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Abstract: This work couples high-fidelity moving-domain finite element compressible flow modeling
with a Surrogate Management Framework (SMF) for optimization to effectively design a variable
speed gas turbine stage. The superior accuracy of high-fidelity modeling, however, comes with
relatively high computational costs, which are further amplified in the iterative design process
that relies on parametric sweeps. An innovative approach is developed to reduce the number of
iterations needed for optimal design, leading to a significant reduction in the computational cost
without sacrificing the high fidelity of the analysis. The proposed design optimization approach is
applied to a novel incidence-tolerant turbomachinery blade technology that articulates the stator- and
rotor-blade positions of an annular single-stage high pressure turbine to achieve peak performance.
This work also extends our understanding of rotor–stator interactions by simulating complex internal
flows occurring during multi-speed turbine operation. Potential variable-speed gas turbine stage
designs and the proposed optimization approach are presented to provide valuable insight into this
new turbomachinery technology that can positively impact future propulsion systems.

Keywords: compressible flow; stabilized and multiscale FEM; surrogate management framework;
design optimization; gas turbine

1. Introduction

The demand for a variable-speed gas turbine engine (VSGTE) as a dynamic and reliable
power source for aviation propulsion systems is consistently growing for commercial and military
applications [1–3]. This comes from the ever-higher power, operational, and efficiency requirements
of future aviation propulsion systems that traditional gas turbine engines are unable to effectively
fulfill [1–4]. Previous works [2,3] reported that a VSGTE would be enabled by an adaptive blade
technology, which articulates the stator and rotor blades to maintain optimal flow paradigms.
While these works do not report any VSGTE designs, Welch [1] has noted that there exists significant
industry interest for them.

Traditionally, gas turbine engine optimization has relied on the use of high-fidelity
modeling coupled with parametric sweeps [3,5–7]. High-fidelity modeling delivers accuracy,
however, when used in a highly iterative process involving parametric sweeps, its use often becomes
complicated and expensive, both in terms of human and computational time [8]. This deficiency stems
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from the extensive user interaction required for geometric modeling and mesh generation, as well as
the costly computational resources and long simulation times involved in executing the high-fidelity
model. In addition, postprocessing of the computational results and interpreting the simulation data
further contribute to the already intricate and time-consuming workflow. This complexity is amplified
in designing a VSGTE because of its intricate geometry and parametric conditions, as well as the limited
understanding of the internal flow dynamics. Consequently, the use of traditional methods for VSGTE
development is not practical, creating a need for an innovative and effective design approach [1].

This work outlines a novel design approach that incorporates a Surrogate Management
Framework (SMF) with high-fidelity moving-domain finite element compressible flow modeling
and simulation of a gas turbine stage. First introduced by Booker et al. [9], the SMF is a cost-effective
pattern search method that can facilitate design optimization using high-fidelity models without the
need to compute complicated objective-function derivatives while keeping the theoretical guarantees
of convergence. In order to create a rigorous and efficient SMF for the present application and beyond,
the surrogate function, which acts as a predictive tool, is coupled to an extended version of the
covariance matrix adaptation evolution strategy (CMA-ES) [10] with mesh adaptive direct search
(MADS)-based polling [11]. In recent years, there has been an increase in the successful application
of the SMF with high-fidelity modeling to design optimization of complex engineering systems,
including subsonic wings [12], hydraulic arresting gears [13], and cardiovascular devices [14,15]. It is
felt that propulsion system design could greatly benefit from these approaches, which largely motivates
the developments in the present paper.

The paper is outlined as follows. In Section 2, we briefly describe our compressible-flow
formulation and provide the details of a single-stage gas turbine model employed in this work.
In Section 3, we describe the key technical elements of the SMF design optimization framework
and its application to the optimization of the VSGTE stage. The results of the optimization and the
analysis of the key flow phenomena governing the turbine stage performance are provided in Section 4.
In Section 5, we draw conclusions.

2. High-Fidelity Modeling of Compressible Flow in a Gas Turbine Stage

2.1. Moving-Domain Finite Element Formulation of Compressible Flows

The flow in the turbine stage is governed by the Navier–Stokes equations of compressible
flows and the ideal gas equation of state. The Navier–Stokes equations are posed on a moving
domain to accommodate the motion of the rotor. The flow governing equations are discretized
using the Streamline Upwind/Petrov–Galerkin (SUPG) [16–29] finite element formulation in the
arbitrary Lagrangian–Eulerian (ALE) frame [30] to handle the domain motion. In addition to the
SUPG stabilization, a residual-based discontinuity-capturing (DC) operator [31–43] is added to
further stabilize the formulation in the presence of shocks. No-slip boundary conditions on the
blade surfaces are enforced weakly [44–48], which allows the flow to slip on the solid surface and
results in reasonably accurate solutions on coarse boundary-layer meshes. Finally, a sliding interface
operator [49–54] is added at the interface between the moving-rotor and fixed-stator subdomains
in order to enforce, in a weak sense, the continuity of the velocity, temperature, traction vector
and heat flux at that location. To integrate the compressible-flow equations in time, we employ
a generalized-α time integrator [55–57], which is an implicit, unconditionally stable, second-order
accurate method with control over high-frequency dissipation. At each time step, the solution of the
nonlinear algebraic-equation system is performed using the Newton–Raphson technique. At each
Newton–Raphson iteration the linear system is solved iteratively using a GMRES technique with
block-diagonal preconditioning [58]. The mathematical details of the resulting discrete formulation
may be found in Xu et al. [59,60].
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2.2. Model of the Turbine Stage

We study a single-stage high-pressure turbine composed of 24 stator and 34 rotor blades,
resembling the engines found in rotorcraft like Apache and Black Hawk. We rely on the use of
a parametric design tool proposed in Hsu et al. [61] to create the turbine geometry. This design
tool enables us to automate and expedite the geometry modeling process by parametrically defining
and pitching the stator and rotor blades in the computer-aided design (CAD) model through input
parameters. These pitching angles are created by articulating the blades about their leading edge,
where a positive angle represents a counterclockwise rotation. The airfoil profiles at three different
blade heights are shown in Figure 1, where baseline positions (0◦) are colored in black and articulated
positions are colored in gray. The turbine stage inner shaft radius is 77.7 mm, casing radius is 95.5 mm,
and total length is 210 mm.
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Figure 1. Stator and rotor airfoil profiles at different blade heights and their baseline (0◦) and
articulated positions. Baseline positions are colored in black and articulated positions are colored in
gray. The articulation angle is shown by the red arc and highlighted using the red arrow. A positive
angle corresponds to a counterclockwise articulation.

We consider the turbine stage at an off-design operating rotor speed of 22,350 rpm (50%), which
is typical for rotorcraft cruising at constant speed. At the inlet boundary, we assume uniform axial
inflow with velocity of 82.3 m/s, temperature of 1669.78 K, and pressure of 2.01279 MPa. The outlet
boundary has a prescribed normal traction (i.e., pressure) of 0.97078 MPa. The temperature on the
stator and rotor blades is specified as 1673.15 K and 1423.15 K, respectively. The inner shaft and
outer casing surfaces have no-slip velocity and adiabatic conditions. The gas dynamic viscosity is
µ = 5.551 × 10−5 kg/(m·s). The problem setup is summarized in Figure 2.

The fluid domain of the gas turbine stage is discretized using linear tetrahedral elements with
local refinement near the stator and rotor blades. The element size near the blades is 0.6 mm, while in
the rest of the domain the maximum element size is 1.8 mm (for the reference, the rotor blade chord
length is 20.8 mm). The mesh refinement study in Kozak et al. [6] showed that the current mesh
resolution is sufficient to compute the quantities of interest needed for optimization.
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Inlet:
||u||= 82.3 m/s
p = 2.01279 MPa
T = 1669.78 K

Axis to casing:
95.524 mm

Axis to shaft:
77.724 mm

Stator (24 blades):
T = 1673.15 K

Rotor (34 blades):
T = 1423.15 K

Outlet: 
p = 0.97078 MPa

Casing and 
shaft: no-slip

210 mm

Pressure side

Suction side

Rotational Speed:
100% = 44,700 rpm
75% = 33,525 rpm
50% = 22,350 rpm

Figure 2. Turbine stage problem setup.

3. Design Optimization Methodology

3.1. Surrogate Management Framework

The SMF optimization framework is driven by an objective function f (x), which is minimized
through an iterative process. The variables x over which f is minimized take on real values, have upper
and lower bounds, and are referred to as the design space. The SMF procedure begins with establishing
an initial data set xi, i = 1, . . . , N, where N is a suitably chosen number of initial samples. This is done
by applying a Latin Hypercube Sampling (LHS) technique [62,63], which gives a well distributed data
set. The objective function is then evaluated at each xi of the initial data set to construct an initial
surrogate function using Kriging method. This surrogate function interpolates the data, and estimates
the values of the objective function at other locations in the design space. Note that each “evaluation”
of the objective function amounts to generating the geometry and mesh for one turbine stage design,
carrying out 3D, time-dependent, compressible-flow simulation, and postprocessing the results to
obtain the key quantities of interest.

The SMF procedure continues with the search and poll steps. The search step uses the CMA-ES
which is a gradient free approach to incrementally search for candidate cases with multivariate normal
distributions and predict their objective function value with convex quadratic functions [64]. This
step outputs a single candidate case that is expected to have a better result than the current best case.
This candidate case is evaluated, and its corresponding objective function value is used to update the
surrogate function. If the search step improves the surrogate function, then another search step will be
executed. If the search step fails to improve the surrogate function, then the poll step is executed. The
poll step uses MADS-based polling which is an iterative algorithm that randomly samples and predicts
potential candidate cases near the current best case [11]. This step outputs a set of cases which are
expected to improve the surrogate function. If the poll step determines the current best point remains
the best, then the convergence of the function is evaluated. If the convergence criteria is met then, a
solution has been found and the procedure terminates. If not, the minimal search distance between
cases is reduced, and the algorithm returns to the search step. However, if the poll step determines
a new local minimum, then the surrogate function is improved by this poll point and the algorithm
returns to the search step. The search and poll steps are repeated until a converged solution, xc, is
found. The SMF procedure is summarized in Figure 3.
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Figure 3. Flowchart of the SMF procedure.

3.2. SMF Modifications for VSGTE Optimization

We introduce the following modifications to the SMF procedure as it applies to the VSGTE
optimization. We restrict the articulation to integer-angle (measured in degrees) blade positions due
to the limited articulation accuracy of the proposed VSTGE enabling mechanism [65]. Because the
stator- and rotor-blade pitch angles constitute the 2D design space, x is now restricted to a 2D integer
grid. This, in turn, affects the LHS algorithm, the CMA-ES and the associated step-size adaptation of
the search step as outlined in Hansen [10], and necessitates the introduction of a rounding function
in the MADS-based polling technique as suggested in Audet et al. [66]. These modifications ensure
that the LHS together with the search and poll steps only produce integer values as outputs, and thus
constrain the optimizer to only examine integer stator- and rotor-blade positions.

3.3. Design and Analysis Spaces

Blade articulation is the primary VSGTE enabling technology as it maintains optimal flow
paradigms and reduces excessive flow separation and recirculation attributed to off-design
operation [2,3,6]. Therefore, we select the stator- and rotor-blade pitch angles and the operating
rotor speed of the engine as our design space. We focus on two performance parameters, turbine stage
adiabatic efficiency and output shaft torque, which we refer to as the analysis space.

Adiabatic efficiency is a key performance metric of a gas turbine engine as it provides insight into
fuel consumption and environmental effects [5]. When associated with a rotorcraft, lower efficiency
implies the need for larger fuel containers to maintain a reasonable operational range. This increase of
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fuel payload increases rotorcraft weight, and results in a reduction of the overall rotorcraft efficiency.
Therefore, poor engine efficiency has multiple negative attributes associated with it as it simultaneously
degrades both engine and rotorcraft performance. Inferior efficiency also negatively impacts the
economic considerations of an engine [4]. Therefore, gas turbine engine efficiency is a key interest of
analysis [1–3,8,67].

Another key parameter of a gas turbine engine performance is its power output. The power output
determines how much thrust and lift the rotorcraft can produce, translating to how fast a rotorcraft can
cruise and how much weight the rotorcraft can carry [8]. To match the demand of increased speeds
and payloads [1–3], output power is a parameter of interest in our work. However, power output is
dependent on operating rotor speed which is a design variable. We remove the relationship between
this design and analysis parameter by specifying the rotor speed in the analysis, which makes the shaft
rotor torque an equivalent performance metric.

3.4. Evaluation of Analysis-Space Parameters

The calculation of the analysis space parameters makes use of space- and time-averaging of the
unsteady flow data coming from the compressible-flow simulations of the turbine stage. We develop
the flow field by simulating 2.2 revolutions of the rotor, and time-average the flow data obtained by
simulating an additional 3.3 revolutions for a total simulation time of 5.5 revolutions. Next, using the
rotational symmetry of the problem geometry, a spatial averaging approach is used to extract the data.
We obtain the mean pressure, temperature and Mach number entering and exiting the blade passage
by averaging annular slices at 0.5 mm intervals between 3 mm and 7 mm upstream of the stator and
downstream of the rotor. With these data, the adiabatic efficiency is computed as:

ηad =
1 − TRO

TSI

1 −
(

pRO

pSI

) γ−1
γ

, (1)

where TRO and pRO are the total temperature and pressure at the rotor outlet, respectively, TSI and pSI

are the total temperature and pressure at the stator inlet, respectively, and γ = 1.33 is the heat capacity
ratio corresponding to the temperature and pressure conditions inside the gas turbine. The rotor shaft
torque is calculated by integrating the local torque contribution from the fluid traction over the entire
rotor surface. The shaft power is obtained by multiplying the torque with the rotation speed.

3.5. Objective Function and Constraints

We aim to maximize the turbine stage torque output and efficiency at a given off-design operating
speed by synchronously articulating the stator- and rotor-blade positions. To achieve this aim, we
define our objective function f (x) as

f (x) = −w1
η(x)
ηre f

− w2
τ(x)
τre f

, (2)

where η(x) is the adiabatic efficiency for a given set of design variables, ηre f is the adiabatic efficiency
of the baseline turbine stage design, τ(x) is the torque acting on the drive shaft for a given set of design
variables, τre f is the torque acting on the drive shaft in the baseline turbine stage design, and wi’s are
the positive weights indicating the relative importance of the efficiency and torque. The efficiency
of the baseline turbine stage design is ηre f = 84.9% and torque is τre f = 151.2 N·m, both quantities
corresponding to the stator- and rotor-blade positions at 0◦.

We also introduce inequality constraints for our optimization problem. Firstly, we would like
to discard the designs that have more than 2% drop in efficiency while operating at 50% rotor speed.
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In addition, we favor the designs which produce a 50% torque increase over the baseline. For this
purpose we define two functions,

c1(x) =
η(x)− ηre f

ηre f
+ 0.02, (3)

and

c2(x) =
τ(x)− τre f

τre f
− 0.50, (4)

and employ an exterior penalty approach [68] to satisfy the desired constraints by minimizing an
augmented objective function Φ(x) given by

Φ(x) = f (x) +
2

∑
i=1

βi min(0, ci(x)). (5)

The exterior penalty approach provides a direct and effective way to include constraints in the
SMF framework, as well as in other optimization methods. In the above equation βi’s are the penalty
parameter weights given by

βi =
wi
2

. (6)

Finally, we impose restrictions on the design space to eliminate unfeasible designs. The restrictions
are stated in terms of the allowable ranges of the blade pitch angles and rotor speeds:

Stator-blade pitch angle: −16◦ to +4◦

Rotor-blade pitch angle: −15◦ to +15◦

Operating rotor speed: 50%

In this work, we carry out optimization for the rotor speed of 50%, which typically corresponds to
rotorcraft cruising conditions. Optimizing the blade pitch angles for a full range of rotor speeds will be
considered in the future work.

4. Optimization Results

4.1. Convergence of the SMF Algorithm

The LHS methodology produced an initial data set of 50 cases with varying stator- and rotor-blade
orientations shown on a scatter plot in Figure 4. The corresponding geometric models were built
and meshed using the parametric design framework [61] and subsequently analyzed using the
compressible-flow solver described in Section 2.1. It is worth emphasizing that: 1. The geometry
modeling and meshing pipeline handled all the cases without failure; 2. The same compressible-flow
formulation and code were employed to simulate all the cases independent of the blade orientation.
3. The entire design-through-analysis pipeline exhibited the high level of robustness necessary for
industrial practice.

The initial cases produced efficiency values ranging from 84.2% to 108% and torque values ranging
from 62.2 to 272 N·m. Five out of the 50 cases achieved efficiencies above 100% and featured average
torque values that were 37.8% below the baseline case. These cases, colored in red in Figure 4, were
removed from the data set as unfeasible.

We do not attribute more importance to the efficiency or torque in the selection of the
objective-function weights wi, and, as a result, we make them equal. In addition, a principal-component
analysis (PCA) [69] of the initial data set suggests that the efficiency term needs to be additionally
scaled by a factor seven to balance its contribution to the objective function.

The optimization was completed in five iterations featuring only seven additional cases. The five
iterations include two poll steps and three search steps. The first poll step produced three candidate
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cases, while the second poll step only produced one candidate case. This small number of additional
cases shows the effectiveness of the SMF in its ability to quickly arrive at an optimal design.
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Figure 4. Scatter plot of the 50 cases selected by the LHS approach that make up the initial data set.
Unfeasible designs are colored in red.

Figure 5 shows all the cases with their objective function ranks. Figures 6 and 7 show the cases
ranked individually by the torque and efficiency performance metrics. Cases from the initial data set
are depicted using circles, while the additional seven cases are depicted using squares. The design
with the best objective function has the stator pitched by −15◦ and rotor pitched by +5◦ from the
baseline position. This design achieved an efficiency gain of 6.1% (22nd best) and a power gain of
49.3% (13th best).
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Figure 5. Scatter plot of the cases ranked by the objective function value. Cases in the initial data set
are denoted by circles while the remaining cases are denoted by squares. The color fill of the circles
and squares corresponds to the value of the objective function.
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Figure 6. Scatter plot of the cases ranked by the shaft torque value with rank 1 being the highest. Cases
in the initial data set are denoted by circles while the remaining cases are denoted by squares. The color
fill of the circles and squares corresponds to the value of the torque. The baseline design is denoted
using a triangle with the torque value of τre f = 151.2 N·m.
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The color fill of the circles and squares corresponds to the value of the adiabatic efficiency. The baseline
design is denoted using a triangle with the efficiency value of ηre f = 84.9%.

Three important observations can be made from Figures 5–7: 1. The prospective neighborhood
of the optimal solution is quickly identified by the SMF, which may be inferred from all the squares,
representing candidate cases computed after the initialization by the LHS approach, clustering together;
2. The SMF is able to arrive at an optimal solution without exhausting all options, which may be
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inferred from several cases near the optimal solution that were not chosen for the objective-function
evaluation. 3: Adiabatic efficiency and shaft torque are clearly two competing performance metrics as
the overall best design is not even in the top 20% as measured by the individual performance indicators.

A scatter plot of efficiency vs. torque for all the cases along with the Pareto frontier is shown in
Figure 8. From the standpoint of multi-objective optimization, all the designs on the Pareto frontier
can be considered as optimal. In the figure, points A and B on the Pareto front represent the designs
with the highest torque and efficiency values, respectively. The optimal design from the standpoint of
the objective function chosen also lies on the Pareto frontier and is marked accordingly in the figure.

90 120 150 180 210 240 270
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84

88

92

96

100

Ef
fic

ie
nc
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(%
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Design points
Pareto front

A

Design with
best objective 

function
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Figure 8. Scatter plot of efficiency vs. torque for all the cases showing the Pareto optimal frontier.

4.2. Flow Analysis

Here we present a discussion of the flow phenomena observed in the simulations and how
these translate into performance metrics considered. We first focus on the comparison between the
optimal and baseline cases. We then discuss the flow phenomena observed in five other cases that are
representative of the whole design space. We look at the instantaneous flow streamlines and vortical
features depicted using the isosurfaces of Q-criterion, the second invariant of the velocity gradient
that measures the relative importance of vorticity over strain rate, and that is part of the well-known
Q-criterion used in the identification of vortical structures in the flow [70].

In Figure 9, we observe that pitching the stator blades results in the flow that is less blocked,
with almost no separation, and reoriented in such a way that when it enters the rotor section it stays
mainly attached to the suction side of the blade, thus creating a large suction pressure that drives the
rotor. In contrast, the baseline case shows blocked flow at the stator and gives rise to premature flow
separation on the suction side of the rotor blades with more flow recirculation than desired for high
torque and efficiency output. Both the streamline and Q-criterion plots support these observations,
which explain the performance gains of 6.1% for efficiency and 49.3% for torque for the optimal design.
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Figure 9. Flow field comparison using streamline and Q-criterion plots between the optimal and
baseline cases. The stator plots use absolute velocity while the rotor plots use relative velocity.

In Figure 10, the first case corresponds to the stator pitched at −14◦ and rotor at 12◦ relative to the
baseline. While the stator flow is not very different from the optimal case, and the rotor flow shows
high speed on the suction side, the flow separation at the rotor blade appears to be slightly premature
and the flow “strikes” the trailing edge of the pressure side of the neighboring blade. While this flow
results in a high torque rating, the efficiency suffers tremendously due to flow striking the underside
of the neighboring blade and creating unnecessarily high gradients leading to losses.

The second case in Figure 10, while showing very little flow separation and vorticity, and, as such,
resulting in high efficiency, clearly shows excessive flow blockage in the rotor section. This blockage
does not allow the flow to develop on the suction side and results in a low torque rating.

The third case in Figure 10 shows a little more blockage and flow reorientation in the stator, and
a premature separation and striking of the neighbor-blade trailing edge in the rotor, resulting in a
mediocre power ranking and bad efficiency.

The fourth case in Figure 10, where only the rotor is articulated to −10◦ while the stator remained
at the baseline position, shows premature flow separation at the rotor blade suction-side leading edge.
However, because the rotor articulation is such that it tries to block the flow, the flow appears to
reattach on the suction side without significant recirculation. This gives a good efficiency ranking,
while the power ranking suffers due to insufficient flow speed near the suction side of the rotor blades.

The last case in Figure 10 shows a severe blockage of the stator flow and complete flow
misalignment with the rotor section resulting in massive separation and 3D recirculation, and leading
to bad efficiency and power rankings.
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Figure 10. Flow field comparison using streamline and Q-criterion plots between five different
cases taken from the design space. The stator plots use absolute velocity while the rotor plots use
relative velocity.

5. Conclusions

We presented a novel approach that couples a derivative-free Surrogate Management Framework
for design optimization with high-fidelity finite element modeling of moving-domain compressible
flows. The framework was demonstrated through the modeling, analysis, and optimization of a U.S.
Army variable-speed gas turbine engine. We studied an annular single-stage high pressure turbine
featuring a novel incidence-tolerant turbomachinery blade technology [65] that adapts to different
operating conditions by synchronously articulating the stator and rotor blades. One of the objectives
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of this work was to determine the stator- and rotor-blade positions that achieved optimal turbine
performance at an off-design condition of the engine operating at 50% of the nominal rotor speed,
which is typical for rotorcraft cruising conditions. Using the proposed framework, we were able to
achieve gains of 6.1% for the turbine stage adiabatic efficiency and 49.3% for the shaft output power.

The proposed framework exhibited remarkable robustness in that the geometry modeling,
meshing, and compressible-flow analysis modules were able to handle nearly sixty gas turbine stage
designs without failure and with minimal user intervention. Parallel to this very practical optimization
focus, the work also examined the flow physics of rotor–stator interactions in a gas turbine stage and
provided critical insights into an emerging turbomachinery blade technology that has the potential to
positively impact the future propulsion systems.
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