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Abstract

A computational vascular fluid-structure interaction framework for the simulation of
patient-specific cerebral aneurysm configurations is presented. A new approach for the
computation of the blood vessel tissue prestress is also described. Simulations of four
patient-specifc models are carried out and quantities of hemodynamic interest such as wall
shear stress and wall tension are studied to examine the relevance of fluid-structure inter-
action modeling as compared to the rigid arterial wall assumption. We demonstrate that
flexible wall modeling plays an important role in accurate prediction of patient-specific
hemodynamics. Discussion of the clinical relevance of our methods and results is provided.
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1 Introduction

Starting with a pioneering work on patient-specificic vascular modeling in [1],
the field of computational vascular and cardiovascular modeling has matured im-
mensely over the last decade. Numerous advances in the simulation technology
were proposed, such as imposition of physiologically-realistic outflow boundary
conditions [2–4], simulation of stenting technology in the context of cerebral
aneurysms [5] and coronary arteries [6], optimization of cardiovascular geome-
tries for surgical treatment [7], inclusion of the effects of wall elasticity [8–13],
and growth and remodeling [14] in the simulations. Nowadays, the state-of-the-
art in computational hemodynamics involves fully coupled fluid-structure patient-
specific simulations of large portions of the human cardiovascular system. Simula-
tions are performed in an effort to investigate hemodynamic factors influencing the
onset and progression of cardiovascular disease, to predict an outcome of a surgical
intervention, or to evaluate the effects of electromechanical assist devices.

Currently, assessment of aneurysm rupture risk is based on known risk factors like
smoking, hypertension, family history of subarachnoid hemorrhage, and aneurysm
size, derived from epidemiological and clinical studies. However, the current
knowledge is not sufficient for patient-specific clinical decision making. Recently,
the aneurysm shape was proposed as an important, patient-specific, independent
rupture risk factor [15–17]. As a result, in recent years, a considerable effort was
put forth to apply pure computational fluid dynamics (CFD) techniques to study
and classify flow patterns and wall shear stress (WSS) and oscillatory shear index
(OSI) distributions in a large sample of patient-specific cerebral aneurysm shapes
(see, e.g., [18] and references therein). These quantities of hemodynamic interest,
practically unattainable in experiments or measurements, are connected to clinical
events, which helps better understand the disease processes and improve patient
evaluation and treatment.

When pure CFD is used for vascular blood flow simulations, it is assumed that the
vessel wall remains rigid. The rigid wall assumption does not properly reflect the
behavior of real blood vessels that deform under the action of blood flow forces
and, in turn, alter the details of blood flow. For the modeling to be realistic, cou-
pled fluid-structure interaction (FSI) modeling must be employed. However, high-
fidelity FSI of vascular blood flow in a patient-specific setting is scarce, which is
mainly due to the numerical challenges involved. Despite its modeling shortcom-
ings, pure CFD remains the predominant modeling approach for vascular blood
flow, and, in particular, for computation of aneurysm flows. Notable exceptions in-
clude the work of [12, 13, 19–23] on cerebral aneurysms and the work of [24–26]
for aortic abdominal aneurysms. This paper likewise focuses on developing and
using advanced FSI computational techniques to assess the risk of rupture for cere-
bral aneurysms in individual patients. Our FSI framework involves the coupling of
incompressible fluid representing the blood, and a hyperelastic solid representing
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vessel wall tissue. The equations are posed on a moving domain and are equipped
with an appropriate set of boundary and initial conditions. Variable wall thickness,
tissue pre-stress, sliding inlet and outlet branch boundary conditions, and boundary
layer meshing are the key ingredients of our computational framework that allow
for physiologically realistic and accurate simulations. It should also be noted that
the importance of the problem of cerebral aneurysm rupture and its resolution by
means of advanced numerical simulation was discussed in a recent review article
on open problem in vascular modeling [27].

This paper is outlined as follows. In Section 2, we recall the formulation of the
fluid and solid sub-problems, and their interface conditions, that ensure appropriate
coupling between the two systems. The basic coupled formulation was developed
in [10] and the modeling is further improved here. We introduce the vessel wall
tissue prestress that was not accounted for in our original modeling framework.
The need for modeling tissue prestress arises due to the fact that the arterial con-
figuration coming from patient-specific image data is subjected to intramural blood
pressure and viscous forces. As a result, it may not be taken as a stress-free ref-
erence configuration. An approach is presented that circumvents this difficulty by
prescribing a state of prestress to the arterial tissue that puts the artery in equilib-
rium with the blood flow forces. In Section 3, we briefly recall our meshing and
basic computational procedures for the simulation of arterial fluid-structure inter-
action phenomena. Patient-specific models are presented and mesh statistics are
summarized. Out of the four patient-specific aneurysm models analyzed, two cor-
respond to ruptured and two to unruptured cases. Fine meshes with boundary layer
resolution are employed, which ensures high fidelity of the computational results.
Simulations are driven by a prescribed time-periodic inlet velocity and outlet resis-
tance boundary conditions that ensure physiological pressure levels in the vessels.
We also introduce free-slip boundary conditions at the model inlets and outlets.
This gives the inlet and outlet branches a flexibility to move in their cut planes
as well as deform radially in response to variations in the intramural pressure and
viscous forces. Free-slip boundary conditions lead to more realistic vessel wall de-
formations than fixed inlets and outlets that were employed previously. In Section
4 we present our simulation results, focusing on the comparison between rigid and
flexible simulations. While the differences in the computed blood flow speeds are
not as significant (although clearly visible in some cases), the wall shear stress was
found to be consistently overestimated in the rigid wall simulations, in one case by
as much as 52%, which is felt to be a significant overestimation. In Section 5 we
draw conclusions and provide discussion of the clinical relevance of our findings.

3



2 Continuum modeling

2.1 Blood flow modeling

The blood flow is governed by the Navier-Stokes equations of incompressible flow
posed on a moving domain. The Arbitrary Lagrangian-Eulerian (ALE) formulation
is used, which is a widely used approach for vascular blood flow applications [2,
28–30]. Alternatively, one can apply the space-time methodology [11–13], which
leads to better time accuracy, yet somewhat higher computational expense per time
step.

Let V f and W f be the standard solution and weighting function spaces for the
fluid problem. The variational formulation of the Navier-Stokes equations is stated
as follows: Find the velocity-pressure pair {v, p} ∈ V f , such that for all weighting
functions {w, q} ∈ W f ,(

w, ρ
∂v
∂t

)
Ωt

+ (w, ρ (v − v̂) · ∇xv)Ωt
+ (q, ∇x · v)Ωt

+
(
∇s

xw, σ
f
)
Ωt

= (w, ρ f )Ωt
+ (w, h)ΓN

t
(1)

where v̂ is the velocity of the fluid domain, ∇x is the gradient operator on Ωt, ∇s
x is

its symmetrization, ΓN
t is the Neumann part of the fluid domain boundary, h is the

boundary traction vector, f is the body force per unit mass, ρ is the density of the
fluid, and (·, ·)A denotes the usual L2-inner product over A. The variational equations
(1) represent the balance of mass and linear momentum for the incompressible
fluid.

The true or Cauchy stress σ f for the incompressible Newtonian fluid is given
through a constitutive law that holds on the spatial domain as

σ f = −pI + 2µ f∇s
xv, (2)

where p is the fluid pressure and µ f is the dynamic viscosity. In this work the blood
is modeled as a Newtonian fluid. Although the blood is generally considered to
be a non-Newtonian fluid, it was shown in [31] that the Newtonian assumption is
sufficient for cerebral aneurysm flows.

2.2 Arterial tissue modeling

2.2.1 Kinematics and constitutive modeling

Let X be the coordinates of the initial or reference configuration, and let u be the
displacement with respect to the initial configuration. Then, x, the coordinates of

4



the current configuration, are given by

x = X + u. (3)

The deformation gradient tensor F, the Cauchy-Green deformation tensor C, and
the Green-Lagrangian strain tensor E, are defined as

F =
∂x
∂X

= I +
∂u
∂X

, (4)

C = FT F, (5)

E =
1
2

(C − I), (6)

respectively.

We model the arterial tissue as a three-dimensional hyperelastic solid and assume
the existence of a stored elastic energy in the form

ϕ (C, J) =
1
2
µs(J−2/3trC − 3) +

1
2
κs

(
1
2

(J2 − 1) − lnJ
)
. (7)

In (7), J = det F, and µs and κs are identified with the material shear and bulk
moduli, respectively. From (7), the second Piola-Kirchhoff stress tensor S and the
fourth-rank tensor of material tangent moduli C are obtained as

S = 2
∂ϕ

∂C
(C, J) = µsJ−2/3

(
I −

1
3

trC C−1
)

+
1
2
κs(J2 − 1)C−1, (8)

and

C = 4
∂2ϕ

∂C∂C
(C, J) =

(
2
9
µsJ−2/3trC + κsJ2

)
C−1
⊗ C−1 (9)

+

(
2
3
µJ−2/3trC − κs(J2 − 1)

)
C−1
� C−1

−
2
3
µsJ−2/3(I ⊗ C−1 + C−1

⊗ I). (10)

In (10), the symbols ⊗ and � are defined as

(C−1
⊗ C−1)IJKL = (C−1)IJ(C−1)KL, (11)

(C−1
� C−1)IJKL =

(C−1)IK(C−1)JL + (C−1)IL(C−1)JK

2
. (12)

To conclude this section, a few remarks about the proposed solid model are given.

Remark: When the reference and current configurations coincide, the expression
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for the tensor of material tangent moduli C is simplified to

CIJKL = (κs −
2
3
µs)δIJδKL + µs(δIKδJL + δILδJK). (13)

In the above expression, we recognize a tensor of elastic moduli for an isotropic,
linearly elastic material and interpret µs and κs as the material shear and bulk mod-
uli, respectively.

Remark: The material model is assumed to be isotropic and the material prop-
erties (i.e., the bulk and shear moduli) are chosen from our previous works on
cerebral aneurysms (see, e.g., [32]). This is an oversimplification, as it is known
that the arterial wall tissue is composed of three distinct layers that are, in gen-
eral, anisotropic. However, incorporating this information into three-dimensional
patient-specific models is currently not feasible. Nevertheless, the authors feel that
the solid model, together with the choice of the material parameters, provides rea-
sonable inertial and stiffness properties of arterial tissue, and is able to predict
physiologically-realistic wall deformation under the action of the fluid forces, as
will evidenced by the numerical results presented in a later section.

Remark: The material model originates from [33], and its stress-strain behavior
was analytically studied on simple cases of uniaxial strain [10] and pure shear [34].
Mild stiffening with deformation was observed in both cases. Stiffening with defor-
mation is a well-known characteristic of arterial tissue in the regime of large strains
(see, e.g., Humphrey [35]). However, as we will see in the computations, the range
of strains in the case of cerebral aneurysm fluid-strucure interaction is such that
the nature of the nonlinearity is unlikely to be of great importance. As a result,
and given the uncertainty in the material parameters and modeling errors associ-
ated with the choice of an isotropic material, a simple linear stress-strain relation-
ship (i.e., the St. Venant-Kirchhoff model) may have been adequate for the present
application. However, despite its simplicity, we do not recommend using the St.
Venant-Kirchhoff model because it is not well posed for the regime of strong com-
pression (see, e.g., [36]), which may be present in the regions of arterial branching.
The current model does not have this shortcoming. Unstable behavior for strong
compression is precluded due to the presence of the lnJ term in the strain energy
function (7).

2.2.2 Variational formulation of the solid problem

LetVs andWs be the standard solution and weighting function spaces for the solid
problem. The variational formulation of the solid problem is stated as follows: Find
the displacement u ∈ Vs, such that for all weighting functions w ∈ Ws,(

w, ρ0
∂2u
∂t2

)
Ω0

+ (∇Xw, F (S + S0))Ω0 = (w, ρ0 f )Ω0
+ (w, h)ΓN

0
, (14)
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where Ω0 is the solid domain in the reference configuration, ΓN
0 is the Neumann part

of the solid boundary, ρ0 is the density of the solid in the reference configuration,
f and h are the body and surface forces, respectively. Variational equations (14)
represent the balance of linear momentum for the solid.

This formulation is non-standard due to the presence of the S0 in the stress term
on the left-hand-side of (14). In our modeling framework, S0 is a prestress that is
present in the artery reference configuration, which is assumed to coincide with the
configuration extracted from patient-specific imaging data. This configuration is
subjected to blood pressure and viscous forces and, in turn, develops internal stress
to resist these loads. This internal stress tensor is denoted by S0 and its computation
is presented in the next section.

2.2.3 Blood vessel tissue prestress

The variational formulation of the prestress problem, which is posed over the same
function spaces as the solid problem, is stated as follows: Find the displacement
u ∈ Vs, such that ∀w ∈ Ws,

(∇Xw, FS)Ω0 + (w, h)
Γ

f s
0

= 0, (15)

where, Γ
f s
0 is the fluid-solid boundary in the reference configuration, F and S are

defined in equations (4) and (8), respectively, and h is the fluid traction vector
consisting of both the pressure and viscous parts, given by

h = σ f nf (16)

The fluid traction vector may be obtained from a rigid-wall blood flow simulation
on a reference domain with steady inflow and resistance outflow boundary condi-
tions. The latter guarantees a physiological intramural pressure level in the arteries.
(For a discussion of outflow boundary conditions for cardiovascular simulations,
see, e.g., [4, 10, 37].)

The variational equations (15) are solved for the displacement field u, and the cor-
responding stress field S is computed from the displacement field. The prestress S0

is assigned the value of S, and the coupled time-dependent fluid-structural problem
departs from the prestressed reference configuration with the initial displacement
field set to zero.

Remark: Because h is dominated by the intramural pressure part, and the effect of
the viscus forces is not as pronounced, one may simplify the definition of the fluid
traction vector in (15) to

h = −p̃0nf . (17)
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where p̃0 is an averaged value of the intramural pressure over the cycle, which may
be taken from patient data or literature. This approach, however, is not adopted in
this work and a full fluid mechanics problem is solved to obtain the forcing for the
prestress problem. Although the intramural pressure dominates the fluid traction
vector, the effect of the viscous forces is small, yet non-negligible (see [38]).

2.3 Compatibility conditions at the fluid-solid interface

No-slip boundary conditions hold at the fluid-solid interface. Traction compatibility
conditions also hold at the fluid-solid interface, namely,

σsns + σ f nf = 0 on Γ
f s
t , (18)

where σs and σ f are the solid and fluid Cauchy stress tensors, ns and nf are the unit
outward normal vectors to the solid and fluid subdomain boundaries, respectively,
and Γ f s is the fluid-solid interface in the current configuration. The fluid Cauchy
stressσ f is evaluated directly according to equation (2), and the solid Cauchy stress
σs is computed as (see, e.g., [36])

σs = J−1FSFT . (19)

Equation (18) states that the fluid and solid forces are in equilibrium at the fluid-
solid interface.

Because the solid undergoes motion under the influence of the fluid forces, the
fluid-solid interface also displaces. This, in turn, imposes the displacement of the
entire fluid region, which must also be modeled. We employ the equations of lin-
ear elasticity to model the fluid subdomain motion. These equations are posed on a
time-dependent “nearby” configuration, and are subject to the displacement bound-
ary conditions coming from the motion of the fluid-solid interface. This gives a
well-defined current configuration of the fluid domain that conforms to the bound-
aries of the solid. In the discrete setting this procedure ensures a smooth evolution
of the computation mesh of the fluid domain. The nearby configuration typically
corresponds to that of the previous time step in our computations (see, e.g., [10] for
more details).

Remark: In the case of the rigid wall assumption, the arterial wall is held fixed,
in which case the blood flow model reduces to the incompressible Navier-Stokes
equations posed on a stationary domain. In this case, the no-slip boundary condi-
tions mean the blood flow velocity is identically zero at the fluid-solid interface,
and the traction compatibility conditions are no longer applicable. The rigid wall
assumption is often employed in vascular blood flow simulations due to the signif-
icant simplifications and computational cost savings it engenders.
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3 Discrete modeling

3.1 Mesh generation for vascular fluid-structure interaction

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 1: Dimension, reference geometry and meshes for Models 1-4 of the Middle Cere-
bral Artery (MCA) bifurcation. Inlet branches are labeled M1 and outlet branches are la-
beled M2. The arrows point in the direction of inflow velocity.

A comprehensive and robust finite element meshing approach for patient-specific
arterial geometries coming from medical imaging data, with particular emphasis on
cerebral aneurysm configurations, was development in [39]. The unique feature of
this approach is that the meshes contain both the blood volume and solid arterial
wall, which enables the analyst to use three-dimensional solids to model the behav-
ior of the arterial wall. The fluid-solid meshes are also compatible at their interface,
which significantly simplifies analysis. The reader is referred to [39] for the details
of the mesh generation the methodology.
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Figure 2: Zoom on the mesh of the inlet surface of Model 1. Solid and boundary layer fluid
mesh are shown.

Model Fluid elements Solid elements Total elements Total nodes

1 407,280 120,000 527,280 94,199

2 341,813 120,684 462,497 83,591

3 232,652 83,598 316,250 57,379

4 96,684 47,928 144,612 26,947

Table 1: Finite element mesh sizes for the aneurysm models.

The meshing techniques developed in [39] are applied to four patient-specific cere-
bral aneurysm models, shown in Figure 1. In all cases, the Middle Cerebral Artery
(MCA) bifurcation is considered and the inflow and outflow branches are labeled
in the figure. Models 2 and 3 correspond to the ruptured cases, while Models 1
and 4 came from unruptured aneurysms. We would like to note that in Model 4 the
location of the aneurysm is not exactly at the MCA bifurcation, which is typically
the case, but rather downstream of it. We would also like to note the bleb feature
at the tip of the aneurysm dome in Model 2. Blebs are indicative of excessive wall
stretching, and aneurysms with blebs are considered to be at high risk of rupture.

The four models are used in vascular fluid-structure interaction analysis presented
later in the article. In all cases, long inlet and outlet branches are included in the
computational models to minimize the effect of inlet and outlet boundary condi-
tions. (See [40] for the importance of including sufficiently long inlet branch ves-
sels in the computation of cerebral aneurysm flows.)

The meshes for both fluid and solid regions consist of linear tetrahedral elements
and the solid wall is meshed using two layers of elements in the through-thickness
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direction. The choice of terahedral over hexaherdal discretization is motivated by
the relative simplicity of the former approach with respect to the latter for meshing
of complex geometrical configurations. Boundary layer meshing is employed in the
fluid region to enhance the resolution of wall quantities, such as the shear stress.
Figure 2 zooms on the inlet branch of Model 1 where one can clearly see the solid
wall and the high-quality boundary layer fluid mesh. The meshes for the remaining
three models are of similar quality.

Mesh sizes for all models are summarized in Table 1. The local element Reynolds
number based on the mean blood flow speed during the heart cycle is about 10 in
the domain interior, and decreases to about 1.5 near the solid wall due to boundary
layer meshing. The proposed numerical methodology used for the fluid mechanics
problem, discussed in the sequel, is know to deliver accurate prediction of flow
phenomena for this range of Reynolds numbers, on both tetrahedral and hexahedral
discretizations. On a related note, in a recent study [19], the authors showed that
the quantities of hemodynamic interest, such as the wall shear stress, are accurately
represented for cerebral aneurysm flows at the level of mesh resolution employed
in this work.

3.2 Discretization and solution strategies

The solid and fluid mesh motion equations are discretized using the Galerkin
approach. The fluid formulation makes use of the recently proposed residual-
based variational multiscale method [41]. The residual-based variational multiscale
methodology is built on the theory of stabilized and multiscale methods (see [42]
for an early reference, [43] for a comprehensive review, and [41, 44] for specific
expressions employed in the definition of stabilization parameters). The method-
ology applies equally well to laminar and turbulent flows and is thus attractive for
applications where the nature of the flow solution is not known a priori. The time-
dependent discrete equations are solved using the generalized-α time integrator
proposed in [45] for the equations of structural mechanics, developed in [46] for
fluid dynamics, and further extended in [10] to fluid-structure interaction. A mono-
lithic solution strategy is adopted in which the increments of the fluid, solid, and
mesh motion variables are obtained by means of a Newton-Raphson procedure in
a simultaneous fashion (see [9, 10] for details). The effect of the mesh motion on
the fluid equations is omitted from the tangent matrix for efficiency, as advocated
in [37].

3.3 Boundary conditions

Time-varying velocity boundary conditions are applied at the inlet branch in the
fluid subdomain. We aim to simulate several cases whose inlet cross-sectional ar-
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Figure 3: Area-averaged inflow velocity as a function of time during the heart cycle. The
inflow velocity profile is taken from [32].

Model Inflow surface area (cm2)

1 4.2452 × 10−2

2 9.2985 × 10−2

3 5.6349 × 10−2

4 8.7916 × 10−2

Table 2: Inflow cross-sectional areas for the aneurysm models.

eas can vary significantly from one model to another (see Table 2). This variation
is due to the use of patient-specific data, and is quite natural in practice. For the
four models considered in this work, shown in Figure 1, the ratio of the largest to
smallest inlet cross-sectional area exceeds a factor of two. In this case, an attempt
to impose the same volumetric flowrate as a function of time for all four models
will result in the inflow velocity variation that is over a factor of two between the
patients, which is not physiological. Instead, we chose to impose the same area-
averaged inflow velocity for all models, which is more realistic. Figure 3 shows the
inlet velocity as a function of time during the heart cycle used as an inlet boundary
condition for all models. This data was taken from [32].

Resistance boundary conditions are set at the outlet branches in the fluid subdo-
main. The resistance boundary conditions are of the form

p = Crq + p0, (20)

where q is the volumetric flowrate, Cr is a resistance constant, and p0 is the ambient
pressure level selected such that the pressure fluctuates between 80 and 120 mmHg
during the heart cycle.
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At all inlets and outlets, the solid and mesh movement boundary conditions are

u · ns = 0, (21)
σsns − (ns · σsns) ns = 0, (22)

which allows a given arterial branch to slide in its cut plane, but precludes it from
penetrating it. This boundary condition gives more realistic arterial wall displace-
ment patterns than fixed inlet and outlet cross-sections. The solid wall is also sub-
jected to zero traction boundary conditions at the outer surface.

Remark: The solid free-slip boundary condition applied at the inlet and outlet sur-
faces implies that the branches are able to deform in the radial direction. As a result,
the inlet and outlet cross-sectional areas change during the heart cycle. This change,
which is on the order of 10% between peak systole and low diastole, is accounted
for when comparing rigid and flexible wall simulations as follows. We first com-
pute the flexible wall cases and record the inlet cross-sectional area changes during
the heart cycle. We then use this information to scale the inlet velocity for the rigid
cases such that, for a given model, the inflow flowrate is the same between the rigid
and flexible cases.

3.4 Material parameters and wall thickness

In the computations presented in the next section the density and dynamic viscosity
of the fluid are set to 1.0 g/cm3 and 0.04 g/(cm·s), respectively. The density, Young’s
modulus, and Poisson’s ratio of the arterial wall are set to 1.0 g/cm3, 107 dyn/cm2,
and 0.45, respectively. The material parameters employed are identical to those in
[32]. Note that the choice of units is non-standard (although not uncommon in com-
putational blood flow literature). However, these units are preferred for computer
implementation because they lead to better conditioned discrete equations that are
easier to solve.

Variable wall thickness is incorporated in the modeling as follows. We assume that
the wall thickness at the inlet and outlet branches is 20% of their effective radii. The
effective radius is defined as the radius of the circle that has the same area as a given
inlet or outlet. The wall thickness for the remainder of the model is constructed
by performing a smooth Laplace operator-based extension of the inlet and outlet
thickness data into the domain interior. This vessel wall thickness reconstruction
procedure was originally proposed and employed in the simulations of the total
cavopulmonary connection in [47]. The resultant wall thickness distribution for
the four models is shown in Figure 4. While the branch vessel wall thickness is
accurately represented, it is felt that the aneurysm dome thickness is somewhat
over-estimated. Nevertheless, the resultant dome and branch vessel thickness falls
well within the range of values reported for cerebral aneurysms (see, e.g., reference
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 4: Wall thickness distribution.

[48] where the authors employed high-resolution MRI to obtain aneurysm wall
thickness data.).

3.5 Extraction of wall tension

The wall tension is associated with aneurysm rupture and merits a close investiga-
tion (see, e.g., [32]). Aneurysm walls are typically very thin and the largest stresses
act in the in-plane directions. As a result, the natural quantity of interest is the prin-
cipal in-plane stress, which we take for a definition of wall tension. We compute the
wall tension as follows. Given the displacement field, we first compute the second
Piola-Kirchhoff stress tensor from equation (8) and transform it to the Cauchy stress
using equation (19). The Cauchy stress is rotated to the local coordinate system on
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every boundary element face as

σs,l = RTσsR. (23)

The rotation matrix R takes the form

R =


↑ ↑ ↑

t s
1 t s

2 ns

↓ ↓ ↓

 , (24)

where ns, as before, is the outward unit normal, and t s
1 and t s

2 are the two orthogonal
tangent vectors on the outer surface of the solid. Having rotated the stress tensor to
the local coordinate system we modify it by directly imposing zero traction bound-
ary conditions on the appropriate components of σs,l, namely

σs,l
3i = σs,l

i3 = 0 ∀i = 1, 2, 3. (25)

The eigenvalues of the resultant stress tensor can be computed by solving an ap-
propriate quadratic equation. The wall tension is defined as the largest absolute
eigenvalue, which also corresponds to the first principal in-pane stress.

Remark It should be noted that in the fully-continuous setting the zero normal
stress boundary condition holds point-wise. This obviates the need to employ (25).
However, in the discrete setting, the zero normal stress boundary condition only
holds weakly. As a result, the exact point-wise satisfaction of this boundary condi-
tion is not guaranteed. The above procedure overwrites the computed values of the
normal stress with their exact counterparts. This is often done in structural compu-
tations to enhance the accuracy of the computed stress fields (see, e.g., [49, 50]).

4 Computational results

In this section we present computational results for the four models we analyzed.

The prestress distribution (see Section 2.2.3) over the aneurysm outer surface is
shown in Figure 5. The stresses and their variations are largest in the aneurysm
dome for all models. High stress levels tend to occur near the regions of increased
curvature.

In Figure 6, the models are superposed in the configurations corresponding to low
diastole and peak systole for better visualization of the relative displacement re-
sults. The relative displacement predicted is quite modest and is in good agreement
with the observed vessel motions during aneurysm surgery in the clinical practice
of one of the authors, and predicted in computations by other researchers (see, e.g.,
[11–13]).
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 5: Tissue prestress.

Figure 7 shows a distribution of principal in-plane strain (Green-Lagrange strain
measure is employed) at peak systole. At this time instant in the cardiac cycle
the blood pressure is near its peak and, as a result, the strains are also near max-
imum. The largest strains occur in the aneurysm dome and are on the order of
10%-15%. This level of strain suggests that large-strain solid formulations should
be employed when simulating fluid-structure interaction phenomena in cerebral
aneurysms. However, the strains are not large enough for the stresses to be signifi-
cantly affected by a specific type of a material nonlinearity. As a result, the material
model described in this paper is felt to be adequate for the application. We note
that in the bleb region of Model 2 the strain levels are quite low considering blebs
are indicative of regions of overstretched tissue. Modeling may be enhanced by im-
posing localized tissue thinning in the bleb areas to capture this effect. However,
guidance from histological studies is needed to prescribe appropriate wall tissue
thickness in these locations.
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 6: Relative wall displacement between peak systole and low diastole.

Figures 8-9 show a comparison of blood flow speed at peak systole for the rigid
and flexible wall simulations. In all cases the flow is complex, with several vortical
features present. However, no turbulence is observed in any of the cases. Compari-
son of rigid and flexible simulations shows the most deviation for Models 1 and 2.
In the case of Models 3 and 4, the blood flow velocity results between the flexible
and rigid simulations are very similar.

Figures 10-11 show the wall shear stress at the fluid-solid interface at the peak in-
flow flowrate. The wall shear stress in the aneurysm dome is at its maximum near
the region where the jet of blood coming from the inflow impinges on the aneurysm
wall. Comparisons of the wall shear stress between the rigid and flexible wall cases
are also shown in the figures. In all cases the rigid wall assumption produces an
over-estimate of the wall shear stress with respect to the flexible wall computa-
tions. Furthermore, the degree to which the wall shear stress is over-predicted is

17



(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 7: Principal in-plane strain nearly peak systole (t = 0.08 s).

a strong function of the patient-specific geometry. Models 1 and 4 show an over-
prediction of the WSS in the dome region by less than 10%. In both cases the flow
impingement occurred normal to the aneurysm wall. In the case of Models 2 and
3, for which impingement of the blood flow occurred in the direction tangential to
the wall surface, the difference between rigid and flexible wall simulation are more
dramatic (52% and 30% over-estimation for Model 2 and Model 3, respectively.)
The spatial distribution of WSS for rigid and flexible wall simulations is likewise
different. The differences were most pronounced for Models 1 and 2. The bleb-like
feature in Model 2 gave rise to an oscillating flow in its wake and, as a result, pro-
duced a complex distribution of the WSS with high spatial variation in this part of
the aneurysm dome. Some of this variation is mitigated for the flexible wall case,
which gave a significantly more “diffuse” distribution of WSS.

The OSI comparison is shown in Figures 12-13. OSI measures the extent to which
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(a) Model 1 - rigid wall (b) Model 1 - flexible wall

(c) Model 2 - rigid wall (d) Model 2 - flexible wall

Figure 8: Volume-rendered blood flow velocity magnitude near peak systole (t = 0.08 s).

the WSS oscillates during the heart cycle. The computation of OSI involves the time
average of the wall shear stress that needs to be appropriately defined for moving
domain simulations. We employ the method proposed in [19] where the compo-
nents of the WSS vector are averaged in the co-rorational coordinate system (i.e.,
in the coordinate system that rotates with the material). The OSI is highest in the
aneurysm dome in all cases. It is also highly localized in a small number of loca-
tions on the dome. The localization of OSI occurs in the regions of low mean WSS.
The spatial OSI distribution differs between rigid and flexible simulations, the most
notable differences occurring in Models 1 and 3. In contrast to the WSS, higher lev-
els of OSI are predicted in the flexible wall simulation, which is attributable to the
vessel wall motion.

The wall tension results are shown in Figures 14-15. Figure 14 corresponds to peak
systole, while Figure 15 corresponds to low diastole. The magnitude of the wall
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(a) Model 3 - rigid wall (b) Model 3 - flexible wall

(c) Model 4 - rigid wall (d) Model 4 - flexible wall

Figure 9: Volume-rendered blood flow velocity magnitude near peak systole (t = 0.08 s).

tension varies through the heart cycle due to the time-dependent nature of the flow.
However, the relative wall tension distribution does not vary significantly during
the heart cycle. This is apparent from the figures. The wall tension is highest in
the aneurysm dome, not in the inlet and outlet branches. The bands of high wall
tension are formed near the aneurysm neck as well as around bleb-like features,
which are regions of high surface curvature. Models 2 and 3 exhibited higher wall
tension and its spatial variation than Models 1 and 4. As we mentioned previously,
Models 2 and 3 correspond to the ruptured aneurysm cases. Model 1 has high wall
tension concentrated near the aneurysm neck, however, the wall tension magnitude
in the dome is not as high as in Models 2 and 3. Model 4 gave the overall lowest
wall tension magnitude and spatial variability. We would also like to note that in the
case of Model 4 the aneurysm dome has a very smooth, almost perfectly spherical
shape, and its location is not exactly at the MCA bifurcation, bur rather downstream
of it.
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(a) Model 1 - rigid wall (b) Model 1 - flexible wall

(c) Model 2 - rigid wall (d) Model 2 - flexible wall

Figure 10: Wall shear stress near peak systole (t = 0.08 s).

5 Conclusions and Discussion

We presented a computational framework for the simulation of vascular fluid-
structure interaction using patient-specific models. We added two new features to
our modeling framework: 1) We developed a formulation that allows us to compute
the vessel wall tissue prestress and use it in the simulations; 2) We released the
constraint of fixing the inlet and outlet branches. Instead, we allowed the branches
to “slide” in their cut planes. Both features added to the physical realism of the
presented simulations.

The methodology was applied to four patient-specific models of cerebral
aneurysms. Two of the models corresponded to ruptured and two to unruptured
cases. Besides focusing on the computation of hemodynamics quantities of interest,
such as wall shear stress and wall tension distribution for the four patient-specific

21



(a) Model 3 - rigid wall (b) Model 3 - flexible wall

(c) Model 4 - rigid wall (d) Model 4 - flexible wall

Figure 11: Wall shear stress near peak systole (t = 0.08 s).

cases, we also assess the relevance of including flexible wall modeling in the sim-
ulations.

The strain levels predicted in the simulations (reaching a maximum of 10%-15%
at peak systole) are sufficiently high to necessitate the use of large deformation
theory for tissue modeling. However, the strains are not sufficiently high to be in
the regime of strong material nonlinearity.

The results show that the interaction between the blood flow and wall deformation
significantly alters the hemodynamic forces acting on the arterial wall, with respect
to rigid wall modeling. Rigid wall simulations consistently overestimated the wall
shear stress magnitude, on one case by as much as 52%, which, in our opinion is
significant, given the importance of this quantity of interest. In two of the cases,
the gross features of the wall shear stress distribution on the arterial wall were sig-
nificantly different for the rigid and flexible simulations. Rigid versus flexible wall
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(a) Model 1 - rigid wall (b) Model 1 - flexible wall

(c) Model 2 - rigid wall (d) Model 2 - flexible wall

Figure 12: Oscillatory shear index (OSI).

simulation results reinforce the importance of using fluid-structure interaction in
patient-specific modeling of cerebral aneurysms. Further observations show that
the magnitude of the wall shear stress is a strong function of the inlet branch orien-
tation and the angle of impingement of the blood on the arterial wall.

Patophysiologically, abnormal levels of WSS and OSI degrade the vessel wall and
initiate aneurysm formation, and biomechanically, aneurysm rupture occurs when
wall tension exceeds the wall tissue strength. The present simulation shows that
WSS, OSI and wall tension are highly dependent on the three dimensional con-
formation of the lesion. In the unruptured cases (Models 1 and 4), wall tension
was relatively low and relatively evenly distributed in the aneurysm dome. In the
ruptured cases (Models 2 and 3), wall tension was higher and distributed in a ring-
formed shape around bleb-like formations on the dome. Model 1, the unruptured
case, showed relatively high wall tension magnitude (and variation) compared to
Model 4, but not to the extent of Models 2 and 3.
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(a) Model 3 - rigid wall (b) Model 3 - flexible wall

(c) Model 4 - rigid wall (d) Model 4 - flexible wall

Figure 13: Oscillatory shear index (OSI).

A recent article [51] identified another hemodynamic quantity that affects the
growth and remodeling of aneurysms, the wall shear stress gradient (WSSG).
WSSG measures the spatial variation of the WSS in the vessel wall in-plane di-
rections. In [51] the in-plane gradient was easily obtainable due to the simple ge-
ometry of the vessel employed. However, WSSG requires an appropriate definition
in the case of complex patient-specific geometry.

The presences of localized blebs are known to be associated with rupture. This
might indicate that rupture occurred because of the strength of the wall tissue was
exceeded by the wall tension, leaving overstretched tissue remnants at the rupture
site. If reproduced in larger clinical series, this proposed computational method
might be evolved to a tool for better prediction of future rupture risk. As a result,
in the future, we plan to perform simulations of more patient-specific models so as
to enhance our understanding of the underlying phenomena and their relationship
to clinically observed events.

24



(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 14: Wall tension near low diastole (t = 0.0 s).

The wall thickness is very hard or impossible to obtain experimentally, so we plan
to make use of the geometry data (such as local branch radii, etc.) and clinical
experience of one of the co-authors to incorporate a reasonable wall thickness of
the aneurysm dome and the surrounding branch vessels in the simulations. Recent
advances in high resolution MRI for cerebral aneurysms [48] leave us hopeful that
in the near future blood vessel wall thickness may be obtained through imaging,
thus removing this uncertainty and burden from the modeling.

We would like to note that the structure of arterial tissue generally changes abruptly
in the neck region of an aneurysm from healthy tissue with an intact medial layer
within the parent artery to thin collagenous tissue in the aneurysm. As a result,
homogeneous isotropic material modeling that is employed in this work may lead to
inaccurate predictions of the deformation field and thus inaccurate haemodynamic
solutions. A possible remedy for this will be to model healthy arterial tissue in the
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 15: Wall tension near peak systole (t = 0.08 s).

parent branches and collagenous tissue in the aneurysm dome. We hope to pursue
this in future studies.

Another advantage of FSI over the rigid wall assumption is that it enables the sim-
ulation of a complete mechanical environment of the arterial wall, including the
cells within, and, more importantly, its coupling to the hemodynamics. For instance,
cyclic stretching may play a significant role with regards to functionality (e.g., gene
expression or structural alignment) of endothelial cells [52], smooth muscles, and
fibroblasts. This will, in turn, change the elastic properties of the arterial tissue and
alter the response of the coupled system.
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