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Abstract

The computational modeling of thin-walled structures based on isogeometric analysis (IGA), non-
uniform rational B-splines (NURBS), and Kirchhoff–Love (KL) shell formulations has attracted
significant research attention in recent years. While these methods offer numerous benefits over the
traditional finite element approach, including exact representation of the geometry, naturally sat-
isfied high-order continuity within each NURBS patch, and computationally efficient rotation-free
formulations, they also present a number of challenges in modeling real-world engineering struc-
tures of considerable complexity. Specifically, these NURBS-based engineering models are usually
comprised of numerous patches, with discontinuous derivatives, non-conforming discretizations,
and non-watertight connections at their interfaces. Moreover, the analysis of such structures often
requires the full stress and strain tensors (i.e., including the transverse normal and shear compo-
nents) for subsequent failure analysis and remaining life prediction. Despite the efficiency pro-
vided by the KL shell, the formulation cannot accurately predict the response in the transverse
directions due to its kinematic assumptions. In this work, a penalty-based formulation for the
blended coupling of KL and continuum shells is presented. The proposed approach embraces both
the computational efficiency of KL shells and the availability of the full-scale stress/strain tensors
of continuum shells where needed by modeling critical structural components using continuum
shells and other components using KL shells. The proposed method enforces the displacement and
rotational continuities in a variational manner and is applicable to non-conforming and non-smooth
interfaces. The efficacy of the developed method is demonstrated through a number of benchmark
studies with a variety of analysis configurations, including linear and nonlinear analyses, match-
ing and non-matching discretizations, and isotropic and composite materials. Finally, an aircraft
horizontal stabilizer is considered to demonstrate the applicability of the proposed blended shells
to real-world engineering structures of significant complexity.
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1. Introduction

Isogeometric analysis (IGA), introduced by Hughes et al. [1], was originally proposed to
bridge the gap between computer-aided geometric design (CAGD) models, which are often con-
structed using non-uniform rational B-splines (NURBS) [2] and recently using other spline tech-
nologies [3–16], and their corresponding physics-based computational approximation models that
are frequently based on Lagrange polynomial representations for the geometry and solution spaces.
The essential concept of IGA is to employ the same basis functions that are used in design for nu-
merical analysis. The IGA approach has since been used to solve the most challenging science and
engineering problems [17–28], and it has been demonstrated in a variety of applications that the
high-order smoothness of spline basis functions in IGA is superior to the C0-continuity of the shape
functions in traditional finite element analysis [29–38]. This is also true in the realm of Kirchhoff–
Love (KL) shell analysis, where IGA has emerged as an ideal platform in the sense that the global
C1-continuity requirement resulting from the second-order differential operators in the primal vari-
ational form can be naturally satisfied through the use of higher-order spline basis functions. Thus,
isogeometric KL shells [39–47] have gained popularity in the simulation and analysis community
due to their computationally efficient rotation-free formulation and model simplification into the
midsurface representation. The formulations have been previously demonstrated as an effective
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solution for the analysis of complex problems [48–61], including wind turbine blades [62–72] and
heart valves [73–81]. While computational efficiency is an important factor in numerical analysis,
KL shells have limited accuracy in predicting the transverse stress and strain states. This limita-
tion has sparked the development of IGA-based continuum shell and layerwise continuous shell
formulations [82–89], which enable other analysis types where stress triaxiality effects cannot be
neglected, such as multiaxial fatigue analysis [90] and ductile fracture analysis [91].

Real-world CAGD models are usually comprised of multiple patches. Such multi-patch de-
scriptions are typically required when the engineering model includes topological characteristics
or geometric discontinuities that cannot be captured with a single spline patch. Distinct patches in
a single model can also be used to distinguish various design features, such as a change in function-
ality or representation of material dissimilarity. As a result, the aforementioned shell formulations
cannot be readily applied for analysis without special treatment at the interface between two joined
patches. Specifically, interfacial displacement and rotational continuities are often required. This
can be easily achieved in the case of matching patch discretizations, where one can simply merge
or tie the control points at the common boundary to enforce displacement continuity and apply
explicit geometric constraints to the first two rows of control points to retain derivative continu-
ity [39, 92]. However, this type of manually applied constraint manipulation is cumbersome and
is not applicable to more general cases where the interface may be non-conforming. Ideally, an
approach that is able to impose both displacement and rotational continuities irrespective of the
interface smoothness and discretization conditions is highly desired.

Driven by the need to perform shell analysis directly on multi-patch NURBS objects, a signifi-
cant amount of effort has been devoted to developing new techniques for patch coupling. Among
others, constraining the relative motions in terms of displacements and rotations at the common
boundary in the spirit of penalty methods has become a common approach to couple patches. For
instance, the bending strip method was proposed to connect patches by adding fictitious strips of
unidirectional bending stiffness [93, 94]. However, this approach is restricted to matching dis-
cretizations. The work of Lei et al. [95] coupled surfaces by virtually inserting control points to
make the interface matching and subsequently applying linear constraints to the virtually matched
interface, and similar approaches have been reported [96]; however, these methods are limited
in terms of patch configurations and cannot be applied to non-smooth patch interfaces. Instead
of enforcing rotational continuity through explicit geometric constraints, a more general penalty
formulation based on including the penalty contribution in the principle of virtual work was pro-
posed [48] and later extended to Reissner–Mindlin shells [97]. Nevertheless, this method restricted
the rotation at the patch boundary to be less than 90◦ and has limited applicability in large dis-
placement analysis. Duong et al. [98] presented a penalty formulation to preserve the angle at the
patch interface, but it is restricted to matching discretization with problem-specific penalty param-
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eters. More recently, Herrema et al. [99] proposed a penalty coupling formulation in a variational
framework. The method does not require the penalty parameter to be manually selected and is
suitable for non-matching and non-smooth interfaces. The applicability of the method has been
demonstrated in the modeling of complex, real-world composite wind turbine blades [38, 72] and
transcatheter heart valves [100]. The convergence of the method was further improved in Leonetti
et al. [101] by rewriting the penalty energies in a Hellinger–Reissner sense to introduce conjugate
field work to the coupled system.

In addition to the penalty approaches, there are also a variety of other methods that can be
utilized for patch coupling. For instance, Nitsche’s method has been investigated for the coupling
of non-matching and trimmed patches [102] and has been successfully extended to pure KL shell
and blended shell couplings [103, 104], as well as in the nonlinear analysis setting [54, 105].
While this method is quite promising, the derivation of the formulation depends on the specific
variational form of the problem. Additionally, so-called Mortar methods have also been studied to
couple IGA patches [106–108]. However, the determination of the Lagrange multiplier spaces in
this method requires solving a computationally challenging saddle point problem. This approach
has been recently extended in the form of a basis modification approach based on a least-square
formulation to avoid the complicated segmentation process [109]. A blended shell formulation that
couples KL shells with Reissner–Mindlin shells, in which the rotational degrees of freedom can be
selectively added to allow patches to be connected, has also been proposed [31].

The present work builds upon the previous KL shell coupling approach and develops a penalty-
based formulation for coupling non-matching patches at a blended coupling interface between iso-
geometric KL and continuum shells. The goal of this formulation is to achieve high-fidelity, three-
dimensional (3D) stress/strain prediction at critical structural components using continuum shells
while modeling the rest of the structures using KL shells to retain computational efficiency. Com-
pared to previous methods, the proposed penalty formulation represents a unified patch coupling
approach that can be easily applied to many different shell models. The proposed formulation is
used to impose both displacement and rotational continuities in the multi-patch blended shell anal-
ysis. Analogous to the previous penalty-based patch coupling method for KL shells, the efficacy
of the present method is controlled by a single dimensionless penalty parameter. To eliminate the
empirical determination of the problem-specific penalty parameters based on a trial-and-error pro-
cess, the present method considers dimensionally consistent scaling with element size, material
properties, and geometric parameters, and thus permits a universal selection of the penalty param-
eter irrespective of the problem definition. The presented formulation is tested for a variety of
problem configurations ranging from matching to non-matching discretizations, linear to nonlin-
ear analyses, and isotropic to composite materials, to demonstrate the accuracy and robustness of
the proposed method. Finally, the method is applied to the analysis of an aircraft horizontal stabi-
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lizer model, demonstrating the applicability of the proposed blended shell approach to real-world
engineering structures of significant complexity.

This paper is outlined as follows. In Section 2, the isogeometric continuum shell, KL shell,
and blended coupling formulations are introduced. A detailed discussion on the determination of
the single universal penalty parameter is also given. In Section 3, a set of benchmark examples are
analyzed to demonstrate the accuracy and robustness of the proposed blended shell coupling for-
mulation. The effectiveness of the universal choice of the penalty parameter is also demonstrated.
The proposed method is then applied in Section 4 to the analysis of a horizontal stabilizer model,
where a section of the stabilizer skin is modeled using the isogeometric continuum shells and KL
shells are deployed elsewhere. Finally, in Section 5, conclusions about the proposed method are
drawn.

2. Blended shell formulation

The blended shell method proposed in this work involves the isogeometric continuum shell and
composite KL shell formulations. A brief summary of the adopted continuum and KL shell ap-
proaches are provided here, with particular details related to the blended coupling aspects. The fol-
lowing notations are used: italic letters (e.g., a, A) indicate scalars, lower case bold letters (e.g., a)
indicate vectors, and upper case bold letters (e.g., A) indicate second order tensors. Geometric
variables indicated by ˚(·) refer to the undeformed configuration. Compact notation is used only
when convenient for the presentation of general equations, while the detailed derivations are writ-
ten in index notation. The Latin indices i, j, k, and l take on values {1, 2, 3}, while the Greek indices
α and β take on values {1, 2}; summation convention of repeated indices is used.

2.1. Isogeometric continuum shells

We begin by presenting an isogeometric continuum shell formulation. Let x̊
(
ξ1, ξ2, ξ3

)
repre-

sent the position of a material point within the shell body in the undeformed configuration, where
ξ1 and ξ2 are the convective curvilinear coordinates in the in-plane directions, and ξ3 is the through-
thickness coordinate. The position vector can be expressed as

x̊
(
ξ1, ξ2, ξ3

)
= r̊

(
ξ1, ξ2

)
+ ξ3å3

(
ξ1, ξ2

)
, (1)

where r̊ is a point on the reference (bottom) surface of the continuum shell, ξ3 ∈ [0, th] with th

being the shell thickness, and å3 is the unit thickness director normal to the shell reference surface.
Let åα = r̊,α, where (·),α = ∂(·)/∂ξα, be the base vectors of the reference surface in the undeformed
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configuration. å3 can then be written as

å3 =
å1 × å2∥∥∥å1 × å2

∥∥∥ . (2)

Remark 1. Without loss of generality, the bottom surface is employed here as the reference sur-
face. While one may pick any surface (e.g., the midsurface) in the continuum shell body as the
reference surface, the bottom surface is selected in this work to be consistent with the composite
definition. Note also that the proposed blended shell formulation is not dependent on where the
reference surface is defined.

The motion of an arbitrary material point in the continuum shell can be more conveniently
defined through the introduction of a set of covariant base vectors. The base vectors at any point
in the undeformed shell body can be denoted as g̊i = x̊,i, where (·),i = ∂(·)/∂ξi, and expressed as

g̊α = åα + ξ3å3,α , (3)

g̊3 = å3 . (4)

Their dual base vectors (i.e., the contravariant basis) can be obtained using g̊i · g̊ j = δ
j
i , where δ j

i is
the Kronecker delta. The position of the material point in the deformed configuration, x

(
ξ1, ξ2, ξ3

)
,

is related to x̊ through the displacement field u
(
ξ1, ξ2, ξ3

)
as x = x̊ + u. The covariant base vectors

in the deformed configuration can be defined as

gi = x,i = g̊i + u,i . (5)

Finally, the deformation gradient between the undeformed and deformed configurations can be
expressed as F = gi ⊗ g̊i.

In a total Lagrangian framework, the variational formulation of the isogeometric continuum
shell can be expressed through the principle of virtual work, where the contribution of the body
force is neglected for brevity:

δW = δW int − δWext =

∫
Ω0

δE : S dΩ −
∫

Γh
0

δu · h dΓ = 0 , (6)

where W is the total work, W int is the internal work, Wext is the external work, δ indicates the
variation with respect to the virtual displacement variable δu, S is the second Piola–Kirchhoff

stress tensor, E is the Green–Lagrange strain tensor, Ω0 is the shell volume in the undeformed
configuration, h is the surface traction, and Γh

0 is the undeformed boundary where h is applied. The
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Green–Lagrange strain can be defined as

E =
1
2

(
FTF − I

)
, (7)

where I is the identity tensor. By introducing the metric coefficients of the first fundamental form,
gi j = gi · g j, the Green–Lagrange strain tensor becomes

E =
1
2

(
gi j − g̊i j

)
g̊i ⊗ g̊ j = Ei jg̊i ⊗ g̊ j . (8)

For the continuum shell formulation, the individual strain component Ei j can be obtained using the
undeformed local covariant vectors and displacement derivatives:

Ei j =
1
2

(
g̊i · u, j + g̊ j · u,i + u,i · u, j

)
, (9)

where its variation with respect to δu can be expressed as

δEi j =
1
2

(
g̊i · δu, j + g̊ j · δu,i + δu,i · u, j + u,i · δu, j

)
=

1
2

(
gi · δu, j + g j · δu,i

)
. (10)

In this work, linear elastic material behavior is assumed, corresponding to a St. Venant–
Kirchhoff material model. The stress–strain relationship is expressed by S = �E, where � is
the fourth-order material elasticity tensor. Note that the above stress and strain tensors are de-
fined under the contravariant coordinates that are not necessarily orthonormal, and thus need to be
transformed from the curvilinear system to the element local system:

Ee
i j = Ekl

(
g̊k · ei

) (
g̊l · e j

)
, (11)

where Ee
i j are the Green–Lagrange strain tensor coefficients with respect to the local Cartesian

base vectors ei and e j. More details of the continuum shell formulation can be found in references
[82, 89].

Remark 2. The adopted continuum shell formulation can be regarded as a solid that is non-
isoparametric in the through-thickness direction (i.e., only isoparametric in the in-plane directions).
The geometry is defined by a normal offset of the midsurface, but the displacement field has an
arbitrary degree through the thickness. The geometric description in Eq. (1) employs independent
discretizations for the reference surface of the shell and for the thickness direction, and this for-
mulation ultimately decouples the numerical integration schemes in the in-plane and out-of-plane
directions. While it is not inherently locking-free, this type of solid-like shell formulation also
facilitates the introduction of strategies to mitigate locking [110, 111]. Although specific anti-
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locking methods have not been introduced in the present continuum shell formulation, Hosseini
et al. [82] showed that the use of high-order spline basis functions alleviates locking to some de-
gree. Further discussion on techniques to mitigate locking for solid-like shells can be found in
references [112–115].

2.2. Isogeometric composite Kirchhoff–Love shells

For the Kirchhoff–Love shell, both normal and transverse shear strains are neglected, and only
the in-plane strain components are considered. The Green–Lagrange strain is assumed to vary lin-
early through the shell thickness and can be expressed as a combination of membrane and bending
strains (εεε and κκκ, respectively) of the midsurface. The covariant components of E can be obtained
as

Eαβ = εαβ + ξ3καβ , (12)

where εαβ and καβ are the covariant components of εεε and κκκ, respectively, and ξ3 ∈ [−0.5th, 0.5th].
Let r

(
ξ1, ξ2

)
be the spatial coordinate of the midsurface in the deformed configuration with ξ1 and

ξ2 being the parametric coordinates of the midsurface, r = r̊ + u
(
ξ3 = 0

)
. Let aα be the covariant

surface base vectors in the deformed configurations, obtained as aα = r,α. εαβ and καβ are defined
as

εαβ =
1
2

(
aα · aβ − åα · åβ

)
, (13)

καβ = åα,β · å3 − aα,β · a3 , (14)

where åi are the same as those defined in the previous section, and a3 is the unit vector normal to
the KL shell midsurface in the deformed configuration, given by

a3 =
a1 × a2

‖a1 × a2‖ . (15)

Remark 3. Note that for the KL shell, an arbitrary point x in the shell body in the deformed
configuration can be described as x = r + ξ3 a3. The covariant base vectors in the deformed KL
shell body can be defined as gi = x,i and expressed as gα = aα + ξ3a3,α and g3 = a3, which differs
from the continuum shell definition in Eq. (5).

Assuming linear elastic material behavior, the internal virtual work for the composite KL shell
can be expressed as

δW int =

∫
S0

∫
ξ3

δE : S dξ3dS =

∫
S0

δεεε : (�εεε +�κκκ) dS +

∫
S0

δκκκ : (�εεε +�κκκ) dS , (16)
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where S0 is the shell midsurface in the undeformed configuration, and �, �, and � are the ho-
mogenized membrane, coupling, and bending stiffness tensors, respectively, defined based on
the classical laminated plate theory. More details about this formulation can be found in refer-
ences [62, 65, 116].

2.3. A penalty formulation for blended shell coupling

This section presents a penalty formulation for the coupling of blended KL and continuum
shells. The ultimate goal of the blended coupling is threefold: (a) enforce C0 interface continu-
ity by means of displacement coupling, (b) enforce C1 interface continuity (i.e., surface tangent
continuity) through rotational coupling, and (c) avoid intersection of the surface normal of the
KL shell with the continuum shell body at the interface. In addition to the standard displacement
and rotational couplings as explained in goals (a) and (b), goal (c) is needed due to the sepa-
rate through-thickness kinematics in the continuum shell formulation. The proposed formulation
is built upon previous work for the penalty coupling of KL shell patches [99] and is applicable
not only to blended shell coupling but also to the coupling of pure KL or continuum shells. The
method is based on a variational framework and thus works for either matching or non-matching
discretizations. Moreover, two patches can be coupled at an arbitrary angle through the inclusion
of complementary scalar product penalty terms that enforce the rotational coupling by constrain-
ing the surface normal against both the normal and tangential surface directions at the coupling
interface. In the following, we consider two patches, ΩA and ΩB, that are joined at an interface,
L, which is always chosen as the edge of the midsurface of the shell body across various coupling
scenarios. It is assumed that ΩA is a continuum shell patch and ΩB is a KL shell patch, as illustrated
in Figure 1. Note that the covariant base vector g3 in the deformed configuration of the continuum
shell, as defined in Eq. (5), is not a unit vector. However, with a slight abuse of notation in Figure 1
and the following derivation of the penalty formulation, we use g̃3 to represent the non-normalized
g3 and redefine g3 as the normalized vector of g̃3, i.e., g3 = g̃3/||g̃3||, for blended coupling at a patch
interface.

Augmented by the penalty contribution, the principle of virtual work is re-written in the fol-
lowing form:

δW = δW int + δWpd + δWpr − δWext = 0 , (17)

where δWpd and δWpr are the displacement and rotational penalty contributions, respectively. In
order to properly constrain the interfacial continuum shell kinematics in the through-thickness
direction, the coupling conditions need to be enforced across the entire interface through an inte-
gration over the thickness domain, T . The displacement and rotational penalty terms are enforced
with different strategies in order to properly maintain the continuity of the surface normals and
surface tangents across the interface. Specifically, the enforcement of displacement continuity is
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gt
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ΩB

LT

Kirchhoff-Love shell

continuum shell

Figure 1: Illustration of the blended coupling interface between a continuum shell and a KL shell. Note that
we define g3 here as the normalized vector of g̃3, i.e., g3 = g̃3/||g̃3||, where g̃3 is the non-normalized g3 in
Eq. (5).

realized by considering the penalty contribution δWpd in the following manner:

δWpd =

∫
L

∫
T
αd

(
uA − uB

)
·
(
δuA − δuB

)
dT dL , (18)

where αd is the displacement penalty parameter that will be defined later, and uA and uB represent
the displacements at the corresponding through-thickness locations on ΩA and ΩB, respectively.
Recall that the off-the-midsurface position vector in a shell body can be described using Eq. (1),
and thus uB on the KL shell side can be conveniently obtained by subtracting the reference position
vector x̊B from the current position vector xB. Eq. (18) dictates that a large penalty energy will be
introduced into the system provided that there are relative motions between any two corresponding
through-thickness points on ΩA and ΩB along the penalty curve L. Note that, due to the sepa-
rate through-thickness kinematics in the continuum shell formulation, the interface tangent in the
through-thickness direction, gtan

3 , and the continuum shell surface normal, g3, can be different in the
deformed configuration, as illustrated in Figure 2. By enforcing the displacement coupling over
the entire interface between continuum and KL shell patches, as outlined in goal (c) for blended
shell coupling, this type of continuum shell deformation is eliminated for the blended interface.
This constraint accounts for the KL shell kinematics by maintaining the continuity between the
interface tangent in the through-thickness direction on the continuum shell side and the surface
normal on the KL shell side.
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g2gg
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g1

g3
° g° 3

tan

°
°

=

Undeformed Continuum Shell Deformed Continuum Shell 

tan

Figure 2: Example of possible interface deformation at the edge of the continuum shell body. The interface
tangent in the through-thickness direction, gtan

3 , is shown in the undeformed and deformed configurations.
When coupling continuum and KL shells at this interface, the alignment of gtan

3 and the surface normal,
g3, is enforced with the through-thickness displacement constraint, which prevents this type of interface
deformation. Note that such deformation can occur at a coupling interface between two continuum shells.

The inter-patch rotational continuity can be achieved by expanding the rotational penalty work
δWpr as:

δWpr =

∫
L

∫
T
αr

((
gA

3 · aB
3 − g̊A

3 · åB
3

) (
δgA

3 · aB
3 + gA

3 · δaB
3

)
+

(
gA

n · aB
3 − g̊A

n · åB
3

) (
δgA

n · aB
3 + gA

n · δaB
3

))
dT dL (19)

where αr is the rotational penalty parameter that will be discussed later with the displacement
penalty parameter αd, and gA

n is the in-plane covariant unit vector normal to the penalty plane
L × T as illustrated in Figure 1. Introducing the in-plane vector tangent to the penalty plane of
patch ΩA, g̃A

t = xA
,t , gA

n can be uniquely determined by gA
n = gA

t × gA
3 , where gA

t is the normalized
vector of g̃A

t , i.e., gA
t = g̃A

t /||g̃A
t ||, and gA

3 is a unit vector normalized analogously. Similar to the
enforcement of rotational continuity for the coupling of KL shells [99], the present formulation
for the coupling of blended shells considers two sets of interfacial unit vectors as the criterion for
introducing the rotational penalty energy. This consideration accounts for the fact that the scalar
product of two parallel unit vectors vanishes in the variational form for two patches that are tangent
at their interface, whereas the scalar product of two orthonormal vectors vanishes for two patches
that are joined at a 90◦ angle. Therefore, the inclusion of both terms is needed in order to ensure
rotational continuity at an arbitrary joining angle.

Once the penalty-augmented virtual work is derived, linearization of the equations is necessary
to obtain the internal force and the tangent stiffness tensors. In the following equations, r and s are
the indices for the total degrees of freedom of the system, and the partial derivatives with respect
to the discrete nodal displacements, ur and us, are denoted as (·),r and (·),s, respectively. By taking

11



first-order derivatives of Eqs. (18) and (19) with respect to the displacement variables, we arrive at
the internal force contributions of the penalty work in the following form:

∂Wpd

∂ur
=

∫
L

∫
T
αd

(
uA − uB

)
·
(
uA
,r − uB

,r

)
dT dL , (20)

∂Wpr

∂ur
=

∫
L

∫
T
αr

((
gA

3 · aB
3 − g̊A

3 · åB
3

) (
gA

3,r · aB
3 + gA

3 · aB
3,r

)
+

(
gA

n · aB
3 − g̊A

n · åB
3

) (
gA

n,r · aB
3 + gA

n · aB
3,r

))
dT dL . (21)

Through further taking derivatives with respect to the field variables, the penalty stiffness contri-
bution is revealed:

∂2Wpd

∂ur∂us
=

∫
L

∫
T
αd

((
uA
,s − uB

,s

)
·
(
uA
,r − uB

,r

)
−

(
uA − uB

)
· uB

,rs

)
dT dL , (22)

∂2Wpr

∂ur∂us
=

∫
L

∫
T
αr

((
gA

3 · aB
3 − g̊A

3 · åB
3

) (
gA

3,rs · aB
3 + gA

3,r · aB
3,s + gA

3,s · aB
3,r + gA

3 · aB
3,rs

)
+

(
gA

3,s · aB
3 + gA

3 · aB
3,s

) (
gA

3,r · aB
3 + gA

3 · aB
3,r

)
+

(
gA

n · aB
3 − g̊A

n · åB
3

) (
gA

n,rs · aB
3 + gA

n,r · aB
3,s + gA

n,s · aB
3,r + gA

n · aB
3,rs

)
+

(
gA

n,s · aB
3 + gA

n · aB
3,s

) (
gA

n,r · aB
3 + gA

n · aB
3,r

))
dT dL . (23)

In the above equations, the variations of the displacement vector with respect to ur and us on the
continuum shell side can be directly obtained using uA

,r = Ra Na êi and uA
,rs = 0, where i and a

indicate the ith displacement component of control point a, Ra and Na are the associated in-plane
NURBS and through-thickness B-spline basis functions, respectively, and êi is the global Cartesian
basis. This is in contrast to the KL shell side, where the variations of the displacement vector are
obtained as uB

,r = rB
,r + ξ3 aB

3,r and uB
,rs = ξ3 aB

3,rs. Note that, in the standard KL shell formulation, the
derivatives with respect to ξ3 a3 are not included in u,r and u,rs, because the final form of the internal
virtual work for KL shells is formulated based on the midsurface on which ξ3 = 0 (see Eq. (16)).
However, since the proposed displacement coupling is carried out through an integration over the
thickness domain T , these derivatives are generally nonzero and thus need to be considered. For
continuum shells, the evaluation of the first and second derivatives of g3 and gn are also necessary,
which can be obtained as follows:

g(·),r =
1
||g̃(·)||

(
g̃(·),r −

(
g(·) · g̃(·),r

)
g(·)

)
, (24)

gn,r = gt,r × g3 + gt × g3,r , (25)
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and

g(·),rs = − 1
||g̃(·)||

((
g(·),s · g̃(·),r

)
g(·) +

(
g(·) · g̃(·),s

)
g(·),r +

(
g(·) · g̃(·),r

)
g(·),s

)
, (26)

gn,rs = gt,rs × g3 + gt,r × g3,s + gt,s × g3,r + gt × g3,rs , (27)

where (·) represents 3 or t, and g(·),s and gn,s are defined analogously to Eqs. (24) and (25), re-
spectively, with r replaced by s. For KL shells, a3,r, a3,s, and a3,rs in Eqs. (21)–(23) are defined
similarly to Eqs. (24) and (26) with g replaced by a. Additional details regarding the derivation of
the variables used in these expressions can be found in Kiendl et al. [40, Appendix C].

Remark 4. The formulation can be further simplified when coupling occurs at patch edges, where
g̃t simply becomes g1 or g2, depending on the parametric edges that are coupled. The present
formulation is also applicable to the coupling at a trimming curve, where g̃t can be obtained by
projecting the trimming curve to the patch and evaluating the tangent vector at the correspond-
ing location. Finally, the above formulation can also be applied to weakly impose boundary and
symmetry conditions; additional details can be found in Herrema et al. [99].

Remark 5. In the case of two KL shell patches that are coupled at their midsurfaces, gA
n , gA

t , and
gA

3 and their undeformed versions degenerate to the corresponding unit vectors on the midsurface,
and all the displacements and their derivatives are evaluated at the midsurface. In the case of pure
continuum shell coupling over the shell interfaces, the surface vectors aB

n , aB
t , and aB

3 and their
undeformed versions are replaced by the corresponding shell body vectors gB

n , gB
t , and gB

3 and their
undeformed versions.

2.4. Element-wise evaluation of penalty parameters

Standard penalty-based methods are notorious for their troublesome and empirical selection
of the penalty parameter: the imposed constraints cannot be sufficiently satisfied if the penalty
parameter is too low, whereas the system becomes ill-conditioned with an overly high penalty
parameter. Thus, this section is dedicated to eliminating this bottleneck and providing a single and
universal selection of the penalty parameter that is applicable to both displacement and rotational
continuity enforcement irrespective of the problem configuration. Specifically, the present work
adopts a strategy for selecting the penalty parameters that is similar to the selection approach for
coupling pure KL shells [99]. Note that, unlike the original form, the division of the penalty
parameters αd and αr by the shell thickness th is needed due to the integration over the thickness
domain. In the case of isotropic materials, the displacement penalty parameter αd and the rotational
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penalty parameter αr are determined as:

αd = α
E

h (1 − ν2)
, αr = α

E t2
h

12 h (1 − ν2)
, (28)

whereas, in the case of composite materials, these expressions become:

αd = α
maxi, j

(
Ai j

)
h th

, αr = α
maxi, j

(
Di j

)
h th

. (29)

In the above, E is the Young’s modulus, ν is the Poisson’s ratio, th is the shell thickness, and
Ai j and Di j are the membrane and bending stiffness components of the composite, respectively,
defined based on the classical laminated plate theory. In this work, the element size parameter h

is determined by averaging the corresponding element lengths on the two patches along the local
element direction most parallel to the penalty curve. The directional element length he on each
patch is extracted from the in-plane element metric tensor G:

G =
∂ζζζ

∂x̄

T∂ζζζ

∂x̄
, (30)

he = 2
(
r ·G r

)− 1
2 , (31)

where x̄ and ζζζ ∈ [−1, 1] × [−1, 1] are the in-plane element physical coordinates and integration
parametric coordinates, respectively, and r is a unit vector representing a direction in the physical
space. Other approaches to evaluate the element size can be found in references [117, 118].

In Eqs. (28) and (29), both the displacement and the rotational penalty parameters are deter-
mined by a single dimensionless value of α. To account for various problem configurations, the
parameters are defined to be dimensionally consistent and are specifically scaled by the material
properties, shell thickness, and element size. As shown later in Section 3, this single penalty
parameter can be chosen universally regardless of the problem setup.

Remark 6. Eqs. (28) and (29) assume that the material properties between coupled patches are
continuous. Additional considerations for selecting the penalty parameter at a discontinuous mate-
rial interface should be included where necessary [99]. When coupling patches with different shell
thicknesses, we recommend defining the thickness domain T and th based on the thinner patch.

Remark 7. Another primary advantage of using the continuum shells specified in this work arises
from the consistent KL and continuum shell formulations, which have similar curvilinear defi-
nitions of the in-plane reference surfaces and both only require modeling the reference surface
geometry. These similarities allow efficient blended coupling and direct replacement of KL shell
patches with continuum shells at any location on the geometry. This accessibility facilitates evalu-
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ating either type of stress anywhere on the geometry by interchanging the KL and continuum shells
without having to introduce a specific solid model.

3. Benchmark examples

A number of benchmark examples with a variety of problem setups are employed in this section
to demonstrate the applicability and flexibility of the present method, including linear and nonlin-
ear analyses, matching and non-matching discretizations, and isotropic and composite materials.
The proper range of the dimensionless penalty parameter α is also studied, and the recommen-
dation of a universal value is given. If not otherwise stated, bicubic NURBS are employed for
the representation of the in-plane geometries, and quadratic B-splines are adopted for the descrip-
tion of the through-thickness kinematics of the continuum shells. Note that, while the use of one
quadratic element in the thickness direction is generally sufficient for the analysis of isotropic
thin-shell structures with simple loading conditions, h- or p-refinement through the thickness may
become necessary to capture the accurate 3D stress distribution in more complex settings. Addi-
tionally, when modeling composite materials using continuum shells, knot repetition is performed
in the thickness direction to create a C0 dissimilar material interface and a discretization of one
thickness element per layer is used.

3.1. Scordelis–Lo roof

The benchmark Scordelis–Lo roof model employed here is intended to verify the geometrically
linear response of the blended coupling approach and to test its robustness in complex strain states.
The problem setup is illustrated in Figure 3, where the ends of the roof are supported by rigid
diaphragms and the straight edges are left free. The roof is subjected to a uniform gravitational
load of 90 per unit area applied to the midsurface of the model, and the solution is quantified by the
maximum z deflection at the free edges. Due to symmetry, only a quarter of the roof is modeled.
The thickness of the shell is th = 0.25, and the material properties are E = 4.32 × 108 and ν = 0.0.
The deformed shape of the quarter roof model is shown in Figure 3.

The quarter roof model is described using four patches with both matching and non-matching
discretizations, and the initial meshes are shown in Figure 4, where the two patches highlighted
with thicker blue edges are modeled using continuum shells and the other two patches are modeled
using KL shells. To explore the effective range of the penalty coefficient α, the analysis is repeated
with a range of α values. The material properties and shell thickness are also modified in order
to demonstrate the robustness of the universal choice of α. These analyses are performed on the
meshes shown in Figure 4 with four additional levels of h-refinement. As shown later, converged
solutions can be obtained using this level of h-refinement.
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Figure 3: Scordelis–Lo roof model setup and the deformation of a quarter of the model (displayed using the
non-matching mesh case and scaled by a factor of 20 for visualization).

Figure 4: Initial discretizations for the matching (left) and non-matching (right) quarter roof model. Black
lines indicate patch boundaries and the thicker blue lines indicate patches modeled using continuum shells.

The results of the parametric studies on α are plotted in Figure 5. The displacements in Fig-
ure 5a are normalized against the converged solution of uz = −0.301106 for both the matching and
non-matching cases. Based on reported solutions from the literature [93, 99], which are between
−0.3005925 and −0.3024, the converged solution from the blended shell analysis is considered ac-
curate. As one can observe in Figure 5a, the solutions of both the matching and non-matching dis-
cretizations indicate consistency in the effective range of α values for which the blended coupling
method yields accurate solutions. Specifically, the solution is generally accurate when the penalty
coefficient α falls in the range of 101 to 106. The solution deviates from the converged solution
as α becomes too large or too small. This is expected, as the coupling constraints are not suffi-
ciently enforced with an overly small penalty coefficient, and the system becomes ill-conditioned
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(c) E = 4.32 × 108, th = 0.025

Figure 5: Maximum −z-displacement of the quarter roof model, normalized with respect to the converged
solution, for a wide range of the penalty coefficient α for both matching and non-matching discretizations
and various combinations of problem-specific variables.

with an overly high selection of the penalty coefficient. In order to demonstrate the robustness
of the proposed method, some problem-specific variables of the model are further modified. As
shown in Figure 5b and Figure 5c, the solutions are obtained with a modified Young’s modulus of
E = 4.32 × 1012 (instead of the original E = 4.32 × 108) and shell thickness of th = 0.025 (instead
of the original th = 0.25), respectively. Note that the displayed solutions are normalized by the
converged solution of uz = −3.01107× 10−5 in the first case and uz = −32.0123 in the second case.
Accurate solutions for all problem setups are achieved using the same range of α. This successfully
circumvents the problematic shifts in penalty coefficient values in traditional penalty-based meth-
ods where one has to estimate the problem-specific penalty coefficient in an empirical manner. As
such, a value of α = 103 is recommended, which will also be demonstrated as an effective value in
other numerical examples.

To further examine the effectiveness of the patch coupling across the penalty curves, the dis-
placement solutions, computed using the recommended value of α = 103, are evaluated on the
patch boundaries indicated on the deformed configuration of the quarter roof in Figure 3. As
shown in Figure 6, the displacement components in all three directions are consistent across the
patch boundaries and at the corner location where all four patches meet. These results demonstrate
the effectiveness of the proposed method in enforcing the displacement and rotational continu-
ities across the patch boundaries, as demonstrated by the tangential smoothness across the penalty
curves perpendicular to the highlighted displacement evaluation edges.

Using the recommended value of α = 103, a convergence analysis is carried out under uniform
h-refinement based on the initial meshes shown in Figure 4. The results displayed in Figure 7
demonstrate excellent convergence in both the matching and non-matching cases.
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Figure 6: Displacement solution comparison across the boundaries of the specified patches, labeled as C1,
C2, K1, and K2, indicated on the deformed configuration of the quarter roof model in Figure 3. The vertical
dotted line indicates the patch division, and the labels “C” and “K” indicate a continuum or a KL shell patch,
respectively.
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Figure 7: Maximum −z-displacement of the quarter roof model under h-refinement for the proposed blended
coupling approach with α = 103.

3.2. Nonlinear slit annular plate

The second numerical example considered here is a slit annular plate model that is fixed at
one end and subjected to a lifting line load at the other end. This example is intended to verify
the nonlinear performance of the proposed blended shell method. For this problem, a reference
solution is available in Sze et al. [119]. The problem setup and the final deformed shape are
illustrated in Figure 8, where the vertical displacements at points A and B at the loaded end are
monitored and compared with the reference solution. The model has a thickness of th = 0.03, and
the material is isotropic with a Young’s modulus of E = 2.1 × 107 and a Poisson’s ratio of ν = 0.0.

As demonstrated in Figure 9, the problem is modeled with a total of six patches, where the
patches with thicker blue edges are modeled using continuum shells, and the rest of the patches
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Figure 8: Nonlinear slit annular plate problem setup and the deformed configuration with the non-matching
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Figure 9: Meshes for the matching (left) and non-matching (right) cases of the nonlinear slit annular plate.
Black lines indicate patch boundaries and the thicker blue lines indicate continuum shell patches.

are modeled using KL shells. Both matching and non-matching discretizations are considered. In
order to fully test the blended coupling behavior in the nonlinear setting, the blending is devised
such that it covers all possible coupling scenarios for this problem, including the blended coupling
in the transverse and radial directions. Note that Figure 9 corresponds to the initial coarse meshes
of the problem, and a mesh refinement study is also performed to obtain a converged solution.
For the convergence analysis, the recommended value of α = 103 for the penalty parameter is
employed. The final vertical displacement at point B using various meshes is plotted in Figure 10,
where convergence is clearly observed after two levels of h-refinement in both the matching and
non-matching cases. Therefore, these levels of refinements are used in the subsequent sensitivity
study of α.
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Figure 11: Final vertical displacements at points A and B of the slit annular plate problem for a wide range
of α selections.

The vertical displacements at A and B are plotted in Figure 11 against a wide range of α values.
A stabilized solution is observed as α increases from 102 to 106. For α smaller than 102, the
penalty contribution is not large enough to accurately maintain the rotational continuity, whereas,
for α greater than 106, the solution becomes difficult to converge due to the ill-conditioning of the
system matrices. Nevertheless, similar conclusions can be drawn from this example: the solutions
remain accurate for a wide range of α selections (i.e., from 102 to 106), and the recommended
value of α = 103 still holds.

The displacement solutions across the patch boundaries, indicated by the displacement evalua-
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Figure 13: Comparison of the obtained vertical displacement trajectory at points A and B with α = 103

against the reference solution.

tion edges in Figure 8, are evaluated in Figure 12 using α = 103. Similar to the previous findings in
the roof problem, the proposed method effectively enforces the displacement and rotational conti-
nuities across the penalty curves, which demonstrates the overall effectiveness of the blended shell
approach for nonlinear analysis.

Finally, Figure 13 shows the comparison between the obtained vertical deflection trajectory at
points A and B with α = 103 and the reference solutions [119]. Excellent agreement is observed
for both the matching and non-matching cases.
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Figure 15: Meshes for the matching (left) and non-matching (right) cases of the nonlinear semi-cylinder
problem. Black lines indicate patch boundaries and the thicker blue lines indicate continuum shell patches.

3.3. Nonlinear pinched semi-cylindrical shell

The proposed blended coupling approach is also applicable to multi-layered composite materi-
als. In this example, a nonlinear pinched semi-cylinder problem characterizing both isotropic and
composite materials is employed. As illustrated in Figure 14, the semi-cylinder is clamped at one
end and subjected to a downward point force at the other, while symmetry boundary conditions
are applied to the longitudinal edges. For the case of the isotropic material, the material properties
of E = 2.0685 × 107 and ν = 0.3 are adopted. For the case of the composite orthotropic material,
the material properties are EL = 2.0685 × 107, ET = 0.517125 × 107, GLT = 0.7956 × 107, and
νLT = νTT = 0.3, where the subscript L refers to the longitudinal direction that is parallel to the
0◦ fibers, and the subscript T denotes the in-plane transverse direction that is perpendicular to the
fibers. Both the isotropic and orthotropic models comprise three layers, with each layer having an
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Figure 16: Ultimate vertical deflection at the point of applied force of the nonlinear semi-cylinder for varying
α values. The analysis is performed using the matching discretization. The simulations with α = 107 and
beyond require very small load increments to converge due to the large penalty energy and are therefore
abandoned.

equal thickness of 0.01 (i.e., the total thickness of the cylinder is th = 0.03). The ply orientation
for the composite case is [0◦/90◦/0◦]. A cylindrical arc-length algorithm [120] is adopted to solve
this problem, where a loading factor λ (0 < λ ≤ 1) is used to scale the total force of F = 2000.

Due to symmetry, only a half of the model is simulated. Two equally sized bicubic NURBS
patches of matching and non-matching discretizations, as shown in Figure 15, are used to demon-
strate the performance of the blended coupling approach in a nonlinear multi-layered analysis
setting. The results shown below are obtained using one additional level of h-refinement from the
discretizations in Figure 15.

The ultimate vertical deflection at the point of the applied force is plotted against a range
of penalty coefficients, as shown in Figure 16. The analysis of this problem showed consistent
solutions with the penalty coefficient α ranging from 102 to 106, which demonstrates the stability of
the blended coupling approach and confirms the universal selection of a penalty value of α = 103.
Additionally, the load-displacement curve for the α = 103 case is displayed in Figure 17 and
compared with the reference data [119]. The solutions match very well with the reference results
for both the matching and non-matching discretizations as well as both the isotropic and composite
materials, demonstrating that the blended coupling approach is effective in a variety of applications.
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3.4. Composite square plate subjected to double sinusoidal load

The last example considered here is a geometrically linear benchmark problem that is intended
to verify the accuracy of the complete 3D stress prediction using the proposed blended shell ap-
proach. Specifically, the classical composite square plate [84, 85, 121, 122], consisting of three
layers of equal thickness, is tested under a double-sinusoidal pressure of magnitude q0 at the top
surface and is shown in Figure 18. The edges of the plate are simply supported, which is defined
as uy = uz = 0 at the edges parallel to y and ux = uz = 0 at the edges parallel to x. The span-to-
thickness ratio is S = L/H = 4, and the fiber orientations are [0◦/90◦/0◦]. Orthotropic material
properties are used with E1 = 2.5 × 107 psi, E2 = E3 = 1.0 × 106 psi, G12 = G13 = 0.5 × 106 psi,
G23 = 0.2×106 psi, and ν12 = ν23 = ν13 = 0.25, where the subscript 1 denotes the direction parallel
to the 0◦ fibers, the subscript 2 denotes the in-plane direction perpendicular to the 0◦ fibers, and the
subscript 3 denotes the through-thickness direction. The double-sinusoidal pressure is specified as
q = q0 sin(πx/L) sin(πy/L).

The plate is modeled with four equally sized bicubic NURBS patches, two with 4× 4 elements
and two with 5×5 elements, as shown in Figure 18. The non-matching discretization is coupled us-
ing the proposed penalty method with α = 103. Only continuum shells are employed in this model
in order to correctly apply the double-sinusoidal pressure at the top surface of the laminate and ob-
tain the corresponding through-thickness stress states for comparison with the exact 3D elasticity
solutions. Both cubic and quartic B-splines are utilized to describe the thickness displacement with
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Figure 18: Problem setup and mesh discretization for a three-layer composite square plate subjected to
double sinusoidal load.

only one thickness element per ply. The computed stress results are compared with the analytical
solutions in Pagano [121], where the stress components are non-dimensionalized as follows [122]:

σ̄11 =
σ11

(
p1, p1, z

)
q0S 2 , σ̄33 =

σ33
(
p1, p1, z

)
q0

, (32)

σ̄13 =
σ13

(
p2, p1, z

)
q0S

, σ̄23 =
σ23

(
p1, p2, z

)
q0S

, (33)

with p1 = 0.552831L and p2 = 0.947169L being the specified location coordinates for stress
comparison.

As demonstrated in Figure 19, the obtained stress results using cubic B-splines in the thickness
direction already match very well with the analytical solutions, with barely noticeable differences
at the ply interfaces. By employing quartic B-splines in the thickness direction, the non-physical
stress jumps at dissimilar material interfaces are eliminated, and the results illustrate excellent
agreement with the reference solutions. This study demonstrates that the adopted continuum shell
formulation is capable of accurately predicting the full 3D stress states.

4. Application to aircraft horizontal stabilizer analysis

The real-world engineering application of the proposed isogeometric blended shell approach is
demonstrated through an example problem of nonlinear deflection analysis of an aircraft horizontal
stabilizer. In aerospace engineering applications, horizontal stabilizers can be vulnerable to fatigue
failure induced by flow separation from the aircraft wings and its impingement on the stabilizer
structure in its wake. Consequently, the sustainment and repair of such structures necessitate the 3D
stress information for multiaxial fatigue assessment. However, performing a high-fidelity nonlinear
dynamic analysis of large-scale aircraft structures is time-consuming, and it is unrealistic to model
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Figure 19: The normalized through-thickness stress distributions of the composite square plate.

the entire structure using continuum shells. In this context, the developed blended shell approach
becomes an ideal candidate for the modeling of aircraft horizontal stabilizers, in which critical
components can be modeled using continuum shells for high-fidelity stress prediction and other
components can be modeled using KL shells to achieve computational efficiency.

A simplified horizontal stabilizer design, shown in Figure 20, is considered in this work. The
design has a root chord length of 3.19 m, tip chord length of 0.7 m, and a tail semi-span of 6.75 m.
The design consists of a skin and several internal rib and spar structures, which are modeled using
21 bicubic NURBS patches (six skin patches, ten rib patches, and five spar patches) that are coupled
with a total of 71 penalty curves. Figure 21 shows the NURBS discretization of the stabilizer
geometry with internal structures, where the patch enclosed by the thicker blue edges is modeled
using continuum shells and all other remaining patches are modeled using KL shells. The thickness
information of each section is given in Table 1. The material is assumed to be aluminum for all the
sections with a Young’s modulus of E = 71.7 GPa and Poisson’s ratio of ν = 0.33. A uniformly
distributed traction load of 100 kPa in the −z direction is applied on the skin patches, and the root
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Figure 20: Aircraft horizontal stabilizer geometry showing skin, ribs, and spars. x, y and z indicate the global
coordinate system. The highlighted region indicates the continuum shell patch. gi are the base vectors of
the covariant system for the continuum shell patch. The 3D stresses through the thickness will be extracted
at the center of the continuum shell patch, as indicated by a through-thickness line.

Skin
Rib
Spar

Figure 21: NURBS discretization of the horizontal stabilizer geometry. Thicker edges indicate the patch
boundaries. Blue edges and mesh lines indicate patches modeled using continuum shells and the black
edges and mesh lines indicate the patches modeled using KL shells.

end of the stabilizer skin is clamped. The nonlinear static deformation analysis is carried out using
the blended shell approach with α = 103. The tip deflection in z at the trailing edge of the stabilizer
is reported for the mesh convergence study and comparison with reference solutions.

The mesh convergence analysis of the blended shell approach is carried out by performing
uniform h-refinement of the in-plane directions on the stabilizer patches, as shown in Table 2.
In order to obtain reference solutions, the nonlinear behavior of the same stabilizer is simulated
using the commercial software Abaqus with S4 shell elements [123] and using pure isogeometric
KL shells. In the case of pure isogeometric KL shells, the continuum shell patch in Figure 20 is
replaced by a KL shell patch, and the simulation is performed using the proposed pure KL shell
penalty coupling approach. The mesh statistics and the converged tip deflections obtained with
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Table 1: Thickness information for different sections of the stabilizer.

Section Number of patches Thickness (m)
Skin 6 0.04
Ribs 10 0.01
Spars 5 0.01

Table 2: Mesh statistics and z-displacement of the trailing edge at the tip location computed using different
meshes with the blended shell approach. Mesh 2 is shown in Figure 21.

Mesh
Number of
elements

Number of
DOFs

z-displacement (m)

1 954 6066 −0.279
2 3436 15951 −0.394
3 13744 52761 −0.399

Table 3: Solution comparison in terms of the maximum −z-displacement between the Abaqus reference
solution, the pure KL shell penalty coupling approach, and the proposed blended shell approach. The IGA
solutions are obtained using Mesh 3.

Method
Number of
elements

Number of
DOFs

Converged
z-displacement (m)

Abaqus S4 44410 261720 −0.401
KL shell 13744 50331 −0.399

Blended shell 13744 52761 −0.399

various methods are reported in Table 3, where excellent agreement can be found between the
Abaqus S4 model, the pure KL shell model, and the proposed blended shell model. The deformed
configurations of the stabilizer from both the KL shell and the blended shell analyses are also
shown in Figure 22, where the trailing-edge deflections at the tip are highlighted. The contour
plots illustrate a smooth deformation field with excellent agreement of the tip deflections.

In order to showcase the capability of the blended shell approach in high-fidelity stress pre-
dictions, the through-thickness distributions of the 3D Cauchy stress tensor at the center of the
continuum shell patch (as indicated in Figure 20) are extracted and shown in Figure 23. The stress
components are defined with respect to the local Cartesian coordinate system, ei. Within this con-
vention, e1 is aligned with g1 along the airfoil direction, e3 is aligned in the thickness direction, g3,
which points from the inner to the outer surface of the stabilizer, and e2 = e3× e1 is the in-plane di-
rection perpendicular to g1 that points from the root to the tip of the stabilizer (see Figure 20). The
in-plane stress components σ11, σ22, and σ12 obtained using the pure KL shell approach are also
plotted for comparison with the results from the blended shell analysis. As shown in Figure 23,
the through-thickness distributions of the stress components from the pure KL shell analysis are
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Figure 22: Displacement contour of the horizontal stabilizer for (a) KL shell and (b) blended shell analysis.
The maximum −z-displacement recorded is indicated. The lighter blue lines indicate the boundary edges of
the continuum patch.
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Figure 23: Through-thickness Cauchy stress distributions at the center of the continuum shell patch (see
Figure 20). The stress at the center of the corresponding KL shell patch is also extracted for comparison.
The stress components are defined with respect to the local Cartesian coordinate system. The subscript 1
denotes the direction along the airfoil that is aligned with g1, the subscript 2 denotes the in-plane direction
perpendicular to g1 that points from the root to the tip, and the subscript 3 denotes the thickness direction
that is aligned with g3, which points from the inner to the outer surface of the stabilizer.

linear, which is consistent with the KL shell assumption. By further comparing the in-plane stress
components between the KL shell and the continuum shell, the magnitude and overall behavior of
the stress components are relatively consistent; however, this comparison also reveals the lack of
accuracy in predicting the nonlinear through-thickness stress states using KL shells. Additionally,
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in contrast to the KL shell patches, where only the three in-plane stress components are directly
available, the continuum shell patch captures the three additional stress components in the trans-
verse direction. This information can be utilized for accurate multiaxial fatigue life evaluation and
provides valuable guidance on the regular maintenance and repair of horizontal stabilizers.

5. Conclusion

An isogeometric blended shell approach that couples rotation-free KL and continuum shells
is developed in this work. The key characteristic of the method is the inclusion of the penalty
energies in the principle of virtual work to impose displacement and rotational continuities across
interfaces of dissimilar shell types. The method primarily aims to provide compatibility between
isogeometric KL and continuum shells and simulate large-scale structures in a high-fidelity and
computationally efficient way by modeling critical structural components using continuum shells
and other components using KL shells. The developed formulation adopts a dimensionally con-
sistent penalty definition that yields accurate numerical performance across a wide range of ap-
plications. A dimensionless coefficient of α = 103 is recommended as an appropriate, problem-
independent penalty parameter that can be universally applied to different configurations. In addi-
tion, the method is applicable to non-matching and non-smooth interfaces joined at arbitrary angles
as well as isotropic and composite materials.

The efficacy of the developed blended shell approach is demonstrated through a number of
benchmark studies with a variety of problem configurations ranging from linear to nonlinear anal-
yses, matching to non-matching discretizations, and isotropic to composite materials. In order
to showcase the applicability of the blended shell approach to real-world engineering problems,
an aircraft horizontal stabilizer with internal structures is modeled using 21 NURBS patches and
71 penalty coupling curves. The solutions obtained from the blended shell analysis showed ex-
cellent agreement with the solutions from the pure KL shell analysis and commercial software
Abaqus. The through-thickness stress distributions at the center of the continuum shell patch are
also extracted to highlight the utility of the blended shell approach for localized high-fidelity stress
prediction. These results demonstrate the advantages of the developed blended shell methods for
the analysis of large-scale engineering problems that require 3D stress information. Using the
proposed approaches, these complex models can be simulated with manageable computational
resources, and comprehensive stress distributions can be accurately predicted for the critical struc-
tural components.
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