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Numerical-Performance Studies for the Stabilized
Space–Time Computation of Wind-Turbine Rotor
Aerodynamics

Abstract We present our numerical-performance stud-
ies for 3D wind-turbine rotor aerodynamics computation
with the Deforming-Spatial-Domain/Stabilized Space–
Time (DSD/SST) formulation. The computation is chal-
lenging because of the large Reynolds numbers and ro-
tating turbulent flows, and computing the correct torque
requires an accurate and meticulous numerical approach.
As the test case, we use the NREL 5MW o↵shore base-
line wind-turbine rotor. We compute the problem with
both the original version of the DSD/SST formulation
and the version with an advanced turbulence model. The
DSD/SST formulation with the turbulence model is a
recently-introduced space–time version of the residual-
based variational multiscale method. We include in our
comparison as reference solution the results obtained
with the residual-based variational multiscale Arbitrary
Lagrangian–Eulerian method using NURBS for spatial
discretization. We test di↵erent levels of mesh refinement
and di↵erent definitions for the stabilization parameter
embedded in the “least squares on incompressibility con-
straint” stabilization. We compare the torque values ob-
tained.
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1 Introduction

Wind-turbine rotor aerodynamics has become an appli-
cation and testing area for some of the most advanced
computational mechanics techniques. For example, two
recent journal articles [1; 2] document how advanced
computational fluid mechanics and fluid–structure inter-
action (FSI) techniques were used in the first compre-
hensive e↵ort to simulate wind-turbine rotors in 3D at
full scale, including rotor-geometry definition, meshing,
aerodynamic and structural modeling, and fully-coupled
FSI computation. Isogeometric analysis [3] was employed
for the bulk of the computations reported in [1; 2]. Wind-
turbine rotor aerodynamics also partially motivated the
development of the most recent version of the Deforming-
Spatial-Domain/Stabilized Space–Time (DSD/SST) for-
mulation. The DSD/SST formulation was introduced in [4;
5; 6], was supplemented in [7] with advanced stabilization
parameters, gained in [8] new versions with increased
scope and robustness, and was elevated in [9] to a new
version with an advanced turbulence model. This most
recent DSD/SST formulation with the turbulence model
is a space–time version [9] of the residual-based varia-
tional multiscale (VMS) method [10; 11; 12; 13]. It was
successfully tested on wind-turbine rotor aerodynamics
in [14].

Addressing the type of computational challenges in-
volved in wind-turbine rotor aerodynamics has been a
part of the computational mechanics research targeting
flows with moving boundaries and interfaces (see, for ex-
ample, [15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27;
28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41; 42;
43; 44; 45; 8; 46; 47; 48; 49; 50; 51; 52; 53; 54; 55; 56; 57;
58; 59; 60; 61; 62; 63; 64; 65; 66; 67; 68; 69; 70; 71; 72;
73; 1; 2; 74; 75; 76; 77; 78; 79; 9; 80; 81; 82; 83]), includ-
ing FSI and flows with mechanical components in fast,
linear or rotational relative motion [22; 25; 28; 32; 59].
With the terminology used in [84], we can categorize a
method for flow problems with moving boundaries and
interfaces as an interface-tracking (moving-mesh) tech-
nique or an interface-capturing (nonmoving-mesh) tech-
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nique, or a combination of the two. Comments on the
advantages and disadvantages of these two categories of
techniques and how they can be enhanced or combined
were provided in [14], together with references [84; 28; 7;
85; 8; 86; 51] on these matters

The DSD/SST formulation is one of the earliest space–
time techniques for moving boundaries and interfaces. Its
stabilization components are the Streamline-Upwind/Petrov-
Galerkin (SUPG) [87] and Pressure-Stabilizing/Petrov-
Galerkin (PSPG) [4; 88] methods. The DSD/SST formu-
lation, like most stabilized formulations, involves stabi-
lization parameters that play an important role in deter-
mining the accuracy of the formulation. There are var-
ious ways of defining the stabilization parameters (see,
for example, [89; 4; 90; 7; 91; 92; 93; 94; 95; 42; 96; 8;
97; 98; 99; 100]). The ones used with the DSD/SST for-
mulation in recent years have mostly been those given
in [7; 8], including the stabilization parameter embed-
ded in the “least squares on incompressibility constraint
(LSIC)” stabilization.

The new-generation DSD/SST formulations introduced
in [8] were named “DSD/SST-SP”, “DSD/SST-TIP1”
and “DSD/SST-SV” to di↵erentiate them from the orig-
inal version introduced in [4; 5; 6], which was named
“DSD/SST-DP” in [8]. The new formulations have been
the core technologies of the stabilized space–time FSI
(SSTFSI) technique, which was also introduced in [8].
The SSTFSI technique, supplemented with special FSI
techniques targeting specific classes of problems, has been
successfully applied to complex, real-world problems, such
as computer modeling of the Orion Spacecraft parachutes
(see [51; 52; 72; 75; 77; 80; 81]) and patient-specific mod-
eling of cerebral aneurysms (see [43; 53; 60; 65; 67; 66;
76; 79; 82]).

The new DSD/SST formulation introduced in [9],
which is the space–time version of the residual-based
VMSmethod, was implemented specifically for DSD/SST-
DP, and it was named in [9] “DSD/SST-DP-VMST”
(implying the version with the VMS turbulence model).
To di↵erentiate it from this new version, the original
DSD/SST-DP version was named in [9] “DSD/SST-DP-
SUPS” (implying the version with the SUPG/PSPG sta-
bilization). In [14], we tested the DSD/SST-DP-VMST
formulation on wind-turbine rotor aerodynamics for the
first time. The objective was to show that this new for-
mulation gives a good torque value. In the numerical-
performance studies we conduct in this paper for the
DSD/SST computation of wind-turbine rotor aerody-
namics, we use the DSD/SST-DP-VMST and DSD/SST-
DP-SUPS formulations with di↵erent levels of mesh re-
finement and di↵erent definitions for the stabilization
parameter embedded in the LSIC stabilization. In the
test computations we use is the NREL 5MW o↵shore
baseline wind-turbine rotor, with the geometry coming
from [1]. We include in our comparison as reference so-
lution the results obtained with the residual-based VMS
ALE method using NURBS for spatial discretization.

The geometry of the wind-turbine rotor blade and
hub is described in Section 2. The problem setup, mesh
generation and computations are presented in Section 3.
The concluding remarks are given in Section 4.

2 Geometry construction for the wind-turbine

rotor blade and hub

The geometry construction for the wind-turbine rotor
blade and hub we are using in the computations was
described in [1; 14], and we provide some of that infor-
mation here. The geometry of the rotor blade is based on
the NREL 5MW o↵shore baseline wind turbine reported
in [101]. A 61 m blade is attached to a hub with radius of
2 m, making the total rotor radius, R, 63 m. The blade is
composed of several airfoil types (see Figure 1). The first
portion of the blade is a perfect cylinder. Farther away
from the root the cylinder is smoothly blended into a
series of DU (Delft University) airfoils. Starting at 44.55
m from the root and all the way to the tip, the NACA64
is profile used. For each cross-section, we use quadratic
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Fig. 1 Airfoil types used in the design of the wind-turbine
rotor blade.

NURBS to represent the 2D airfoil shape. The weights of
the NURBS functions are set to unity. The weights are
adjusted near the root to represent the circular cross-
sections exactly. The cross-sections are lofted along the
blade axis direction, also using quadratic NURBS and
unit weights. This geometry-construction process yields
a smooth blade surface with a relatively small number of
input parameters, which is an advantage of the isogeo-
metric representation. The final blade shape is shown in
Figure 2, together with the airfoil shapes. Figure 2 also
shows the airfoils seen with a viewing direction parallel
to the blade axis, and that illustrates the twisting of the
cross-sections.
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Fig. 2 Top: Airfoils superposed on the blade. Bottom: Air-
foils seen with a viewing direction parallel to the blade axis,
illustrating the twisting of the cross-sections. Axes units are
meters.

3 Computation with the DSD/SST formulation

3.1 Problem setup and mesh generation

We compute the aerodynamics of the rotor, shown in
Figure 3, with a prescribed shape and speed with a ro-
tating mesh. The wind speed is uniform at 9 m/s and
the rotor speed is 1.08 rad/s, giving a tip speed ra-
tio of 7.55 (see [102] for wind-turbine terminology). We
use air properties at standard sea-level conditions. The
Reynolds number (based on the chord length at 3

4R and
the relative velocity there) is approximately 12 million.
At the inflow boundary the velocity is set to the wind
velocity, at the outflow boundary the stress vector is set
to zero, and at the radial boundary the radial and cir-
cumferential components of the velocity are set to zero.

3.2 Surface mesh

To generate the triangular mesh on the rotor surface, we
started with a quadrilateral surface mesh generated by
interpolating the NURBS geometry at each knot inter-
section. We subdivided each quadrilateral element into

Fig. 3 Wind-turbine rotor.

triangles and then made minor modifications to improve
the mesh quality near the hub. We use three di↵erent
meshes: Mesh-2, Mesh-3 and Mesh-4, with the surface
mesh refined along the blade 2, 3 and 4 times, respec-
tively, compared to the finite element mesh used in [1].
The number of nodes and elements for each blade sur-
face mesh is shown in Table 1, and Figure 4 shows the
surface mesh for Mesh-4.

3.3 Volume mesh

For computational e�ciency, rotational-periodicity [75;
77] is utilized so that the domain includes only one of
three blades, as shown in Figure 5. The inflow, outflow
and radial boundaries lie 0.5R, 2R and 1.43R from the
hub center, respectively. This can be more easily seen
in Figure 6, where the inflow, outflow, and radial bound-
aries are the left, right and top edges, respectively, of the
cut plane along the rotation axis. Each periodic bound-
ary contains 1,430 nodes and 2,697 triangles. Near the
rotor surface, we have 22 layers of refined mesh with first-
layer thickness of 1 cm and a progression factor of 1.1.
The boundary layer mesh at 3

4R is shown in Figure 7.

Surface Volume
nn ne nn ne

Mesh-2 5,748 11,452 155,494 898,640
Mesh-3 7,552 15,060 205,855 1,195,452
Mesh-4 9,268 18,492 253,340 1,475,175

Table 1 Summary of the meshes. Here nn and ne are the
number of nodes and elements.

The number of nodes and elements for each volume mesh
is shown in Table 1.
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Fig. 4 Rotor surface mesh (Mesh-4).

Fig. 5 Rotationally-periodic domain with wind-turbine
blade shown in blue.

3.4 Computation

We compute the problem with the DSD/SST-DP-SUPS
and DSD/SST-DP-VMST [9] techniques. For the VMST
technique, we test both definitions of “⌫C” given in [9].
We will call the one given by Eq. (17) in [9] “TC2”, and
the one given by Eq. (18), “TGI”. In addition, we use

Fig. 6 Cut plane of the fluid volume mesh along rotor axis
(Mesh-4).

Fig. 7 Boundary layer mesh at 3
4R.

the following definition of ⌫C:

⌫C =
�
⌫�2
LSIC

+ ⌫�2
HRGN

�� 1

2 , (1)

⌫LSIC = ⌧SUPG kuh � v
hk2, (2)

⌫HRGN =
h2

RGN

⌧SUPG

, (3)

where hRGN is given by Eqs. (10) and (11) in [8]. We call
this option “LHC”.

Remark 1 Eq. (3), which comes from [13], has been

modified for compatiblity with other stabilization param-

eters.

With the SUPS technique, we test two options, one with
the “LSIC” stabilization, and one without. The compu-
tations are summarized in Table 2.

In solving the linear equation systems involved at ev-
ery nonlinear iteration, the GMRES search technique [103]
is used with a diagonal preconditioner. The computation
is carried out in a parallel computing environment, using
PC clusters. The mesh is partitioned to enhance the par-
allel e�ciency of the computations. Mesh partitioning is
based on the METIS algorithm [104]. The time-step size
is 4.67⇥10�4 s. The number of nonlinear iterations per
time step is 3 with 30, 60 and 500 GMRES iterations for
the first, second and third nonlinear iterations, respec-
tively.

Prior to the computations reported here, we performed
a series of brief computations with the DSD/SST-DP-
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Method Stabilization Mesh

SUPS LSIC Mesh-4
SUPS No LSIC Mesh-2
SUPS No LSIC Mesh-3
SUPS No LSIC Mesh-4
VMST TGI Mesh-2
VMST TGI Mesh-3
VMST TGI Mesh-4
VMST TC2 Mesh-4
VMST LHC Mesh-4

Table 2 Summary of the computations.

SUPS technique, starting from a lower Reynolds num-
ber and gradually reaching the actual Reynolds number.
This solution is used as the initial condition also for the
computations with the DSD/SST-DP-VMST technique.
The purpose is to generate a divergence-free and reason-
able flow field at this Reynolds number. We note that it
was especially di�cult with the VMST option to start
from non-physical conditions, such as setting all nodes
except those on the blade to the inflow velocity.

3.5 Results

Figures 8–10 show the time history of the aerodynamic
torque and the torque contribution from each patch for
a single blade at t = 1.0 s. The patches are defined as
shown in Figure 11.

Figures 12–14 show the pressure distribution on the
suction side of the blade, near the tip. The torque is gen-
erated mostly by the lower pressure region, which is the
bottom, smooth-colored region of the blade shown in the
pictures. Figures 15–17 show the pressure coe�cients at
t = 1.0 s for Patch 16 (at 0.90R), which is a represen-
tative section of the blade. For most of the patches, the
angle of attack and Reynolds number do not vary much
from one patch to another. For example, the angle of
attack and Reynolds number are 7.6� and 9.6 ⇥ 106 for
Patch 16 (at 0.90R).

Remark 2 As mentioned in [14], we believe that the

torque level reached with the TC2 definition of ⌫C, and
now also with the LHC definition, may still not be unrea-

sonable, because we are computing with a computational

domain that extends only 1.43R in the radial direction.

This calls for further investigation.

3.6 Discussion

3.6.1 Surface-mesh refinement

Mesh refinement studies for both the SUPS and VMST
techniques indicate good convergence. This is shown in
Figures 8 and 9. We note that both the DSD/SST-DP-
SUPS and DSD/SST-DP-VMST (TGI) techniques do
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Fig. 8 The aerodynamic torque generated by a single blade.
Comparison between di↵erent meshes with the DSD/SST-
DP-SUPS technique. Time history (top). The torque contri-
bution from each patch at t = 1.0 s (bottom).

not perform well with Mesh-2. Looking at Figures 12–13
and 15–16, we see larger pressure fluctuations for Mesh-
2. This is an evidence of a larger vortex, which we believe
to be caused by a lack of numerical stability.

3.6.2 SUPS with and without LSIC stabilization

As can be seen in Figure 10, the DSD/SST-DP-SUPS
technique with LSIC stabilization does not perform well.

3.6.3 VMST with di↵erent ⌫C definitions

The TC2 and LHC options yield very similar results, as
opposed to the TGI option, which predicts significantly
lower torque. We believe this to be mainly related to the
stabilization near the boundary; while ⌫C for the TC2
and LHC options goes to zero, it goes to larger and larger
values for the TGI option as the time step size becomes
smaller and smaller.

4 Concluding remarks

We have conducted numerical-performance studies for
the DSD/SST computation of wind-turbine rotor aero-
dynamics. These computations are challenging because
of the large Reynolds numbers and rotating turbulent
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Fig. 9 The aerodynamic torque generated by a single blade.
Comparison between di↵erent meshes with the DSD/SST-
DP-VMST (TGI) technique. Time history (top). The torque
contribution from each patch at t = 1.0 s (bottom).

flows, and computing the correct torque requires much
care. As the test case, we used the NREL 5MW o↵-
shore baseline wind-turbine rotor. We reported results
obtained with both the original version of the DSD/SST
formulation and the version with an advanced turbulence
model. The original version is the DSD/SST-DP-SUPS
formulation, which has the SUPG and PSPG stabiliza-
tions. The DSD/SST formulation with the turbulence
model is a recently-introduced space–time version of the
residual-based VMS method. We used these two formula-
tions with di↵erent levels of mesh refinement and di↵er-
ent definitions for the stabilization parameter embedded
in the LSIC stabilization. We included in our compar-
ison as reference solution the results obtained with the
residual-based VMS ALE method using NURBS for spa-
tial discretization.
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