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Abstract

Approximately 1.6 million patients in the United States are affected by tricuspid valve regurgita-
tion, which occurs when the tricuspid valve does not close properly to prevent backward blood
flow into the right atrium. Despite its critical role in proper cardiac function, the tricuspid valve
has received limited research attention compared to the mitral and aortic valves on the left side
of the heart. As a result, proper valvular function and the pathologies that may cause dysfunction
remain poorly understood. To promote further investigations of the biomechanical behavior and
response of the tricuspid valve, this work establishes a parameter-based approach that provides a
template for tricuspid valve modeling and simulation. The proposed tricuspid valve parameteri-
zation presents a comprehensive description of the leaflets and the complex chordae tendineae for
capturing the typical three-leaflet structural deformation observed from medical data. This simu-
lation framework develops a practical procedure for modeling tricuspid valves and offers a robust,
flexible approach to analyze the performance and effectiveness of various valve configurations us-
ing isogeometric analysis. The proposed methods also establish a baseline to examine the tricuspid
valve’s structural deformation, perform future investigations of native valve configurations under
healthy and disease conditions, and optimize prosthetic valve designs.
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1. Introduction

Among the critical anatomical components of the human heart, the four heart valves are the
primary structures that regulate unidirectional blood flow through the cardiac system. The atri-
oventricular valves, with the tricuspid valve (TV) on the right side and the mitral valve on the
left side of the heart, regulate the blood flow from the atria to the ventricles. The complex TV
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Figure 1: The left image shows an excised porcine tricuspid valve (TV), and the right image shows two intact porcine
TVs in the closed configuration. The three leaflets of the TV, the septal leaflet (SL), anterior leaflet (AL), and posterior
leaflet (PL), are joined at three commissure locations: the anteroseptal (AS), posteroseptal (PS), and anteroposterior
(AP) commissures.

anatomy comprises three leaflets: the septal leaflet (SL), anterior leaflet (AL), and posterior leaflet
(PL). These leaflets are connected to an annulus at the atrioventricular junction and attached to the
papillary muscles in the right ventricle through fibrous cords of tissue known as chordae tendineae
(Figure 1). Several valvular pathologies, including stenosis and annular dilation, can inhibit the
proper closing of the TV leaflets and lead to various valvular diseases. One such serious insuffi-
ciency, known as tricuspid regurgitation, occurs when the improper closure of the TV causes blood
to flow back into the atrium during systole [1, 2]. This disease affects approximately 1.6 million
Americans and can overload the right ventricle over time as the heart compensates for the reduced
cardiac output [3–5].

For diseased valves that severely impact proper leaflet closure, common treatment options in-
clude either repairing the native valve or replacing it with a prosthetic implant. Despite the high
incidence of TV regurgitation and the need for repair and replacement procedures, the TV has
received the least research attention among the four heart valves, with the mitral and aortic valves
on the left side of the heart being more thoroughly investigated [2, 6, 7]. Through clinical, exper-
imental, and computational approaches, several recent studies have advanced efforts to model and
characterize the microstructural properties and mechanical behavior of the TV [2, 7–24]. Many
of these studies rely on high-resolution medical image data, such as computed tomography (CT)
scans, to reconstruct models of an individual patient’s valve [7, 10]. For computational investiga-
tions of the cardiac system, isogeometric analysis (IGA) has recently become a notable approach
for modeling heart valve problems [25–41], especially given that spline technologies are frequently
utilized for heart valve geometry reconstruction [42–45]. When combined with IGA, spline func-
tions can also be readily employed to analyze complex, patient-specific geometries for vascular
modeling problems [46–51]. Recent work has also incorporated spline-based geometries to con-
struct TV models and simulate their function [8, 52] and to develop parametric descriptions that
model healthy, diseased, and patient-specific valves [2].
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Figure 2: Overall schematic of the framework for parameterization, modeling, and isogeometric analysis of tricuspid
valves.

Despite these recent developments, the intrinsically complex geometry and behavior of the
atrioventricular valves still present several key challenges in studying the overall function of the
TV. While there are numerous methods to construct atrioventricular valves based on medical im-
age data, these approaches rely on high-quality data and are often only suitable for constructing
valve-specific geometries based on particular imaging modalities [53, 54]. Valve parameteriza-
tion, in contrast, offers an effective modeling approach that eliminates the need for specific high-
resolution data [28] and enables generative modeling and parametric analysis [55]. Although the
utility of parametric modeling has been demonstrated by its effective application to aortic valve
simulation [56–58], there are very few existing parametric models for the atrioventricular valves.
Additionally, each TV component and its function in the complex valvular system, including the
thin structures of the leaflets and the fibrous chordae tendineae, needs to be appropriately described
and coupled to replicate the interactions of the entire valve apparatus through simulation. Due to
the complexity of these valvular components, there is no existing comprehensive approach to ac-
commodate all of these computational modeling requirements.

To address these challenges, the present work proposes a generalized modeling and analysis
framework for the TV. This approach incorporates novel parameterizations, flexible geometric
modeling methods, and isogeometric analysis, as outlined in Figure 2, to provide an adaptable
framework for simulating the mechanics of the complex valvular surface and chordae tendineae.
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The developed parametric description generates a simplified TV model that is able to capture the
type of structural deformation observed from medical data. When this parameterized model is
coupled with IGA, the resulting comprehensive framework provides extensive options for future
TV analyses, including examining the performance of healthy and diseased valves and designing
and optimizing bioprosthetic valves. This framework also includes proposed methods that allow
us to analyze the performance of the TV and extract important quantities of interest, such as the
coaptation height and area and the projected regurgitant orifice area, that can be used to evaluate
the valve closure and possible regurgitation that may occur.

The following sections outline the detailed components of this computational framework for
producing an adaptable template-based approach that is widely applicable for many TV applica-
tions. Section 2 presents the proposed TV parameterization and geometry modeling approaches
and the simulation methods that are developed and employed to analyze the TV. These include
detailed discussions of the generalized parametric definition, structural formulations, coupling ap-
proach, contact algorithm, and material models for the valve leaflets and chordae. In Section 3,
the proposed methods and parameterization are applied to the TV. In this section, the developed
approaches for evaluating the desired quantities of interest are discussed, and the convergence of
the TV modeling and analysis methods is evaluated. A parametric study is also performed to ex-
amine the closure behavior of a set of TV cases that are generated and analyzed using the proposed
framework. Finally, Section 4 discusses the conclusions of this work and outlines some future
applications for this framework.

2. Modeling and simulation methods

2.1. Tricuspid valve parameterization and geometric modeling

Several imaging modalities are commonly used to capture three-dimensional (3D) medical data
from various anatomical components of the TV apparatus. Micro-computed tomography (µCT)
scans provide high-resolution data that can be used to construct detailed models of the tricuspid
and mitral valve geometries [7, 59]; however, this is limited to capturing valves ex vivo or in vitro.
For imaging valves in vivo, traditional cardiac CT scans offer a more accessible, lower-resolution
option to support patient-specific valve reconstruction [10]. 3D transesophageal echocardiography
(3D TEE) and cardiac magnetic resonance imaging (cMRI) are also commonly used to capture
in vivo data from the atrioventricular valves [60–62] and annuli [63, 64]. Considering some of
the challenges associated with modeling heart valves directly from medical images, the proposed
template-based model has been developed to be data-independent. While the generalized definition
of the TV parameters does not require input data from medical images, which is needed for most
existing TV modeling approaches, it can also accommodate a variety of medical image resolutions
if they are available or necessary for patient-specific modeling. Figure 3 shows the proposed
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Figure 3: Generalized TV parameterization for the leaflets and chordae tendineae. The model comprises a compre-
hensive set of parameters, which includes the i control point locations, Pi = (ri, θi, zi), the leaflet and commissure
locations, D, and heights, h, the tangential shift, t, and tangential rotation, ϕ, that control the curvature at the free edge
locations, the relative locations of the papillary muscles, r1, r2, and r3, the number of chordae, N, the spacing between
chordae, d, the added arc length of the chordae, L, and the offset distance of the outer two chordae in each grouping, s.
The superscripts indicate the septal leaflet (SL), anterior leaflet (AL), and posterior leaflet (PL), and the anteroseptal
(AS), posteroseptal (PS), and anteroposterior (AP) commissures.

generalized valve parameterization that is used to construct the template-based model for the TV
leaflets and chordae tendineae.

The following subsections present a generalized template for TV parameterization that can be
used to model many different valvular arrangements either in vivo or ex vivo. The current work
proposes a valvular template that incorporates parameter-based leaflet and chordae modeling ap-
proaches to construct B-spline surfaces and curves. This parameter-based model does not directly
describe any specific TV, but accommodates a significant number of geometries and configurations.
While this generalized parametric valve definition is an independent algorithmic modeling ap-
proach that does not require medical data, the versatile model can also incorporate patient-specific
information by selecting the individual valve parameters based on input data from medical images.
This template-based model takes advantage of the flexibility offered by morphable B-spline ge-
ometries and the utility of adaptable parametric modeling approaches to develop a model that can
capture many different TV arrangements. The following sections discuss the detailed modeling
approaches that are used to construct the TV geometry.

2.1.1. Tricuspid valve leaflet modeling

Within the proposed TV modeling process, the construction approach for the TV leaflet sur-
face begins with generating the annulus curve. In the generalized valve parameterization, the
annulus curve is defined by the 3D cylindrical coordinates, r, θ, and z, of a set of unique control
point locations (Figure 4, Step 1). In this work, the control points, Pi, are defined by 15 unique
point locations that are used to construct the annulus shape as a cubic, periodic B-spline curve
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Figure 4: Surface construction process for the parameterized TV. The surface model parameters for various steps of
the surface construction include the i control point locations, Pi = (ri, θi, zi), the leaflet and commissure locations, D,
and heights, h, and the tangential shift, t, and tangential rotation, ϕ, that control the curvature at the free edge locations.
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with 18 control points, including three overlapping control points (shown with filled markers) to
accommodate the cubic periodicity of the surface [65] (Figure 4, Step 2). The total degrees of
freedom for the annulus curve can be adjusted to achieve the desired annulus shape. Uniform
knot vectors are used throughout this work. Next, the plane of the annulus curve, which will be
used to determine the valve orientation, is defined by fitting a plane to the annulus curve using
a least squares fitting algorithm (Figure 4, Step 3). The anteroseptal (AS) commissure location,
DAS, is defined at the start and end points of the annulus curve, and the relative positions of the
posteroseptal (PS) and the anteroposterior (AP) commissure locations, DPS and DAP, are defined
along the one-dimensional (1D) parametric space of the annulus curve (Figure 4, Step 4). Then,
the three leaflet locations, DSL, DPL, and DAL, are defined by their relative position between the
corresponding commissure locations (Figure 4, Step 5). For notational convenience, note that the
superscripts indicating the associated leaflets and commissures are not included in the description
of the subsequent TV parameter variables. These relative leaflet positions define the placement of
the leaflet and commissure height parameters, h, which determine the offset distance of the free
edge at the set positions. Note that the offset direction is defined as the normal direction of the
annulus plane, and the offset points define a set of cubic B-spline curves (Figure 4, Step 6) whose
end points are then interpolated to construct the bottom edge of the leaflet geometry (Figure 4,
Step 7). The open shape of the native TV leaflet is relatively flat, so we construct the leaflet and
commissure heights as straight curves, but additional degrees of freedom could also be considered
to adjust the curvature of the valve heights.

The free edge curvature at each leaflet and commissure location is controlled by the three
collinear control points that form a tangent line segment at the leaflet edge. The leaflet shape can
be altered by adjusting the length and relative angle of the line segment formed by these three con-
trol points, which is accomplished by shifting the outer two points along the tangential direction
or by rotating them about the central control point. The tangential shift, t, is a distance factor,
defined relative to the length of the annulus curve, that determines the length of the tangent line
segment; the tangential rotation, ϕ, defines the relative rotation of the tangent line segment about
the central control point in each set of three collinear control points at the free edge (Figure 4, Step
8). This final set of cubic B-spline curves describes a bidirectional curve network that is subse-
quently interpolated to construct the valve leaflets as a Gordon surface [65] (Figure 4, Step 9). This
interpolation algorithm utilizes the control point and knot vector information from each individual
curve in the network to generate the resulting surface, which, in this work, is a cubic periodic
B-spline surface. This Gordon surface has a specific parameterization1 corresponding to the input

1In this context, surface parameterization refers to the parametric space and corresponding knot vector definition
of the B-spline surface.
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curves and may be inconsistent in terms of the number of surface control points and knot spans for
different cases. Although this parameterization is analysis-suitable, it is not necessarily ideal for
the generalized valve analysis and parametric studies in this work, where relatively uniform ele-
ment sizes and distributions and an equal number of control points for each valve configuration are
preferred. To generate a consistent surface parameterization for different configurations, the valve
can be reconstructed to obtain the preferred, relatively uniform surface discretization (Figure 4,
Step 10). In the present work, we select a consistent, moderate number of control points that will
be incorporated in this reconstruction process to obtain a new surface that closely fits the original
Gordon surface. Finally, to achieve a model that is sufficiently refined for analysis, several levels
of global h-refinement are performed to obtain the refined valve surface (Figure 4, Step 11).

Remark 1. With existing patient or subject information, the TV surface can be constructed using
the same valve parameterization approach by selecting the appropriate subset of parameters to
match the valve configuration. An example of the TV parameterization including annulus points
from medical data for a porcine valve is shown in Appendix A. A comprehensive table of the TV
parameters and relevant medical imaging modalities from which the parameters could be obtained
or estimated is given in Appendix B.

2.1.2. Tricuspid valve chordae tendineae modeling

The constructed valvular surface is connected to a corresponding set of parametrically defined
chordae that are intended to reproduce the function of the native chordae. Although the structure
of the native chordae is much more complex than the proposed parametric model, similar types of
chordae structures have been demonstrated as an effective method to reproduce the behavior and
function of the native mitral valve chordae [66]. Several collections of chordae can be employed
in the proposed model to accommodate the papillary muscle attachments. The locations of the
papillary muscles are first defined by their relative offset from the annulus in the vertical (r1),
normal (r2), and tangential (r3) directions (Figure 5, Step 1). For each group of chordae, the curves
are centered at the corresponding leaflet or commissure location. The number of chordae, N, is
then defined for each group and the spacing between chordae within groupings, d, is a relative
distance that is defined along the direction of the two-dimensional (2D) parametric space of the
B-spline surface that corresponds to the circumferential direction of the valve leaflet (Figure 5,
Step 2). This parameterization establishes an adaptive set of chordae whose relative spacing and
attachments on the physical 3D surface remain consistent for different input surface parameters.
Each papillary location is then attached to the TV surface using the set of parametrically defined
planar B-spline curves.2 Instead of a linear chordae connection between the papillary location and

2This work incorporates a planar catenary curve [67, 68] to describe the chordae.
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Figure 5: Chordae construction process for the parameterized TV. The model parameters for various steps of the
chordae construction include the relative locations of the papillary muscles, r1, r2, and r3, the number of chordae, N,
the spacing between chordae, d, the added arc length of the chordae, L, and the offset distance of the outer two chordae
in each grouping, s.

the surface attachment, the use of planar curves incorporates an additional arc length, L, which
is added in the annular plane direction, that removes the distance limitation between attachment
locations (Figure 5, Step 3). The outer two chordae within each grouping can also be connected
at an offset distance, s, away from the free edge of the leaflet, which is a relative distance that is
defined along the direction of the 2D parametric space of the B-spline surface that corresponds to
the vertical direction of the valve leaflet (Figure 5, Step 4).

Remark 2. To accommodate the papillary muscle attachments and chordae information observed
from medical imaging data, an appropriate number of chordae groupings can be employed with this
model to match the number of papillary muscles and their locations relative to the annulus. The
chordae number, lengths, spacing, and offset distances can then be set to approximate available
information from the medical data. A comprehensive table of the TV parameters and relevant
medical imaging modalities from which the parameters can be obtained or estimated is given in
Appendix B.
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2.2. Simulation methods

The TV structure consists of two topologically distinct groups: the leaflet and the chordae
tendineae structures. To capture the function of these structures, this work models the leaflets with
an IGA shell formulation and the chordae with an IGA cable formulation.3 The shell and cable
formulations, as well as the structural coupling between them, are summarized in this section.
Such a methodology is capable of accommodating both the leaflets and chordae structures within
a single numerical framework.

The formulations defining the structural problems are stated as follows. Find displacement
y ∈ Sy, such that for all test functions w ∈ Vy:

B(w, y) + δEc (y) − F(w) = 0. (1)

The semi-linear form B and the linear functional F are defined as

B(w, y) = Bsh
(
wsh, ysh

)
+ Bca (wca, yca)

+

N∑
i=1

β sh-ca
(
wsh

(
x̊sh

i

)
− wca (x̊ca

i
))
·
(
ysh

(
x̊sh

i

)
− yca (x̊ca

i
))

, (2)

and
F(w) = Fsh

(
wsh

)
+ Fca (wca) , (3)

where we consider the test function w and the trial function y to be tuples

w = {wsh,wca} ∈ V sh
y ×V

ca
y = Vy , (4)

y = {ysh, yca} ∈ S sh
y × S

ca
y = Sy . (5)

In the above equations, the superscripts “sh” and “ca” denote quantities associated with the shell
and cable subproblems, respectively. The forms Bsh, Bca, Fsh, and Fca encapsulate the non-contact
related physics of the shell and cable subproblems. The term δEc (y) models the volume-potential-
based contact [52] between the structures, in which δ is a variation (functional derivative) with
respect to w and Ec (y) is the contact potential energy. The evaluations of “w” and “y” in this
contact term take whatever quantities that are relevant; therefore the formulation can universally
handle shell–cable, shell–shell, and cable–cable contacts. The specific forms of the aforementioned
terms will be presented in the following sections.

3Although the realistic chordae tendineae structures comprise thick, fibrous tissues [20], the cable formulation
replicates the same function of the chordae in the TV system. To simulate and characterize the internal mechanics of
the chordae, the realistic structures could be more comprehensively modeled using solid elements [22].
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The last term in Eq. (2) formulates the constraints of displacements on the total N points where
the chordae end point x̊ca

i is attached to the leaflets at x̊sh
i . ˚(·) indicates geometric variables in

the reference (undeformed) configurations. The constraints are enforced by a penalty method to
naturally accommodate the non-conforming discretizations between shells and cables. In general,
the value of the penalty parameter β sh-ca can be approximated from the problem properties and the
element size through a dimensional analysis. A simpler but effective approach, as adopted in this
work, is to select a constant value of β sh-ca based on numerical experiments.

2.2.1. Shell structure subproblem

The variational forms of the shell subproblem, Bsh and Fsh, are defined and discretized using a
hyperelastic IGA shell formulation [31, 69], which is based on the Kirchhoff–Love thin-shell as-
sumption with an arbitrary hyperelastic constitutive model. Higher-order smooth spline functions
are used to represent the geometry and displacement in IGA. They provide the H2 regularity of the
test and trial spaces as required by the thin-shell problem in terms of displacement. In addition, the
smooth surface discretization has been reported to improve the performance of contact compared
to its finite-element counterpart [70–72]. With the acceleration and velocity of the structures de-
noted by ÿ and ẏ, respectively, the semi-discrete form of the nonlinear elasticity problem of leaflet
shell structures can be expressed as:

Bsh
(
wsh, ysh

)
=

∫
S0

wsh · hsh
th ρ

sh
0 ÿsh dS+

∫
S0

∫ hsh
th /2

−hsh
th /2

δE : S dξ3dS+

∫
S0

wsh · cshhsh
th ρ

sh
0 ẏsh dS , (6)

and
Fsh

(
wsh

)
=

∫
S0

wsh · ρsh
0 hsh

th fsh dS +

∫
St

wsh · hsh dS , (7)

where S is the shell midsurface with the subscripts 0 and t denoting the reference and current
configurations, respectively, hsh

th is the shell thickness, ρsh
0 is the shell mass density in the reference

configuration, E is the Green–Lagrange strain tensor, S is the second Piola–Kirchhoff stress tensor,
ξ3 ∈ [−hsh

th/2, h
sh
th/2] is the through-thickness coordinate, csh is a mass-proportional damping coef-

ficient of the shell, fsh is a prescribed body force, and hsh is the combined effect of the prescribed
tractions on the two sides of the shell structure.

In this work, the leaflet soft tissue is assumed to be incompressible and is modeled as a hyper-
elastic material. Specifically, we calculate S in the following way:

S = 2
∂ψel

∂C
− λpC−1 , (8)

where C = 2E + I is the right Cauchy–Green deformation tensor, I is the identity tensor, λp is
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a Lagrange multiplier for enforcing the material incompressibility,4 and ψel is an elastic strain
energy function. In this work, we adopt an anisotropic (transversely isotropic) Lee–Sacks material
model [31]:

ψel =
c0

2
(I1 − 3) +

c1

2

(
wec2(I1−3)2

+ (1 − w) ec3(I4−1)2
− 1

)
, (9)

where c0, c1, c2, and c3 are material parameters, w ∈ [0, 1] is a parameter that is determined from
the material anisotropy, I1 = tr C and I4 = m · C m are the invariant and pseudo-invariant of
C, respectively, and m is a unit vector that defines the collagen fiber direction in the reference
configuration.

Native and bioprosthetic valve tissues are typically anisotropic since collagen fibers are ori-
ented in a preferred direction [73]. While material anisotropy can be easily handled by the
Kirchhoff–Love shell formulations [31, 74, 75], obtaining collagen fiber orientation data (for in-
stance Jett et al. [76]) is a challenging topic and is outside the focus of this study. Furthermore, the
work in Wu et al. [31] suggests that the effect of anisotropy on the large-scale deformation of the
leaflets, which determines the geometrical quantities of interest in this paper such as coaptation or
orifice area, is relatively small compared to the sizes of the leaflets. Thus in this paper, we assume
w = 1.0, which reduces the Lee–Sacks material model in Eq. (9) to an isotropic model.

While the behavior of soft tissue materials can be accurately modeled as an isotropic Lee–Sacks
material, the exponential strain energy description can make the valve modeling quite numerically
unstable, especially during the nonlinear iterations. When solving this type of problem with New-
ton’s method, the intermediate solution predictions can fall into a region of high, unrealistic strain
values where the numerical solution can easily diverge for the exponential model. To alleviate
this numerical issue, this work proposes an additional hybrid constraint in the calculation of S to
improve the nonlinear convergence of the shell structures. In the new hybrid isotropic Lee–Sacks
model, we define ∂ψel

∂C as

∂ψel

∂C
=


1
2

(
c0 + 2c1c2(I1 − 3)ec2(I1−3)2

)
I if |I1 − 3| ≤ (I ub

1 − 3)

1
2

(
c0 + 2c1c2(I ub

1 − 3)ec2(I ub
1 −3)2

)
I if |I1 − 3| > (I ub

1 − 3)
, (10)

in which the absolute value of the (I1 − 3) term is capped at an upper bound, (Iub
1 − 3), to stabi-

lize the material model. The upper bound (Iub
1 − 3) should be selected such that it improves the

nonlinear convergence of the material model but sets a stress cap that is outside the physical stress
levels of the structure throughout the simulation. Note that when the upper bound constraint is

4For shell analysis, the Lagrangian multiplier λp can be analytically determined using the plane stress condition
(see Kiendl et al. [69, Section 5.1] for details).
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Figure 6: Original isotropic Lee–Sacks material model compared to the hybrid model (Eq. (10)) for an equibiaxial
tensile test. In this example, c0 = 10 kPa, c1 = 0.209 kPa, c2 = 9.046, and (I ub

1 − 3) = 0.8.

enforced, the incompressibility condition is no longer satisfied within the hybrid regime of the
material model due to the inconsistency between C and I1 = tr C that is now constrained by I ub

1 .
However, the selection of an upper bound that is above the physical stress levels ensures that the
hybrid constraint is only activated during nonlinear iterations when an intermediate solution pre-
diction exceeds the upper bound, maintaining the incompressibility constraint for solutions in the
physical stress regime. Figure 6 shows an example of the effect of this constraint for an equibiaxial
tensile test with material parameters of c0 = 10 kPa, c1 = 0.209 kPa, c2 = 9.046, and an upper
bound value of (I ub

1 − 3) = 0.8.

2.2.2. Cable structure subproblem

Within the cable subproblem, Bca and Fca are defined using an isogeometric cable formulation
that was derived from a 3D continuum, where large-deformation kinematics and the St. Venant–
Kirchhoff constitutive law were assumed [77]. The mechanics of the cable are expressed on the 1D
center curve, parameterized by a single coordinate ξ1. We denote the reference configuration of the
center curve using L0, on which the points are denoted by x̊ca

(
ξ1

)
. On the deformed configuration

Lt, the points are denoted by xca
(
ξ1

)
. The displacement of cable can then be defined as

yca
(
x̊ca

(
ξ1

))
= xca

(
ξ1

)
− x̊ca

(
ξ1

)
. (11)

The covariant and contravariant base vectors for the reference configuration are given by
g̊1 = ∂x̊ca/∂ξ1 and g̊1 = g̊1/‖g̊1‖, respectively, while the base vectors for the deformed configu-
ration are defined without ˚(·). Considering the small bending stiffness of the chordae tendineae, we
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omit the bending terms proposed in Raknes et al. [77] and define the cable subproblem as:

Bca(wca, yca) =

∫
L0

wca ·Aca
0 ρ

ca
0 ÿca dL+

∫
L0

δε EcaAca
0 ‖g̊

1‖4ε dL+

∫
L0

wca ·ccaAca
0 ρ

ca
0 ẏca dL , (12)

and
Fca(wca) =

∫
L0

wca · Aca
0 ρ

ca
0 fca dL +

∫
Lt

wca · hca dL , (13)

where ε = 1
2

(
g1 · g1 − g̊1 · g̊1

)
is the extensional strain, δε is its variation with respect to wca, Aca

0

is the cable cross-sectional area in the reference configuration, ρca
0 is the cable mass density (per

unit volume) in the reference configuration, Eca is the Young’s modulus of the cable structure, cca

is a mass-proportional damping coefficient of the cable, fca is a prescribed body force (per unit
volume), and hca is a traction (per unit length) prescribed on Lt. Note that the Poisson’s ratio is
assumed to be zero in the derivation of this cable formulation.

Although the St. Venant–Kirchhoff material model would typically perform poorly for model-
ing the large compression of biological soft tissues, it is a suitable choice for modeling the tensile
response of the TV chordae tendineae. The reference configuration of the chordae is reported
to have already been stretched beyond the chordae’s soft “pre-transition” regime. The structural
simulation of the TV chordae falls into the stiffer “post-transition” regime, in which a more lin-
ear stress–strain relation is exhibited. The work of Kunzelman and Cochran [78] reported that
the pre-transition stiffness is several orders of magnitude smaller than the post-transition stiffness.
Based on this data and following the suggestions of previous studies [79, 80], we neglect the effect
of pre-transition stiffness and assume the stress-free reference configuration of the chordae to be
the configuration in which tensile strain up to the transition point has been included. With this
assumption, the Young’s modulus Eca, as defined in the IGA cable formulation (Eq. (12)), is used
as a single parameter to determine the tensile stiffness of the chordae.

2.2.3. Contact formulation

The TV presents multiple contact problems, including leaflet to leaflet, leaflet to chordae, and
chordae to chordae contact. A contact formulation in terms of a volume potential permits con-
tact modeling between objects represented by groups of quadrature points and requires no special
treatment for contact between arbitrary types of structures (e.g., beams, shells, etc.) with geomet-
ric features that would be challenging to handle with traditional contact algorithms. Consider all
structural parts to be a single body whose reference configuration is defined as Ω0. We model the
contact between two points, x1 and x2, in the deformed configuration as

δEc =

∫
Ω0\BR(x̊1)

∫
Ω0

(w2 − w1) · φ′c(r12)
r12

r12
dx̊1dx̊2 , (14)
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where x̊1 and x̊2 are in Ω0, BR(x̊1) is the Euclidean ball of radius R around x̊1, r12 = x2 − x1 and
r12 = ‖r12‖ indicate the distance between two contact points, and φ′c(r12) is a contact kernel. In
this work, the non-penetration condition of objects is strictly enforced to allow objects to simulta-
neously contact each other without tunneling.5 This requires that the magnitude of the repulsive
force | − φ′c (r12) | → ∞ as the distance between the two points approaches zero. Considering these
requirements, the following force–separation law with an impenetrable core of infinite potential is
designed:

− φ′c (r12) =



∞ if r̃12 < 0
kc

(r̃12)p − s2 if 0 ≤ r̃12 < rin

s1 (r̃12 − rout)2 if rin ≤ r̃12 < rout

0 otherwise

, (15)

where

r̃12 = r12 − rmin , (16)

s1 =
pkc

2 (rout − rin) rp+1
in

, (17)

s2 =
kc

rp
in

− s1 (rin − rout)2 . (18)

In the above equations, rmin is the radius within which the kernel goes to infinity, rin is the length
scale over which the singular part of the contact kernel acts, rout − rin is the distance over which
the polynomial part of the kernel acts, kc is a dimensional constant that determines the magnitude
of the repulsive force, p ≥ 4 creates a strong singularity to enforce non-penetrations, and s1 and
s2 are constants that ensure the smoothness and continuity of the −φ′c (r12) curve across different
segments. A schematic example of −φ′c (r12) can be found in Figure 7, where rcut = rmin + rout is
the total distance over which the kernel acts, including the infinite potential. For details on the
numerical implementation, we refer the readers to Kamensky et al. [52].

2.2.4. Contact force integration

There are many potential definitions for the contact points that will be used to numerically
integrate the contact force. One of the possible options is to employ the same Gaussian quadrature
points that are used to integrate the weak forms of the shell and cable subproblems [52], as shown in
Figure 8. While this approach is straightforward and can effectively capture the contact force under
moderate mesh discretizations, the computational expense of this definition becomes prohibitive

5Specific discussion on the selection of the contact potential and related discussion on the prevention of tunneling
can be found in Kamensky et al. [52, Section 2.1].
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Figure 7: Illustration of φ′c (r12) from Eq. (15).

Gauss distribution with equal points per element under h-refinement

Uniform distribution with decreasing points per element under h-refinement

Mesh Level 0 Mesh Level 1 Mesh Level 2

Figure 8: Gauss quadrature and uniform quadrature definitions of the contact points distribution. An example of the
Gauss quadrature distribution is shown for an equal number of points per element at each mesh level, and the uniform
quadrature definition is shown for a decreasing number of points per element under h-refinement.

with more refined meshes. Another disadvantage of using Gauss points is that the location of the
contact points will be inconsistent under global h-refinement, which can make it challenging to
obtain consistent solutions.

This work proposes an alternative contact point definition that distributes the points so that each
one has a uniform influence area across the elements. Under this definition, for a given element
with m2 contact points, where m is even, and a parametric domain of {−1, 1} × {−1, 1}, the set of
unique uniform contact point locations along one direction of the element domain is defined as
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{
−
|m−1|

m ,− |m−3|
m , . . . ,− 1

m ,
1
m , . . . ,

|m−3|
m , |m−1|

m

}
, where each point has a uniform weight of 2

m . This set
of contact quadrature points, which is based on a Newton–Cotes definition [81], is used for the
numerical integration of the contact force. For spline-based geometries, this approach also ensures
that the contact points will be in the exact same locations under global h-refinement if the number
of contact points per element is consistently reduced between mesh levels, as shown in Figure 8.

Remark 3. Note that while it is possible to increase the number of contact points per element
for coarser meshes to capture the localized contact forces, this approach will not resolve the local
contact behavior if the degrees of freedom in the shell and cable discretizations are not sufficiently
refined to represent the physical deformation with contact.

2.2.5. Solution algorithm

The equation system in Eq. (1) is discretized in time using the generalized-α method [82].
However, the singular nature of the contact potential and the highly nonlinear material behavior
of the biological soft tissue require special treatments to the standard generalized-α scheme. This
work uses a combination of an adaptive time stepping approach and a modified Newton’s method
for the nonlinear solution to address these challenges. Specifically, in the modified Newton itera-
tion procedure, the displacement solution field begins with an initial guess yn+1

0 , and the solution
update from the kth to the (k + 1)th iteration is obtained by yn+1

k+1 = yn+1
k + αrelax∆yk, where the scalar

αrelax ≤ 1.0 is added due to the standard Newton iteration (with αrelax = 1.0) being only locally con-
vergent. Specifically, we obtain a tentative prediction of the n + 1 level displacement fields by the
current value of αrelax (which is initially set as 1.0). If the solution fields result in a computationally
intractable situation, for example an infinite potential, the αrelax will be reduced to prevent the iter-
ations from rapidly exiting the Newton’s method’s radius of convergence. After this modification,
however, the nonlinear iteration may still be prone to stagnation or divergence when the time step
size is too large. To remedy this problem, an adaptive time step selection is introduced. The idea
is to continuously reduce the time step size by half if it is necessary to maintain the simulation
progress. On the other hand, if the nonlinear problem quickly converges in a few iterations, we
coarsen the time step size by a factor of two to improve the efficiency. Details of these solution
algorithms and their implementations can be found in Kamensky et al. [52].

To further accommodate the nonlinearity of the problem and to improve the robustness of
the nonlinear solution procedure, the tangent matrix resulting from the linearization of Eq. (1) is
assembled with a larger value of c0. As demonstrated in Kamensky et al. [52], while this approach
improves the robustness, it reduces the computational efficiency by requiring more iterations for a
converged result. The present work proposes an adaptive procedure that scales with the time step
size so that the c0 value in the tangent operator increases automatically when additional robustness
is required in the simulation of the valve dynamics, and decreases in the relatively linear regime to
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improve the solution efficiency. The scaling factor S 0 that is multiplied with c0 is defined as

S 0 =


1 if ∆t = ∆tmax

S max
0

2(n−log2(∆tmax/∆t)) if
∆tmax

2n ≤ ∆t ≤
∆tmax

2
S max

0 if ∆t <
∆tmax

2n

, (19)

where n is the time step subdivision level at which the maximum scaling factor S max
0 is set, with

n = 1 for a time step size of ∆t = ∆tmax/2. In this work, we set n = 4 and S max
0 = 40.

3. Applications to tricuspid valve modeling and simulation

The proper closure of the TV is a primary concern for TV function and the pathologies that im-
pact valvular dysfunction, such as regurgitation. As a result, the proposed comprehensive frame-
work is intended to provide a flexible, template-based approach to model the TV geometry and
mechanics and evaluate the closure performance of such valves. The following sections outline
how the proposed framework can be applied to model and simulate different TV configurations.

3.1. Geometric modeling and problem setup

This work focuses on simulating valve closure during the systolic phase of the cardiac cy-
cle. The following demonstrations of the proposed framework and the geometric modeling and
simulation approaches incorporate the generalized TV template, including the parameterization
and geometry modeling algorithms presented in Section 2.1, to construct the valve geometries.
For the TV leaflet properties, the material coefficients for the isotropic Lee–Sacks model are
c0 = 10 kPa, c1 = 0.209 kPa, and c2 = 9.046, the mass density is 1.0 g/cm3, and the thickness is
0.0396 cm [52]. An upper bound value of (Iub

1 − 3) = 0.8, which sets a stress cap that is outside
the physical stress levels of the TV leaflet throughout the simulation, is selected to improve the
nonlinear convergence of the material model. For the chordae properties, the Young’s modulus is
Eca = 4 × 108 dyn/cm2 = 40 MPa, and the chordae radius is 0.023 cm [52].

To demonstrate the proposed framework, the simulations in this study focus on the closed
configuration of the TV. For simplicity, we assume that the annulus curve and papillary muscle
locations are in the closed configuration, so we do not consider any papillary muscle or annulus
displacement or deformation. The final closed shape of the valve is achieved through simulation
by applying a pressure follower load to the ventricular side of the parametrically defined leaflet.
The pressure load on the leaflets is linearly increased over the 0 to 0.005 s period from 0 mmHg
to the final pressure load of 25 mmHg. This load appropriately represents the typical TV pressure
gradients during systole [83].
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The energy dissipation to the surrounding blood can be modeled with mass-proportional damp-
ing in the leaflets and chordae with damping coefficients csh and cca in Eqs. (6) and (12), respec-
tively. In this paper, the role of the damping is to provide numerical dissipation and ensure that the
system is sufficiently damped to reach an equilibrium in the closed configuration, as the focus of
this work is to investigate the steady state of valve closure instead of the dynamics. Therefore, a
value of 5000 s−1 is used for csh and cca, which is larger than the value used in previous dynamic
simulations of heart valves [26, 28]. The shell structure subproblem is subject to a pinned bound-
ary condition at the annulus, and the cable subproblem is subject to a pinned boundary condition
at the papillary muscle locations.

The B-spline surface and curves that define the leaflet and chordae geometries are used as direct
inputs for isogeometric analysis. The pinned boundary condition at the valve annulus is enforced
strongly in the discrete model by fixing the first row of control points, and the pinned boundary
condition on the chordae is enforced by fixing the chordae control points at the papillary muscle
locations. Adaptive time stepping is used with a maximum time step size of ∆tmax = 8 × 10−4 s.
The parameters defining the contact kernel are p = 4, kc = 1.0 × 105 cmp−5s−2g, rcut = 0.04 cm,
rmin/rcut = 0.2, and rin/rout = 0.7, which are selected based on the shell thickness, nonlinear
convergence behavior, and gap size between surfaces in contact.

3.2. Tricuspid valve quantities of interest

For the TV, there are numerous relevant quantities of interest that can be evaluated to analyze
the valve closure and performance and to quantify the effectiveness of different valve configura-
tions. The proposed combined evaluation of the coaptation and the maximum projected regurgitant
orifice area (ROA) provides a systematic approach to quantify the valve performance and a suitable
method to identify valve closure as well as prolapse and subsequent leaflet flail, which occurs when
some portion of the free edge of the leaflet moves through the annulus into the right atrium [84].

3.2.1. Coaptation height and area

The coaptation height is evaluated from the closed configuration of the TV. A 2D slice of the
valve is obtained for the deformed geometry from the intersection of a vertical plane (perpendicular
to the annulus plane) that cuts through the narrower direction of the TV annulus. Additional
intersection planes could also be considered to obtain a more comprehensive view of the coaptation
in different regions of the valve. From the resulting intersection curves, the length of the curve
segments that are within the contact radius is considered as the coaptation height. The coaptation
area can also be evaluated from the 3D deformed valve configuration. This work proposes an
approach in which a set of contact area points is used to evaluate the coaptation area. The subset of
contact area points within the contact radius threshold are integrated to determine the coaptation
area. As will be demonstrated later, although the contact points that are used to simulate the
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Figure 9: Quantities of interest related to the tricuspid valve closure.
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Figure 10: Top and perspective view schematics of the projection directions (left) and resulting projected geometries
(right) for an example 13 equally distributed directions from the top view of the valve, with the regurgitant orifice area
evaluated from each direction.

contact force can accurately represent the contact behavior, they are not at a sufficient resolution
to evaluate and accurately capture the contact area. The proposed set of higher-resolution contact
area points is required to reflect the actual influence area that is within the contact radius threshold.
For visualization and quantification, the contact area is evaluated with a set of contact area points
at one level higher than the contact points that are used to compute the contact force during the
closure simulation. Examples of the coaptation height and area quantities of interest are shown in
Figure 9.

3.2.2. Maximum projected regurgitant orifice area

The final quantity of interest that is evaluated in this work is the maximum projected ROA. In
addition to having appropriate coaptation, a properly closed valve geometry that prevents regurgi-
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tation should have no areas that close poorly and cause leakage. This work proposes a systematic
approach to quantify the geometric area that will result in regurgitation. This quantity of interest
provides an effective method for TV evaluation that complements the coaptation quantification to
achieve a comprehensive view of the valve closure. To evaluate the extent of leaflet flail and the
resulting open regurgitant area, the deformed configuration of the valve is projected onto a plane
from a comprehensive set of views. For each direction and projected geometry, the edge of the
largest open region is computed, and the area of this region is evaluated. The maximum value of
the projected orifice area from the entire set of projection directions is selected as the maximum
projected ROA. In the case of a valve that closes effectively, the evaluated ROA should be close to
zero. An example of the maximum projected ROA is shown in Figure 9, and an example schematic
of this process is shown in Figure 10.

3.3. Convergence study

To examine the accuracy and convergence of the computational methods, a mesh convergence
study is formulated based on an idealized TV geometry that is generated from the proposed pa-
rameterized TV model with a simplified subset of parameters. Projection-based approaches are
proposed to achieve consistent convergence for the complex, multi-configuration closure deforma-
tion, and the proposed quantities of interest are examined for the simplified geometry. For this
convergence study, only one vertical plane at the center of the valve is selected for the evaluation
of the coaptation height. As shown in Figure 11, the idealized geometry is constructed with an
oval-shaped annulus and has a uniform height of 1.5 cm around the entire valve (total leaflet area
of 11.883 cm2). Three pairs of chordae are attached to the annulus at the parametric locations
indicated in Figure 11, and the papillary muscle locations are set at 1 cm below the midpoint of
the chordae attachments along the leaflet free edge. The surface of the idealized geometry com-
prises 12 × 4 cubic B-spline elements, and each chordae is modeled as a two-node, linear B-spline
element.

3.3.1. Approach for problems with multiple solution configurations

For problems with localized buckling behaviors, achieving consistent converged solutions can
be challenging when multiple solution configurations can be obtained for the same initial condi-
tions. Because of the complexity of the TV geometry and its closure behavior, multiple closed
configurations can easily be induced by different types of perturbations. Throughout the closure
simulation, the localized buckling of the valve and added degrees of freedom between meshes can
lead to different final configurations for the same initial geometry model (e.g., first row of Fig-
ure 12). To ensure that the same unique configuration will be achieved under mesh refinement, a
projection-based approach based on the properties of B-splines is proposed to project the deformed
configuration of the previous mesh level to the more refined geometry. For a baseline geometry,
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Figure 11: Top, side, and perspective views of the simplified geometry setup for the convergence study. All coordinates
and distances are in centimeters (cm). The knot vectors are {−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
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Figure 12: Convergence of different closed configurations of the idealized tricuspid valve geometry under global h-
refinement with the projection approach, shown from the top view. The first row of deformed configurations is obtained
from the beginning of the closure process. Arrows between rows indicate projection from the deformed shape at the
given mesh level in the first row. Within each row, the valve configurations at each mesh level are obtained by
projecting the final deformed configuration from the previous mesh level and continuing the closure simulation to
achieve the corresponding final configuration. Labels A, B, and C indicate the three configurations for mesh level 2.
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indicated as mesh level 0 (M0), successive mesh levels (M1, M2, etc.) can be obtained through
global h-refinement of the baseline geometry, where mesh level 1 (M1) corresponds to one level
of global h-refinement. With the proposed method, successive levels of the projected solution are
obtained by projecting the final deformed shape from the previous mesh level (e.g., M1) to the next
level (e.g., M2) by refining the deformed shape (e.g., M1 −→ M2) and evaluating the displacement
of the refined nodes. Once the deformation on the refined mesh is determined, where the internal
forces are projected from the final configuration of the previous mesh level, the closure simulation
is continued with the refined mesh until a new steady-state solution is achieved at the given mesh
level. With the proposed approach, consistent converged configurations can be achieved under
global h-refinement for problems that have multiple valid solutions.

3.3.2. Mesh convergence study

For this study, five different mesh levels of the idealized geometry, as shown in Figure 11, are
examined for the different quantities of interest. Mesh level 0, which comprises 24 × 4 cubic B-
spline elements, is obtained by performing one level of h-refinement along only the circumferential
direction of the baseline geometry. Mesh levels 1–4 are obtained through global h-refinement of
mesh level 0. Figure 12 shows the final steady-state configuration at each level of the mesh. The
first row of deformed configurations in Figure 12 is obtained from the beginning of the closure
process. Each row of the geometry is obtained by projecting the final deformed shape from one
mesh level in the first row. Interestingly, although mesh levels 3 and 4 have the same shape,
the coarser meshes all deform to different configurations. When the projection approach is used,
consistent configurations are achieved for successive levels of global h-refinement.

As shown in Figure 13, we are also able to simulate the same geometry using Abaqus [85]
to achieve results that are mesh independent and have a similar closure behavior as configuration
A for mesh level 2 (Figure 12). The details of the Abaqus simulation are provided in Appendix
C. Figure 14 shows vertical slices for the closed configuration of mesh level 4 compared with the
results from mesh levels 2 and 3 and the Abaqus results. The slices are extracted from the vertical
planes indicated on the mesh level 4 geometry (Figure 14). The IGA results converge under mesh
refinement and are in good agreement with the Abaqus results. The slight discrepancy between
the IGA and Abaqus results may arise from the different shell formulations and contact algorithms
that are used in the two simulation methods.

Figure 15 shows the convergence study for the number of contact area points that are required
to evaluate the converged coaptation area quantity of interest. At mesh level 2, the evaluated
coaptation area converges with 64 contact area points per element (8 × 8 points). This level of
contact area points is selected for the following evaluation of the coaptation area results for each
projected mesh level, with the same total number of contact points being used to evaluate the
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Mesh Level 2 Mesh Level 3 Mesh Level 4 Abaqus Results

Figure 13: Comparison of Abaqus results with the closed configuration of mesh level 2 (Figure 12, A) and the subse-
quent closed configurations at mesh level 3 and 4 using the projection approach.
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Figure 14: Vertical slices for the closed configuration of mesh level 4 are compared with the results from mesh levels 2
and 3 and the Abaqus results. The slices are extracted from the vertical planes indicated on the mesh level 4 geometry,
which intersect the oval-shaped annulus curve at its minimum x-coordinate, where y = 0, and at x = 0.96 (based on
the coordinates in Figure 11).

coaptation area at each mesh level. For each configuration, as shown in Figure 16, converged
results for the coaptation height and area are obtained under global h-refinement.

3.3.3. Solution convergence history

The singular nature of the contact potential and the highly nonlinear material behavior of the bi-
ological soft tissue require specific modifications to the solution algorithm, as described in Section
2.2.5. An example case from the convergence study is selected to demonstrate the effectiveness
of the proposed methods. Figure 17 shows the adaptive time step size and number of nonlinear
iterations over the history of the simulation for configuration A at mesh level 2, which is simulated
without any solution projection from the previous mesh level. The results indicate that the adaptive
subdivision of the time step size is triggered when the initial contact occurs. At this point in the
simulation, additional nonlinear iterations are needed to address the nonlinearity introduced by the
numerical contact. However, the combination of the hybrid material model (Eq. (10)) and adaptive
scaling factor (Eq. (19)) prevents an excessive increase in the number of iterations. As the simula-
tion approaches steady state, the time step size is coarsened until ∆tmax is recovered and only one
nonlinear iteration is needed.
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Figure 15: Convergence of the coaptation area under refinement of the contact area evaluation points. Results are
shown for each of the three configurations of mesh level 2 in Figure 12, which are indicated as A (solution without
mesh projection), B (solution projection from mesh level 1), and C (solution projection from mesh level 0).
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Figure 16: Converged coaptation heights and areas for the solution projected geometries from the configurations at
different levels of the mesh.

3.4. Tricuspid valve parametric study

The final part of this work is intended to show the flexibility of the proposed framework and
how it can be used to simulate many different TV configurations. For this study, 50 cases are sam-
pled from the entire parameter space using Latin hypercube sampling [86]. The input parameters,
as shown in Figure 3 and outlined in Section 2.1, for the TV model are constrained within topolog-
ically consistent, physically meaningful ranges, shown in Tables 1–3, to ensure that the model will
be properly constructed and remain within a suitable range for the size and overall dimensions of a
typical porcine valve [19]. The baseline annulus control point values, Ri, Θi, Zi, shown in Table 2,
are selected to maintain the appropriate periodic valve topology and the overall saddle shape of
a typical TV annulus. Figure 18(a) shows an example TV geometry that is constructed using the
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Figure 17: Adaptive time step size and number of nonlinear iterations over the history of the simulation for configura-
tion A at mesh level 2 (Figure 12).

(a) (b)

Figure 18: (a) TV geometry with the median values from the parameter ranges in Tables 1–3. (b) Variation in multiple
undeformed valve configurations from the set of cases in the parametric study.

median value from the given range of each input parameter. For each case in the parametric study,
the periodic valve surface comprises 76 × 16 cubic B-spline elements and 83 × 19 control points,
and each chordae curve comprises 4 cubic elements and 7 control points. Figure 18(b) shows the
variation in six undeformed valve configurations out of the total set of cases.

The results from the parametric study for the defined quantities of interest are shown in Fig-
ures 19 and 20. The filled markers in the plots indicate cases with a low regurgitant orifice area and
a relatively high coaptation area. The relative size of the markers is scaled by the size of the maxi-
mum ROA. The four cases highlighted in Figures 19 and 20, including two cases with good closure
performance and two cases with poor closure performance, are further examined. For these cases,
the coaptation area is evaluated for each configuration. In the cases with good closure, as shown
in Figure 19, the maximum in-plane principal Green–Lagrange strain (MIPE) on the atrial side of
the leaflets is also evaluated. For the cases with poor closure, as shown in Figure 20, the maximum
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Table 1: TV surface input parameters. The baseline annulus control point values, Ri, Θi, Zi, are given in Table 2.

Surface parameter description Parameter range

Control point radius [cm] Ri − 0.2 ≤ {ri} ≤ Ri + 0.2

Control point angle [deg] Θi − 7 ≤ {θi} ≤ Θi + 7

Control point height [cm] Zi − 0.3 ≤ {zi} ≤ Zi − 0.3

PS commissure location [-] 0.35 ≤
{
DPS

}
≤ 0.55

AP commissure location [-] 0.65 ≤
{
DAP

}
≤ 0.85

Leaflet locations [-] 0.4 ≤
{
DSL,DPL,DAL

}
≤ 0.6

Leaflet heights [cm] 1.0 ≤
{
hSL, hPL, hAL

}
≤ 1.7

Commissure heights [cm] 0.9 ≤
{
hAS, hPS, hAP

}
≤ 1.4

Leaflet edge tangential shift [-] 0.04 ≤
{
tSL, tPL, tAL

}
≤ 0.1

Commissure edge tangential shift [-] 0.02 ≤
{
tAS, tPS, tAP

}
≤ 0.08

Leaflet edge tangential rotation [deg] −10 ≤
{
ϕSL, ϕPL, ϕAL

}
≤ 10

Commissure edge tangential rotation [deg] −10 ≤
{
ϕAS, ϕPS, ϕAP

}
≤ 10

Table 2: Baseline annulus control point values.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ri 1.4 1.3 1.1 0.9 0.9 1.0 1.2 1.3 1.3 1.2 1.0 0.9 0.9 1.1 1.3
Θi 0 18 45 72 96 127 145 167 193 215 233 264 288 315 342
Zi 0.6 0.5 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.5 0.4 0.4 0.4 0.4 0.5

Table 3: TV chordae tendineae input parameters.

Chordae parameter description Parameter range

Papillary locations (vertical from annulus) [cm] −2.0 ≤
{
rSL

1 , rAS
1 , rPS

1 , rAP
1

}
≤ −1.5

Papillary locations (normal to annulus) [cm] −0.6 ≤
{
rSL

2 , rAS
2 , rPS

2 , rAP
2

}
≤ −0.2

Papillary locations (tangent to annulus) [cm] −0.4 ≤
{
rSL

3 , rAS
3 , rPS

3 , rAP
3

}
≤ 0.4

Spacing (within each chordae group) [-] 0.025 ≤
{
dSL, dAS, dPS, dAP

}
≤ 0.05

Number (per chordae group) [-]
{
NSL,NAS,NPS,NAP

}
∈ {2, 3, 4}

Arc length (added to straight chordae) [cm] 0.0 ≤
{
LSL, LAS, LPS, LAP

}
≤ 0.3

Free edge offsets (outer two chordae in each group) [-] 0.9 ≤
{
sSL, sAS, sPS, sAP

}
≤ 1

ROA is visualized. For the case with the lower ROA value, case 47, the coaptation height, which
is evaluated at the vertical plane that is perpendicular to the annulus plane and intersects the DSL

and DAL locations (Figure 4), is also visualized.
Cases 18 and 36 are selected in Figure 19 to show valves with proper closure and large coap-

tation areas. Both of these cases exhibit the typical three leaflets of the TV, and the uniform coap-
tation area around the entire geometry indicates that the valve will be properly sealed to prevent
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Figure 19: Evaluation of the coaptation area for the set of fifty cases. Filled markers indicate cases with a low
regurgitant orifice area and a relatively high coaptation area. The size of the markers indicates the relative size of the
maximum ROA. The results from cases 18 and 36 show two valves with good coaptation and closure. Results from
cases 9, 26, and 33 are shown in Figure 21.
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Figure 20: Evaluation of the maximum projected ROA for the set of fifty cases. Filled markers indicate cases with a
low regurgitant orifice area and a relatively high coaptation area. The size of the markers indicates the relative size of
the maximum ROA. The results from cases 15 and 47 show valves with poor closure and some of the highest maximum
ROAs. Results from cases 9, 26, and 33 are shown in Figure 21.

regurgitation during closure. Cases 15 and 47 are selected in Figure 20 to show some of the valves
that experience significant prolapse and subsequent leaflet flail. In case 15, the coaptation area is
actually relatively high because portions of the valve are still in contact, but there is still a large
ROA because of the leaflet flail. Similarly in case 47, the coaptation height and area of the valve
are quite high, but there is a significant degree of leaflet flail. These two cases both demonstrate
the importance of evaluating both the coaptation area and the ROA. These cases can be potentially
problematic when evaluating TVs in vivo because many of the current imaging technologies are
only able to capture 2D views of the valve. The typical imaging modalities, such as 2D echocar-
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Figure 21: Results from cases 9, 26, and 33, as indicated in the plots in Figures 19 and 20. These cases have high
coaptation areas and relatively low regurgitant orifice areas. In all cases, some aspect of the valve closure behavior
might induce some amount of regurgitation. In case 26, one of the leaflets has prolapsed and may experience leaflet
flail in the central region of the valve. In cases 9 and 33, the regurgitant orifice areas at the center of the valve are low
and may have a small degree of leaflet flail, but the relatively small degree of improper closure could still allow blood
to leak through the valve.

diography, capture 2D image slices of the valve, which can then be used to estimate the coaptation
height and some degree of flow regurgitation that may be visible from the images. While these
modalities can identify valves that close poorly, it may be more challenging to quantify the extent
of regurgitation, and in many cases, evaluating only the coaptation height for a limited number of
views may not accurately reflect the full severity of the regurgitation. This is clearly demonstrated
in case 47, where the coaptation height and 3D coaptation area and ROA quantities offer differing
and potentially misleading evaluations of the closure if only the coaptation height is examined.

Cases 9, 26, and 33 are also highlighted in the plots in Figures 19 and 20. These cases have
relatively high coaptation areas, but some aspect of their closure behavior, either possible leaflet
flail or a non-negligible level of the ROA, could reduce the performance of these valves and lead to
regurgitation. The deformed configurations of cases 9, 26, and 33 are shown in Figure 21 to further
examine the closure of these valves. In case 26, the highlighted area shows one leaflet that expe-
rienced a small degree of flail. Although this leaflet may still be sufficiently sealed, the condition
of this type of minor prolapse and flail in a functioning TV might need to be monitored to ensure
that is does not worsen. In cases 9 and 33, the highlighted areas of the valve indicate regions that
may not be properly sealed or may have minor leaflet flail and could induce regurgitation. In these
cases, the small ROA and possible leaflet flail could induce minor regurgitation in a functioning
TV, which might also need to be monitored.

Overall, this parametric study demonstrates the versatility of the proposed modeling and sim-
ulation framework for the TV. It also illustrates the relevance of the proposed quantities of interest
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when evaluating TV closure for many different valve configurations. The cases presented in this
study represent only a small subset of all the possible TV configurations that can be described and
evaluated using the proposed template-based modeling and simulation approaches. When simu-
lating TVs, this framework and the recommended metrics offer a comprehensive view, including
information from the full 3D valve configuration, through which a more extensive understanding
of the TV closure can be realized.

4. Conclusion

In this work, novel approaches for the parameterization, geometric modeling, and simulation of
the TV were proposed, including a generalized parametric definition of the valve surface and chor-
dae tendineae, a consistent approach for modeling structural contact, and a robust hybrid material
model for the valve leaflets. Additional methods for evaluating the desired quantities of interest,
including the coaptation height and area and the regurgitant orifice area, were also developed to
quantify the TV closure. The convergence of the TV using these modeling and analysis methods
was also evaluated using a proposed projection-based approach to achieve consistent converged
results for problems, such as TV closure, that may have multiple solution configurations. Finally,
a parametric study was performed to demonstrate the flexibility of these approaches by examin-
ing the performance of a set of TV cases that were generated and analyzed using the proposed
methods.

Although this template provides a highly versatile approach to TV modeling, there are a num-
ber of factors that may constrain certain capabilities of the methods presented in this work. One
such limitation is that the material parameters employed for the leaflet and chordae tissues may
not capture the physically realistic material behaviors of these valve components. As a result,
future studies that use this framework should incorporate more realistic material parameters. Ad-
ditionally, although an accurate description of the distinct, complex features of the TV may be
impeded by quality restrictions of available imaging data, the simplified valve parameterization
may produce further geometry limitations that might be reduced if the chordae and valve surface
were modeled exactly. This framework could also be updated to accommodate future advances in
imaging techniques for the TV, including accurately capturing the chordae configuration as well as
the motion of the annulus, chordae, and papillary muscles throughout the cardiac cycle.

Overall, the template-based approach presented in this work provides a novel and powerful
computational tool that can be used to model and analyze many TV configurations. As a result,
the developments proposed here have many future applications to study the TV and develop an
improved understanding of its function. The flexibility of such a template-based model delivers
substantial possibilities for modeling patient-specific valves, for either healthy or diseased config-
urations, and prosthetic device designs. With this framework and the proposed methods, we are

31



able to achieve converged valvular configurations and simulate a variety of different valve designs.
In conjunction with additional medical data, including the annulus deformation and deflection and
papillary muscle displacement, this template could provide a useful model to simulate the TV
dynamics throughout the entire cardiac cycle.
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Appendix A. Tricuspid valve parameterization with medical data

With existing patient information, the TV surface can be constructed using the same valve
parameterization approach by selecting the appropriate subset of parameters to match the valve
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Figure A.1: TV parameterization for the leaflets and chordae tendineae, including annulus points from medical data
for a porcine valve. The subset of valve parameters for this model, including the leaflet and commissure heights, h,
the relative locations of the papillary muscles, r1, r2, and r3, the number of chordae, N, the spacing between chordae,
d, and the length of the chordae, L, are also shown in the figure.
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configuration. This case provides a demonstration that includes TV annulus data from µCT scans,
which can be fit using the cubic periodic B-spline curve with 18 control points to generate the initial
annulus shape. The number of control points can also be increased or decreased depending on the
number of degrees of freedom that are needed to appropriately fit the annulus data. The relative
positions of the three leaflet and commissure locations are translated from the set of medical data
onto the fitted annular curve to define the position of the commissure and leaflet heights. The
same input height parameters determine the offset distances at the relative locations, and the valve
free edge shape can also be defined to match the available medical data. The network of curves
constructed based on the input annulus information is used to construct the valve leaflets as a
Gordon surface. As a demonstration, Figure A.1 shows the valve parameter inputs for the TV
surface based on annulus data from a representative porcine TV.

Appendix B. Tricuspid valve parameters

As indicated in the table, many of the input parameters for the TV template can be extracted
from medical images. Table B.1 lists all the parameters for the TV framework and the suitable
imaging modalities from which they could be extracted. The following abbreviations are used
in the table: 3D Transthoracic Echocardiography (TTE), 3D Transesophageal Echocardiography
(TEE), Computed Tomography (CT), Cardiac Magnetic Resonance Imaging (cMRI).

Table B.1: TV input parameters. For notational convenience, the surface and chordae parameters have been consoli-
dated, where sets or collections of the same parameter at different TV locations, as indicated in Figure 3 and Sections
2.1.1 and 2.1.2 (e.g., SL, AS, PS, AP), are replaced by (·). The index variable i indicates the number of annulus control
points, and the index variable k = 1, 2, 3 indicates the three coordinates of the papillary locations.

Surface parameter description Imaging modality for medical input data

Annulus control point coordinates (ri, θi, zi) TTE [87, 88], TEE [87], CT [10, 87], cMRI [64, 89]

Commissure locations (DPS,DAP) TTE [87, 88, 90], TEE [87], CT [10, 87], cMRI [64, 89]

Leaflet locations (DSL,DPL,DAL) TTE [90, 91], TEE [91], CT [10]

Leaflet and commissure heights (h(·)) TTE [91], TEE [91], CT [10]

Free edge tangential shift (t(·)) CT [10]

Free edge tangential rotation (ϕ(·)) CT [10]

Chordae parameter description Imaging modality for medical input data

Papillary locations (r(·)
k ) CT [10]

Spacing (within each chordae group) (d(·)) —

Number (per chordae group) (N(·)) —

Arc length (added to straight chordae) (L(·)) —

Free edge offsets (s(·)) —
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Appendix C. Abaqus model and simulation

A finite element simulation of the idealized TV geometry described in Section 3.3 was per-
formed using Abaqus [85] to verify the IGA-based predictions (Figure 13). The leaflet surface was
discretized with 18,960 four-node general-purpose finite-strain shell elements (S4), while each
chordae was modeled using one 3D truss element (T3D2). The Abaqus VUMAT user-material
subroutine was employed for the hybrid material model described in Eq. (10) for the leaflets and
the St. Venant–Kirchhoff material for the chordae. The material properties of the leaflets and
chordae are identical to those used in the IGA simulations. The frictionless contact of the leaflet
surface was modeled using the Abaqus general contact algorithm with a contact penalty stiffness
of 5.0 N/cm. Finally, the finite element simulation was performed using Abaqus Explicit dynamics
analysis with a maximum time step size of 1 × 10−6 s to ensure proper convergence.
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