
A framework for parametric design optimization using
isogeometric analysis

Austin J. Herremaa, Nelson M. Wiesea,b, Carolyn N. Darlinga, Baskar Ganapathysubramaniana,
Adarsh Krishnamurthya, Ming-Chen Hsua,∗

aDepartment of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
bDepartments of Physics & Mathematics, Central College, 812 University, Pella, Iowa 50219, USA

Abstract

Isogeometric analysis (IGA) fundamentally seeks to bridge the gap between engineering design
and high-fidelity computational analysis by using spline functions as finite element bases. How-
ever, additional computational design paradigms must be taken into consideration to ensure that
designers can take full advantage of IGA, especially within the context of design optimization. In
this work, we propose a novel approach that employs IGA methodologies while still rigorously
abiding by the paradigms of advanced design parameterization, analysis model validity, and in-
teractivity. The entire design lifecycle utilizes a consistent geometry description and is contained
within a single platform. Because of this unified workflow, iterative design optimization can be
naturally integrated. The proposed methodology is demonstrated through an IGA-based parametric
design optimization framework implemented using the Grasshopper algorithmic modeling inter-
face for Rhinoceros 3D. The framework is capable of performing IGA-based design optimization
of realistic engineering structures that are practically constructed through the use of complex geo-
metric operations. We demonstrate the framework’s effectiveness on both an internally pressurized
tube and a wind turbine blade, highlighting its applicability across a spectrum of design complex-
ity. In addition to inherently featuring the advantageous characteristics of IGA, the seamless nature
of the workflow instantiated in this framework diminishes the obstacles traditionally encountered
when performing finite-element-analysis-based design optimization.

Keywords: Isogeometric analysis; Parametric design optimization; Rhino and Grasshopper;
NURBS; Wind turbine blade

1. Introduction

One of the originally identified advantages of isogeometric analysis (IGA) [1] is that it enables
tight integration of high-fidelity finite element analysis (FEA) into the engineering design work-

∗Corresponding author
Email address: jmchsu@iastate.edu (Ming-Chen Hsu)

The final publication is available at Elsevier via http://dx.doi.org/10.1016/ j.cma.2016.10.048

http://dx.doi.org/10.1016/j.cma.2016.10.048


flow. In traditional design-and-analysis workflows, approximately 80% of the overall design life-
cycle is devoted to finite element mesh generation and creation of analysis-suitable models; only
20% of the remaining lifecycle is spent on actually performing analysis [2]. In the context of itera-
tive design optimization, such inefficiency is amplified. The core concept of IGA is the utilization
of the geometric basis functions used to construct computer-aided design (CAD) models—usually
non-uniform rational B-splines (NURBS)—directly as finite element basis functions, eliminating
the need to generate an additional, geometrically approximate finite element mesh.

Previous works have sought to improve design-and-analysis frameworks by incorporating IGA.
An isogeometric design-through-analysis concept was previously explored in Schillinger et al. [3]
based on hierarchical refinement of NURBS and T-splines [2, 4] using the finite cell method [5, 6].
Breitenberger et al. [7] presented an Analysis in Computer-Aided Design (AiCAD) concept using
NURBS-based boundary representation (B-rep) models for nonlinear isogeometric shell analysis,
which included enhancements such as the ability to perform analysis on trimmed surfaces and the
use of the penalty method for patch coupling. The AiCAD concept was implemented in CAD soft-
ware packages such as Rhino [8] and Siemens NX [9]. Additionally, Hsu et al. [10] developed a
user-interface-based parametric design platform for IGA directly within the Rhino CAD environ-
ment, utilizing Rhino’s algorithmic modeling interface, Grasshopper [11], for parametric geometry
generation.

The tight coupling between geometry and analysis also allows IGA to be naturally integrated
with shape optimization. Wall et al. [12] and Fußeder et al. [13] presented frameworks for structural
shape optimization of basic two-dimensional geometries using isogeometric structural analysis and
gradient-driven optimization methods. Moysidis and Koumousis [14] performed shape optimiza-
tion of plane stress structures in the context of a hysteric formulation for IGA. Julisson et al. [15]
used IGA and Powell’s derivative-free optimization algorithm to perform structural shape opti-
mization of three-dimensional thin shell structures. Cho and Ha [16], Qian [17], and Kiendl et al.
[18] used shape sensitivity analysis to recover optimal shapes through structural analysis, the latter
doing so in three dimensions. In each of these cases, the locations of designated control points of
interest (and control point weights, in some cases) were used as the design variables. Additionally,
isogeometric shape optimization has been used to address problems of electromagnetic scatter-
ing [19], vibrating membranes [20], heat conduction [21], fluid mechanics [22], and the design
of magnetic actuators [23]. A notable departure from the optimization of control point weights
and locations is found in Kostas et al. [24] in which geometry parameterization is a primary focus
and in which an IGA-based boundary element method provides the basis for optimizing the wave
resistance of a T-spline ship hull.

While important work has been done in both uniting IGA with CAD software platforms and
recognizing the natural ability of IGA to facilitate shape optimization, additional work must be

2



done to demonstrate that IGA-based optimization is relevant and beneficial in the context of
modern CAD paradigms. For example, modern CAD systems, such as SolidWorks [25], Pro-
Engineer [26], etc., use feature-based modeling1 [29] to capture design intent [27]. In addition,
they support parametric design modifications using a constraint-based solver [30–33] and solid
modeling [34]. On the other hand, many isogeometric design-through-analysis frameworks are
based on Rhino, a freeform surface modeling system, mainly because Rhino uses a NURBS-based
geometry kernel that can be directly used for IGA. Rhino does not natively facilitate parametric
constraint- or feature-based modeling. This makes editing engineering models in Rhino difficult,
since model parameters cannot be simply changed to the desired value. The lack of feature-based
modeling also implies that any change to a particular surface can lead to a geometry configura-
tion that is inconsistent with the original design intent (e.g., introducing non-manifold geome-
try in a solid model, self-intersecting geometry, or new gaps). Hence, we may have to perform
changes to multiple surfaces, even when we desire to change a single feature, in order to generate
an analysis-suitable design. Finally, modern CAD platforms prioritize interactivity throughout the
design process [35]. Thus, a parametric optimization workflow that uses design-specific, syntax-
heavy, compilation-dependent code, while technically parametric, is not sufficiently interactive for
extensive use in many engineering design contexts.

Another reality of realistic, large-scale engineering design contexts is that analyses from multi-
ple disciplines must often be performed in order to quantify the effectiveness of a particular design,
and the parametric inputs for these complex designs may be more abstract than fundamental ge-
ometric parameters such as control point locations (e.g., constraint-based dimensions or material
parameters). Martins and Lambe [36] surveyed various methods encountered within the field of
multidisciplinary design optimization, a field of research that studies the application of numerical
optimization techniques to the design of engineering systems. Multidisciplinary design optimiza-
tion is commonly used to address engineering design problems (see, e.g., [37–41]); some such
problems use traditional FEA and are hence forced to script mesh generation procedures and to
manage separate geometry descriptions.

The central goal of this work, therefore, is to develop a natural computational framework that
is capable of IGA-based parametric design optimization in an interactive, multidisciplinary design
context. In addition to facilitating high-level parameterization and interactivity, the framework
should be designed around the notion of consistently creating families of analysis-suitable models.
The methodology suggested in this work is demonstrated using the Grasshopper algorithmic mod-

1Please refer to the book by Shah and Mäntylä [27] and the review by Salomons et al. [28] for a detailed background
on feature-based CAD. A feature tree is used to keep track of the different features that are used to model the geometry.
A feature can give rise to new geometric entities, such as faces, which can then be used by a child feature in subsequent
modeling steps.

3



Parameter Input VisualizationDesign Analysis Post-Processing

Optimization*Toolbox

Optimization

Figure 1: Overall structure of the isogeometric design optimization framework laid out in Grasshopper, an algorithmic
modeling interface for Rhino. Optimization procedures can be performed either inside or outside of the Grasshopper
environment using various optimization toolboxes, e.g. MATLAB [42], Dakota [43], Galapagos [11], etc.

eling interface to promote workflow consistency, efficiency, interactivity, and cost-effectiveness—
in terms of both time and money—of the engineering design process. The Rhino-based Grasshop-
per can access Rhino’s NURBS-based geometry kernel to construct realistic analysis-suitable mod-
els. The framework is also designed to enable truly seamless, heuristic design optimization based
on IGA results. To the best of our knowledge, it is the first computational framework capable of
performing IGA-based parametric design optimization of realistic engineering structures that are
practically constructed through the use of complex, CAD-based geometric operations.

This paper is outlined as follows. In Section 2, we describe the structure of the isogeometric
design optimization framework, highlighting the salient features of the parametric design, analysis,
and optimization procedures. Specifically, we emphasize the role that each procedure plays in
enabling the overall, novel approach to design optimization. In Section 3, we demonstrate the
benefits and validate the capabilities of the framework by first optimizing a simple tube structure.
We then optimize a wind turbine blade design in Section 4 to demonstrate the framework’s ability
to promote analysis-driven design of realistic, industrial-scale engineering solutions. In Section 5,
we give our concluding remarks.

2. Isogeometric design optimization framework

In this work we develop a computational framework capable of performing IGA-based para-
metric design optimization of realistic engineering structures that are practically constructed
through the use of complex, CAD-based geometric operations. The general structure of a sim-
ple design optimization procedure can be seen in Figure 1, which depicts the cycle of parametric
model construction and analysis. Such cycles are commonplace in the engineering design world,
demonstrated by the popularity of software platforms like ANSYS Workbench [44]. However, the
use of specific strategies within the modeling and analysis stages of the design cycle, as proposed
in this work and demonstrated below, allows seamless, IGA-based design optimization. Not only

4



is this seamless approach practical and efficient, but it also inherits the characteristics of IGA that
are particularly advantageous in optimization settings (see Section 2.3.1 for more details).

The framework as implemented in this work and as shown in Figure 1 exists primarily within
Grasshopper [11], an algorithmic modeling interface which makes use of and controls the CAD
software called Rhino [8]. Rhino uses NURBS-based surface geometry descriptions and features a
variety of numerically robust and efficient algorithms for creating and modifying NURBS geome-
try. Having access to this advanced geometric functionality is invaluable to engineering designers
who rely heavily on complex, pre-defined algorithms. In the overarching context of the isogeomet-
ric design optimization framework, Grasshopper is used to create or integrate parametric design
algorithms, analysis codes, post-processing operations, optimization toolboxes, and result visual-
ization.

Grasshopper features many “components,” which are visualized in the two-dimensional
Grasshopper workspace as small rectangles, each with unique geometric or programmatic func-
tions. The user inserts the desired components and links the functions’ inputs and outputs together
via graphical “wires.” If no Grasshopper component contains the exact functionality desired by the
user, custom scripting components, available in a variety of programming languages and capable
of accessing Rhino’s core functionality, can be created. Groups of functions can be also packaged
into “clusters” which then appear as a single component in the Grasshopper workspace. The clus-
ters responsible for the design, analysis, post-processing, and other operations are shown within
the Grasshopper interface in Figure 1.

Subsequent sections will detail the contents of the design, analysis, and optimization compo-
nents shown in Figure 1. Visualization of analysis results may not be required within the design
optimization loop. However, it may be beneficial to visualize the results during or after the opti-
mization process. We therefore detail the visualization methodology, which is unique for IGA and
is implemented within the “Visualization” cluster in Figure 1, in Appendix A.

Remark 1. An interactive parametric design and geometry modeling platform was proposed in
Hsu et al. [10] to directly employ IGA within the Rhino CAD environment. Hsu et al. [10] used
a traditional approach to the model generation and analysis workflow in that the platform was
constructed with the intent of a user interacting with the model within the Rhino viewport and
invoking design, analysis and post-processing procedures via a user interface. This methodology
is not suitable for rigorous design optimization in part because it was formulated with the intent of
strong user interaction.

2.1. Design

The contents of the “Design” cluster in Figure 1 are necessarily distinct for unique design op-
timization applications. Here we discuss elements of engineering model design that are important

5



to consider when constructing an IGA framework intended to optimize realistic engineering de-
signs. A few characteristics, such as parametric design, maintenance of valid analysis-suitable
geometries, and interactivity, are considered indispensable for efficient model development.

2.1.1. Parametric model construction

The ability to establish direct parametric control of geometry is a necessity for most engineering
designers. Most common CAD software, such as SolidWorks [25], employs constraint-based sys-
tems [45–47] that allow designers to directly alter model-defining dimensions such as line length
or arc radius and geometric constraints like straightness or tangency. Changing any of these values
causes the position and size of the relevant geometric entities to be automatically recalculated such
that all user-defined constraints and dimensions are satisfied. This simplifies model construction
and makes it easier to build design intent into a model, especially when the model is based on
engineering drawings which use relative dimensioning almost exclusively.

Rhino is often used to generate models for IGA because it is built upon a NURBS-based ge-
ometry kernel and has been used within the IGA community in the past. However, Rhino does
not natively feature constraint-based design capabilities, forcing the designer to painstakingly cal-
culate the absolute position or size of geometric entities. Subsequent model adjustment must be
performed in a similar fashion, rather than by the adjustment of the relevant model constraints or
relations. This hinders the extent to which a designer can change an engineering design based on
analysis results, a fundamental goal of IGA.

Another problem with using a freeform modeling system like Rhino in an iterative IGA context
is that, due to the lack of constraint-based modeling capabilities, editing individual surfaces may
lead to a model that is inconsistent with the original design intent. This behavior is demonstrated
in Figure 2, where an initial model, on the left, is comprised of surfaces 1 and 2, where surface 2 is
generated based on the location of the lower edge of surface 1. Using a freeform modeling system,
if the designer were to change the radius of surface 1, then surface 2 would not be inherently
regenerated accordingly. The result would be the top configuration on the right side of Figure 2,
where the edges of the surfaces are no longer coincident.

We therefore require a modeling platform capable of both parametric modeling and consistent
generation of geometry that aligns with the original design intent. In our framework, we utilize
the Grasshopper interface for Rhino to achieve this goal. Grasshopper allows the designer to
graphically develop a procedural algorithm [48] to create a model using interrelated geometric
functions. The algorithms in our framework are developed such that the desired inputs are the
engineering parameters of interest, effectively establishing direct parametric control of the NURBS
objects within Rhino. Thus, procedural model generation gives the designer parametric control
over the model without explicitly developing a fully developed, constraint-based modeling system.

6



1

2

1

2

1

2

Figure 2: Illustration of the different designs achieved when design intent (geometric connection of surfaces 1 and 2)
is maintained (bottom case) versus when design intent is not respected (top case) for a given model change.

The use of procedural generation also entails the capability to more reliably generate multiple
geometries that maintain design intent. For the example in Figure 2, we can construct an algorithm
wherein the radius of surface 1 is a parametric input and surface 2 is generated based on the lower
edge of surface 1. Then, if the designer were to change the radius of surface 1, the entire algorithm
would recompute, producing the configuration on the bottom-right side of Figure 2. Thus, the
design remains valid for a wide range parametric input.

The notion of parametric procedural design can be abstracted using an expression Θ(x) in
which x is a vector of parametric design variables and Θ(x) is an algorithm2 that generates the
design model based on given design variables. In this sense, the general expression Θ(x) might
be thought of as a means of generating a “family of designs.” Some common design variables,
especially in the context of IGA, are the NURBS control point locations and weights; an example
design vector xe can thus be defined as

xe B {Pk,Wk}, k = 1, 2, . . . , n , (1)

where P and W denote the control point location and weight, respectively, boldface indicates a
spatially dimensioned vector, and n is the total number of control points. We could then establish
an algorithm, Θe(xe), for a particular design application. Of course, for the purposes of commu-

2In this context, we use the word “algorithm” to refer to a set of generative or manipulative geometric or otherwise
programmatic functions which, when executed in sequence, procedurally generate a particular engineering design
model.

7



2. k-refinement, loft

3. Duplicate/rotate patch, build bending strips 

1. Construct NURBS curve

Figure 3: Family of tube designs (bottom) and associated Grasshopper generative algorithm Θt(xt) (top).

nication and efficiency, most realistic engineering designs require the establishment of high-level
design parameters, such as component width or relative feature location.

Different sets of design parameters and generative algorithms correspond to different design
scenarios. For example, the family of tube designs investigated in Section 3 and the Grasshopper
algorithm Θt(xt) for generating these designs is shown in Figure 3. Additionally, the family of
wind turbine blade designs investigated in Section 4 and the Grasshopper algorithm Θb(xb) for
generating those designs is shown in Figure 4. More information on the design variables used in
these cases can be found in the corresponding example sections.

2.1.2. Interactivity

Interactivity is important in the engineering design process not only because it improves the
designer’s aesthetic experience, but also because immediate visual feedback and intuitive inter-
faces improve the efficiency of the design process. This is yet another reason why we choose to
demonstrate our computational framework in Grasshopper; rather than providing precise, robust

8



1. Format and distribute input
3. Loft curves

2. Interpolate, move, scale, and twist curves

Figure 4: Family of blade designs (bottom) and associated Grasshopper generative algorithm Θb(xb) (top).

parametric design through syntax-heavy code, as is done in other works, the visually programmed
generative algorithms are simple to edit, provide immediate visual feedback in three-dimensional
space, and do not require compilation.

This point may seem trivial, but it is important to consider if we intend to abide by the original
spirit of IGA. In essence, IGA and the notion of interactivity in the design context serve the same
purpose: to improve the quality of design feedback and to deliver such feedback efficiently and
elegantly. Thus, focusing on IGA without considering the interactive design context may not result
in a net improvement in overall design-and-analysis workflow.

2.2. Analysis

Having established the utilization of a platform that is both NURBS-based and facilitates effi-
cient, parametric model design, we incorporate IGA into the overall workflow as indicated by the
“Analysis” cluster in Figure 1. Assuming a model’s NURBS information, such as control point
locations, degree, and knot vectors, is immediately available at the analysis stage, as is the case in

9



Grasshopper, and assuming that the geometry is analysis-suitable, IGA can be readily performed.
The overall procedure in Grasshopper recognizes new parametric input, constructs the model ac-
cording to a parametric algorithm, outputs the relevant NURBS information, and automatically
calls an analysis code through a customizable C# scripting component. Compared to the over-
all analysis time, the computational cost of these input and output procedures is insignificant, as
shown in Sections 3 and 4.

The applications currently of interest to the authors are relatively thin shell structures. For
this reason, the rotation-free Kirchhoff–Love thin shell variational formulation is utilized for both
the pressurized tube and the wind turbine blade applications in Sections 3 and 4. The isogeo-
metric Kirchhoff–Love thin shell formulation was first proposed by Kiendl et al. [49] and further
refined in Kiendl et al. [50] to handle regions where the mapping reduces to the C0 level using
the bending strip approach. The formulation was reformulated for composite shells in Bazilevs
et al. [51] and was shown to accurately capture the dynamic kinematic behavior of wind turbine
blades in Korobenko et al. [52] and Bazilevs et al. [53]. The formulation may be stated as: find the
displacement of the shell midsurface y ∈ Sy such that for all test functions w ∈ Vy,∫

Γs
0

w · hthρ0

(
d2y
dt2 − f

)
dΓ +

∫
Γs

0

δεεε ·
(
Kexteεεε + Kcoupκκκ

)
dΓ +

∫
Γs

0

δκκκ ·
(
Kcoupεεε + Kbendκκκ

)
dΓ

+

∫
Γb

0

δκκκ ·Kbestκκκ dΓ −

∫
(Γs

0)h

w · h dΓ = 0 , (2)

where Sy andVy denote the trial and test function spaces, respectively, for the structural mechanics
problem, Γs

0 and Γb
0 denote the shell midsurface and bending strip domain in the reference config-

uration, respectively, hth is the shell thickness, ρ0 is the through-thickness-averaged shell density,
εεε and κκκ are the membrane strain and curvature change of the midsurface, respectively, written in
the local Cartesian system, δεεε and δκκκ are their variations, h is the prescribed traction on (Γs

0)h, f
denotes body forces, Kexte, Kcoup, and Kbend are the extensional, coupling, and bending stiffnesses,
respectively, calculated using laminated plate theory, and Kbest is the bending stiffness of the bend-
ing strips. (For more details, please see Bazilevs et al. [54].) We denote this weak form of the
system of partial differential equations that describes the physics as B(y) = 0.

We emphasize that it would be entirely possible to replace the Kirchhoff–Love shell variational
formulation used here with many other isogeometric methods, such as other shell formulations [55,
56], boundary element methods [57, 58], and finite cell [3, 5] or immersogeometric techniques [59,
60]. Much of the work in achieving such implementations would consist merely of ensuring that
the IGA solver can recognize new geometries and communicate analysis results to the Grasshopper
environment. It is also feasible to perform isogeometric analysis on solid volumetric geometries
as was done with a gas turbine modeled using trivariate NURBS in Hsu et al. [10]. Because

10



Grasshopper and Rhino do not support trivariate splines natively, this is achieved through unique
surface construction techniques and pre-processing that builds three-dimensional designs based on
a network of two-dimensional surfaces. This represents a rich and fruitful avenue of future research
and development.

2.3. Optimization

The “Optimization” cluster in Figure 1 indicates the use of an optimization toolbox to drive the
iterative design-and-analysis process. In the introduction of this paper we discussed the notion that,
although the fundamental integration of CAD and computer-aided engineering (CAE) paradigms
through the use of IGA theoretically enables a more iterative approach to engineering design and
analysis, practical limitations have hindered the establishment of IGA-based design-and-analysis
workflows. These workflow limitations have led to limitations on how readily parametric design
parameters can be optimized. One of the key goals of creating a parameterized design model within
a design-through-analysis framework is to allow the designer to understand the influence of rele-
vant design parameters on values of interest obtained through computational analysis. This can be
done, and is often still done, manually, especially in the context of high-fidelity structural analysis;
the designer performs analysis, views the result, adjusts the design, and repeats as necessary until
the desired result is achieved. However, if the design-and-analysis workflow is made completely
seamless using IGA and parametric design techniques, as is the case with the presented framework,
we can further leverage computational power using automated optimization methods.

In this work, we integrate MATLAB into the design-and-analysis framework, allowing us to
make use of the many optimization techniques incorporated into MATLAB’s optimization tool-
box [42]. Externally routing the design pipeline through MATLAB is acceptable in our implemen-
tation because relatively little information (in our cases, only design variables and cost function
values) must be transferred. However, depending on the volume of transferred information and
other performance requirements, alternative optimization techniques and packages, including tech-
niques native to Grasshopper, could also be used. In our implementation, MATLAB provides input
parameters, allows the design-through-analysis framework to build a model and perform analysis,
and then retrieves relevant output values from Grasshopper to inform future iterations. This pro-
cess is entirely automated and enables the optimization algorithm to search within a parameterized
family of designs, Θ(x), freely. Importantly, both local (gradient-based and gradient-free) and
global (meta-heuristic and multi-start) optimization methods can be seamlessly applied within this
paradigm.

2.3.1. Advantages of IGA in optimization setting

As discussed previously, one traditional barrier to analysis automation in the finite element
context is the difficulty associated with generating finite element meshes for complex geometries.

11



Ensuring that good quality meshes can be generated automatically from CAD models remains a
challenging problem, often requiring manual intervention and thus reducing the overall efficiency
of the optimization framework. A key benefit of a design optimization framework that makes use
of IGA is that such mesh generation can be avoided, assuming the generative algorithm is designed
carefully such that analysis suitability is ensured. The geometry can then be directly referenced
for analysis, reducing the number of required pre-analysis tasks and easing setup of the overall
optimization problem.

Isogeometric analysis may also reduce the computational time required for accurate analysis of
a given design. This benefit is especially important in the context of design optimization, where the
reduction of a single function evaluation by a minute can translate to hours of saved optimization
time. Compared to traditional finite element methods, isogeometric analysis is capable of more
quickly producing results of equivalent accuracy. Benson et al. [61] demonstrated that structural
analysis of a roof using 450 quadratic NURBS elements could produce results in 2.90 CPU seconds
that are approximately the same as those produced by an analysis using 4,512 linear Belytschko-
Tsay elements, requiring 10.5 CPU seconds. It is therefore apparent that IGA is a uniquely apt
tool in the context of design optimization, where limiting analysis time—without unnecessarily
sacrificing analysis accuracy—is critical.

3. Tube profile optimization

In order to demonstrate the effectiveness of the IGA-based parametric design optimization
framework, we first optimize a design with a known solution: the cross-sectional geometry of an
internally pressurized tube.

3.1. Definition of cost function

We seek to solve the general optimization problem that is encoded in a cost functionalJt(y; xt).
The cost functional depends explicitly on the displacement field variables, y, which are evaluated
via solving the PDE, B(y) = 0. Additionally, the cost functional depends implicitly on the design
variables xt (usually via the field variables y(xt)). The resulting PDE-constrained optimization
problem is posed as follows:

minimize Jt(y; xt)

subject to B(y; xt) = 0 ,

xt ∈ Ωt .

(3)

Jt(y; xt), defined below, is calculated for each design-and-analysis iteration; xt is the vector of de-
sign variables, defined in the succeeding section; and Ωt is the vector of allowable ranges for each
design variable. Recall that, for the family of tube designs, we employ the generative algorithm

12



Θt(xt), shown in Figure 3, which acts as a preprocessor for the analysis of each design by producing
the geometry definition that allows Jt(y; xt) to be calculated.

For many structural analyses, as is the case here, it is reasonable to minimize the maximum
strain in a design because strain is directly related to many popular failure criteria. In the isogeo-
metric Kirchhoff–Love thin shell formulation [49, 62], the Green–Lagrange strain, E, is separated
into a constant part, due to membrane action, and a linearly varying part, due to bending, as fol-
lows:

E = εεε + ξ3κκκ , (4)

where εεε denotes the membrane strain of the midsurface, κκκ denotes the change in curvature of the
midsurface due to bending, and ξ3 is the through-thickness coordinate.

For this example the expected optimal cross-sectional shape is a circle because it is capable of
supporting the entirety of the internal pressure load with only in-plane (membrane) stretching and
zero bending action. We can therefore minimize

Jt(y; xt) = κκκmax(y; xt) , (5)

where y is the displacement and κκκmax(y; xt) is the maximum component of the maximum curvature
change present in the design generated by the design variables xt.

3.2. Definition of design parameters

Much isogeometric shape optimization literature focuses on the optimization of control point
locations (and weights, in some cases). While this is reasonable for small-scale problems like
this one, it is desirable to reduce the number of design variables to produce only designs within a
particular design space of interest. For the internally pressurized tube case we wish to constrain the
design space such that it contains only tubes with a uniform cross-section and that are symmetric
about two perpendicular planes. Therefore, as Figure 5 illustrates, we create one quarter of the
cross-section using a NURBS curve featuring three control points with weights of {1,

√
2

2 , 1}. The
two end control points are fixed at a radial distance of one unit from the origin, and the middle
control point is allowed to move radially towards or away from the origin. Therefore, for this
problem, the design variables are defined as

xt B {r} , (6)

where r is the radial distance from the origin to the second NURBS control point as illustrated
by Figure 5. This parameterization allows both square and circular cross-sections to be generated
by varying a single design variable. The planar curve is then extruded in the perpendicular plane
to generate a surface; the surface is duplicated and the duplicate surfaces are rotated to create the

13



Figure 5: Design variable r definition for the internally pressurized tube problem.

remaining three quarters of the tube. The four quarters, each a single patch, are coupled using the
bending strip method [50]. This generative geometric procedure, Θt(xt), is shown in Grasshopper
in Figure 3.

3.3. Simulation setup and solution strategies

IGA mesh density is selected using k-refinement3 (degree three in the u and v parametric direc-
tions) so as to balance the need for accuracy and the desire to limit analysis time, a critical factor
for heuristic optimization techniques. A thickness of 2 cm is used with a Young’s modulus of 0.4
GPa and Poisson’s ratio of zero. The non-variable portions of the cross-sectional radius are fixed at
1 m and the height of the tube is 3 m. An internal pressure of 10 kPa is applied and the movement
of a single control point is fixed for better numerical stability.

We directly apply Newton–Raphson iterations to converge the residual of this static problem.
For each Newton–Raphson iteration, used to converge geometric nonlinearities, the linear system
is solved using an iterative, diagonally preconditioned, conjugate gradient solver. Note that, in this
case, there is only one design variable such that the cost function is one dimensional. A variety of
optimization methods contained in the MATLAB Optimization Toolbox [42] can be used. Because
we seek to demonstrate that the presented framework is applicable to a wide variety of engineering
design problems, we use MATLAB’s generalized pattern search (GPS) algorithm with positive
2N basis and mesh tolerance of 0.001. Pattern search methods do not suffer from some of the
problems associated with gradient-based finite differencing, such as potential oversensitivity or

3The processes of knot insertion (h-refinement) and order elevation (p-refinement) do not commute. k-refinement,
proposed in Hughes et al. [1], elevates the order of the original curve and then inserts a unique knot value. This process
maintains the elevated-order continuity of the curve at the newly inserted knot.

14



0 4 8 12 16 20 24
-0.2

0

0.2

0.4

0.6

0.8

1

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 6: Design variable r and current best cost function value versus number of pattern search iterations.

insensitivity to design variable variation, and can therefore be more readily used for many design
applications [42, 63], including problems of high dimensionality. Although this approach may not
be the most efficient, it is reliable and also has rigorous local convergence properties [64].

3.4. Results and discussion

Optimization is performed using 16 GB RAM and a single core of a 2.2 GHz Intel Core i7
processor. A total of 38 designs are evaluated; each function evaluation takes about 25 seconds,
yielding a total optimization time of about 16 minutes. Externally routing the optimization pro-
cedures through MATLAB requires the reading and writing of design variables and cost function
variables, all of which requires less than one second for each function evaluation. Reading and
writing analysis model data takes less than 100 ms per function evaluation. The entire process
could theoretically be expedited by parallelizing structural analysis, optimization procedures, or
both.

Figure 6 shows the design variable r plotted versus the cost function value, the maximum
curvature change at any point in the design. It is clear that, throughout optimization, the design
variable r converges towards the reference solution of

√
2, the radial control point position at

which a perfectly circular cross-section is achieved. Additionally, the maximum curvature change,
κκκmax(y; xt), converges to zero.

These results are corroborated by Figure 7, which shows the strain contours on the undeformed
and deformed geometries of the current best design at various points in the optimization pro-
cess. Note that the maximum curvature change occurs in the initial, perfectly square cross-section,
whereas after the last iteration, iteration 24, there is zero curvature change even after loading. The

15



Undeformed DeformedIteration

0

1

4

24

Undeformed DeformedIteration
Curvature 
Change ! "

Figure 7: Undeformed and deformed shapes of current best tube design at selected optimization iterations. Color
contour denotes value of maximum component of curvature change.

results are in good agreement with the expected values and demonstrate the framework’s ability to
optimize simple parametric designs using IGA and heuristic optimization techniques.

4. Wind turbine blade example

To demonstrate the applicability of the isogeometric design optimization framework to actual
engineering problems, we use the proposed method to improve the design of the baseline NREL
5 MW wind turbine blade [65]. More specifically, we use the baseline design to establish a perfor-
mance benchmark. We then use an optimization algorithm to vary a subset of design parameters
to obtain a design with improved performance.

4.1. Definition of cost function

The optimization problem is posed as follows:

minimize Jb(y; xb)

subject to B(y; xb) = 0 ,

xb ∈ Ωb ,

Ci(y; xb) ≤ 0 , i = 1, . . . , nc ,

(7)

where Jb(y; xb) is the cost function, defined below, calculated for each design-and-analysis it-
eration, xb is the vector of design variables, Ωb is the vector of allowable ranges for the design
variables, and there are nc inequality constraints, C, that the optimized design must satisfy.

16



Formulating a meaningful cost function for complex engineering designs is challenging, but it
is critical for achieving quality optimization results. In the case of wind turbine blades, a variety
of values that derive from the creation and analysis of a computational model may be of interest
to the designer. An effective cost function unites these values in a logical and meaningful way,
essentially ranking the many design alternatives according to designer-defined objectives.

For this example, we quantify the effect that variation of the NREL 5 MW wind turbine blade
design has on the machine’s overall payback period, S , i.e. the amount of time that it takes for
a wind turbine’s total revenue production to match initial capital investment. Readers that are
interested in the details of how the payback period, S , is formulated into the following cost function
are referred to Appendix B. We define the cost function as

Jb(y; xb) =
1 + 0.1132

(
M(xb)−M0

M0

)
1 +

P(xb)−P0
P0

, (8)

where M(xb) indicates the mass of a blade design variant, M0 indicates the baseline NREL 5 MW
blade design’s mass, P(xb) indicates the power production of a blade design variant, and P0 indi-
cates the baseline NREL 5 MW blade design’s power production. The value of Jb(y; xb) indicates
a design alternative’s payback period in terms of a proportion of the original payback period. The
baseline 5 MW blade design has a Jb(y; xb) of 1, or 100% the reference payback period; better
performing designs have Jb(y; xb) < 1; and poorer performing designs have Jb(y; xb) > 1. Better
performing designs will recover initial investment costs more quickly and should be more prof-
itable overall. The right-hand side of (8) does not incorporate the displacements, y, of the blade
explicitly because the displacements are only used to calculate the constraints for this particular
example.

4.2. Definition of design parameters and constraints

While simple geometries are often described using control point locations and weights, such
fundamental geometry descriptions are intractable as primary descriptors of more complex models.
More highly abstracted parametric relations are established for this reason. Wind turbine blades are
generally constructed according to a set of design parameters that are defined at discrete locations
along the blade. The geometric parameters are usually a section’s radial location, chord length,
airfoil shape, and twist degree. The Grasshopper algorithm for generating wind turbine blades is
shown in Figure 4. For this simple optimization problem we focus on a single parameter, the chord
length, which has definite implications for both blade mass and power production.

As can be seen in Jonkman et al. [65], the original 5 MW blade has nineteen locations, or “sta-
tions”, at which the design parameters are defined, corresponding to nineteen chord lengths along
the blade span. Rather than use these nineteen chord lengths as the design parameters for our opti-

17



Blade Span

C
ho

rd
 L

en
gt

h

Z1

Z2

Z3

Z4

Initial Profile
Profile Variation

New Profile

Figure 8: Demonstration of strategy for variation of chord profile using reduced number of parameters. Internal
control points of a quadratic B-spline are moved and the variation profile is added to the original profile. Original
blade geometry is shown in black (second from bottom) and new blade geometry is shown in blue (bottom).

mization problem, we use an alternative parameterization strategy to reduce the dimensionality of
the design space. The strategy consists of creating a variation profile constructed from a quadratic
B-spline of six control points evenly spaced along the blade span as shown in Figure 8. Varying the
four internal control points in the direction of chord profile size allows semi-local control over this
chord profile variation. The value of the variation profile at each of the nineteen cross-sectional
locations along the blade span is added to the original profile to generate a new profile. The design
variables for this example are therefore defined as

xb B {Zi}, i = 1, . . . , 4 , (9)

where Zi is the vertical movement in Figure 8 of each of the four internal control points. The gen-
erative algorithm Θb(xb), excluding the algorithm for chord profile variation, is shown in Figure 4.
The different blades in Figure 4 were generated using this variation approach.

An additional consideration for most realistic optimization problems is the optimization con-
straints. While the cost function Jb(y; xb) provides an explicit relationship between blade mass
and power production, it does not take into account other potential constraints such as stress and
strain or kinematics. We consider two such constraints in our studies: the maximum tip deflection
of the blade, which is associated with tower clearance, and maximum in-plane strain, which is
associated with material failure. Two constraint cases are optimized and discussed. For the first

18



case, we use a single constraint:

C1(y; xb) = δtip(y; xb) − δtip0
≤ 0 , (10)

where δtip(y; xb) denotes the out-of-plane tip deflection of a potential blade design and δtip0
denotes

the out-of-plane tip deflection of the baseline design. For the second constraint case, in addition to
(10), we add

C2(y; xb) = εmax(y; xb) − εmax0 ≤ 0 , (11)

where εmax(y; xb) denotes the maximum in-plane Green–Lagrange strain of a potential blade design
and εmax0 denotes the maximum in-plane Green–Lagrange strain of the baseline design. For both
constraint cases, if any of the constraints are violated for a given set of design variables, the design
variables are no longer considered potentially optimal solutions.

4.3. Simulation setup and solution strategies

Structural analysis is set up for the NREL 5 MW wind turbine blade and design variants Θb(xb)
as follows. Because the geometry of wind turbine blades is critical to the machine’s power pro-
duction capability, we use Grasshopper to incorporate an aerodynamic analysis module, NREL’s
wind turbine analysis tool called FAST [66], which allows us to approximately calculate P(xb) for
a given design and to extract aerodynamic loads. FAST uses an implementation of blade element
momentum theory to quickly produce an aerodynamic torque prediction for a given wind turbine
setup. A force vector is calculated for each discrete segment (blade element) of the blade defined in
FAST. These forces are distributed into traction vectors that are uniformly applied to the portion of
the blade model corresponding to each FAST blade element. FAST is based on purely parametric
input so it is easily incorporated into our framework. Typical blade design procedures require con-
sideration of many different loading scenarios; however, for the purposes of this work, we consider
a single loading scenario. We base our FAST analyses on a standard 5 MW setup described in
Jonkman et al. [65] with a no-shear wind speed of 11.3 m/s, the speed at which the turbine should
be operating at rated power and out-of-plane tip deflection should be relatively high.

For all blade designs, we define a simplified composite layup using some of the materials
found in Sandia National Laboratory’s composite layup definition for the NREL 5 MW blade [67].
Basic material zones—base layup, root, and spar cap—of uniform thickness are defined, shown in
Figure 9. The entire blade surface consists of uni-directional E-LT-5500 fiberlass with additional
uni-directional carbon in the spar cap region and SNLTriax added to the root. Material properties
can be found in Resor [67]. Zone thicknesses are chosen such that the maximum tip deflection
of the baseline blade design is approximately equal to the deflection specified in Jonkman et al.
[65] under the given wind conditions. 3.25 cm of fiberglass, 1 cm of SNLTriax, and 8 cm of uni-

19



Figure 9: Simplified composite layup used for wind turbine blade optimization. Green color (top) indicates base E-LT-
5500 fiberglass over entire blade, blue color (middle) indicates root buildup of SNLTriax, and purple color (bottom)
indicates spar cap region made up of uni-directional carbon.

directional carbon are used. The total mass of the baseline blade design with this material setup,
M0 = 40, 912 kg, is much higher than in the reference [65]; this is expected because the shear web
structures are omitted for this simple example. A thicker shell definition is thus required to achieve
realistic tip deflection under the given loading.

As in the previous example, IGA mesh density is selected using k-refinement (degree three in
the u and v parametric directions) so as to balance the need for accuracy and the desire to reduce
analysis time. Of course, if a higher degree of accuracy for each function evaluation is required,
the mesh density can be increased, also increasing overall optimization time. For this dynamic
problem, the algebraic problem is addressed by a direct application of Newton–Raphson iterations
to converge the residual at each time step. As before, for each Newton–Raphson iteration, used to
converge geometric nonlinearities, the linear system is solved using a diagonally preconditioned
conjugate gradient method. The cost function is again minimized using MATLAB’s generalized
pattern search (GPS) algorithm with positive 2N basis and mesh tolerance of 0.01. Because we
assume that the baseline 5 MW design should already have relatively good performance, we use
the baseline 5 MW design, defined by xb = 0, as the initial point for pattern search optimization.

4.4. Results and discussion

As in the previous example, optimization is performed using a single core of a 2.2 GHz Intel
Core i7 processor and 16 GB RAM. Each design evaluation takes approximately 9.5 minutes.
Communication of information between MATLAB and Grasshopper takes less than one second
per function evaluation, while the reading and writing of model data takes less than 100 ms per
function evaluation. The total number of requisite function evaluations for the first and second
constraint cases is 128 and 102, respectively. Thus, optimization using the first constraint case takes
approximately 20 hours whereas optimization using the second constraint case takes approximately
16 hours. Again, the overall procedure could be expedited by parallelizing structural analysis,
optimization procedures, or both. Tabular results of solution values of interest are shown in Table 1.

20



Table 1: Summary of results of interest for original and optimized designs. Only tip deflection is constrained for the
first case, whereas both tip deflection and maximum strain are constrained for the second case. The overall payback
period is reduced in both cases. Additional profit is defined over the entire lifetime of a large-scale offshore wind farm
featuring an optimized blade design.

Design
Func.
Evals

Tip Defl.
(m)

Max.
Strain

Mass
(kg)

Power
(kW)

Jb(y; xb)
Add. Profit
(millions $)

Original – 5.75 0.0083 40,912 5,265 100.00% –
Case 1 128 5.75 0.0100 41,650 5,302 99.49% 6.37
Case 2 102 5.12 0.0083 43,265 5,311 99.78% 2.75

Iterations
0 5 10 15 20

C
u
rr

en
t
B
es

t
J

b(
y
;x

b)

0.994

0.995

0.996

0.997

0.998

0.999

1
1st Constraint Case
2nd Constraint Case

Blade Span (m)
0 10 20 30 40 50 60

C
h
o
rd

L
en

g
th

(m
)

0

1

2

3

4

5

6 1st Constraint Case
2nd Constraint Case
Original Design

Figure 10: Iterative history of best cost function value for each constraint case (left) and chord profiles of original and
optimized designs (right).

Graphs demonstrating both the optimization history of the cost function value and the optimized
chord profiles for each constraint case are shown in Figure 10. The original and optimized blade
geometries in the undeformed configuration are shown side by side in Figure 11. Comparison
of strain distributions on original and optimized blade designs in their most deformed states are
shown in Figure 12.

Table 1 shows that both optimizations yielded a design with a theoretical payback period
slightly lower than the original payback period: a reduction of approximately 0.51% for the first
constraint case and approximately 0.22% for the second constraint case, theoretically yielding an
additional 6.38 and 2.75 million dollars (see Remark 2) of additional profit, respectively, over the
lifetime of a large-scale wind farm. The difference between these two results is reasonable because
the second case takes maximum strain, a potentially important factor depending on the design sce-
nario, into account. Both optimized designs have larger overall profiles, increasing both mass and
potential power output. Because power input increase is inversely related to the payback period in
the cost function (8) and because it is weighted more heavily than mass, it is reasonable that an

21



Original Design

1st Constraint Case

2nd Constraint Case

Figure 11: Comparison of original and optimized blade shapes viewed from the flapwise direction. Station sizes and
locations are indicated by black lines.

Original Design

1st Constraint Case

2nd Constraint Case

Figure 12: Comparison of strain distributions on original and optimized blade designs (shown in their most deformed
states). The first principal in-plane strain on the outer surface of the shells is plotted. Blades are rotated 35 degrees
from the flapwise direction used in Figure 11 to show region of strain concentration.

increase in both would be justifiable from a payback period perspective.

Remark 2. As Appendix B explains, using Jb(y; xb) to calculate additional profit that is achiev-
able over the life of a wind farm as a result of optimization, as is done in Table 1, requires additional
assumptions to be made. The dollar values shown in this work are calculated using the Thornton
Bank offshore wind farm, made up of 60 turbines with a 5 MW capacity and having a capital cost
of 1.25 billion dollars, as a reference [68]. An offshore wind farm capacity factor of 42.4% is
used [69] with an assumed price of electricity of 0.11 $/kWh. As a basic performance measure,
the simple payback period S ignores operations and maintenance costs.

The right plot in Figure 10 (right) provides greater insight into the salient design trends in these
scenarios. The first optimized design has an increased chord length in the outer portion of the wind
turbine blade’s span, creating greater potential for aerodynamic torque production. Near the blade
root, however, where the potential for aerodynamic torque production is the lowest, the blade’s

22



chord size is reduced in an effort to reduce mass. Although there is a greater amount of force
across the entirety of the blade and the root of the blade is smaller, the tip deflection is the same
as the original because the thicker central portion of the blade provides additional stiffness. The
increased maximum strain experienced by this aerodynamically aggressive design, however, may
be undesirable.

The maximum in-plane strain is used as an additional constraint for the second optimization.
The second optimized design, like the first optimized design, is generally wider to increase energy
capture. However, rather than having a thinner root section, which ultimately increased stress
concentration, the blade has a larger root. Thus, greater aerodynamic torque production is achieved
without also increasing the maximum in-plane strain. Of course, mass is also higher in this case
but, governed by the cost function (8), mass increase is offset by higher power production potential.
Relative strain distributions and deformed blade shapes are shown in Figure 12.

The wind turbine blade example clearly demonstrates the benefits of using high-fidelity IGA
and optimization in a realistic, complex design context. Without giving special attention or a pri-

ori “knowledge” to the system about particular design concepts that might be intuitive to human
designers, the system is able to produce designs that align with human judgment—such as in-
creasing chord size where energy capture potential is high or varying root size according to strain
specifications—but in a more precise and less laborious way. Importantly, no effort is expended on
finite element mesh generation throughout this entire design process.

5. Concluding Remarks

We presented a computational framework for parametric design optimization using isogeomet-
ric analysis. In Section 2 we summarized the principal features of the computational framework
and emphasized the role of each feature in enabling a novel IGA-based parametric design optimiza-
tion methodology. The framework is based on Grasshopper, an algorithmic modeling interface that
abides by and uniquely integrates a number of important design philosophies and that also contains
powerful geometry manipulation functions that enable the parametric generation of models suit-
able for IGA. In the context of this unified design framework, which features consistent geometry
descriptions throughout design and analysis, analysis-driven optimization even of complex designs
is natural and relatively simple. It is a unique framework in that it enables parametric design opti-
mization of a variety of CAD-generated engineering structures using IGA.

In Section 3, we demonstrate the framework’s ability to accurately optimize a simple pressur-
ized tube design, a design parameterized with a single design variable. In Section 4, we consider a
more realistic design scenario with more highly abstracted design parameters: the design of a wind
turbine blade. Optimizing a different design does not require fundamental restructuring of the iso-
geometric design optimization framework. Instead, optimization merely requires the development

23



of the Grasshopper design algorithm Θb(xb) for wind turbine blades, a relatively simple task for
experienced designers made simpler via the use of an interactive interface, and the selection and
integration of an appropriate IGA methodology. We optimize the theoretical payback period of
a 5 MW wind turbine according to a variation of the wind turbine blade design. We show that,
under the given assumptions, the payback period could be reduced by approximately 0.22% in the
most conservatively constrained optimization case. Even this small percentage improvement could
yield an additional profit on the order of 2.75 million dollars over the life of a large-scale offshore
wind farm. The optimization also reveals analysis-based trends which are useful to the designer. In
addition, consistent with the fundamental goals of IGA, no effort is expended on traditional finite
element mesh generation throughout the entire design process.

Overall, this framework demonstrates how the benefits of IGA can be leveraged in realistic
engineering design contexts to generate optimized designs and design alternatives based on high-
fidelity structural analysis, reducing designer labor. One of the fundamental goals of computational
analysis and design is, simply stated, to achieve optimized designs before experimentation or pro-
duction even begins. In actual practice, however, the state of the modern engineering workflow
is a significant barrier to the realization of this goal. This work directly addresses not only the
problem of design and analysis, but the design-and-analysis environment itself. Addressing the
issues encountered in this context represents an important step towards enabling more effective use
of IGA-based parametric design optimization.

Acknowledgements

A.J. Herrema was supported by the U.S. National Science Foundation (NSF) Grant No. DGE-
1069283 which funds the activities of the Integrative Graduate Education and Research Traineeship
(IGERT) in Wind Energy Science, Engineering, and Policy (WESEP) at Iowa State University.
N.M. Wiese was supported by the NSF Grant No. EEC-1263243 which funds the activities of
Research Experiences for Undergraduates (REU) in the area of Microscale Sensing, Actuation and
Imaging (MoSAIc) at Iowa State University. M.-C. Hsu was partially supported by the ARO Grant
No. W911NF-14-1-0296. B. Ganapathysubramanian was partially supported by the NSF Grant
No. CMMI-1404938. A. Krishnamurthy was partially supported by the NSF Grant No. CMMI-
1644441. This support is gratefully acknowledged.

Appendix A. Visualization of IGA results

Visualizing the simulation results of structural analyses throughout optimization can provide
valuable feedback and can help the designer to understand the progression of the optimization
procedure. This is especially relevant if a solution field, such as maximum in-plane strain, is used

24



as an optimization constraint or objective. After solving the IGA simulation, the control variables
(or degrees of freedom) for the solution fields (e.g., displacement, velocity, temperature, etc.) are
defined on the control points, which are typically not located on the physical geometry. These
need to be coupled with basis functions to generate continuous solution fields that can be mapped
to the physical geometry. In this work we use a simple Grasshopper-generated visualization mesh
to map the solution fields. More sophisticated visualization techniques, such as direct volume
rendering [70, 71], isosurface mesh extraction [72, 73], and direct rendering of isosurfaces [74–
76] have been developed for visualizing volumetric IGA results.

An approximate, mesh-based methodology for visualizing IGA results within the Rhino view-
port was proposed in Hsu et al. [10]. A visualization mesh is constructed and the coordinates of the
mesh points are fed to a Grasshopper component that finds their closest points on the NURBS sur-
face and returns the parametric coordinates of these closest points. Along with control variables,
control points and basis function information, the solution values are evaluated using an in-house
code and then transferred back to the visualization mesh points.

In this work, we propose an entirely Grasshopper-based implementation of this approach in
which we construct a “solution surface” within Rhino’s geometry kernel which is evaluated at
the mesh points. This is possible because we are performing analysis only on thin-shell structures.
Grasshopper natively features visualization meshes for the display of color contours on geometries.
A relatively dense visualization mesh can easily be generated for virtually any geometry. A color
can then be assigned to each mesh point, defined by parametric (u, v) coordinates. Thus, we wish
to evaluate a particular solution parameter, such as maximum in-plane strain, at each mesh point
location defined by parametric (u, v) coordinates. Also, we note that, in IGA, solution coefficients
may be assembled to each control point; we denote these solution coefficients Qi, j, where i and j

correspond to the index of the control point in the u and v directions, respectively.
A NURBS surface of degree p in the u direction and degree q in the v direction has the form

S(u, v) =

nc∑
i=1

mc∑
j=1

Rp,q
i, j (u, v)Pi, j , (A.1)

where the basis function Rp,q
i, j (u, v) is defined over the (u, v) parametric space, nc and mc are the

total number of control points in the u and v directions, respectively, and a net of control points
is given by Pi, j. Further details regarding the calculation of Rp,q

i, j (u, v) can be found in Piegl and
Tiller [77]. Rhino’s C# programming library [78], which can be referenced by the C# scripting
components in Grasshopper, contains a function for the construction of a NURBS surface S(u, v),
given the constituents of the basis function Rp,q

i, j (u, v) (such as knot vectors, surface degrees, and
control weights) and the control points Pi, j. Because we seek to evaluate our solution, rather than
the geometry’s physical location, at the given mesh points, we can utilize these same C# functions

25



Figure A.13: Grasshopper implementation of visualization methodology.

to construct not a physical surface S(u, v) but rather a mapping of our solution variable:

U(u, v) =

nc∑
i=1

mc∑
j=1

Rp,q
i, j (u, v)Qi, j , (A.2)

where Rp,q
i, j (u, v) is exactly the same as in (A.1), but the solution coefficients Qi, j are used in place

of the control points Pi, j. This process constructs a solution “surface” U(u, v), which may be
evaluated for each mesh point. Having obtained a result value for each mesh point, the values are
assigned a color according to a relative color scale and then visualized in the Rhino viewport via
the visualization mesh.

The Grasshopper implementation of this process is shown in Figure A.13. The solution map-
ping, U(u, v), is constructed within the C# scripting component in the top left, whereas it is eval-
uated at the mesh point coordinates in the components in the upper right. The solution mesh is
constructed in the components in the bottom left of the figure and is then colorized according to
the evaluated solution values using the bottom right components. This colorized solution mesh is
then automatically displayed in the Rhino viewport. The density of the visualization mesh can also
be varied within the Grasshopper definition since U(u, v) itself is interactively evaluated within the
definition.

26



Appendix B. Formulation of wind turbine blade cost function

The cost function used in the wind turbine blade example is formulated as follows. We first
consider the following relation, a relatively common measure used in the wind energy industry:

S =
KCC

KAAR
, (B.1)

where KCC is the total capital cost of the machine, KAAR is the average annual return, and S is
the simple payback period for the machine [79]. The simple payback period, as implied by this
definition, is the amount of time that it takes for a wind turbine’s total revenue production to match
initial capital investment. A reduction of payback period indicates that a turbine will be able to
produce profit over a larger portion of its operating life.

Rather than computing the full numerical capital cost and average annual return for every blade
design, we can instead approximately quantify the effect a particular variation of the baseline de-
sign would have on the simple payback period using some assumptions. We consider the following
equation, defined for each blade design variant:

S (xb) =
KCC0 + VCC(xb)KCC0

KAAR0 + VAAR(xb)KAAR0

= C0
1 + VCC(xb)

1 + VAAR(xb)
, (B.2)

where the subscript zero on KCC and KAAR indicates reference values that are obtained from anal-
ysis of a baseline blade design, VCC(xb) indicates the fractional variation of the capital cost as a
result of design variation, and VAAR(xb) indicates the fractional variation of the average annual
return as a result of design variation. The constant C0 entails all components of the original capital
cost, KCC0 , and original average annual return, KAAR0 , which are unaffected by the blade design
variation xb. The design-dependent values that most directly influence the simple payback period
are the blade’s mass and power output; mass is related to VCC(xb) in the numerator of Eq. (B.2) and
power is related to VAAR(xb) in the denominator.

We first consider the numerator and the influence of mass variation. In [80] the International
Renewable Energy Agency (IRENA) states that, for 5 MW applications, the blades make up 22.2%
of the capital cost of the wind turbine. It further states the capital cost of the turbine itself comprises
51% of the total capital cost of offshore wind turbine installations; combining these claims, we
surmise that 11.32% of the total capital cost is due to the blades. We recognize that other sources
may cite varying percentages, but the value of 11.32% is sufficient for this example. If we assume
that the mass of the blade is proportional to its cost, we can formulate the variation in the capital
cost due to blade variation as follows:

VCC(xb) = 0.1132
(

M(xb) − M0

M0

)
, (B.3)

27



where M(xb) indicates the mass of a blade design variant and M0 indicates the baseline NREL
5 MW design’s mass.

We now consider the denominator of Eq. (B.2), containing VAAR. The average annual return,
KAAR, is equal to EaDe, where Ea is the annual energy production and De is the price obtained
for electricity. We may further recognize that the annual energy production Ea is the product of
the nameplate capacity of a machine, P, and the capacity factor, CF . Thus, KAAR = PCF De.
Because we are considering blade design variants that might be used interchangeably in the same
operating environment, we consider De and CF to be constant and lump them into C0, allowing us
to formulate the variation in average annual return due to blade variation as

VAAR(xb) =
P(xb) − P0

P0
, (B.4)

where P(xb) indicates the power production of a blade design variant and P0 indicates the baseline
NREL 5 MW design’s power production. Substituting Eqs. (B.3) and (B.4) into Eq. (B.2) we are
left with

S (xb) = C0

1 + 0.1132
(

M(xb)−M0
M0

)
1 +

P(xb)−P0
P0

. (B.5)

Because we desire to minimize Eq. (B.5) and because C0, a constant, is proportionally related
to the rest of the equation, we can finally define our cost function as the non-constant portion of
Eq. (B.5), or

Jb(y; xb) =
1 + 0.1132

(
M(xb)−M0

M0

)
1 +

P(xb)−P0
P0

. (B.6)

Note that the right-hand side of Eq. (B.6) does not incorporate the blade displacements, y, explicitly
because the displacements are only used to calculate the constraints for this particular example.

The simple payback period, S , is not the only metric used to judge overall cost efficiency of
wind turbines. Other more sophisticated metrics include the cost of energy (COE) and levelized
cost of energy (LCOE) and could be used in a similar fashion. The simple payback period is used
as a basic demonstration of a multidisciplinary objective.

In our efforts to limit the scope of this optimization problem we ignore certain factors that
would not be superfluous in an actual blade design context. Such factors include the effect of blade
design on power production across the entire possible range of wind conditions, the effect of blade
mass on tower cost, and modal changes due to mass redistribution.

28



References

[1] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics

and Engineering, 194:4135–4195, 2005.

[2] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott,
and T. W. Sederberg. Isogeometric analysis using T-splines. Computer Methods in Applied

Mechanics and Engineering, 199:229–263, 2010.

[3] D. Schillinger, L. Dedè, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and T. J. R. Hughes.
An isogeometric design-through-analysis methodology based on adaptive hierarchical refine-
ment of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Meth-

ods in Applied Mechanics and Engineering, 249–252:116–150, 2012.

[4] X. Wei, Y. Zhang, L. Liu, and T. J. R. Hughes. Truncated T-splines: Fundamentals and
methods. Computer Methods in Applied Mechanics and Engineering, 2016. http://dx.doi.
org/10.1016/j.cma.2016.07.020.

[5] E. Rank, M. Ruess, S. Kollmannsberger, D. Schillinger, and A. Düster. Geometric modeling,
isogeometric analysis and the finite cell method. Computer Methods in Applied Mechanics

and Engineering, 249-252:104–115, 2012.

[6] D. Schillinger and M. Ruess. The Finite Cell Method: A review in the context of higher-order
structural analysis of CAD and image-based geometric models. Archives of Computational

Methods in Engineering, 22(3):391–455, 2015.

[7] M. Breitenberger, A. Apostolatos, B. Philipp, R. Wüchner, and K.-U. Bletzinger. Analysis in
computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures. Computer

Methods in Applied Mechanics and Engineering, 284:401–457, 2015.

[8] Rhino. http://www.rhino3d.com/. Accessed 27 May 2016.

[9] Siemens NX. https://www.plm.automation.siemens.com/en us/products/nx/. Accessed 27
May 2016.

[10] M.-C. Hsu, C. Wang, A. J. Herrema, D. Schillinger, A. Ghoshal, and Y. Bazilevs. An interac-
tive geometry modeling and parametric design platform for isogeometric analysis. Computers

and Mathematics with Applications, 70:1481–1500, 2015.

[11] Grasshopper. http://www.grasshopper3d.com/. Accessed 27 May 2016.

[12] W. A. Wall, M. A. Frenzel, and C. Cyron. Isogeometric structural shape optimization. Com-

puter Methods in Applied Mechanics and Engineering, 197:2976–2988, 2008.

29

http://dx.doi.org/10.1016/j.cma.2016.07.020
http://dx.doi.org/10.1016/j.cma.2016.07.020
http://www.rhino3d.com/
https://www.plm.automation.siemens.com/en_us/products/nx/
http://www.grasshopper3d.com/


[13] D. Fußeder, B. Simeon, and A.-V. Vuong. Fundamental aspects of shape optimization in the
context of isogeometric analysis. Computer Methods in Applied Mechanics and Engineering,
268:313–331, 2015.

[14] A. N. Moysidis and V. K. Koumousis. A hysteric formulation for isogeometric analysis
and shape optimization of plane stress structures. In 8th GRACM International Congress on

Computational Mechanics, Volos, Greece, 2015.

[15] S. Julisson, C. Fourcade, P. de Nazelle, and L. Dumas. A novative optimal shape design based
on an isogeometric approach: Application to optimization of surface shapes with discontin-
uous curvature. In 11th World congress on structural and multidisciplinary optimization

(WCSMO-11), Sydney, Australia, 2015.

[16] S. Cho and S.-H. Ha. Isogeometric shape design optimization: exact geometry and enhanced
sensitivity. Structural and Multidisciplinary Optimization, 38:53–70, 2009.

[17] X. Qian. Full analytical sensitivities in NURBS based isogeometric shape optimization. Com-

puter Methods in Applied Mechanics and Engineering, 199:2059–2071, 2010.

[18] J. Kiendl, R. Schmidt, R. Wüchner, and K.-U. Bletzinger. Isogeometric shape optimization of
shells using semi-analytical sensitivity analysis and sensitivity weighting. Computer Methods

in Applied Mechanics and Engineering, 274:148–167, 2014.

[19] D. M. Nguyen, A. Evgrafov, and J. Gravesen. Isogeometric shape optimization for electro-
magnetic scattering problems. Progress in Electromagnetics Research B, 45:117–146, 2012.

[20] N. D. Manha, A. Evgrafov, A. R. Gersborg, and J. Gravesen. Isogeometric shape optimization
of vibrating membranes. Computer Methods in Applied Mechanics and Engineering, 200:
1343–1353, 2011.

[21] M. Yoon, M.-J. Choi, and S. Cho. Isogeometric configuration design optimization of heat
conduction problems using boundary integral equation. International Journal of Heat and

Mass Transfer, 89:937–949, 2015.

[22] P. Nørtoft and J. Gravesen. Isogeometric shape optimization in fluid mechanics. Structural

and Multidisciplinary Optimization, 48(5):909–925, 2013.

[23] S.-W. Lee, J. Lee, and S. Cho. Isogeometric shape optimization of ferromagnetic materials
in magnetic acuators. IEEE Transactions on Magnetics, 52(2):1–8, 2016.

[24] K. V. Kostas, A. I. Ginnis, C. G. Politis, and P. D. Kaklis. Ship-hull shape optimization with
a T-spline based BEM-isogeometric solver. Computer Methods in Applied Mechanics and

Engineering, 284:611–622, 2015.

30



[25] SolidWorks. http://www.solidworks.com/. Accessed 27 May 2016.

[26] Pro/ENGINEER. http://www.ptc.com/cad/pro-engineer. Accessed 13 Oct 2016.

[27] J. J. Shah and M. Mäntylä. Parametric and feature-based CAD/CAM: concepts, techniques,

and applications. John Wiley & Sons, 1995.

[28] O. W. Salomons, F. J. A. M. van Houten, and H. J. J. Kals. Review of research in feature-
based design. Journal of manufacturing systems, 12(2):113–132, 1993.

[29] L. K. Kyprianou. Shape classification in computer-aided design. PhD thesis, University of
Cambridge, 1980.

[30] A. Verroust, F. Schonek, and D. Roller. Rule-oriented method for parameterized computer-
aided design. Computer-Aided Design, 24(10):531–540, 1992.

[31] I. E. Sutherland. Sketch pad a man-machine graphical communication system. In Proceed-

ings of the SHARE design automation workshop, pages 6–329. ACM, 1964.

[32] H. Suzuki, H. Ando, and F. Kimura. Geometric constraints and reasoning for geometrical cad
systems. Computers & Graphics, 14(2):211–224, 1990.

[33] A. Borning. ThingLab: an object-oriented system for building simulations using constraints.
In Proceedings of the 5th international joint conference on Artificial intelligence-Volume 1,
pages 497–498. Morgan Kaufmann Publishers Inc., 1977.

[34] A. AG Requicha and H. B. Voelcker. Constructive solid geometry. Technical report, Univer-
sity of Rochester, 1977.

[35] A. Krishnamurthy. Parallel GPU Algorithms for Mechanical CAD. PhD thesis, University
of California, Berkeley, 2010. URL http://eprints.cdlib.org/uc/item/59n1g12w.

[36] J. R. R. A. Martins and A. B. Lambe. Multidisciplinary design optimization: a survey of
architectures. AIAA journal, 51(9):2049–2075, 2013.

[37] S. Kodiyalam, R. J. Yang, L. Gu, and C. H. Tho. Multidisciplinary design optimization of
a vehicle system in a scalable, high performance computing environment. Structural and

Multidisciplinary Optimization, 26(3-4):256–263, 2004.

[38] C. C. Long, A. L. Marsden, and Y. Bazilevs. Shape optimization of pulsatile ventricular assist
devices using FSI to minimize thrombotic risk. Computational Mechanics, 54(4):921–932,
2014.

[39] G. K. W. Kenway and J. R. R. A. Martins. Multipoint high-fidelity aerostructural optimization
of a transport aircraft configuration. Journal of Aircraft, 51:144–160, 2014.

31

http://www.solidworks.com/
http://www.ptc.com/cad/pro-engineer
http://eprints.cdlib.org/uc/item/59n1g12w


[40] T. Ashuri, M. B. Zaaijer, J. R. R. A. Martins, G J. W. van Bussel, and G. A. M. van Kuik.
Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost
of energy. Renewable Energy, 68:893–905, 2014.

[41] A. L. Marsden. Optimization in cardiovascular modeling. Annual Review of Fluid Mechanics,
46:519–546, 2014.

[42] Mathworks. Optimization toolbox user’s guide, 2016.

[43] Dakota. https://dakota.sandia.gov/. Accessed 27 May 2016.

[44] ANSYS Workbench Platform. http://www.ansys.com/Products/Platform. Accessed 27 May
2016.

[45] L. Solano and P. Brunet. Constructive constraint-based model for parametric cad systems.
Computer-Aided Design, 26(8):614–621, 1994.

[46] X. Chen and C. M. Hoffmann. On editability of feature-based design. Computer-aided

design, 27(12):905–914, 1995.

[47] C. M. Hoffmann. Constraint-based computer-aided design. Journal of Computing and Infor-

mation Science in Engineering, 5(3):182–187, 2005.

[48] J. R. Rossignac, P. Borrel, and L. R. Nackman. Interactive design with sequences of pa-
rameterized transformations. In V. Akman, P. J. W. ten Hagen, and P. J. Veerkamp, editors,
Intelligent CAD Systems II: Implementational Issues, pages 93–125. Springer-Verlag, 1989.

[49] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with
Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering, 198:
3902–3914, 2009.

[50] J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, and K.-U. Bletzinger. The bending strip
method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple
patches. Computer Methods in Applied Mechanics and Engineering, 199:2403–2416, 2010.

[51] Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger. 3D simulation of
wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite
blades. International Journal for Numerical Methods in Fluids, 65:236–253, 2011.

[52] A. Korobenko, M.-C. Hsu, I. Akkerman, J. Tippmann, and Y. Bazilevs. Structural mechanics
modeling and FSI simulation of wind turbines. Mathematical Models and Methods in Applied

Sciences, 23(2):249–272, 2013.

[53] Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan. Novel structural modeling and mesh moving
techniques for advanced fluid-structure interaction simulation of wind turbines. International

32

https://dakota.sandia.gov/
http://www.ansys.com/Products/Platform


Journal for Numerical Methods in Engineering, 102(3-4):766–783, 2014.

[54] Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational Fluid–Structure Interaction:

Methods and Applications. John Wiley & Sons, Chichester, 2013.

[55] D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes. Isogeometric shell analysis: The
Reissner–Mindlin shell. Computer Methods in Applied Mechanics and Engineering, 199:
276–289, 2010.

[56] D. J. Benson, S. Hartmann, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes. Blended isoge-
ometric shells. Computer Methods in Applied Mechanics and Engineering, 255:133–146,
2013.

[57] R. N. Simpson, S. P. A. Bordas, J. Trevelyan, and T. Rabczuk. A two-dimensional Isoge-
ometric Boundary Element Method for elastostatic analysis. Computer Methods in Applied

Mechanics and Engineering, 209–212:87–100, 2012.

[58] A. I. Ginnis, K. V. Kostas, C. G. Politis, P. D. Kaklis, K A Belibassakis, Th. P. Gerostathis,
M. A. Scott, and T. J. R. Hughes. Isogeometric boundary-element analysis for the wave-
resistance problem using T-splines. Computer Methods in Applied Mechanics and Engineer-

ing, 279:425–439, 2014.

[59] M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. H. Wu, J. Mineroff, A. Reali,
Y. Bazilevs, and M. S. Sacks. Dynamic and fluid–structure interaction simulations of biopros-
thetic heart valves using parametric design with T-splines and Fung-type material models.
Computational Mechanics, 55:1211–1225, 2015.

[60] M.-C. Hsu, C. Wang, F. Xu, A. J. Herrema, and A. Krishnamurthy. Direct immersogeometric
fluid flow analysis using B-rep CAD models. Computer Aided Geometric Design, 43:143–
158, 2016.

[61] D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes. A large deformation, rotation-
free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 200:
1367–1378, 2011.

[62] J. Kiendl. Isogeometric Analysis and Shape Optimal Design of Shell Structures. PhD thesis,
Lehrstuhl für Statik, Technische Universität München, 2011.

[63] L. Leifsson and S. Koziel. Variable-fidelity aerodynamic shape optimization. In S. Koziel
and X.-S. Yang, editors, Computational Optimization, Methods and Algorithms, chapter 9,
pages 179–210. Springer-Verlag Berlin Heidelberg, 2011.

[64] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on Optimization,

33



7:1–25, 1997.

[65] J. Jonkman, S. Butterfield, W. Musial, and G. Scott. Definition of a 5-MW reference wind
turbine for offshore system development. Technical Report NREL/TP-500-38060, National
Renewable Energy Laboratory, Golden, CO, 2009.

[66] J. M. Jonkman and M. L. Buhl Jr. FAST user’s guide. Technical Report NREL/EL-500-
38230, National Renewable Energy Laboratory, Golden, CO, 2005.

[67] B. R. Resor. Definition of a 5MW/61.5m wind turbine blade reference model. Technical
Report SAND2013-2569, Sandia National Laboratories, Albuquerque, NM, 2013.

[68] B. Snyder and M. J. Kaiser. Ecological and economic cost-benefit analysis of offshore wind
energy. Renewable Energy, 34:1567–1578, 2009.

[69] C. Moné, T. Stehly, B. Maples, and E. Settle. 2014 cost of wind energy review. Technical
Report NREL/TP-6A20-64281, National Renewable Energy Laboratory, Golden, CO, 2015.

[70] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–
261, 1990.

[71] W. Martin and E. Cohen. Representation and extraction of volumetric attributes using trivari-
ate splines: A mathematical framework. In Proceedings of the Sixth ACM Symposium on

Solid Modeling and Applications, pages 234–240, 2001.

[72] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction
algorithm. Computer Graphics, 21(4):163–169, 1987.

[73] P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno. Multiresolution modeling
and visualization of volume data based on simplicial complexes. In Proceedings of the 1994

Symposium on Volume Visualization, pages 19–26, 1994.

[74] A. Knoll, I. Wald, S. Parker, and C. Hansen. Interactive isosurface ray tracing of large octree
volumes. In 2006 IEEE Symposium on Interactive Ray Tracing, pages 115–124, 2006.

[75] B. Nelson and R. M. Kirby. Ray-tracing polymorphic multidomain spectral/hp elements for
isosurface rendering. IEEE Transactions on Visualization and Computer Graphics, 12(1):
114–125, 2006.

[76] T. Martin, E. Cohen, and R. M. Kirby. Direct isosurface visualization of hex-based high-order
geometry and attribute representations. IEEE Transactions on Visualization and Computer

Graphics, 18(5):753–766, 2012.

[77] L. Piegl and W. Tiller. The NURBS Book (Monographs in Visual Communication), 2nd ed.

Springer-Verlag, New York, 1997.

34



[78] RhinoCommon. http://developer.rhino3d.com/guides/#rhinocommon. Accessed 27 May
2016.

[79] J. F. Manwell, J. G. McGowan, and A. L. Rogers. Wind Energy Explained: Theory, Design

and Application, 2nd ed. John Wiley & Sons, Chichester, 2009.

[80] IRENA. Renewable energy technologies: Cost analysis series, wind power. Technical report,
International Renewable Energy Agency, 2012.

35

http://developer.rhino3d.com/guides/#rhinocommon

	Introduction
	Isogeometric design optimization framework
	Design
	Parametric model construction
	Interactivity

	Analysis
	Optimization
	Advantages of IGA in optimization setting


	Tube profile optimization
	Definition of cost function
	Definition of design parameters
	Simulation setup and solution strategies
	Results and discussion

	Wind turbine blade example
	Definition of cost function
	Definition of design parameters and constraints
	Simulation setup and solution strategies
	Results and discussion

	Concluding Remarks
	Visualization of IGA results
	Formulation of wind turbine blade cost function

