interpolation. Fig. 1(b) illustrates the geometry
that is used for the FSI simulation as the reference configura-
tion, with the edges denoting the patch boundaries. Starting
from the reference configuration, the motions of the aorta and
the LA extension are prescribed with the following constraints.
The centerlines of the aorta and LA extension are only allowed
to translate in space from the reference configuration, with their
lower endpoints attached to the centers of the aortic and mitral
annuli, respectively. The diameters of the aorta and the LA ex-
tension are scaled following the change of the aortic and mitral
annuli, respectively. Throughout the cardiac cycle, the annular
connections are kept smooth.

Due to their flexibility and adaptivity, we use pure tetrahe-
dral elements to discretize the moving fluid domain. We start by
discretizing the spline patches into a triangular mesh. Since the
spline patches are part of the biventricular finite element mesh,
the smoothness between neighboring patches is automatically
maintained, and we can split each patch into triangles that share
nodes on the patch boundaries (Fig. 1(c)). Note that Fig. 1(c)
shows a very coarse mesh that is only used to illustrate the sur-
face discretization. We locate the surface element nodes in the
parametric space of the spline patches. The parametric coordi-
nates are used to interpolate the current locations of the nodes
when the LV deforms, and are then used as boundary condi-
tions to deform the fluid domain in the FSI simulation. Finally,
the volumetric mesh is generated based on the refined surface
triangular mesh illustrated in Fig. 1(d). As a result, a total of
1,232,871 elements are generated for the volumetric mesh. The
volumetric mesh is updated at each time step by solving the
equations of elastostatics [74–76, 107], with the prescribed dis-
placement boundary conditions on the surface nodes extracted
from the LV structural motion obtained in Section 3.1 and the
aorta and LA motions previously described in this section. Note
that the temporal resolution of the LV motion from the struc-
tural analysis is limited, so we use periodic cubic splines to
smoothly interpolate the LV motion into arbitrarily small time
steps.
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(a) (b) (c) (d)

Figure 1: Reference fluid domain mesh generation: (a) the spline patches making up the left ventricle model; (b) LV model with an idealized aorta and LA extension;
(c) coarse triangulation of the model; (d) fine triangulation of the model that is used as the resolution in the FSI simulation.

For the BHVs in this paper, we use the T-spline model
from Hsu et al. [51]. The T-spline mesh for the aortic BHV
comprises 382 and 1020 Bézier elements for each leaflet and the
stent, respectively, and a total of 2262 T-spline control points.
The T-spline mesh for the mitral BHV comprises 354 and 1020
Bézier elements for each leaflet and the stent, respectively, and
a total of 2169 T-spline control points. We scale and locate
the BHVs such that the suture rings of the AV and MV stents
match the aortic and mitral annuli, respectively. The sizes of
the BHVs for AV and MV replacements are 20 mm and 24 mm
(based on stent diameter), respectively. Fig. 2 illustrates the
parameterization of the BHV model, and the reference config-
uration in which two BHVs are implanted into the LV, with the
MV replacement placed in an inverted configuration.

The attached edges of the leaflets are clamped to the stent
by constraining the relative motions of the two rows of control
points adjacent to the stent. These control points are highlighted
in Fig. 2. We model the surgical suturing between the BHV
stent and the annulus by intersecting the suture ring with the LV
wall. Fig. 2 shows the geometric intersection of the stent with
the fluid domain boundary. The intersection seals the space be-
tween the BHV and the LV fluid domain boundaries, such that
the blood can only flow through the orifices of the BHVs when
they are open. The intersection is maintained during the entire
cardiac cycle by matching the movements of the suture rings to
the motions of the AV and MV annuli.

3.3. FSI simulation details
The flow boundary conditions are shown in Fig. 3. In the

FSI simulation, we apply the left atrial pressure based on the
simulations from Krishnamurthy et al. [70] as a traction bound-
ary condition at the mitral inflow tract. The applied pressure

Suture ring:
moves with 
annulus

Free

Constrained

Figure 2: The BHV model discretization and configuration of the AV and MV
implants, which are immersed into the LV fluid domain. The control points with
constrained motion are highlighted by red color in the left-hand-side figure.

profile, shown in Fig. 3, is periodic with a time period of
0.8 s. A resistance boundary condition is applied at the out-
flow boundary of the ascending aorta in the form of a traction
−(p0 + RQ)nout, where p0 is the end-diastolic aortic pressure,
nout is the outward-facing normal of the fluid domain, R is a re-
sistance constant, and Q is the volumetric flow rate through the
outflow.

6



h = (p0+RQ)nout

LA 
pressure

weakly 
enforced 
no-slip 
condition

LV systole

E wave A waveA wave
Diastasis

LV diastole

LV 
volume

0 0.80.60.40.2

0 0.80.60.40.2

90

150

130

110

0

15

10

5

Time (s)

L
A

 p
re

ss
ur

e 
(m

m
H

g)

Time (s)

LV
 v

ol
um

e 
(m

L
)

Figure 3: Setup for the FSI simulation. Different phases of the cardiac cycle are labeled on the LV volume curve.

In the present computation, we set p0 = 40 mmHg and
R = 70 (dyn s)/cm5. The end-diastolic aortic pressure value,
which is lower than the normal physiological level, is consis-
tent with the LV structural simulation of a patient who is in the
early stages of heart failure with ventricular dyssynchrony that
has not progressed to dilated cardiomyopathy [70]. Backflow
stabilizations [108] are used at the mitral inflow tract and the
aorta outlet boundary, by adding the following term to the fluid
subproblem:

− γ
∑

i

∫
(Γout

i )t

w1 · {(u1 − û) · n1}−u1dΓ, (12)

where γ = 0.5, {(u1 − û)·n1}− =
1
2

((u1 − û)·n1−| (u1 − û)·n1|),

and (Γout
i )t is the ith outflow boundary. On all other boundaries,

weakly enforced no-slip boundary conditions are applied. The
different phases of the cardiac cycle (e.g. the LV systole and
diastole) are labeled on the LV volume profile in Fig. 3. The
normal and tangential velocity penalization parameters used in
our FSI formulation are τB

TAN = 2.0× 103 g/(cm2 s) and τB
NOR =

2.0 × 102 g/(cm2 s). The time step size is ∆t = 1.0 × 10−4 s so
that a total of 8000 time steps are used in a complete cardiac
cycle. The fluid density and viscosity in the fluid domain are
set as ρ1 = 1.0 g/cm3 and µ = 3.0 × 10−2 g/(cm s), respectively,
to model the physical properties of human blood [109, 110].

Remark 4. The simulations are carried out in a parallel com-
puting environment on the Lonestar5 Linux cluster [111] of the
Texas Advanced Computing Center [112]. The system consists
of 1252 compute nodes, each with two Intel E5-2690 v3 12-
core (Haswell) processors and 64 GB of DDR4 memory. We
partition the fluid mesh into 96 subdomains, and use the par-
allelization strategy presented in Hsu et al. [113]. With these
configurations, a complete cardiac cycle takes 38 to 42 hours to

simulate.

The material parameters in Eq. (10) are set to c0 = 5.0×106

dyn/cm2, c1 = 2.0 × 105 dyn/cm2, and c2 = 100.0. Based on
the three-point bending tests of glutaraldehyde-treated bovine
pericardium reported by Mirnajafi et al. [114], we set the co-
efficient c0 such that it provides a similar small-strain bending
stiffness. The parameters c1 and c2 are selected based on the
assumption that the BHVs in this paper are comparable to the
pericardial BHV leaflet models in Sun et al. [115]. The mass
density of the leaflets is set to 1.0 g/cm3. The thickness of the
leaflets is 0.0386 cm, which is selected as a typical thickness
of adult bovine pericardial tissue [116, 117]. The stents are as-
sumed to be rigid, considering their large stiffness compared
with the leaflets.

4. Results and discussions

4.1. FSI simulation results

The FSI simulation is carried out for four cardiac cycles in
order to achieve a statistically periodic steady state. To evaluate
the variations between cycles, the volumetric flow rate enter-
ing the mitral inflow tract is monitored and compared between
the third and fourth cycles. The L2-norm of flow rate differ-
ence between the two cycles is below 3% of the L2-norm of
fourth-cycle flow rate. All the results presented in this section
are based on the fourth cycle. Several snapshots of the BHV de-
formation and the details of the flow field at several time points
during the cardiac cycle are presented in Fig. 4. The visualiza-
tion of flows and structures clearly demonstrates the response
of the valves to the left ventricular motions and hemodynamics.
The entire cardiac cycle can be divided into several represen-
tative time intervals, as detailed on the LV volume profile in

7



t = 0.108 s t = 0.2 s t = 0.38 s t = 0.512 st = 0.432 s

Flow
speed
(cm/s)

125
62.5
0

t = 0.552 s t = 0.6 s t = 0.7 s t = 0.768 s t = 0.8 s
Figure 4: Visualization of the FSI results for the flow field in the LV and the BHV motions in a complete cardiac cycle.

Fig. 3. During the 0.05 s to 0.38 s time interval, the contrac-
tion of the LV volume causes the aortic BHV to open and allow
blood flow into the aorta. This time period corresponds to the
systole of the LV, during which the mitral BHV closes and pre-
vents the flow from reversing to the LA. The next part of the
cycle, between 0.38 s and 0.8 s, is the diastole of the LV. In the
early diastole (E wave) from 0.38 s to 0.6 s, the mitral BHV
fully opens and a large amount of blood fills into the LV cham-
ber while the LV wall relaxes. The mitral BHV closes during
the 0.6 s to 0.72 s time period of diastasis. Finally, the atrial
contraction during the A wave propels additional blood flows
into the LV, and reopens the mitral BHV at 0.768 s. Due to
the shorter duration and lower strength of the A wave, the mi-
tral BHV opening during this period is minor compared to its
opening during the E wave. As a result, most of the blood flow

transfer from the LA to the LV is completed during the E wave.
Fig. 5 visualizes the vortical structures at the same time

frames as Fig. 4. The vortical structures are created using iso-
surfaces of the second invariant of the velocity gradient matrix,
i.e. the λ2 criterion [118]. Some of the same flow phenomena
that were observed in Fig. 4 are also clearly visible from the
vortical structures. The vortex ring generated by the mitral jet
during LV diastole is one of the most distinguishable features
of intraventricular flows. During the E wave, the vortex ring
demonstrates that the flow forms a jet as it moves to the apex,
from 0.432 s to 0.512 s. Once the blood flow reaches the apex,
it reverses and moves upwards toward the valves. The vorti-
cal structures at 0.552 s indicate that the flows are well mixed
in the LV. During the A wave, the small ring-structured vortex
can be clearly observed. This vortex is generated from the mi-
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t = 0.552 s t = 0.6 s t = 0.7 s t = 0.768 s t = 0.8 s
Figure 5: Vortical structures colored by the velocity magnitude in a complete cardiac cycle.

nor mitral BHV opening created by the atrial kick from the LA
contraction, and moves into the LV while the flows in the other
regions remain mostly at rest.

4.2. Effects of BHV on hemodynamic pattern
The asymmetry of the native MV leaflets guides the flow

to impinge toward the LV posterior wall [8, 9] during LV dias-
tole. The flow continues in the same direction until it reaches
the apex of the LV, where it turns and is redirected toward the
outflow tract (the AV annulus). A schematic of the flow pattern
is depicted in Fig. 6(a). The jet flow that reaches the apex is
considered to be important for enhancing apical washout in the
LV [9]. Without proper apical washout, the blood flow could
reach a stasis in the apex region and cause subsequent throm-
bus formation [119, 120]. In addition, with the clockwise circu-
latory pattern, the systolic contraction of the LV would propel

blood flow that is already moving toward the aortic valve, such
that the momentum loss is minimal.

With the implant of a symmetric BHV in the MV annulus,
obvious changes in the flow pattern can be observed. The most
prominent change is the direction of the flow jet entering the
LV. Fig. 6(b) shows that the flow is essentially perpendicular
to the MV annulus plane, and it impacts the interventricular
septum instead of impinging toward the posterior wall. Subse-
quently, the flow turns counterclockwise toward the apex, and
the blood flow circulates back toward the MV along the poste-
rior wall, as suggested by Fig. 6(c). As a result, the replace-
ment of the native MV with a symmetric BHV changes the di-
rection of the diastolic vorticity inside the LV. In spite of the
direction change of the vorticity, it can be observed that the api-
cal washout is still present. Fig. 6(c) shows a high speed flow,
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Figure 6: Comparison of flow circulatory patterns in the LV during diastole: (a) schematic of the flow direction resulting from a typical native valve [8]; (b)
streamlines and velocity magnitude contours for the BHV FSI results at t = 0.472 s; (c) streamlines and velocity magnitude contours for the BHV FSI results at
t = 0.552 s; (d) pressure contours at t = 0.472 s. Velocity magnitude contours are plotted using a color scale ranging from 0 (blue) to ≥ 200 cm/s (red) in (b) and
(c). Pressure contours are plotted using a color scale ranging from ≤ −5 (blue) to ≥ 5 mmHg (red) in (d).

which may result from the smaller orifice areas of BHVs com-
pared to healthy native MVs [6, 121], that changes direction in
the apex region. From a heart-workload perspective, a negative
effect of the high-speed jet is that the resulting large kinetic en-
ergy of blood typically indicates increased workload done by
the expanding LV. On the other hand, the high speed jet can ac-
tually enhance the apical washout and the blood mixing in the
LV, which is desirable as it reduces the risk of stasis [119, 120].

Potential adverse effects can also result from the altered
pressure distribution in the LV. The impact of the jet on the
interventricular septum will increase the pressure on the sep-
tum, compared with the native MV case in which the jet moves
along the posterior wall, as shown in Fig. 6(d). As a result,
the septal tissue may be exposed to higher stresses than those
that result from the native MV. In addition, the normal equi-
librium developed under pre-implant physiological conditions
may be modified after valve replacement. It was also reported
that the LV may suffer from changes in geometry after MV re-
placements [122], which can worsen with the removal of the
chordae tendineae during conventional MV replacement surg-
eries [123, 124]. Further studies of these post-operative phe-
nomena, including the effect of hemodynamic changes on LV
chamber geometry, are necessary to investigate the subsequent
impact of replacing the native MV with a BHV.

5. Conclusions, limitations, and future work

5.1. Conclusions

This study focuses on using advanced hybrid ALE/IMGA
modeling and simulation to better understand the hemodynam-
ics in the LV with BHV implants. The structures and kinemat-
ics of the BHVs are expected to have a significant influence on
the LV hemodynamics. However, the computational challenges

presented by such a complex application pose a substantial ob-
stacle for numerical investigations that use classical methods.
Such challenges include large-scale structural deformations, as
well as contact/impact between heart valve leaflets. To over-
come these issues, this work employs the IMGA method to
model the interactions between the blood flow and the valve
in a non-boundary-fitted approach. Combined with a penalty-
based contact algorithm, these methods produce a physiolog-
ically realistic valvular FSI modeling approach. In conjunc-
tion with these valve models, the ALE–VMS method is utilized
to model the hemodynamics that result from LV wall motion,
which incorporates the accuracy provided by boundary-fitted
approaches. Through the combination of these advanced tech-
nologies, numerical simulations of the LV FSI system are car-
ried out using a computational approach that balances robust-
ness and accuracy. These simulation results predict the LV in-
traventricular flow field after AV and MV replacements. Sev-
eral unique phenomena in the LV, such as the valve opening
and flow behavior that is caused by the atrial kick, are accu-
rately captured. The effect of BHV replacements on the vortex
direction reversal in the specific LV presented in this paper is
particularly highlighted since this hemodynamic change may
have a profound impact on the LV workload and structural be-
havior.

5.2. Limitations and future work

The primary intent of this paper is to develop an FSI mod-
eling and simulation framework for cardiac and valvular prob-
lems. Although this framework is intended to provide a flexi-
ble approach to model many cardiac conditions, the presented
results and observations are specific to the boundary condi-
tions and geometries specified in this paper, and the conclusions
should not be generalized to all other possible variations. In the
future, the proposed hybrid ALE/IMGA framework could be
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applied to simulate a diverse set of cardiac conditions, including
variations in boundary conditions and geometries, which would
further demonstrate its robustness and physiological realism.
The proposed framework could also be extended and applied to
different cardiac applications, especially those hearts with pros-
thetic valve replacements, and to include four-chamber mod-
els [104] and atrioventricular valves [125, 126]. Efficiently ex-
ploring the myriad of parameters that are present in the wide
variety of cardiac problems would require some form of auto-
mated optimization. Previous work has demonstrated that the
FSI system can be optimized using a surrogate management
framework (SMF) [127], and similar combinations of the SMF
and hybrid ALE/IMGA framework could provide an effective
tool for future numerical studies of cardiac systems.

The specific heart geometry in this paper is from a patient
with mild heart failure with ventricular dyssynchrony that has
not progressed to dilated cardiomyopathy [70]. The cardiac
motion for such a patient in the early stages of heart failure
is expected to remain within a normal range. Although the LV
motion and the boundary conditions in this paper are within
a reasonable range, the following assumptions and simplifica-
tions had to be taken to make the FSI simulation more tractable.
First, all the motions of the boundaries, including the LV and
the ascending aorta, are prescribed. With the BHV replace-
ments, the altered pressure may not be consistent with the pre-
scribed volume change, and as a result, the effect of LV and
aorta compliance is likely not well reproduced. In addition, the
LA is simplified to a cylindrical section that is attached to the
mitral inflow tract, which artificially alters the mechanism driv-
ing the flow through the MV during the A wave. Instead of
being driven by the contraction of LA, the flow is driven by the
suction created by the prescribed LV volume expansion. This
explains the LV pressure profile discrepancy in Fig. 7 between
0.72 s and 0.8 s, where an obvious pressure drop is observed in
the FSI simulated LV pressure. Some other limitations of this
work include the simple resistance boundary condition applied
at the outlet of the ascending aorta. This limitation can be ad-
dressed in the future by incorporating Windkessel-type bound-
ary conditions [128].

The paradigm proposed in this work provides an effective
tool to better understand the fluid and structural behaviors in the
cardiac system. Despite the realistic modeling approaches pre-
sented in this work, the BHV structures and the deformation of
the LV are limited to the idealized data that is available for these
geometries and the structural simulation of the LV. The sim-
plification of these model inputs produces more idealized FSI
simulation results that will be improved in the future by con-
necting the present hybrid ALE/IMGA framework to medical
imaging technologies [52]. Incorporating these data has signif-
icant potential to lead to highly realistic patient-specific model-
ing and simulation. Such an integrated tool could be beneficial
for developing novel implant strategies that focus on replicat-
ing the native blood flows after BHV replacement operations.
Eventually, this physics-based computational FSI framework
could help reduce the morbidity and mortality in cardiac dis-
ease treatments through improved surgical planning and per-
sonalized medical device design.
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Figure 7: The intraventricular pressure of the FSI simulation throughout a
complete cardiac cycle. The intraventricular pressure is obtained by space-
averaging the blood pressure in the LV. The LV pressure used in the structural
mechanics simulation of the LV motion is plotted for reference.
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