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Abstract In this work, we propose and validate a new
stabilized compressible flow finite element framework for
the simulation of aerospace applications. The framework
is comprised of the streamline upwind/Petrov–Galerkin
(SUPG)-based Navier–Stokes equations for compressible
flows, the weakly enforced essential boundary condi-
tions that act as a wall function, and the entropy-based
discontinuity-capturing equation that acts as a shock-
capturing operator. The accuracy and robustness of the
framework is tested for various Mach numbers ranging from
low-subsonic to transonic flow regimes. The aerodynamic
simulations are carried out for 2D and 3D validation cases
of flow around the NACA 0012 airfoil, RAE 2822 airfoil,
ONERA M6 wing, and NASA Common Research Model
(CRM) aircraft. The pressure coefficients obtained from the
simulations of all cases are compared with experimental
data. The computational results show good agreement with
the experimental findings and demonstrate the accuracy and
effectiveness of the finite element framework presented in
this work for the simulation of aircraft aerodynamics.
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1 Introduction

Over the years, numerous research and development efforts
in the aerospace industry have been carried out to improve
the fidelity of computational fluid dynamics (CFD) simula-
tions. While most of the CFD work in aerodynamics is based
on finite volume [1] or finite difference [2, 3] methods, sig-
nificant progress has also been made in the field of flow anal-
ysis using finite element methods [4], which are based on the
weak or variational forms of the governing equations. In the
1970s, the success of finite element methods in structural
mechanics encouraged their development to simulate flow
physics problems. The first significant development was the
streamline upwind/Petrov–Galerkin (SUPG) method for in-
compressible flows [5], which was later extended to com-
pressible flows using conservation variables [6] and entropy
variables [7–9]. The idea of SUPG was to add a residual-
based stabilization term to the Galerkin form of the govern-
ing equations to improve the stability of the finite element
method for simulating higher Reynolds number flows while
preserving consistency of the formulation. Over the years,
important progress was made in enhancing stabilized meth-
ods for compressible flow analysis [10–23], however, oscil-
lations in the vicinity of shocks and other sharp solution fea-
tures are often observed. To mitigate this challenge, shock-
or discontinuity-capturing operators were proposed [24–35]
to provide additional dissipation by adding solution- and
mesh-dependent artificial viscosity terms to a stabilized for-
mulation. These operators are often residual-based and thus
retain consistency of the formulation. A thorough review of
stabilized methods and discontinuity-capturing techniques
for compressible flows can be found in Hughes et al. [21].
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Another critical development of the finite element
method for fluid flow applications is the weak enforcement
of no-slip conditions. Weak imposition of essential bound-
ary conditions was introduced in Bazilevs et al. [36–38]
for incompressible flows and later extended to compressible
flows in Xu et al. [39]. Imposing the Dirichlet boundary con-
ditions weakly allows a certain amount of flow to slip on the
solid surface, which removes some of the burden from the
boundary-layer mesh to resolve the sharp velocity gradients
near the wall. This effect imitates the presence of a bound-
ary layer that would otherwise need to be resolved with spa-
tial refinement, allowing more accurate solutions on coarse
boundary-layer meshes [39–43]. Note that the weak Dirich-
let boundary conditions can be seen as a wall function, as
investigated in Bazilevs et al. [37] and Golshan et al. [44].
More recently, weakly enforced no-slip conditions were de-
veloped and applied in the context of immersogeometric
analysis [45–48], which led to solutions of higher-order ac-
curacy on non-boundary-fitted meshes.

Many aerospace applications fall under compressible
flow regimes and involve complex phenomena under differ-
ent flow conditions. Following numerous developments in
the compressible flow SUPG methodology, shock-capturing
operator, and weakly enforced essential boundary condi-
tions, finite element methods for compressible flows have
been successfully applied to many aerospace applications,
such as air intake of a jet engine with adjustable spool at
supersonic speeds [13], delta-wing [13, 39, 49], commer-
cial and fighter aircraft [13, 50], missile [51], spacecraft
parachute aerodynamics [22, 23], gas turbines [39, 52–54],
UH-60 rotorcraft [47], and hypersonic flows [55].

The objective of this work is to improve and validate
a finite element framework for 3D compressible viscous
flows, originally proposed in Xu et al. [39], for the simu-
lation of commercial aircraft applications. The methodol-
ogy, which is based on the Navier–Stokes equations of com-
pressible flows in an arbitrary Lagrangian–Eulerian (ALE)
frame, is formulated using pressure-primitive variables and
the reduced-energy equation to facilitate FSI modeling.
The framework is comprised of the SUPG stabilization,
the weakly enforced essential boundary conditions, and a
discontinuity-capturing operator for conservation variables.
This paper presents a summary of the formulations and in-
troduces a new entropy-based shock-capturing operator [28]
that allows us to obtain better solutions for the class of prob-
lems considered in this work. The accuracy and robustness
of the framework is tested for various Mach numbers rang-
ing from low-subsonic to transonic flow regimes. The aero-
dynamic simulations are carried out for two dimensional
(2D) validation cases of flow around the NACA 0012 [56–
58] and RAE 2822 [59] airfoils and three dimensional (3D)
cases of flow over the ONERA M6 wing [60] and the NASA
Common Research Model (CRM) aircraft [61–63]. The sim-

ulation results of all cases are compared with the corre-
sponding experimental data to demonstrate the accuracy and
effectiveness of the present framework for the prediction of
aircraft aerodynamics.

This paper is outlined as follows. First, we introduce
the variational form of the SUPG-based Navier–Stokes
equations of compressible flow in pressure-primitive vari-
ables along with weakly enforced essential boundary con-
ditions and the entropy-based shock-capturing definition.
Later, we present the 2D simulation results of flow over the
NACA 0012 and RAE 2822 airfoils at different flow condi-
tions. We also apply the method to simulate 3D flow over
the ONERA M6 wing model and the NASA CRM wing-
body model and compare all the simulation results with the
corresponding experimental or computational data. Finally,
we draw conclusions on the accuracy of the results obtained
using the present methodology for aerospace applications.

2 Methodology

This section summarizes the finite-element-based varia-
tional formulation for the Navier–Stokes equations of com-
pressible flows in an ALE frame [39]. The formulation
is stabilized using the SUPG stabilization methodology
and is augmented with a discontinuity-capturing operator
and weak enforcement of essential boundary conditions.
Throughout the paper, (·),t denotes a partial time derivative
taken with respect to a fixed spatial coordinate in the ref-
erential domain, and (·),i denotes a spatial gradient, where
i = 1, . . . , d for a spatial domain of dimension d. The con-
vention used for i applies to j and k. The Einstein summation
convention on repeated indices is also used throughout.

2.1 Strong form

The Navier–Stokes equations of compressible flows with a
reduced form of the energy equations [39, 47] are consid-
ered as the governing equations in this work. Before writ-
ing the formulation in the ALE frame, we first introduce
a reduced-conservation-variable vector, U, and a pressure-
primitive-variable vector, Y, as

U =


ρ

ρu1

ρu2

ρu3

ρe


, Y =


p
u1

u2

u3

T


, (1)

where ρ is the density, ui is the ith velocity component, e
is the fluid internal energy density, p is the pressure, and
T is the temperature. Pressure, density, and temperature are
related through the ideal gas equation of state, p = ρRT ,
where R is the ideal gas constant. Furthermore, we assume
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a calorically perfect gas and define the fluid internal energy
density as e = cvT , where cv = R/(γ − 1) is the specific heat
at constant volume, and γ is the heat capacity ratio.

Remark 1 U was designated as the vector of reduced
conversation variables since it was derived from the
conservation-variable vector Ũ for the reduced form of the
energy equation (see Xu et al. [39, Section 2.1] for details).

The convective ALE formulation of the balance of mass,
linear momentum, and energy in quasi-linear form involving
U may be stated as

U,t + ÂALE
i U,i −

(
K̂i jU, j

)
,i
− S = 0, (2)

where ÂALE
i = Âi + Âsp

i − ûiI, Âi =
∂Fadv

i
∂U , Âsp

i is such
that Âsp

i U,i = Fsp, I is a 5 × 5 identity matrix, ûi is the ith
component of the fluid domain velocity û, K̂i j is such that
K̂i jU, j = Fdiff

i , Fadv
i and Fdiff

i are the vectors of convective
and diffusive fluxes, respectively, defined as

Fadv
i = Fadv\p

i + Fp
i =


ρui

ρuiu1

ρuiu2

ρuiu3

ρuie


+


0

pδ1i

pδ2i

pδ3i

0


(3)

and

Fdiff
i =


0
τ1i

τ2i

τ3i

−ϕ
q
i


, (4)

Fsp is the contribution of stress–power in the energy equa-
tion, defined as

Fsp =


0
0
0
0

pui,i − τi ju j,i


, (5)

and S is the source term. In Eqs. (3)–(5), δi j is the Kro-
necker delta, and τi j and ϕq

i are the viscous stress and heat
flux, respectively, given by τi j = λuk,kδi j + µ

(
ui, j + u j,i

)
and

ϕ
q
i = −κT,i, where µ is the dynamic viscosity, λ is the sec-

ond coefficient of viscosity (λ = −2µ/3 based on Stokes’
hypothesis), and κ is the thermal conductivity.

Analogously, in the case of pressure-primitive variables
Y, the quasi-linear form of Eq. (2) can be written as

A0Y,t + AALE
i Y,i −

(
Ki jY, j

)
,i
− S = 0, (6)

where AALE
i = Ai+Asp

i − ûiA0, A0 =
∂U
∂Y , Ai =

∂Fadv
i
∂Y = ÂiA0,

Asp
i is such that Asp

i Y,i = Fsp, and Ki j is such that Ki jY, j =

Fdiff
i . Based on the splitting of Fadv

i into Fadv\p
i and Fp

i , we can
further split Ai as Ai = Aadv\p

i + Ap
i to separate the pressure

term from the convective flux. Detailed expressions for the
matrices appearing in the quasi-linear forms can be found in
Xu et al. [39, Appendix A].

It should be noted that the choice of conservation or
pressure-primitive variables does not change the balance
laws. In the present work, we use pressure-primitive vari-
ables because, unlike for conservation variables, the incom-
pressible limit of the Euler-Jacobian matrices is well defined
for the pressure-primitive variables [28]. In addition, as will
be seen in the next section, the weak boundary condition op-
erator for the pressure-primitive variables becomes a simple
extension of the incompressible-flow case.

Finally, for the developments in the next section, we de-
fine the strong-form residual of the Navier–Stokes partial
differential equations as

Res (Y) = A0Y,t + AALE
i Y,i −

(
Ki jY, j

)
,i
− S. (7)

Note that if Y is the exact analytical solution of the Navier–
Stokes equations, then Res (Y) = 0.

2.2 Weak form

The weak form of the Navier–Stokes equations of compress-
ible flows stated in the previous section can be written as
follows. Let Ω ∈ Rd denote the spatial domain and Γ be
its boundary. Assume the fluid domain Ω is divided into
Nel spatial finite elements each denoted by Ωe and the fluid
domain boundary Γ is decomposed into Neb surface ele-
ments where the bth element is denoted by Γb. Let Sh be
the discrete trial function space for the pressure-primitive
variables and Vh be the discrete test function space for
the compressible-flow equation system, both defined over
Ω. Let the essential boundary conditions be enforced on
ΓD ∈ Γ. The semi-discrete weak form of the compressible-
flow problem may be stated as: Find Yh = [ph uh T h]T ∈ Sh

such that for all test functions Wh = [qh wh wh
θ]

T ∈ Vh,

B
(
Wh,Yh

)
− F

(
Wh

)
+ BDC

(
Wh,Yh

)
−

Neb∑
b=1

∫
Γb∩ΓD

wh ·
(
σσσ(uh, ph)n

)
dΓ

−

Neb∑
b=1

∫
Γb∩ΓD

(
δσσσ(wh, qh)n

)
·
(
uh − gh

)
dΓ

−

Neb∑
b=1

∫
Γb∩Γ−D

wh · ρ
((

uh − ûh
)
· n

) (
uh − gh

)
dΓ

+

Neb∑
b=1

∫
Γb∩ΓD

wh · τµ
(
uh − gh

)
dΓ
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+

Neb∑
b=1

∫
Γb∩ΓD

(
wh · n

)
τλ

((
uh − gh

)
· n

)
dΓ

−

Neb∑
b=1

∫
Γb∩ΓD

wh
θκ∇T h · n dΓ

−

Neb∑
b=1

∫
Γb∩ΓD

κ∇wh
θ · n

(
T h − TB

)
dΓ

−

Neb∑
b=1

∫
Γb∩Γ−D

wh
θρcv

((
uh − ûh

)
· n

) (
T h − TB

)
dΓ

+

Neb∑
b=1

∫
Γb∩ΓD

wh
θτκ

(
T h − TB

)
dΓ = 0 . (8)

Here, gh is the prescribed velocity on the no-slip boundary,
TB is the prescribed temperature on the boundary, n is the
unit outward normal vector to the fluid domain, Γ−D is the
inflow part of ΓD where (uh − ûh) · n < 0, and σσσ and δσσσ are
the stress tensor and its variation, respectively, defined as

σσσ(uh, ph) = −phI +
(
λ∇ · uh

)
I + µ

(
∇uh + (∇uh)T

)
(9)

and

δσσσ(wh, qh) = ρqhI +
(
λ∇ · wh

)
I + µ

(
∇wh + (∇wh)T

)
. (10)

The first two terms in Eq. (8) are given by

B
(
Wh,Yh

)
=

∫
Ω

Wh ·
(
A0Yh

,t +
(
Aadv\p

i + Asp
i − ûiA0

)
Yh
,i

)
dΩ

−

∫
Ω

Wh
,i ·

(
Ap

i Yh −Ki jYh
, j

)
dΩ

+

Nel∑
e=1

∫
Ωe

((
AALE

i

)T
Wh
,i

)
·
(
A−1

0 τ̂ττSUPG

)
Res(Yh) dΩ (11)

and

F
(
Wh

)
=

∫
Ω

Wh · Sh dΩ +
∫
ΓH

Wh ·Hh dΓ, (12)

where A−1
0 =

∂Yh

∂Uh . On the right-hand side of Eq. (11), the first
two terms correspond to the Galerkin form of the Navier–
Stokes equations of compressible flows, and the third term
is the SUPG stabilization [10–23]. τ̂ττSUPG is the stabilization
matrix, and we refer the reader to Xu et al. [39] for more
details. In Eq. (12), the vector Hh contains the prescribed
values of the fluid traction and heat flux boundary condi-
tions.

The third term in Eq. (8) is the discontinuity-capturing
(DC) operator [24–35], which, in the present work, is de-
fined as

BDC
(
Wh,Yh

)
=

Nel∑
e=1

∫
Ωe

Wh
,i · (κ̂DCA0) Yh

,i dΩ , (13)

where κ̂DC is the DC parameter given by

κ̂DC = CDC

Res(Yh)TÃ−1
0 Res(Yh)

Gi jUh
,i

TÃ−1
0 Uh

, j


1
2

. (14)

In the above, CDC is a O(1) positive constant (CDC = 0.5
in this work), Gi j = ξk,i ξk, j is the element metric ten-
sor derived from the element geometric mapping from the
parent to physical coordinates x(ξ), and Ã0 is the zeroth
Euler–Jacobian of the transformation between the conser-
vation and entropy variables (see Hauke and Hughes [28,
Eq. A.82]). To avoid division by zero, a small positive
number is introduced in the denominator in addition to the
solution-dependent terms. Equation (14) is an extension of
the δ91 definition designed by Le Beau, Tezduyar and col-
leagues [11, 64], where only the convective part of the full
residual operator Res(Yh) was employed. While the SUPG
terms provide the necessary stability across a wide range
of Reynolds numbers, the discontinuity-capturing operator
provides the necessary additional dissipation in the shock re-
gions. Note that both SUPG stabilization and discontinuity-
capturing operators are homogeneous functions of the strong
residual of the Navier–Stokes equations (see Eq. (7)), which
renders the resulting method consistent and provides a path-
way to higher-order accuracy.

Remark 2 The definition of κ̂DC in Eqs. (13) and (14) is
based on the physical-coordinate derivatives. This produces
a definition of the shock viscosity that is isotropic for the
conservation variables, which, in turn, guarantees objectiv-
ity.

In Eq. (8), the terms from the second line to the last line
correspond to the weak enforcement of the velocity and tem-
perature boundary conditions. Weak imposition of essential
boundary conditions was first introduced in Bazilevs et al.
[36–38] for incompressible flows and later extended to com-
pressible flows in Xu et al. [39]. Imposing the Dirichlet
boundary conditions weakly allows a certain amount of flow
to slip on the solid surface, which removes some of the bur-
den from the boundary-layer mesh to resolve the sharp ve-
locity gradients near the wall. This effect imitates the pres-
ence of a boundary layer that would otherwise need to be
resolved with spatial refinement, allowing more accurate so-
lutions on coarse boundary-layer meshes [39–43]. We refer
the reader to Xu et al. [39] for the detailed definitions of the
penalty parameters τµ, τλ, and τκ in Eq. (8). Note that for
problems with adiabatic boundary conditions, the terms on
the last two lines of Eq. (8) are removed.

In the last two decades, the research on variational multi-
scale (VMS) methods was able to explain the origins of sta-
bilized methods [65] and to connect stabilization operators
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with the subgrid-scale models of turbulence [66]. In partic-
ular, the SUPG formulation may be viewed as a residual-
based VMS (RBVMS) model of turbulence with an alge-
braic closure model for the unresolved subgrid scales [67].
For incompressible flows, RBVMS was shown to perform
best in the regime of large-eddy simulation (LES) [68] mod-
eling of turbulent flows [69–85]. Just like traditional LES,
RBVMS alone requires relatively fine boundary-layer res-
olution to deliver accurate results for wall-bounded turbu-
lent flows. Weak enforcement of the no-slip conditions at
the wall in the context of RBVMS significantly reduces
the boundary-layer resolution requirements while maintain-
ing good accuracy of large scales in the flow [36–43]. Al-
though weak no-slip boundary condition enforcement is
unique to the variational methods (i.e., to the best of the au-
thors knowledge, there is no equivalent formulation in finite-
difference or finite-volume approaches), its ability to pre-
serve good solution accuracy on relatively coarse boundary-
layer meshes is akin to that of near-wall modeling ap-
proaches in traditional CFD [86], as investigated in Bazilevs
et al. [37] and Golshan et al. [44]. As such, the computa-
tional methodology presented in this work may be classified
as LES with near-wall modeling.

The semi-discrete weak form of the compressible-flow
equations given by Eq. (8) is discretized in time using a
second-order accurate, implicit generalized-α method [87–
89]. The solution of the nonlinear algebraic equation sys-
tem resulting from the generalized-α scheme is obtained at
each time step using the Newton–Raphson method. GMRES
with block-diagonal preconditioning [90] is used to approx-
imately solve the linear equation system at each Newton–
Raphson iteration.

Remark 3 The formulations presented here are all devel-
oped in the ALE frame suitable for moving-domain simu-
lations. While the numerical examples in this work are all
considered in fixed domains, the ALE version of the formu-
lation is presented here for completeness. For computations
with a fixed fluid domain, one can simply set û = 0 in the
above equations.

3 Results and Discussions

This section presents and validates the CFD results obtained
using finite-element-based compressible flow Navier-Stokes
equations augmented with SUPG stabilization, DC opera-
tor, and weakly enforced essential boundary conditions. We
report the simulation results for flow around the NACA
0012 airfoil, RAE 2822 supercritical airfoil, ONERA M6
wing, and NASA CRM wing-body aircraft. The simulated
flow problems cover Reynolds and Mach numbers ranging
from low-subsonic to transonic regimes, illustrating the gen-

eral applicability of the compressible-flow formulation pre-
sented in this work.

3.1 Flow over the NACA 0012 Airfoil

Case 1: The first validation example is the simulation of flow
over the 2D NACA 0012 airfoil from the NASA Turbulence
Modeling Resource [91], which is one of the fundamental
benchmark cases for code validation. Ladson [56] and Gre-
gory and O’Reilly [57] conducted several experimental tests
of flow over the NACA 0012 airfoil at different flow con-
ditions and documented the pressure distributions over the
airfoil. The freestream flow conditions for the first selected
case are M = 0.15, Re = 6 × 106, T = 300K, and α = 10◦.
The selected case is run and tested on meshes provided by
the NASA Turbulence Modeling Resource [91].

Three structured meshes with 225 × 65, 449 × 129,
and 897 × 257 elements are selected and labeled as coarse,
medium, and fine grids, respectively. The grids have a
farfield boundary at 500c, where c = 1 is the chord length for
the selected NACA 0012 airfoil. Figure 1a shows the near-
airfoil discretization for the medium grid case. On the airfoil
surface, no-slip velocity boundary conditions are enforced
weakly in the tangential components, and a strong zero ve-
locity (no-penetration) boundary condition is imposed in the
normal surface component. Additionally, the airfoil surface
is assumed to be adiabatic with a zero heat-flux boundary
condition. The temperature-dependent viscosity value is set
according to Sutherland’s law as

µ = µr

(
T
Tr

)3/2 Tr + S
T + S

, (15)

and the thermal conductivity is calculated using

κ = µcp/Pr, (16)

where µr = 1.716 × 10−5 kg/(m·s), Tr = 273.15 K, S =
110.4 K, Pr = 0.72, and cp is the specific heat at constant
pressure calculated based on γ = 1.4.

Figure 1b (bottom) shows the Mach number contour
plot for the simulation performed using the medium grid
case. Figure 1b (top) shows the pressure coefficient (Cp)
plot along the airfoil location from the leading edge
(X/C = 0) to trailing edge (X/C = 1). The plot shows
the mesh convergence study performed on all three grids
compared with the two experimental data sets [56, 57]. The
results obtained from the CFD simulations show solution
convergence under mesh refinement and demonstrate good
agreement with the experimental data.

Case 2: Another case of flow over the NACA 0012 airfoil
is computed for a low-subsonic compressible flow regime.
The freestream flow conditions for the selected case are
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Fig. 1: (a) Near-airfoil mesh discretization of the NACA 0012 airfoil for the medium grid case (449 × 129 elements). (b) Pressure coefficient
comparison plot for different grid sizes compared with experimental data [56, 57] (top) and Mach number contour plot (bottom) for Case 1:
M = 0.15, Re = 6 million, α = 10◦. (c) Pressure coefficient plot for different grid sizes compared with experimental data [58] (top) and Mach
number contour plot (bottom) for Case 2: M = 0.35, Re = 3 million, α = 5.88◦.
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Fig. 2: (a) Near-airfoil mesh discretization of the RAE 2822 airfoil. (b) Pressure coefficient plot compared with the experimental data [59] and
simulated results from the WIND code [92]. (c) Mach number contour plot around the RAE 2822 airfoil: M = 0.729, Re = 6.5 million, α = 2.31◦.

M = 0.35, Re = 3 × 106, T = 300K, and α = 5.88◦. The
experimental testing at the selected flow condition has been
well studied, and documentation of the pressure coefficient
results can be found in Harris [58]. The same three struc-
tured grids from case 1 are used to perform the simula-
tions at the given flow condition in case 2. On the airfoil
surface, no-slip velocity boundary conditions are enforced
weakly in the tangential components, and a strong zero ve-
locity (no-penetration) boundary condition is imposed in the
normal surface component. Additionally, the airfoil surface
is assumed to be adiabatic with a zero heat-flux boundary
condition. The temperature-dependent viscosity and thermal
conductivity values are determined according to Eqs. (15)

and (16) with µr = 1.716 × 10−5 kg/(m·s), Tr = 273.15 K,
S = 110.4 K, Pr = 0.72, and cp the specific heat at constant
pressure calculated based on γ = 1.4.

Figure 1c (bottom) shows the 2D Mach number contour
plot around the airfoil for the simulation performed using
the medium grid case. Figure 1c (top) shows the pressure
coefficient (Cp) plot along the airfoil location from the lead-
ing edge (X/C = 0) to trailing edge (X/C = 1). The plot
shows the mesh convergence study performed on all three
grids compared with the two experimental data sets from
Harris [58]. The CFD results demonstrate convergence un-
der mesh refinement and good agreement with the experi-
mental results.
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Fig. 3: (a) ONERA M6 experimental wind-tunnel setup [60] and CAD geometry model showing different spanwise locations. (b) Computational
domain and boundary conditions.

3.2 Transonic flow over the RAE 2822 Airfoil

The present methodology is also applied to simulate flow
over the RAE 2822 airfoil in the transonic flow regime. The
selected test case has been experimentally well studied and
documented by Cook et al. [59]. Transonic flow over the
RAE 2822 is one of the standard cases for compressible
flow validation studies because of the strong shock wave
formation on the upper surface of the airfoil, which can in-
duce boundary-layer separation. The free-stream flow con-
ditions for the selected case are M = 0.728, Re = 6.5 × 106,
T = 255.556 K, and α = 2.31◦. The standard mesh of
size 395 × 65 with 306 points on the airfoil surface pro-
vided by the NPARC Alliance Verification and Validation
Archive [93] was used to obtain a direct comparison with
the other simulated data. Figure 2a shows the near-airfoil
discretization for the selected grid. On the airfoil surface,
no-slip velocity boundary conditions are enforced weakly in
the tangential components, and a strong zero velocity (no-
penetration) boundary condition is imposed in the normal
surface component. A zero heat-flux temperature bound-
ary condition is also applied on the airfoil surface. The
temperature-dependent viscosity and thermal conductivity
values are determined according to Eqs. (15) and (16) with
µr = 1.716 × 10−5 kg/(m·s), Tr = 273.15 K, S = 110.4
K, Pr = 0.72, and cp the specific heat at constant pressure
calculated based on γ = 1.4.

The simulated flow field around the RAE 2822 airfoil
was examined through the Mach number contour field and
pressure coefficient Cp data plotted along the airfoil. Fig-
ure 2c shows the Mach number contour plot, which clearly
shows the smooth formation of the shock on the upper sur-

face of the airfoil. Figure 2b shows the pressure coefficient
results compared with the experimental data set from Cook
et al. [59] and the simulated results from the WIND code
provided by the NPARC Alliance Verification and Valida-
tion Archive [92]. The results for the pressure coefficient
data obtained from the present simulations show good agree-
ment with the experimental results. In particular, the shock
location and the drop in the pressure is accurately captured
in the simulation, which demonstrates the effectiveness of
the entropy-based discontinuity-capturing operator used in
the present finite-element framework.

3.3 ONERA M6 Wing

The simulation of flow over the 3D ONERA M6 wing is
performed in the transonic flow regime. The selected test
case has been experimentally studied, and the pressure co-
efficient results have been well documented by Schmitt and
Charpin [60] as ONERA M6 case number 2308. The free-
stream flow conditions for the selected case are M = 0.84,
Re = 14.6 × 106 based on the root chord, T = 300 K,
and α = 3.06◦. At these conditions, the simple geome-
try of the ONERA M6 wing features complex flow phe-
nomenon, such as boundary-layer interaction and flow sep-
aration, and the experimental results have been widely used
for CFD validation studies. Figure 3 shows the ONERA M6
experimental setup and corresponding CAD geometry, ob-
tained from the NASA Turbulence Modeling Resource [94]
and NPARC Alliance Verification and Validation Archive
[95], together with the computational domain and bound-
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Fig. 4: Computational mesh and near-surface mesh discretization for the ONERA M6 case.

Table 1: ONERA M6 mesh statistics for refinement study.

Mesh
Total number of
elements

Element size on
wing surface (m)

Number of
boundary layers

First boundary
layer height (m)

Growth
ratio

Outer domain
element size (m)

Coarse 1,296,546 0.02 9 0.002 1.2 25
Medium 5,317,478 0.01 12 0.001 1.2 12.5
Fine 13,558,505 0.005 15 0.0005 1.2 6.25

ary conditions. Figure 4 shows the unstructured mesh of the
computational domain and two additional enlarged views of
the mesh near the wing. On the surface of the wing, the
no-slip boundary conditions are enforced weakly, while the
no-penetration boundary conditions are imposed strongly. A
zero heat-flux temperature boundary condition is also ap-
plied on the airfoil surface. Symmetry boundary conditions
are imposed on the plane extending from the wing root. The
temperature-dependent viscosity and thermal conductivity
values are determined according to Eqs. (15) and (16) with
µr = 1.716 × 10−5 kg/(m·s), Tr = 273.15 K, S = 110.4
K, Pr = 0.72, and cp the specific heat at constant pressure
calculated based on γ = 1.4.

To show the solution convergence, a refinement study
based on three different meshes was carried out. The mesh
statistics are summarized in Table 1. Figure 5 shows the re-
sults for the pressure coefficient at different spanwise loca-
tions, which demonstrates the solution convergence under
mesh refinement. Figure 6 shows the pressure coefficient
contour plot on the surface of the ONERA M6 wing, which
clearly demonstrates the smooth formation and capturing of
the shock structures on the wing. The pressure coefficient
(Cp) data at different spanwise locations (η) on the wing
for the medium level mesh are also compared with the ex-

perimental data set [60] and the simulated results from the
FUN3D (SA-neg) [96] and WIND [97] codes, as shown in
Figure 7. The results for the pressure coefficient data ob-
tained from the present simulations are in good agreement
with the experimental results. Additionally, in the present
simulation, the spacing of the first boundary-layer element
height normal to the wing surface for the medium level mesh
is 0.001 m, which is approximately 60 times larger than the
mesh used to obtain results from FUN3D and WIND codes.
The results obtained using the coarser boundary-layer mesh
demonstrate the effectiveness of the weakly enforced es-
sential boundary conditions in capturing accurate near-wall
solutions without high boundary-layer resolution require-
ments. The accuracy in capturing the shock locations and
pressure drops at different spanwise locations on the wing
shows the effectiveness of the entropy-based discontinuity-
capturing operator for three dimensional flow problems.

3.4 Common Research Model

3D flow simulation over the NASA CRM wing-body config-
uration is performed at transonic conditions [61]. The CRM
geometry and simulation conditions mimic the design of a
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Fig. 5: Pressure coefficient plot for different ONERA M6 mesh sizes compared with experimental data [60]. See Figure 3 for corresponding η
locations.

Fig. 6: Pressure coefficient contour plot on the ONERA M6 wing sur-
face. Line contour of the pressure slices are also plotted at different
wing locations to illustrate the shock formation.

modern commercial aircraft and were initially designed for
the benchmark problem in the 6th AIAA CFD Drag Pre-
diction Workshop [98]. Experimental studies of the NASA
CRM have been conducted in the NASA Langley National
Transonic Facility (NTF) and the NASA Ames 11-Foot
Transonic Wind Tunnel (11-ft TWT), and the experimen-
tal pressure coefficient results are well documented [62, 63].
Experimental investigations have been performed at differ-
ent Reynolds numbers and CRM configurations with op-
tional horizontal tail and optional nacelle/pylon attached to
the model. In this study, we consider and simulate the half-
cut model of the wing-body (without horizontal tail and na-
celle/pylon) configuration using free-stream flow conditions
of M = 0.85, Re = 5 × 106 based on the mean aerodynamic

chord, T = 310.9 K, and α = 2.75◦. Figure 8 shows the
experimental setup and CAD geometry of the CRM wing-
body and the computational domain along with the domain
boundary conditions. The CRM wing-body geometry con-
sidered in this simulation corresponds to the 2.75-degree
aeroelastic deflection geometry model obtained from the
AIAA workshop website [98]. Figure 9 shows the unstruc-
tured mesh discretization of the computational domain with
additional enlarged views of the CRM and the wing section.
The computational mesh is comprised of 12,818,968 linear
elements. The size of the first element in the wall-normal di-
rection is 0.006 m, and 12 layers of boundary-layer elements
were generated with a growth ratio of 1.2. On the surface
of the wing, the no-slip boundary conditions are enforced
weakly, while the no-penetration boundary conditions are
imposed strongly. A zero heat-flux temperature boundary
condition is also applied on the airfoil surface. Symmetry
boundary conditions are imposed on the plane extending
from the wing root. The temperature-dependent viscosity
and thermal conductivity values are determined according
to Eqs. (15) and (16) with µr = 1.716 × 10−5 kg/(m·s),
Tr = 273.15 K, S = 110.4 K, Pr = 0.72, and cp the spe-
cific heat at constant pressure calculated based on γ = 1.4.

Figure 10 shows the vorticity isosurfaces colored by ve-
locity magnitude around the CRM model, including the for-
mation of the shock structures on the wing surface. Fig-
ure 11a shows the pressure coefficient contour plotted on
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Fig. 7: Pressure coefficient plot across different spanwise cross-sections of the ONERA M6 medium level mesh (see Figure 3 for corresponding η
locations) compared with experimental data [60] and simulated results from the FUN3D [96] and WIND [97] codes.

(a)

1500 m

1400 m

700 m

α

Freestream BC
M = 0.85
Re = 5 × 106

α=2.75°

Symmetry side

Freestream BC

Freestream BC

Freestream BC

(b)

Fig. 8: (a) Wing-body configuration CRM experimental wind-tunnel setup [62] and right-half of the CAD geometry model used to perform the
CFD simulation. (b) Computational domain and boundary conditions.

the top and bottom surfaces of full CRM wing-body model.
The pressure coefficient data at different spanwise locations
on the wing are plotted in Figure 11b and compared with
the experimental data set [62, 63] and the simulated results
corresponding to the Spalart–Allmaras model obtained from
the 6th AIAA CFD Drag Prediction Workshop [98]. Note

that the CRM geometry considered here is based on a 2.75-
degree aeroelastic deflection geometry model, and the sim-
ulation is performed at a 2.75-degree angle of attack. Since
the experimental data obtained from the NASA NTF and
11-ft TWT are not recorded at a 2.75-degree angle of at-
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Fig. 9: Computational mesh and near-surface mesh discretization for the CRM wing-body configuration.

Fig. 10: Vorticity isosurfaces colored by velocity magnitude around the CRM model. Line contour of the pressure coefficient slices are also plotted
at different wing locations to illustrate the shock formation.

tack, the nearest angle of attack data at 2.6 and 2.86 degrees
are selected and compared with the simulation results. The
pressure coefficient data from the present simulations are in
good agreement with the plotted experimental data. The ac-
curacy in capturing the shock locations and pressure drops
at different spanwise locations on the wing shows the effec-
tiveness of the entropy-based discontinuity-capturing opera-
tor for three dimensional flow problems at transonic regime.
The results obtained using the coarser boundary-layer mesh
with 60 times larger wall spacing compared to the medium
level mesh from the AIAA workshop [98] demonstrate the
effectiveness of the weakly enforced essential boundary con-
ditions in capturing the flow solutions without excessive
boundary-layer refinements.

4 Conclusions

This paper presents a finite-element-based stabilized com-
pressible flow methodology that is comprised of SUPG,
weakly enforced essential boundary conditions, and an
entropy-based shock-capturing operator. The accuracy of
the formulation is demonstrated and validated through 2D
and 3D benchmark cases at different flow conditions. The
aerodynamic simulations were conducted at low subsonic
conditions for the NACA 0012 airfoil and at a transonic con-
dition for the RAE 2822 airfoil. 3D flow simulations of the
ONERA M6 wing and NASA CRM wing-body aircraft con-
figuration were also performed and investigated at transonic
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Fig. 11: (a) Pressure coefficient contour plot on the CRM top and bottom surfaces. (b) Pressure coefficient plot across different spanwise cross-
sections compared with the experimental data.

flow conditions. The pressure coefficient results obtained
from both 2D and 3D simulations were in good agreement
with the experimental data. The 3D simulation results ob-
tained using the coarser boundary-layer mesh show the ef-
fectiveness of the weakly enforced essential boundary con-
ditions in solving wall-bounded turbulent flow problems.
The entropy-based discontinuity-capturing operator used in
this work successfully captures smooth and accurate shock
solutions in the transonic flow problems. Overall, the results
presented in this paper demonstrate the accuracy and effec-
tiveness of the stabilized finite element formulation with the
weak enforcement of no-slip conditions and entropy-based
discontinuity-capturing operator in simulating aircraft aero-
dynamics. Future work includes extending the framework
to handle fluid–structure interaction with non-matching in-
terface discretizations [99], and examining the effect of the
node-numbering-invariant directional length scale [100] on
these types of simulations.
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