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A Deep Learning Framework for 
Design and Analysis of Surgical 
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Aditya Balu, Sahiti Nallagonda, Fei Xu  , Adarsh Krishnamurthy  *, Ming-Chen Hsu & 
Soumik Sarkar

Bioprosthetic heart valves (BHVs) are commonly used as heart valve replacements but they are prone 
to fatigue failure; estimating their remaining life directly from medical images is difficult. Analyzing the 
valve performance can provide better guidance for personalized valve design. However, such analyses 
are often computationally intensive. In this work, we introduce the concept of deep learning (DL) based 
finite element analysis (DLFEA) to learn the deformation biomechanics of bioprosthetic aortic valves 
directly from simulations. The proposed DL framework can eliminate the time-consuming biomechanics 
simulations, while predicting valve deformations with the same fidelity. We present statistical results 
that demonstrate the high performance of the DLFEA framework and the applicability of the framework 
to predict bioprosthetic aortic valve deformations. With further development, such a tool can provide 
fast decision support for designing surgical bioprosthetic aortic valves. Ultimately, this framework could 
be extended to other BHVs and improve patient care.

Semilunar valves (i.e. the aortic and pulmonary valves) are structures that permit blood to be pumped into the 
aorta and pulmonary artery from the ventricles during systole, and prevent backflow into the ventricles during 
diastole1. Valvular heart disease is clinically characterized either by gradual narrowing of the valve due to cal-
cification of the leaflets or regurgitation through the valve due to insufficient valve closure2. Valve repair and 
replacement are two possible interventions to address diseased valves and prevent congestive heart failure or 
death. Based on the estimates from the American Heart Association, more than 2.5% of the United States pop-
ulation is affected by valvular heart diseases3. Heart valve replacement is common for patients suffering from 
valvular heart valve disease; over 90,000 prosthetic heart valves are implanted in the United States every year4. 
One of the most popular classes of replacement valves are surgical bioprosthetic heart valves (BHVs), fabricated 
from chemically-treated biological tissues2. They provide better hemodynamic characteristics than mechanical 
prostheses (the other most popular class), but are prone to fatigue failure, limiting their durability to 10–15 years. 
However, estimating the remaining life of a BHV directly from medical images is difficult. On the other hand, 
valve performance measures can be used by physicians to make better valve replacement decisions, preventing 
premature replacements or surgeries5,6.

Computational analysis of the heart valve can be an important tool in understanding the etiology of valvular 
diseases and can help clinicians in obtaining additional information that aid in therapeutic or valve replace-
ment decisions. For example, the failure of aortic valves can be related to stress concentration in the leaflets of 
the BHV7. Heart valve analysis using computational models has been extensively studied in recent years2,7–11. A 
review of computational modeling methods that have been developed to provide diagnosis from medical images 
for aortic valves is presented by Zakerzadeh et al.9. Several quantities of interest can be obtained and studied from 
these computational models. Two key quantities of interest are the coaptation area, which reflects of the degree 
of valve closure, and the effective orifice area (or open area), which reflects the degree of valve opening. The clo-
sure of the heart valve can be assessed by performing structural analysis of the valve geometry with appropriate 
boundary conditions to simulate the valve closure. Similarly, the effective orifice area can be computed by per-
forming valve opening simulation or dynamic simulation of the valve for one complete cycle of the heart beat9,10. 
In this paper, we restrict our focus to valve closure simulations; however, our framework can be extended to 
dynamic simulations for obtaining other quantities of interest such as effective orifice area.

An accurate representation of the heart valve geometry is essential to assess its performance. Non-uniform 
rational B-splines (NURBS)12 have been the de facto standard for geometry representation in mechanical 
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computer-aided design (CAD). NURBS surfaces can be used to parametrically design complex geometric objects, 
while allowing easy modifications. Current state-of-the-art valve analysis approaches reconstruct the aortic 
heart valve geometry from computed tomography (CT) images using NURBS5,10. In addition, current BHVs 
are designed only for certain discrete population-averaged sizes. These geometries are then analyzed using shell 
formulations of finite element analysis after meshing to assess the valve performance5. One of the most promising 
new analysis technologies that can be also used for valve simulations is isogeometric analysis (IGA)13. IGA unites 
engineering analysis and design by eliminating the tedious process of finite element mesh generation from the 
design geometry. IGA uses the B-spline basis functions for both representing the geometry and for the analysis. 
Hence, the NURBS valve geometry can be directly used for both valve design and analysis using IGA10,14–17.

The complete pipeline for the design and analysis of heart valves is illustrated in Fig. 1. While these analysis 
frameworks have proven to be useful, they often involve large computational overhead. Deep learning can provide 
a viable fast alternative to computational analysis, specifically IGA, to accelerate the design and analysis process 
for bioprosthetic valves. Deep learning has emerged as a major machine learning paradigm that has demon-
strated transformative potential in many areas of science and engineering18. In sciences, the applications range 
from astronomy19, high-energy physics20 and material science21–23 to medical diagnostics24 and plant sciences25. 
In the domain of engineering, deep learning is the key enabler of the recent autonomous driving revolution26 
along with other significant progresses in robotics27, design and manufacturing28,29 and prognostics and health 
management of engineered systems30. Along with recent algorithmic advances, the success of deep learning as a 
powerful function approximator could be attributed to the availability of large volume of data and advances in 
high-performance computing such as the Graphics Processing Units (GPUs).

In this work, we leverage the advances in deep learning to overcome the computational overhead in analysis of 
heart valves and to make valve design decisions. Note that in this work, we only specifically refer to surgical aortic 
valves with a stent that is sutured to the aortic root. Specifically, we propose a deep-learning-based convolutional 
autoencoder architecture (referred to as DLFEA) for predicting the analysis output directly from the input heart 
valve geometry. This approach accelerates the analysis by acting as a surrogate model that can be trained using 
previous analyses of multiple simulations. In particular, as a proof of concept, we predict the final deformed 
closed shape of the heart valve and the coaptation area, a key quantity of interest for surgeons. Coaptation area 
has been widely used as a key valve performance metric in the design and diagnosis of heart valves and predicting 
it has been the focus of several previous studies5. The stresses and strains during the heart valve closure can be 
directly computed from the heart valve deformations. However, the proposed methodology is general; it can be 
extended to analyze other key performance characteristics of heart valves and more complex valve simulations 
that include fluid structure interaction10,15–17,31.

We have the following specific contributions: (i) a deep learning framework, DLFEA, to predict the deforma-
tion biomechanics of aortic valves trained using isogeometric analysis simulation data; (ii) a novel geometric anal-
ysis tool called NURBS-aware convolution to directly input the valve geometry information to the deep-learning 
model; and (iii) statistical and anecdotal results that establish the accuracy and robustness of the proposed 
method. Please refer to the Related Works section in the Methods for a detailed discussion of our contributions in 
the context of recent advances in machine-learning based surrogate modeling for simulations. The results suggest 
that the DLFEA framework can be directly used in the design and optimization of patient-specific BHVs.
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Figure 1. A framework for predictive biomechanics-based approach for design of BHVs. Evaluating the valve 
performance using finite element analysis is a critical time-consuming step in the process. DLFEA can replace 
compute intensive biomechanics simulations with fast valve performance evaluations.
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Results
The DLFEA framework predicts the final deformations of the aortic valve and the valve coaptation area using the 
original undeformed geometry of the valve, the aortic pressure, and the material properties of the valve as input. 
We performed 90,941 valve closure simulations by varying the undeformed geometry, pressure, and material 
properties. Of these simulations, 72,753 simulations were used for training the DLFEA; 9,094 simulations for val-
idating the training and hyperparameter tuning; and the rest for testing. We compare the performance of DLFEA 
framework on a test dataset (containing results from 9,094 simulations), which were not used for training.

The DLFEA framework can accurately predict the valve deformations. The valve deformations were compared 
using three metrics: Euclidean distance, Hausdorff distance, and Procrustes matching (see Table 1). The average 
Euclidean distance between the predicted and simulated valve deformations is 0.0649 cm (note the average diam-
eter of a heart valve is 2.3 cm32). An histogram of the Euclidean and Hausdorff distances between the predicted 
and simulated deformed valve geometry is shown in Fig. 2(a). In addition, the DLFEA can also accurately predict 
the valve performance quantities of interest; in this case the coaptation area. The root mean squared error and the 
correlation between the predicted and the simulated coaptation area is 0.1167 cm2 and 0.9328, respectively (see 
Fig. 2b).

We present some anecdotal BHVs to understand the generalization capability of the trained model. We visu-
alize the predicted and simulated deformed geometry of the leaflets and the strains computed using the simulated 
and prediced deformations in Fig. 3.

Finally, we also visualize the high-dimensional data manifold using t-distributed stochastic neighbor embed-
ding (t-SNE)33. We perform this by analyzing the correlation between the learned information vector from 
DLFEA (the output of fusion layer in DLFEA, also called the code layer of an autoencoder) and the features of 
the input. In Fig. 4, we show the 2D embedding colored based on different geometric parameters (belly curve 
parameter, free edge curve parameter, and height of free edge, which were used to obtain different reference con-
figurations) to understand the correlation between the data manifold and the valve geometry.

Discussion
The results presented in the above section show that the DLFEA framework is able to accurately capture the 
deformation biomechanics to within reasonable error bounds. The maximum value of the displacement among 
all the valve leaflets from the simulations is 0.7642 cm. The maximum Hausdorff distance (which is the maximum 
among all measures) between the predicted and simulated valve displacements is within 15% of this maximum 
displacement. In addition, the median and mean value is less than 5% of the maximum displacement.

The predicted and simulated deformations are visually quite similar with some minor regional differences that 
are within ≈10% error, which is usually within the measurement accuracy of non-invasive imaging modalities 
such as Echocardiography34. In addition, the deformations predicted by DLFEA are accurate and smooth enough 

Stats
Euclidean Hausdorff Procrustes
Max. Mean Median Max. Mean Median Max. Mean Median

Training 0.1546 0.0173 0.0122 0.2908 0.0830 0.0779 0.0206 0.0021 0.0015
Validation 0.1337 0.0173 0.0120 0.2444 0.0827 0.0778 0.0173 0.0021 0.0014
Test 0.1502 0.0173 0.0119 0.2897 0.0821 0.0770 0.0204 0.0021 0.0014

Table 1. Statistics on the metrics of deformations predicted by the DLFEA. All metrics are in cm.

Figure 2. The histograms (a) show the Euclidean distance and Hausdorff distance between predicted 
deformations from DLFEA and the simulated deformations for the test data. (b) Shows the DLFEA-predicted 
coaptation area compared with the coaptation area obtained from simulations. The predicted coaptation area is 
highly correlated (R = 0.9328) with the simulated values.
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that the strains calculated from them are also smooth without any oscillations. More interestingly, we find that 
the DLFEA is able to learn certain complex interaction characteristics of the leaflets and their deformations. The 
predictions by DLFEA capture the symmetry of the three leaflets without any explicit training constraints. The 
DLFEA also captures the contact characteristics between the three leaflets accurately without any explicit infor-
mation about contact mechanics (for example, penalty for interpenetrating leaflets).

The t-SNE embedding is the lower dimensional representation of the data manifold and if the network is prop-
erly trained, this embedding is the representation of the original data-manifold in a compact lower dimensional 
space that nearly preserves the distance metric35 (that is, similar input data are close in the t-SNE embedding). 
In the t-SNE embedding of our DLFEA network (Fig. 4), we see that this compact lower-dimensional space 
represents the complete variation in the data (design) space (i.e. the behavior of the valve deformation due to all 
the input parameters is well learnt). The local clustering of the training data in the t-SNE visualizations based on 
the geometric parameters demonstrate that the machine learning network has learnt the underlying geometric 
parameters of the valve. For example, in Fig. 4(a), similar belly curve parameter values are clustered together. Note 
that the geometric parameters are not provided as input to the t-SNE algorithm; it is only used for labeling the 
visualization of the points. In addition, none of the geometric parameters are directly given as input to DLFEA. 

Figure 3. Illustrative examples of valve deformations and their corresponding maximum in-plane principal 
Green-Lagrange strains computed from isogeometric simulations and the predicted deformations using the 
DLFEA framework.
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The network is able to learn this relationship from the training data alone. Please refer to the Supplement for a 
more detailed study of the t-SNE based on the domain knowledge.

The predicted coaptation area correlates highly with the simulated value (Fig. 2(b), R = 0.9328). In order to 
further understand the efficacy of DLFEA in interpolating and extrapolating the coaptation area predictions 
for different parameter values, we performed an ablation study (Fig. 5). We first fixed the reference geometry 
and material properties to vary the pressure (Fig. 5(a)) and calculated the predicted and simulated coaptation 
areas. Similarly, we fixed all the parameters including geometry and varied only one of the material properties 
(Fig. 5(b)). Finally, we performed a similar study for one of the geometric parameters (Fig. 5(c)). The predicted 
values are generated by densely varying the corresponding parameter in the physiological range (with 1000 inter-
mediate values, for example, pressure is varied uniformly from 70 mmHg to 90 mmHg with an increment of 
0.2 mmHg to generate 1000 data points). We also chose a few random parameter values and performed the valve 
closure simulations to compute the simulated coaptation area. This experiment was repeated for several param-
eter sets. In Fig. 5, we also highlight the region estimating 10% variation of the coaptation area value from the 
predicted values. The difference between the simulated and predicted values are within this 10% error margin. 
Moreover, the predicted values smoothly capture the overall trend of the change in the coaptation area with 
respect to the different parameters, without any artifacts. This demonstrates the generalization capability of the 
network for any parameter value in the physiological range. Such a generalization capability over parameters such 
as belly curve parameter is an interesting outcome from the hierarchical learning of deep learning from the raw 
geometric representation. Finally, this shows that such a system can be used as a fast function evaluator for an 
optimization system, which can be used to design optimal prosthetic valve geometries.

There are some limitations to the current implementation of the study. We do not account for anisotropy of 
the valve tissue material, which needs to be considered for more accurate modeling of the valve deformations. 
In order to make the study patient-specific, a large amount of patient data covering the geometry variation of 
aortic valve among a diverse set of population is needed. In addition, the BHV design parameter space needs to 
be validated to make sure that the resulting valve designs cover the complete geometry variation in the valves 

Figure 4. t-distributed stochastic neighborhood embedding (t-SNE) of the higher dimensional manifold 
learnt by DLFEA. t-SNE generates a lower dimensional embedding of the data using the learnt model, which 
can provide insights into the distribution of the data. This particular t-SNE shows that the different geometries 
are well clustered, showing that the model has reasonably learnt the effect of geometric parameters used for 
generating the reference configurations, although this information is not available to the model.

Figure 5. The DLFEA-predicted coaptation area variation with pressure is shown in (a) for three specific 
sets of reference configuration geometries. (b) Shows a similar plot with variation in material coefficient 1 
(see Supplement for more details) for three specific reference configurations, pressure, and other material 
properties. (c) is a similar plot with variation in geometry parameter (belly curve parameter, see Supplement) 
for two specific material properties, and pressure. These plots are generated with 1000 intermediate values in the 
parameter of interest. The region estimating 10% variation of the predicted coaptation area value is highlighted.
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of these patients. Finally, new methodology that is accurate in handling cases with out-of-distribution samples 
while performing inference needs to be developed. These improvements would make the system practical for 
patient-specific valve design.

In conclusion, we have presented a deep-learning-based framework to predict the deformation biomechanics 
of heart valve that are not directly captured using medical imaging and often require elaborate computational 
expertise and cost to determine. We have demonstrated the capability of this methodology to learn complex 
deformation biomechanics of the heart valves with different geometry, material properties, and boundary con-
ditions. This makes the framework directly useful for parametric design of BHVs. Such a fast decision support 
system can enable development of personalized heart valve designs with better fit and performance, ultimately 
improving patient care.

Methods
Deep Learning, a subset of machine learning approaches, has emerged as a versatile function approximator that 
can establish a reliable map between (possibly heterogeneous) inputs and outputs of complex phenomena. A deep 
neural network is made up of several layers li, which takes as input xli and produces an output σ= . +y W x b( )l l l li i i i

, 
where σ(.) represents a non-linear activation function, Wli and bli are the weights and biases, respectively, for con-
necting the input neurons to the output neurons. The connections could be as simple as a dense connection 
between every input neuron and output neuron. However, dense connections may fail to preserve local correla-
tions in input that may encode useful information, for example, in the case of image classification. Furthermore, 
learning the dense connectivity between the neurons increases the sample complexity and all connections may 
not be meaningful. A convolutional connection instead of a dense connection helps alleviate these issues. The 
convolution operation (⊗) is given by

∑ ∑⊗ = − − .
=−

=

=−

=
W m n x m n W i j x m i n j[ , ] [ , ] [ , ] [ , ]
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Recently, deep learning has been successfully deployed in several areas with newer and more sophisticated 
architectures such as variational autoencoders36,37, generative adversarial networks38, graph convolutions39, etc. 
Once the network architecture is defined, the network weights (that are initialized randomly) are updated using 
the back-propagation algorithm40 based on minimizing a loss metric. At the end of training, the best weights and 
biases that generate the minimal prediction loss are chosen for the network. This network can then be used to 
predict the outputs for the test inputs.

Related Works. Deep learning applications to create surrogate models for finite element analysis is a very 
recent area of research that specifically focuses on bridging physics based models and data-driven models. Some 
of the recent advances in this research area are summarized below:

 1. Physics-consistency in deep learning: The overall idea is to merge the ideas of deep learning and physics 
by using physics-based features while training the deep learning models. For example, researchers have 
modified the loss functions to ensure some physical constraints are satisfied41–45. There has also been work 
on interpreting the predictions of the deep learning model based on physical conditions22,23.

 2. Incorporating partial differential equations (PDEs) in deep learning models: The key idea is to use the 
underlying governing equations such as Berger’s equation, Navier-Stokes equation, Cahn-Hillard’s equa-
tion, etc. to compute the residual for the sample. Since modern software systems can define these partial 
differential equations numerically in terms of automatic differentiable functions, it is easy to minimize 
these residuals. There are several recent works on learning from partial differential equations22,46–51.

 3. Generative vs. distinctive predictions: While there are methods in Deep Learning for generating and even 
predicting desired outputs, the underlying physics is often more strict. For example, given a set of physical 
conditions (such as loads on a well-defined geometry) will result in a deterministic desired output (such as 
displacements). Modeling them as a generative model is not consistent with the physics. On the contrary, 
the inverse problem, of defining the displacement of a given geometry and predicting the set of physics 
conditions is often ill-posed and could be consistently modeled as a generative model. There are several 
works showing the capability of Deep Learning methods to act as a surrogate23,41,49,51. These surrogates are 
modeled as distinctive (non-generative) networks, since the physics is deterministic and the problem is 
well-posed. On the contrary, there are some recent works22,42,46, which deal with stochastic PDEs or with 
ill-posed problems such as inverse design which demand the use of a generative model.

In the application area of biomechanics, most of the existing works use simple deep learning or 
physics-consistent deep learning methods. Specifically, these methods have been applied for modeling the aorta 
and estimating the stress fields52–54 or estimating the constitutive model parameters for aortic wall55,56. For BHVs, 
while there are optimization based methods for design of transcatheter aortic valves57,58, machine learning meth-
ods have mainly been used for 3D reconstruction of the valve geometry59. Further, there are physics-informed 
deep learning approaches for modeling cardiovascular flows, which incorporate residual minimization of the 
PDEs using deep learning60,61. However, to the best knowledge of the authors, deep learning has not been used for 
analyzing the deformation behavior of bioprosthetic valves.

In this work, we leverage the advances in deep learning to model the analysis of BHVs and to accelerate their 
design. The efforts made in physics-consistent deep learning and deep learning applications to biomechanics 
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motivates this work. While there are several works in this fast growing area, there are still some gaps which are yet 
to be filled. This paper addresses some of those gaps:

 1. Predicting raw values vs. descriptors for biomechanics applications: The current state-of-the-art 
machine learning works in biomechanics directly predict the stress field. However, during the physics 
solve, the stresses are not directly obtained. While it is challenging to obtain displacements from stresses, 
it is straight-forward to obtain the stresses and strains from displacements. Even though, small variations 
in the displacements can lead to large oscillations in the strain computations, in our case (see Fig. 3), the 
maximum principal strain obtained from predicted deformations is accurate and without any numerical 
oscillations. Therefore, we attempt to be consistent with the way physics is modeled to enable future work 
in using PDEs for computing residuals. Incorporating PDEs for modeling the complex dynamics involved 
in the bioprosthetic aortic valves is not a trivial extension of the present work, but, this contribution is a 
step forward towards that end.

 2. Contact prediction in deep learning: Current physics consistent deep learning models and deep learning 
for biomechanics applications consider simple cases which doesnt involve interaction of multiple objects 
(or multiple features of the same object). This is important when we need to model contact physics among 
the objects. This is necessary in BHVs while predicting the contact between the leaflets. As seen in the 
Figures shown in Fig. 3, our method is able to learn the complex interaction of the three leaflets which is 
necessary while modeling the non-smooth behavior of the materials.

 3. Accurate representation of 3D geometries: In general, there is a disconnect between the geometry, the 
physics domain mesh, and the data representation for training physics consistent deep learning model. 
Converting one form of data to another is computationally expensive and not accurate. To avoid this, often 
researchers use a structured mesh which could be expensive in case of representing geometries with com-
plex geometric features such as the heart valve. On the contrary, we make use of a NURBS-aware convolu-
tion operation and isogeometric analysis to alleviate this issue.

Deep-Learning for finite element analysis (DLFEA). Learning the deformation biomechanics of heart 
valves involves learning multiple physical phenomena by the DLFEA framework. First, the DLFEA needs to learn 
from the input 3-dimensional Euclidean space geometry and predict the deformed shape also in 3-dimensional 
Euclidean space. Next, it needs to learn the effect of loads and boundary conditions on the deformation. It should 
learn about the interaction between the leaflets during closure (often dealt with by using a complex contact algo-
rithm in traditional finite element analysis) to predict the coaptation area. Finally, it should learn the material 
behavior and the dependence of the deformation on the thickness of the leaflets used in the simulation.

Any machine learning framework requires the identification of three main components: (i) data representa-
tion, (ii) model architecture, and (iii) training algorithm. In the following subsections, we describe the different 
components of our DLFEA framework. Please refer to the supplement for details regarding parametric design of 
heart valves and simulation of valve closure using IGA. These methods were used for training data generation for 
the DLFEA framework.

Data representation. Learning directly from 3-dimensional Euclidean space is an interesting notion that has 
been explored extensively in machine learning literature. There are traditional approaches of object recognition 
using a 3D volume occupancy grid62 or its extensions such as Octrees63 and multi-resolution voxels64. Further, 
another class of algorithms have been developed to learn from point clouds65. There are other approaches where 
the topology of the data is modeled as a graph to perform a graph convolution operation39. However, the above 
mentioned methods have high sample complexity or time complexity for learning. Moreover, there is loss of infor-
mation while transforming the CAD model to other representations. Hence, integrating the learning paradigm 
with the CAD representation is crucial. To this end, we propose a new NURBS-aware convolution operation.

The crux of the NURBS-aware convolution operation is to perform the convolution operations on the NURBS 
control mesh of the input geometry to obtain the valve performance measures. The control points of NURBS 
surfaces provide the 3D surface representation of BHVs. Hence, for extracting the geometry information from 
different heart valves, it is sufficient to utilize the control points directly for the convolution operation. The con-
trol points can be represented as a rectangular matrix representing the tensor-product structure of these valve 
surfaces. Since, these control points are physically significant and are represented in the 3D Euclidean space, 
they can be represented as three different matrices with each of them containing the position with respect to 
each coordinate as shown in Fig. 6. This is equivalent to representing the control points as a RGB texture66. This 
method was used earlier to perform fast and parallel GPU evaluation of NURBS surfaces. Here, using this rep-
resentation of the leaflet, we perform the convolution operation directly using the NURBS surface without any 
loss of information, and can learn using traditional convolutional neural networks. A similar mapping is required 
for deconvolving the final deformed geometry from the textural representation to the global coordinates.

Model architecture. We use convolutional autoencoder-type architecture to obtain the deformed geometry for a 
given heart valve. The autoencoder architecture is composed of three main components: (i) an encoder network, 
(ii) a code layer and (iii) a decoder network (see Fig. 7). An encoder network is designed to compress high dimen-
sional input data into a lower dimensional embedding. The dimension of the embedding is very important since 
while a smaller dimensional embedding represents a succinct noise-less representation of the inputs, it also leads 
to a greater loss of information. This low dimensional embedding is represented in the code layer. Using this, one 
could generate/reconstruct the original high dimensional representation using a decoder network. An end-to-end 
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training using the reconstruction loss is used to train the entire autoencoder. This method has been shown to 
quite effective for denoising and enhancing images and videos for computer vision37,67.

We split the heart valve into three leaflets and for each leaflet, we use the NURBS-aware convolution operation 
where the NURBS surface is represented using three rectangular matrices (of size m × n × 3, where m and n are 
the number of control points in both directions of the parametrization). Now, using this data representation, 
we convolve further using traditional convolutional layers to create the encoder block of the autoencoder36,37.

Thus, using an encoder, we represent the high dimensional surfaces to an informative lower dimensional rep-
resentation. We then fuse the information of features obtained from the encoder for the three leaflets by flattening 
the low-dimensional output and connecting all the outputs using a fully connected layer. This is required to learn 
the interaction between the three leaflets, such as contact or closure of the leaflets. However, this increases the 
sample and time complexity of training due to the increase in the number of weight parameters. However, since 
we perform this operation in the low dimensional manifold, the increase in complexity can be accommodated 
efficiently. Ensuring the correct size of the code layer of the encoder is necessary, since there is a trade-off between 
complexity and performance. We vary the size of the code layer until we get the best performance for a set of 
samples.

Apart from the interaction, the deformation biomechanics depends on the material properties of the heart 
valve which are also used in the simulations. Uniform pressure is applied on the heart valve as a boundary condi-
tion. At the closed state, the valve is in a hydrostatic state of stress, where the loading is uniform in all directions. 
Hence, a scalar pressure value is sufficient to correctly define this boundary condition. However, in order to 
ensure that the scalar plays significant role in learning, we repeat the scalar pressure value multiple times to form a 
vector of size 10 (obtained after experimentation). We fuse the material properties vector and pressure boundary 
condition of the heart valve (pressure vector) with the fused embedding (fully connected layer obtained earlier) 
of the leaflet geometry.

Since the coaptation area is an important functional parameter used to determine the BHV health, we chose 
to predict this quantity of interest directly using the network. We also chose to predict the final deformed shape of 
the leaflet geometry, which can be used to obtain any other measures such as leaflet strains and also provide visual 
feedback of the deformed shape. The deformed geometry is predicted by using a decoder block which decodes the 
information from the fully connected layers used for fusing the information from thickness, pressure, and leaflet 
geometry. The decoder predicts the final deformed control points of the heart valve, which can be multiplied 
directly with the weights and knot vectors of the original geometry to get the deformed surfaces.

The final requirement for effective learning is to introduce a linear/non-linear activation for each output. In 
the case of the coaptation area, a rectified linear unit (ReLU) is the best fit, since the coaptation area is always 
non-negative. The ReLU function is represented as follows:

= .ReLU x max x( ) ( , 0) (2)

On the contrary, deformations of the leaflets could be negative at some locations, which makes ReLU a bad fit 
to use as an activation function for this output. Hence, linear activation function is used for the deformations. In 
the next subsection we outline the details of training the proposed network architecture.

Figure 6. NURBS-aware convolution. In order to learn from a 3D surface, we extract the control points of the 
NURBS surface in the parametric space, which introduces spatial structure to the control points. We restructure 
the control points (from the parametric space) into three channels of an image (texture representation) to 
perform traditional convolution operations.
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Training algorithm. In the previous two subsections, we explained the embedding of the different physical 
attributes in the data representation and the machine learning model to enable effective learning. This is required 
for effective learning since the sample complexity and time complexity are still a challenge. Although compute 
capability is abundant especially with the advent of GPUs, there are still limitations on the amount of data that 
can be generated in a viable time frame, specifically when the data is generated from computationally heavy 
simulations. Hence, embedding the physical attributes in different possible ways is required for effective machine 
learning methods. In addition, this helps us leverage some of our physical understanding of the process, thereby 
reducing the learning complexity for the machine learning network.

Another important physical characteristics that we need to embed are the essential boundary conditions 
imposed on the geometry for valve closure. Fixed boundary conditions affect the deformation of the BHV sim-
ulations. While the fixed node has zero deformation, achieving zero predicted deformation up to an arbitrary 
precision is numerically difficult. Further, if the back-propagation algorithm tries to achieve that, the nodes with 
non-zero deformation are affected, making the overall deformation difficult to learn. We deal with fixed boundary 
conditions by weighing the loss with the true deformations. If the original loss function used is l, the modified 
loss function is

=l u
u

labs(
max(abs( ))

) ,
(3)bc

true

true

where lbc represents the boundary condition incorporated loss function and u represent the displacements. In 
practice, we use l to be mean squared error:

� �
∑=

| |
−

∗
l u u1 ( ) ,

(4)k
pred true

2
k k

where � is the dataset to learn from, | |�  is the number of data points used for training and upred and utrue represent 
the predicted and true displacements respectively.

In order to improve the sample complexity, we also perform data augmentation68. Using arbitrary scalar val-
ues, we shift the BHV models to generate modified control points of a new BHV, which augment the original 
training data. We make use of a parametric BHV design algorithm (see Supplement) to generate different valve 
geometries. These valve geometries, along with different valve material properties and aortic pressures, are used to 
simulate valve closure using isogeometric analysis. Part (60%) of the simulated deformed geometries along with 
their calculated coaptation area are used as data for training the DLFEA framework. Of the remaining data, 20% 
was used for validation and 20% for testing.

Data availability
The datasets generated and/or analysed during the current study are available at http://web.me.iastate.edu/
idealab/c-dlfea.html.
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Figure 7. Deep-learning-based convolutional autoencoder for predicting the output deformations and 
the coaptation area of the heart valve in the closed state, with the BHV leaflet reference geometry, material 
properties, and the aortic pressure as input. The leaflet deformations are individually learnt using a NURBS-
aware convolution followed by an encoder. All the inputs are fused using the intermediate fusion layers (also 
called as the coding layers).
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NURBS-based modeling of surfaces

Non-Uniform Rational B-spline (NURBS) surfaces are the most general parametric representation of smooth
surfaces. NURBS surfaces are represented using a set of weighted control points and two knot vectors, one
for each parametric direction, u and v. The knot vectors control the parametric spacing between the control
points. Intuitively, the NURBS surfaces can be thought as a smooth surface approximation guided by the
control points, whose continuity is controlled by the knot vectors, and the relative importance of the control
points by the weights.

Mathematically, NURBS are a generalization of B-splines. The NURBS surface is defined by a m ⇥ n control
points mesh, Pi,j with corresponding weights wi.j; two parametric directions, u and v with their associated
knot vectors, degrees (p and q), and basis functions, Ni,q(u) and Nj,q(v). The knot vector is a set of paramet-
ric coordinates which divide the B-Spline into piecewise sections. If the knot intervals are equal, the spline
is considered uniform. The basis functions are defined using the Cox-de Boor recursion formula9:

Ni,p(u) =
u � ui

ui+p � ui
Ni,p�1(u) +

ui+p+1 � u
ui+p+1 � ui+1

Ni+1,p�1(u) (1)

with

N1,p(u) =

(
0, if ui  u  ui + 1
1, otherwise

(2)

NURBS surfaces are a generalization of B-spline surfaces with the addition of weights, wi,j, assigned to each
control point, Pi,j. The basis functions are modified to be

Rp,q
i,j (u, v) =

Ni,p(u)Nj,q(v)wi,j

Ân
k=0 Âm

l=0 Nk,p(u)Nl,q(v)wk,l
. (3)

The NURBS surface is defined as:

S(u, v) =
n

Â
i=0

m

Â
j=0

Rp,q
i,j (u, v)Pi,j. (4)

Learning from NURBS representation

Any machine learning framework requires careful selection of three main components: (i) data represen-
tation, (ii) model architecture, and (iii) training algorithm. For effective learning, the domain knowledge
needs to be embedded in each component. In convolutional neural networks for image recognition, one
embeds the spatial localization using the convolution filters (model architecture) and the pixels of the im-
age are represented using multiple red-green-blue-alpha channels (data representation)6,7. For design for
manufacturing application, embedding the CAD models in a voxel-based representation was required to
learn the volumetric features using 3D convolution filters (model architecture)3. Note that sophisticated
model architectures are not essential to train the machine learning network in these problems; these could
be trained by using basic dense neural networks. However, the data and time requirements for learning
such dense network increases combinatorially. Therefore, the chosen approach of NURBS-aware Convolu-
tion is necessary for effectively learning from the NURBS CAD representation. A simple demonstration of
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Figure A1: The different representations of a leaflet of the heart valve and their dimensionality. The representation using the control points is the
most succinct and sound representation among all.

the effectiveness is shown in Figure A1. It can be easily understood that the dimensionality of the NURBS-
aware convolution operation is lower than other representations and hence the data requirements are also
lower. At the same time, any representation other than the direct usage of control points also involves some
loss of information. For example, a coarse level voxel grid may not be able to capture all the features of
the leaflet. However, a lossless representation of the geometry is necessary for understanding several key
notions of biomechanics, such as contact. A fine level voxel grid might be a possible candidate; however,
the dimensionality increases by a factor of ⇡ 500.

In addition, data augmentation is necessary10 for successfully learning the network weights. There are
other approaches where the phenomena can be embedded in the algorithm to enable faster learning. In this
study, we exploit these approaches of embedding the physical valve characteristics in the machine learning
model to learn the deformation mechanics of heart valves.

Parametric design of heart valve

The aorta is the largest blood vessel that carries blood from the heart to the rest of the body. The aortic valve–
one of the four heart valves–is located between the left ventricle and the left aorta. The aortic root represents
the connection between the aorta and myocardium: it consists of the sinuses, the aortic valve leaflets, the
commisures, and the interleaflet triangles. The three leaflets (left coronary leaflet, right coronary leaflet and
non-coronary leaflet) form the aortic valve and provide its main sealing mechanism. The anatomy of the
BHV leaflet can be divided into three parts, first, the free edge which provides sealing by forming contact
with the neighboring leaflets to form a seal (the area of contact is called the coaptation area). Second, The
”belly” of the leaflet and third, the bottom parts of leaflet or leaflet attachments. The aortic valve leaflets
form the junction and physical boundary between the left ventricle and aorta.

Surgical BHVs considered in this work are fabricated from bovine and porcine pericardium sheets that
are chemically fixed after being die-cut and mounted onto a metal frame to form the leaflets. As a result,
the geometry shown in Figure A2 is without internal stresses and can be used directly as the stress-free
configuration. The leaflet is initially flat in 2D before being mounted onto the metal frame. However, the
non-flat leaflet in 3D represents the working condition of the BHVs and the analysis is performed using
this configuration. In order to find the flat leaflet that can deform and then perfectly match the designed
3D shape, one can perform an inverse design simulation to reverse the process and iteratively find the 2D
flat shape from the 3D shape.

The parametric design of a heart valve is divided into two steps; step (i) we define the size of the valve for
a given aortic root, and step (ii) we define the shape parameters of the heart valve that define the geometry
without any dependency on the size of the aortic root. The valve leaflets are parametrized using the aortic
root as basis, First, 9 key registration points located on the ends of commisure lines at the bottom of the
sinuses are identified. These define the attachment points of the leaflets to the sinuses, indicated by blue
spheres in Figure A2. These key points are derived from the patient specific aortic root and will not change
for different valve designs. The univariate B-splines are parametrized to define the free edges and belly
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Figure A2: Parametric design of bioprosthetic heart valves.

curves of the leaflet, shown in red and green respectively in the figure. A smooth B-Spline representation of
the leaflet is obtained by interpolation of the attachment edges, free edges, and belly curves. In Figure A2,
p1, p2, p3 are the key points on the top of commisure line and p4 is the key point on the bottom of the
sinus. P1 to p3 define a triangle with pc being its geometric center. tp is the unit vector pointing from pc to
pn (geometric center of p1 and p2), and the unit normal vector of the triangle p1�3 pointing downwards in
np. The free edge is constructed as a univariate quadratic B-spline curve determined by 3 control points,
p1,p f and p2. p f is defined as pc + x1tp + x2np. By changing x1 and x2 to control the location of p f , the
curvature (length) and the height of the free edge can be parametrically modified. We then take pm as the
midpoint of the free edge, the point pb, and the key point p4 to construct a univariate quadratic B-spline
curve (green). In this model, x1, x2, and x3 can be chosen as design variables to parametrically change
the free edge and belly curve and therefore, parametrically control the valve design. This procedure is
implemented in Rhino/Grasshopper refer to Xu et. al.12 for more details of parametric model.

Isogeometric analysis

The generation of data for training the DLFEA is performed using isogeometric shell analysis. Isogeometric
analysis (IGA)4 is an extremely useful tool in analyzing NURBS-based geometry by extending the finite
element formulation to use the same NURBS basis functions for the analysis. The major advantage of IGA
over traditional finite element method is that it does not require the geometry to be meshed, which is both
tedious and causes loss of information due to mesh approximation. IGA has been proven to be useful for
valvular analysis by several researchers5,8.

Formulation

We perform dynamic simulations of pericardial BHV function at its closure with a prescribed transvalvular
pressure load. The dynamic simulations are performed using Kirchoff-Love shell theory and Lee-Sacks
material constitutive model (isotropic) (explained below). With the prescribed material properties and
transvalvular pressure, we perform dynamic simulations while modeling the viscous and inertial resistance
of the surrounding fluid using damping5. We perform the valve closure simulations by slowly ramping up
the pressure to the prescribed transvalvular pressure in 100 time steps with a time step size of 0.0001 s.
Then, with constant pressure, we run more steps till a steady-state valve closure is achieved. The damping
coefficient is kept very high in order to quickly stabilize the ramp up of pressure. In the context of this
paper, we perform valve closure simulations using structural simulations. Since the valve is closed, the
structural analysis of heart valves will model the behavior very well (i.e. a hydrostatic state of stress exists
and there is no flow). More advanced study of the behavior of heart valve may require fluid-structure
interaction (FSI) simulations which involves temporal dynamics of blood flow for the complete cycle of the
heart.
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Material parameters

Kiendl et al.5 built a generic Kirchoff-love shell theory for materials of this type and also provide a case
study with an exponential-type isotropic model for strain energy function, yel .

yel =
c0
2
(I1 � 3) +

c1
2
(ec2(I1�3)2

� 1) (5)

Here, I1 is the first invariant of the right Cauchy–Green deformation tensor, C. The magnitude of the
parameters c0, c1, c2 depends on the chemical treatment for the BHVs. The material is assumed to be
incompressible, which is done by augmenting the elastic strain-energy function, yel with a constraint term
to enforce J =

p
det(C) = 1, via a Lagrange multiplier p : y = yel � p(J � 1). In addition, the thickness of

the leaflets is another key material property that changes the deformation behavior.

Dynamic simulations and convergence

While the default parameters for damping, time steps, and time step size, are as mentioned above, insuffi-
cient damping can lead to a large residual while ramping up to a particular prescribed material properties
or transvalvular pressure from the reference configuration of the geometry. In addition, insufficient damp-
ing can also cause oscillations in the deformed geometry, leading to oscillations in the coaptation area and
contact. Therefore, successful convergence of a particular simulation depends on carefully adjusting the
parameters such as damping coefficient, time steps, time step size, etc. While generating the samples for
training, since these parameters are dependent on each simulation, a generic set of parameters that would
work for most of the simulations is used as default; specific cases of non-convergence are manually ad-
dressed by changing these parameters.

Mesh convergence

While the convergence of the individual simulations is important, the mesh resolution used for generating
the simulation results is also important. In order to have an accurate solution for the valve deformation
and to compute the coaptation area accurately, we performed a study on the convergence of the coaptation
area with mesh resolution. we performed this study by choosing a representative bioprosthetic aortic valve
with known geometry parameters and obtained different mesh representations of the NURBS surface to
be used for isogeometric analysis. Figure A3 shows the computed coaptation area for different number of
cubic elements corresponding to the mesh used for analysis. Based on this, we chose to create a represen-
tative NURBS patch using 17 ⇥ 12 control points for each leaflet. We observe that the coaptation area for
this representative geometry in the chosen mesh resolution is 1.0116 cm2, while the value for a finer reso-
lution is 1.0541 cm2. There is a 4% deviation in the coaptation area computed using our chosen resolution
with respect to the finer resolution. This deviation in the coaptation area is acceptable, which balances the
computational time with simulation accuracy. While increasing the resolution might improve the accuracy
in the biomechanics simulations, it also increases the time taken for generating the data and simulations.
Therefore, we use the chosen resolution for generating the data.

Data generation

The inputs to the DLFEA are (1) reference geometry, (2) the transvalvular aortic pressure and (3) material
properties (c0, c1, c2, thickness). Varying them to cover all kinds of material variations and all kinds of
physiological conditions of different patients is necessary. Therefore, we use the list of thicknesses in the
physiological region by choosing thicknesses provided in Section 3.1 of Caballero et al.2. Similarly, we vary
other material properties by choosing the physiologically prescribed value given in Wu et. al.11 and then
varying them from 80% to 120% of that value. The geometries are obtained by changing the parameters
provided in Table A1. Several simulations were run with different values for the valve thickness, material
properties, aortic pressure, and geometric parameters such as belly curve parameter, height of the free edge,
etc.
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Figure A3: Study of the convergence of the coaptation area with mesh resolution for a representative bioprosthetic aortic valve. The mesh resolution
chosen for DLFEA data generation is marked in red.

Parameter Min. Value Max. Value Number of Values
Free Edge Curve Parameter (cm) 0.05 0.45 3
Belly Curve Parameter (cm) 0.2 1.4 7
Height of the Free Edge (cm) -0.1 0.5 4
thickness (mm) 0.186 0.427 5
c0(kPa) 54.084 81.130 3
c1(kPa) 10.628 15.942 3
c2 30.554 45.826 3

Table A1: Parameters used for generating the reference geometries and material parameters required for training.

Training

A total of 90,941 simulations converged with the default simulation parameters and were used for the train-
ing of the network. From the total data samples generated, a part of data is reserved for validation and for
testing of the model for its generalization capability. The validation data is used to tune the hyperparame-
ters of the network, where we optimize the number of convolution layers, number of fully-connected layers,
number of channels in each of the convolution layers, number of neurons in each fully connected layer, etc.
Using the validation data, we could ensure that we choose the best hyperparameters that produce the least
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Figure A4: Training and validation loss charecteristics with respect to epochs. The weights with minimum validation loss are stored for performing
inference and other tests and visualizations.
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Common Training

Parameters
DLFEA Architecture Block Hyperparameters

Batch Size: 512
Optimizer: Adam

Encoder

Convolutional layer 1 (3 filters with size 5⇥5)
Convolutional layer 2 (8 filters with size 3⇥3)
Convolutional layer 3 (16 filters with size 3⇥3)
Convolutional layer 3 (32 filters with size 3⇥3)

Repetitions of scalars Pressure: 20
Thickness: 20

Code layer Fully connected layer 1(64 neurons)
Fully connected layer 2(48 neurons)

Decoder

Deconvolution start size ( 8 ⇥ 9 ⇥ 4)
Deconvolution layer 1 (8 filters with size 5⇥5)
Deconvolution layer 2 (6 filters with size 3⇥3)
Deconvolution layer 3 (6 filters with size 3⇥3)
Deconvolution layer 4 (4 filters with size 3⇥3)
Deconvolution layer 5 (3 filters with size 1⇥1)

Table A2: Optimized hyperparameters with the least validation loss.

loss with not just the training data, but also with the validation data. However, to be fair in evaluating the
performance of the model, it is a good practice to have a test of the performance on data that is not used for
training and hyperparameter optimization. This proves the generalization of the data over the complete
range of the input cases.

The training and validation loss variation with epochs for training is shown in Figure A4. In general, we
save the weights of the model with least validation loss. We run for 30 additional epochs to check if the
loss reduces further. In the Figure A4, we see that at the 11th epoch the training and validation loss are very
close to each other and validation loss is minimum. Yet, we still run for 30 more epochs to ensure that the

Algorithm 1: Training Algorithm
Input : Network Architecture
Initialize: Weights for all layers, Wl , (l = 1, 2, . . . , m); patience = 0
Load Data: Load training data D and validation data DV
for (i = 0; i  num epochs; i ++) do

Randomly shuffle the data
Split D to Dj, (j = 1, 2, . . . , n) mini-batches
for j = 1 : n do

Predict outputs Oj for mini-batch Dj
Compute loss L(Dj,Oj, {W})
Update weights,{W} using Adam optimizer

end

Predict validation outputs OV for DV
Compute Validation LossL(DV ,OV , {W})
if Avg. Validation Loss not improving then

increment patience
end

else

patience = 0
end

if patience � 30 then

Exit
end

end
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weights obtained are truly minimal and has good generalization capability. Finally, we stop at the end of
42 epoch because we do not find any better weights with a lower validation loss. The sum training loss for
all the predicted outputs is 0.0594 and the validation loss is 0.0495 for the plot shown. The corresponding
test loss is also of the same order due to the model having a good generalization capability. The final
hyperparameters of the network (i.e. the number of convolution layers, number of convolution filters, the
filter size, the code layer size, etc.) are shown in Table A2. The overall training procedure for a given set of
hyperparameters is shown in Algorithm 1.

Statistical analysis

Error measurements

Two major metrics were used while comparing the results: (i) the root mean-squared error, and (ii) the
correlation coefficient. The root mean-squared error is computed by:

RMSE =

s
Âk

i (p1 � p2)2

N

The correlation coefficient (more popularly known as Pearson Correlation Coefficient, R), which was used
for the comparison of the results is given by:

R =
cov(x, y)

sxsy
,

where cov(x, y) is the covariance between x and y and s is the standard deviation.

A simpler formula used for computing is as follows:

R =
Â (x � mx)(y � my)q

Â(x � mx)2 Â (y � my)2
.

Here mx and my represent the mean of vectors x and y.

Distance measures between two 3D objects

Euclidean distance between two points p, q in N-Dimensional space is given by

d(p,q) =
q
(p1 � q1)2 + (p2 � q2)2 + · · ·+ (pN � qN)2

By distance between two CAD representations, we refer to the mean of the euclidean distances of sam-
ples points in the surface of the representation. i.e. For a NURBS representation, we sample the points
(say, M) for by varying the parameters u, v and evaluate the surface representation to obtain a set P =
{P1, P2, P3, . . . PM}. Similarly, we could obtain another set Q = {Q1, Q2, Q3, . . . QM} for the other object.
Distance Measures are made using the sets P and Q. Note that, |P| = |Q| = M.

Euclidean distance

We define the Euclidean Distance to be the mean of the euclidean distances of each point in set P and set
Q. Mathematically, we can represent it as follows:

Deuclidean(P ,Q) =
1
M

M

Â
i=1

d(Pi, Qi)
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Hausdor↵ distance

Directed Hausdorff distance is the maximum of all the minimum distances from the set of points P to Q.
Symmetric Hausdorff distance is the maximum of the two directed Hausdorff distances. It represents the
maximum possible deviation between two sets. Mathematically, symmetric Hausdorff distance is repre-
sented as follows:

Dhausdor f f (P ,Q) = max{sup
P2P

inf
Q2Q

d(P, Q), sup
Q2Q

inf
P2P

d(P, Q)}

Procrustes matching

Procrustes matching is a statistical tool particularly established to compare two geometric shapes while
accounting for translation, rotation, and scale between them. Procrustes matching provides a metric of
dissimilarity between two 3D geometries. Mathematically, the dissimilarity measure is:

Dprocrustes(P ,Q) =
1
M

M

Â
i=1

q
Pi � bQit � 1g,

where b, t, g are the similarity parameters representing the scale factor, rotation matrix and translation shift
between the two shapes. These parameters are computed using the soft-assign Procrustes algorithm, which
computes the rotation angle by taking the estimates of the first and second order moments of the data. D is
known as the Procrustes dissimilarity measure1 and it has the same units as the geometry. It is the residual
obtained after modifying the data using the soft-assign Procrustes algorithm. The goodness of the fit is
evaluated using the sum of squared errors criterion.

Additional results

The main paper shows the results for the variation of the coaptation area with material properties, pressure,
and geometry. On careful examination of the variation of the coaptation area with respect to the material
properties, we notice that there is not much variation of the coaptation Area with the material coefficients
c0, c1, and c2, in the physiological range of these parameter values (see Figure A5). Therefore, we come
up with another refined network with just pressure, thickness, and reference configuration as the input to
DLFEA as shown in Figure A6.

Predicted
Simulated

(a) c0

Predicted
Simulated

(b) c1

Predicted
Simulated

(c) c2

Figure A5: DLFEA-predicted coaptation area variation with the variation of different Material Coefficients. The highlighted region show 10%
variation in the predicted coaptation area values.

Alternate model with fixed material parameters

As explained in the previous section, there is not much variation in the coaptation area with the material
properties. Due to this observation, we explored another model with fixed material properties. However,
note that, material properties does play a crucial role in the several other quantities of interest, therefore,
the original model proposed is more generic and can be used to generalize for other quantities of interest.
The architecture of the modified network is shown in Figure A6. The training was performed with a subset
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NURBS-aware Convolution
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Deformed 
Configuration
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Figure A6: Alternate model of deep-learning-based convolutional autoencoder for predicting the output deformations and the coaptation area of
the heart valve in the closed state, with the BHV leaflet reference geometry, thickness, and the aortic pressure as input.

Stats Euclidean Hausdorff Procrustes

Max. Mean Median Max. Mean Median Max. Mean Median

Training 0.1509 0.0157 0.0115 0.2700 0.0652 0.0574 0.0060 0.0004 0.0003

Validation 0.1346 0.0155 0.0115 0.2568 0.0654 0.0575 0.0056 0.0004 0.0003

Test 0.1477 0.0157 0.0115 0.2689 0.0655 0.0578 0.0059 0.0004 0.0003

Table A3: Statistics on the metrics describing the prediction of deformations by the modified DLFEA. All units in cm.

Predicted 
Simulated

(a) Thickness

Predicted
Simulated

(b) Pressure

Figure A7: Figure A7b shows the DLFEA-predicted coaptation area variation with pressure for three specific sets of reference configuration
geometries. Figure A7a shows a similar plot with variation in thickness for three specific reference configurations, pressure and other material
properties. These plots are generated with 1000 intermediate values of the parameter of interest to get a smooth curve.

of the training set, with material coefficients fixed at the physiological meaningful values11. The corre-
sponding variation of coaptation area with thickness and pressure is shown in Figure A7. Also, we perform
similar tests for statistics as the original model and obtain results shown in Figure A8. It can be seen that
the trends in the result is similar to the original model with an improvement in correlation for predictions
of coaptation area.
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(a) Distribution of Euclidean and Hausdorff distance (b) Correlation

Figure A8: The histograms (Figure A8a) show the Euclidean distance and Hausdorff distance between predicted deformations from DLFEA and
the simulated deformations for the test data. Figure A8b shows the DLFEA-predicted coaptation area compared with the coaptation area obtained
from simulations. The predicted coaptation area is highly correlated (R = 0.9967) with the simulated values.

Anecdotal examples

Here, we present another set of anecdotal examples with different configurations (see Figure A9). They
represent a more diverse set of examples including large and small deformations. The major deviation be-
tween the simulated and the DLFEA predicted deformations occur near the contact region, and particularly,
for the cases where the deformations are low (see case 1 and 4 in Figure A9). It can be seen that the DLFEA
output is more conservative than the actual simulations.

Extrapolation and interpolation capability of DLFEA

For use in design and diagnostic applications, the DLFEA must be able to accurately predict the deforma-
tion for any valve configuration that is obtained by interpolation or extrapolation of the design parameters
(up to a reasonable extent). We show some additional results to highlight the extrapolation and interpo-
lation capability of the DLFEA framework in predicting valve deformations. Since, the input geometry to
DLFEA is not based on the parametric design variables but the NURBS control points, the DLFEA should
be able to predict the deformations for a wide range of valve designs. For this, we perform extropolation
experiments by generating samples with different aortic root diameter, which is beyond the sizes of the
Aortic root diameter used in training. Also, we change the curvature of the leaflets to the value beyond the
range for the training samples. These results correspond to case a and b shown in Figure A10, where the
deviation between the simulated and predicted deformations are less than 10%. In case b, the coaptation
area is conservatively predicted to be 0.0 cm2 by the DLFEA, much lower than the simulated coaptation
area value of 0.0281 cm2. Conservative estimation of the coaptation area can be desirable in valve design
applications to cull potential design parameters that might not provide the best performance. In addition
to the valve geometry, the thickness and pressure values are also interpolated in case 3, showing that the
predicted deformations are still within acceptable error bounds of 10%.

t-SNE analysis

We present some additional t-SNE visualizations that can help us understand how the learnt model can
differentiate between the effects of different input parameters on the deformation. In the main text, we
presented the t-SNE visualization colored based on the original DLFEA model. Figure A11a shows the
data manifold for the modified DLFEA model with particular emphasis on the combination of parameters
affecting the data manifold. These inferences are drawn by comparing and analyzing the effect of all vari-
ables by labeling each point in the data manifold based on the respective parameter value (see Figure A11b,
Figure A11c, Figure A11d, Figure A11e, Figure A11f). The figure shows that certain clusters in the mani-
fold have similar parameter value, while some clusters have a gradual variation of that parameter value.
In addition, there are also interaction between the different parameters. For example, the valve thickness
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Reference Configuration Structural Analysis Results Predictions from DLFEA

Coaptation Area 0.0226 cm2 0.0219 cm2

Coaptation Area 0.0238 cm2 0.0231 cm2

Coaptation Area 0.0217 cm2 0.0207 cm2

Coaptation Area 1.3631 cm2 1.4395 cm2

0.02 0.28cm

3/4

Figure A9: Illustrative examples of the valve deformations obtained from isogeometric analysis and predicted by the DLFEA framework. The
simulated and predicted coaptation area is also shown below the deformations. The color in the image depicts the absolute value of the displacement
in the deformed configuration of the bioprosthetic heart valve.
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Reference Configuration Structural Analysis Results Predictions from DLFEA
(a) Comparison of results for different Aortic root diameter

Coaptation Area 0.0812 cm2 0.1026 cm2

(b) Comparison of results for different curvature of the leaflets

Coaptation Area 0.0281 cm2 0.0000 cm2

(c) Comparison of results for different pressure and thickness of the leaflets

Coaptation Area 1.6600 cm2 1.6687 cm2

4/4

Figure A10: Generalization capability of DLFEA to predict deformations with different input parameters. The color in the image depicts the
absolute value of the displacement in the deformed configuration of the bioprosthetic heart valve.

and free-edge curvature values interact; high free-edge curvature and high thickness values correlate and
form a single cluster while this interaction is not significant when the free-edge curvature value is very low.
Similarly, the Aortic pressure also interacts with other parameter values with low aortic pressure, low valve
thickness, and high free-edge height forming a cluster. On further examination, we observe that this cluster
belongs to very low or zero coaptation area. These correlation between the variables and the formation of
clusters in t-SNE visualizations show that DLFEA captures the effect of each parameter on the deformations
and coaptation area.

Results video

We have attached a video demonstrating the key aspects of this work. Specifically, it contains a demo
of parametric design of bioprosthetic heart valves, which is discussed in detail in the first section of the
Supplement. Further, we show a demonstration of a valve deformation simulation using traditional IGA
and using our DLFEA framework. Finally, we visually compare the results obtained from both IGA and
DLFEA.
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i. Valve thickness (low value)
ii. Free-edge curvature (high value)

i. Valve thickness (varying)
ii. Free-edge curvature (low value)
iii. Free-edge height (varying)
iv. Belly curvature (varying)

i. Free-edge height (medium value)
ii. Valve thickness (varying)
iii. Free-edge curvature (low value)

i. Free-edge Curvature (medium value)
ii. Valve thickness (high value)

i. Free-edge Curvature (medium value)
ii. Valve thickness (medium value)

i. Free-edge height (low value)
ii. Valve thickness (high value)
iii. Free-edge curvature (low value)

i. Free-edge height (high value)
ii. Valve thickness (low value)
iii. Free-edge curvature (high value)
iv. Aortic Pressure (low value)
v. Belly curvature (low value)

i. Free-edge curvature (medium value)
ii. Valve thickness (high value)

i. Free-edge curvature (high value)
ii. Valve thickness (high value)i. Free-edge height (high value)

ii. Valve thickness (low value)
iii. Free-edge Curvature (low value)

i. Valve thickness (low value)
ii. Free-edge curvature (medium value)
iii. Aortic pressure (varying with noise)

(a) t-SNE

(b) Valve thickness (c) Aortic pressure (d) Belly curve parameter

(e) Free-edge height (f) Free-edge curve parameter

Figure A11: t-distributed stochastic neighborhood embedding (t-SNE) of the higher dimensional manifold colored by the different parameters learnt
by DLFEA. t-SNE generates a lower dimensional embedding of the data using the learnt model, which can provide insights into the distribution of
the data.
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