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Abstract

In this paper we present a new strategy for obtaining blood vessel tissue pre-
stress for use in fluid–structure interaction (FSI) analysis of vascular blood flow.
The method consists of a simple iterative procedure and is applicable to a large
class of vascular geometries. The formulation of the solid problem is modified
to account for the tissue prestress by employing an additive decomposition of the
second Piola–Kirchhoff stress tensor. Computational results using patient-specific
models of cerebral aneurysms indicate that tissue prestress plays an important role
in predicting hemodynamic quantities of interest in vascular FSI simulations.
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1. Introduction

In recent years, a considerable effort was put forth to apply computational tech-
niques to study and classify flow patterns and hemodynamic quantities of interest in
a large sample of patient-specific cerebral aneurysm shapes. These results, practi-
cally unattainable in experiments or measurements, are connected to clinical events,
which help better understand the disease processes and improve patient evaluation
and treatment. The most studied quantity is the wall shear stress (WSS), which is
connected with origination and progression of cardiovascular disease [1, 2]. For
example, the high WSS may have important effects to the formation of aneurysms
[3–5], while the low WSS may lead to the growth and rupture of them [6–8]. Such
hemodynamic quantities of interest are typically obtained from pure computational
fluid dynamics (CFD) simulations, mainly due to easy access to the commercial and
research software. However, in many recent works [9–27], it has been shown that
the elastic motion of the arterial wall has a significant effect on the hemodynamic
quantities of interest. In particular, the rigid wall assumption (i.e. pure CFD mod-
eling) overestimates WSS, precludes pressure wave propagation in blood vessels,
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and, most importantly, disregards stresses in the wall tissue. Wall tissue stress in-
formation is critical for the assessment of rupture risk, because rupture occurs when
wall stress exceeds its strength [28, 29]. As a result, in order to determine accurate
criteria for predicting aneurysm formation, growth and rupture, it is important to
model vascular flow in conjunction with vessel wall deformation, which leads to
coupled fluid–structure interaction (FSI) modeling.

The mechanical behavior of blood vessel tissue is well described by means of
large-deformation three-dimensional solid or shell modeling [30, 31]. A total La-
grangian formulation with a hyperelastic constitutive law is typically employed.
In hyperelasticity, the formulation relies on the existence of a unique stress-free
configuration, which acts as a reference or initial configuration from which the dis-
placement vector is computed. In vascular FSI analysis, patient-specific geometries
of blood vessels are obtained from medical imaging data. When imaged, the blood
vessels are in a state of mechanical stress that puts them in equilibrium with loading
coming from the blood flow (i.e. blood pressure and viscous traction). As a re-
sult, when modeling blood vessel tissue, a patient-specific geometry configuration
coming from imaging data may not be used as a stress-free configuration.

This problem was partially addressed in recent works. Tezduyar et al. [32] and
Takizawa et al. [22] proposed a method of obtaining an estimated zero-pressure ge-
ometry. This estimated geometrical configuration is then used as a stress-free initial
configuration in FSI simulations. However, the proposed procedure gives a resul-
tant stressed configuration that is only a close approximation of the patient-specific
geometry coming from imaging data. Gee et al. [33, 34] developed a modified up-
dated Lagrangian formulation (MULF), which uses and incremental procedure to
obtain an effective deformation gradient from an unknown reference configuration.
The computed deformation gradient is used to determine the prestrained/prestressed
state of the system. However, no discussion is given in [33, 34] regarding applica-
tions of the proposed methodology to dynamics and FSI. In this work, we take a
different approach. We first directly compute the state of prestress in the blood
vessel using an iterative procedure. We then modify the solid formulation to incor-
porate the prestress directly using the additive decomposition of the second Piola–
Kirchhoff stress tensor.

We did not attempt to compute a stress-free configuration using the inverse mo-
tion strategy of Govindjee and Mihalic [35], because as observed in [33] for abdom-
inal aortic aneurysm (AAA) simulations driven by intramural pressure, this config-
uration is usually not unique, or may not exist at all. The non-uniqueness of the
stress-free configuration has been demonstrated in [35] when the strategy is applied
to the full set of nonlinear elasticity equations. The nonexistence may be related to
the fact that blood vessel formation involves not just deformation due of mechanical
forces. A large role in this is played by the tissue growth and remodeling processes,
which take place at the cell level and constantly change the material composition of
blood vessels [36–38].

The paper is organized as follows. In Section 2, we give the formulation of the
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tissue prestress problem and propose an iterative procedure for obtaining the tissue
prestress tensor. We then describe our vascular FSI framework at the continuous
and discrete levels in which we explicitly account for the tissue prestress. In Section
3, we present numerical examples of patient-specific cerebral aneurysms in which
we compare FSI results with and without tissue prestress. In Section 4, we draw
conclusions.

2. Vascular fluid–structure interaction simulation

2.1. Conventional variational formulation of the solid problem
Let X be the coordinates of the initial or reference configuration, which is stress

free, and let u be the displacement with respect to the reference configuration. The
coordinates of the current configuration, x, are given by

x = X + u. (1)

The deformation gradient tensor F is defined as

F =
∂x
∂X

= I +
∂u
∂X

, (2)

where I is the identity tensor.
LetVs andWs be the trial solution and weighting function spaces for the solid

problem. The blood vessel tissue is modeled as a three-dimensional hyperelastic
solid and the variational formulation which represents the balance of linear mo-
mentum for the solid is stated as follows: Find the displacement u ∈ Vs, such that
for all weighting functions w ∈ Ws,(

w, ρ0
∂2u
∂t2

)
Ωs

0

+ (∇Xw, FS)Ωs
0

= (w, ρ0 f )Ωs
0
+ (w, h)Γ

s,N
0
, (3)

where Ωs
0 is the solid domain in the reference configuration, Γs,N

0 is the Neumann
part of the solid boundary, ρ0 is the density of the solid in the reference configu-
ration, ∇X is the gradient operator on Ωs

0, f and h are the body force and surface
traction, respectively.

In (3), S is the second Piola–Kirchhoff stress tensor that derives from the gradi-
ent of an elastic stored energy function and is given by

S = µsJ−2/3
(
I −

1
3

trC C−1
)

+
1
2
κs

(
J2 − 1

)
C−1. (4)

In the above, µs and κs are interpreted as the blood vessel shear and bulk moduli,
respectively, J = det F is the Jacobian determinant, and C = FT F is the Cauchy–
Green deformation tensor.

The material model in (4) may be found in Simo and Hughes [39], and its stress-
strain behavior was analytically studied on simple cases of uniaxial strain [17] and
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pure shear [40]. The model was argued to be appropriate for cerebral aneurysm FSI
simulations in [25]. In particular, it was shown in [25], that the level of elastic strain
in these problems is sufficiently large to preclude the use of infinitesimal (linear)
strains, yet not large enough to be sensitive to the nonlinearity of the particular
material model. Moreover, the current model has the advantage of stable behavior
for the regime of strong compression, which may be present in the regions of arterial
branching (see, e.g. [17]).

2.2. Tissue prestress problem
The formulation (3) assumes the reference configuration to be stress free. How-

ever, the blood vessel configuration coming from imaging data is typically not stress
free. It is subjected to blood pressure and viscous traction and develops an internal
stress state to resist these external loads. To account for this, we propose to modify
the variational formulation (3) as follows: Find u, such that for all w,(

w, ρ0
∂2u
∂t2

)
Ωs

0

+ (∇Xw, F (S + S0))Ωs
0

= (w, ρ0 f )Ωs
0
+ (w, h)Γ

s,N
0
. (5)

The modification consists of adding an a priori specified prestress tensor S0. The
prestress tensor is designed such that in the absence of displacement the blood vessel
is in equilibrium with the blood flow forces. This design condition leads to the
following variational problem, obtained by setting displacement to zero in (5): Find
the symmetric prestress tensor S0, such that for all vector-valued test functions w,

(∇Xw, S0)Ωs
0
+

(
w, h̃

)
Γ

f s
0

= 0. (6)

In the above, Ωs
0 is the blood vessel reference configuration coming from imaging

data, Γ
f s
0 is the fluid–solid boundary in the reference configuration, and h̃ is the

fluid traction vector. The fluid traction vector h̃ may be obtained from a separate
rigid-wall blood flow simulation on the reference domain with steady inflow and
resistance outflow boundary conditions. The latter guarantees a physiological in-
tramural pressure level in the blood vessel [17, 41]. The inflow flowrate for the
prestress problem may be selected so that the intramural pressure corresponds to
the heart-cycle averaged pressure (about 85 mmHg).

Because (6) is a vector-valued equation with a tensor-valued unknown S0, it, in
principle, may have an infinite number of solutions. We obtain a particular solution
for the state of prestress by means of the following procedure.

Starting with step n = 1, and setting Sn
0 = 0, we repeat the following steps:

1. Set S0 = Sn
0 and u = 0, which gives F = I and S = 0.

2. From tn → tn+1, solve the following variational problem: Find u, such that for
all w, (

w, ρ0
∂2u
∂t2

)
Ωs

0

+ (∇Xw, F (S + S0))Ωs
0
+

(
w, h̃

)
Γ

f s
0

= 0, (7)
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where F and S are defined by Eqs. (2) and (4), respectively.
3. Update Sn+1

0 = S + Sn
0 and increment n.

We continue the above iteration until u → 0. As a result, F → I, S → 0, and
we arrive at the solution of (6). It is important that we converge F to the identity,
because we would like to use Ωs

0 as the initial, undeformed configuration for FSI
computations. In this case, the the time-dependent FSI simulation departs from an
equilibrium configuration, which is important for numerical stability. In Step 2,
we advance the semi-discrete equations from tn to tn+1 using the generalized-α time
integrator [42].

Model Inflow surface area (cm2)
1 4.962 × 10−2

2 2.102 × 10−2

Table 1: Inflow cross-sectional areas for the aneurysm models.

Model Fluid elements Solid elements Total elements Total nodes
1 112,396 51,744 164,140 30,497
2 117,895 49,668 167,563 30,559

Table 2: Tetrahedral finite element mesh sizes for the aneurysm models.

(a) Model 1 (b) Model 2

Figure 1: Tetrahedral finite element mesh of the middle cerebral artery (MCA) bifurcation with
aneurysm. Inlet branches are labeled M1 and outlet branches are labeled M2 for both models. The
arrows point in the direction of inflow velocity.

We apply our prestress procedure to two cerebral aneurysm models shown in
Figure 1. The inflow and outflow branches are labeled as M1 and M2, respectively,
in the same figure. Both models come from patient-specific imaging data and ex-
hibit significant geometrical differences. Model 1 has a relatively small aneurysm
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(a) Model 1 (b) Model 2

Figure 2: Final prestressed state for Model 1 and 2. The models are colored by the isocontours of
wall tension, which is defined as the absolute value of the first principal in-plane stress of S0.

dome and an inlet branch of large radius. The situation is reversed for Model 2.
Table 1 shows the inlet cross-sectional area for both models.

Meshing techniques developed by Zhang et al. [43] are used for generating lin-
ear tetrahedral elements for both models. The meshes contain both the blood flow
volume and solid vessel wall. Fine meshes with boundary layer resolution are em-
ployed to ensure high fidelity of the computational results. The mesh sizes for both
models are summarized in Table 2.

Figure 2 shows the final prestressed state for both models, which also demon-
strates the applicability of the method to different vascular geometries. The models
are colored by the isocontours of wall tension, which is defined as the absolute value
of the first principal in-plane stress of S0.

2.3. Linearized elasticity operator
The linearization of the stress terms with respect to a displacement increment

∆u in the conventional solid formulation given by (3) leads to the following bilinear
form ∫

Ω0

∇Xw : D∇X∆udΩ0. (8)

In the above, D is the full tangent stiffness given by

D = [DiJkL] , (9)
DiJkL = FiICIJKLFkK + δikS JL, (10)

where FiICIJKLFkK is the material tangent stiffness and δikS JL is the geometrical tan-
gent stiffness. CIJKL are the components of the material elasticity tensor C defined
by

C = 2
∂S
∂C

. (11)
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Lower-case and upper-case indices are employed to denote the current and reference
configuration quantities, respectively. The summation convention is employed on
repeated indices and Cartesian basis is assumed throughout.

When the current configuration and reference configuration coincide (i.e. x =

X), we have S = 0 and F = I. Equation (10) becomes

DIJKL = CIJKL, (12)

and only the material stiffness remains. Including the prestress tensor S0 into the
solid model gives

DiJkL = FiICIJKLFkK + δik

(
S JL + S 0

JL

)
, (13)

where S 0
JL are the components of S0. For the case of x = X, we get

DIJKL = CIJKL + δIKS 0
JL, (14)

which means that the prestress is correctly accounted for in the geometrical stiffenss.

2.4. Vascular FSI
The blood vessel wall is modeled as a three-dimensional hyperelastic solid in the

Lagrangian description and has been detailed in the previous sections. The blood
flow is governed by the Navier–Stokes equations of incompressible flow posed on
a moving domain. The arbitrary Lagrangian–Eulerian (ALE) formulation is used,
which is a popular choice for vascular blood flow applications [44–47]. Details and
elaborations of the ALE formulation can be found, for example, in [17, 48].

At the interface between the blood flow and the elastic wall, velocity and trac-
tion compatibility conditions are assumed to hold. The motion of the fluid domain
is governed by the equations of linear elasticity subject to Dirichlet boundary con-
ditions coming from the time-dependent displacement of the fluid–solid interface
[17, 49]. In the discrete setting this procedure is referred to as mesh motion.

The material parameters employed in this work are identical to those in [25].
Variable vessel wall thickness is considered in the modeling by performing a smooth
Laplace operator-based extension of the inlet and outlet thickness data into the do-
main, which was a technique originally proposed in Bazilevs et al. [21]. In this
work, the inlet and outlet vessel wall thickness is assumed to be 20% of their effec-
tive radii.

The solid and mesh motion equations are discretized using the Galerkin ap-
proach, while the fluid formulation makes use of the residual-based variational mul-
tiscale (RBVMS) method recently proposed by Bazilevs et al. [50]. The RBVMS
methodology is built on the theory of stabilized and multiscale finite element meth-
ods (see, e.g. [51–54]). It applies equally well to laminar and turbulent flows and is
thus attractive for applications where the nature of the flow solution is not known a
priori.
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The time-dependent discrete equations are solved using the generalized-α time
integrator, which was originally proposed in Chung and Hulbert [42] and Jansen
et al. [55] for structural dynamics and fluid mechanics, respectively, and further
extended in Bazilevs et al. [17] for FSI. A monolithic solution strategy is adopted in
which the increments of the fluid, solid, and mesh motion variables are obtained by
means of a Newton–Raphson procedure in a simultaneous fashion. The effect of the
mesh motion on the fluid equations is omitted from the tangent matrix for efficiency
[18].

Simulations are driven by a prescribed time-periodic inlet velocity and outlet
resistance boundary conditions. The inflow velocity profile can be found in [25].
The solid wall is subjected to zero traction boundary conditions at the outer surface.
The inlet and outlet branches are allowed to slide in their cut planes as well as
deform radially in response to the variations in the blood flow forces [25]. This
gives more realistic arterial wall displacement patterns than fixed inlet and outlet
cross-sections.

3. Computational results

(a) With prestress (b) Without prestress

Figure 3: Relative wall displacement between the deformed configuration and reference configu-
ration coming from imaging data. Top: Model 1; Bottom: Model 2. The deformed configuration
corresponds to the time instant when the fluid traction vector is closest to the averaged traction vector
used for the prestress problem (6).

To assess the influence of the prestress, we perform a coupled FSI simulation of
both models and compare the results with and without prestress. Figure 3 shows the
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(a) With prestress (b) Without prestress

Figure 4: Relative wall displacement between the deformed configuration at peak systole and low
diastole. Top: Model 1; Bottom: Model 2.

relative wall displacement between the deformed configuration and reference con-
figuration coming from imaging data. The deformed configuration corresponds to
the time instant when the fluid traction vector is closest to the averaged traction vec-
tor used for the prestress problem (6). Almost no difference between the reference
and deformed configurations is seen in the case of the prestressed-artery simulation,
as expected. However, in the case of non-prestressed simulation, the differences be-
tween the two configurations are significant. This indicates that the FSI problem is
not being solved on the correct geometry. Furthermore, the relative geometry error
is larger for Model 2, which has a larger aneurysm dome and a thinner wall. Fig-
ure 4 shows the relative wall displacement between the deformed configuration at
peak systole and low diastole. In both the prestressed and non-prestressed cases the
relative displacement is fairly small, yet non-negligible. The non-prestressed case,
however, makes use of the geometry that is significantly more “inflated” compared
to the prestressed case and the imaging data.

Figures 5 shows a comparison of the blood flow speed near peak systole for
the simulations with and without prestress. The results between prestressed and
non-prestressed cases are very similar, although some differences in the flow struc-
tures are visible, especially for Model 2. Figure 6 shows a comparison of the wall
shear stress near peak systole for both cases. The wall shear stress, unlike blood
flow velocity, exhibits significant differences in magnitude and spatial distribution.
The wall tension results are shown in Figures 7. The wall tension is defined as the
absolute value of the first principal in-plane stress (see [24] for details). Again,
significant differences in magnitude and spatial distribution are observed. The com-
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(a) With prestress (b) Without prestress

Figure 5: Volume-rendered blood flow velocity magnitude near peak systole. Top: Model 1; Bottom:
Model 2.

(a) With prestress (b) Without prestress

Figure 6: Wall shear stress near peak systole. Top: Model 1; Bottom: Model 2.

parisons clearly show the importance of considering prestress in the patient-specific
vascular FSI simulations for accurate prediction of hemodynamic phenomena and
vessel wall mechanics.
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(a) With prestress (b) Without prestress

Figure 7: Wall tension near peak systole. Top: Model 1; Bottom: Model 2.

4. Conclusions

In this paper we proposed a blood vessel tissue prestress technique that allows
us to correctly use the patient-specific geometry obtained from medical imaging
data as reference geometry for vascular FSI computations. The technique consists
of a simple iterative procedure that showed good convergence on patient-specific
blood vessel models with very different geometry. We modified the solid modeling
procedure to account for tissue prestress by employing an additive decomposition of
the second Piola–Kirchhoff stress tensor. This decomposition gives a correct form
of the tangent stiffness operator.

We employed the new solid formulation in the dynamic FSI analysis of two
patient-specific cerebral aneurysm models and compared the results with the non-
prestressed cases. We found that without prestress, the large intramural pressure
tends to over-inflate the artery leading to significant discrepancies between imaging
data and computational model geometry. This geometry error, in turn, produced
large differences in the wall shear stress and wall tension. We conclude that pre-
stressing is important in the FSI analysis of blood flow to accurately predict these
quantities of hemodynamic interest.
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