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Abstract

This paper discusses a method of stabilizing Lagrange multiplier fields used to couple thin im-
mersed shell structures and surrounding fluids. The method retains essential conservation proper-
ties by stabilizing only the portion of the constraint orthogonal to a coarse multiplier space. This
stabilization can easily be applied within iterative methods or semi-implicit time integrators that
avoid directly solving a saddle point problem for the Lagrange multiplier field. Heart valve simula-
tions demonstrate applicability of the proposed method to 3D unsteady simulations. An appendix
sketches the relation between the proposed method and a high-order-accurate approach for simpler
model problems.
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1. Introduction

Stable coupling of solutions to partial differential equation (PDE) systems discretized on non-
matching meshes is a ubiquitous concern in computational mechanics. To fix ideas, consider fluid–
structure interaction (FSI) analysis [1], in which fluid and solid mechanics subproblems interact
through the constraints that velocity and stress remain continuous across the fluid–structure inter-
face. The fluid–structure interface traction can be interpreted as a Lagrange multiplier associated
with the kinematic constraint on the fluid and structure interface velocities (in a sense made precise
by [2, Section 2] and Remark 1 in the sequel).

Methods of computing this traction in discrete approximations of FSI problems must therefore
satisfy an inf–sup condition [3] to be stable; this condition essentially states that one should not
attempt to enforce constraints on the fluid–structure interface at a greater level of detail than the
discretized velocity fields can resolve. It is easy to construct a stable discrete space for the Lagrange
multiplier field by making it very coarse relative to the fluid and structure discretizations, but
this has the obvious consequence of decreasing the approximation power of the discrete space.
Disregarding stability, there are many convenient choices of spaces with sufficient approximation
power. These multiplier spaces can be salvaged by using strongly-consistent stabilization, as in
the method proposed by Barbosa and Hughes [4]. Stenberg [5] later related to the more popular
approach of Nitsche [6], in which the Lagrange multiplier is formally eliminated.
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While convenient and high-order-accurate, residual-based stabilized schemes such as Barbosa–
Hughes stabilization or Nitsche’s method lose an important conservation property. To understand
this, suppose that the approximation uh to the solution u of a PDE on a domain, Ω, is constrained
to equal the Dirichlet boundary data g, on the boundary ∂Ω. Then we would like to have∫

ΓE

(
uh − g

)
dΓ = 0 , (kinematic conservation) (1)

for ΓE ⊂ ∂Ω. Using a Bubnov–Galerkin discretization with Lagrange multipliers, we have (1)
whenever the indicator function on ΓE is in the test space for the boundary condition constraint.
For stabilized methods, (1) does not, in general, hold for any particular ΓE. To distinguish from
other notions of conservation, we refer to (1) as “kinematic conservation”.

Consider what this means, physically, in our application of interest: if we do not have kine-
matic conservation for the no-penetration constraint between the fluid and structure, then a net
quantity of fluid can leak through the fluid–structure interface. We have previously demonstrated
the importance of kinematic conservation in our work analyzing heart valves [7–11]. Heart valves
exist specifically to block flow in one direction and, without kinematic conservation, computational
models may not reproduce this important qualitative behavior.

Our previous work sacrificed the stability of the Lagrange multiplier field to achieve satisfac-
tory kinematic conservation. We grudgingly accepted wildly oscillatory multiplier fields, with the
consolation that these spurious oscillations appeared to have little-to-no effect on the fluid velocity
or structure displacement solutions. This observation is partially supported by a priori analysis of
simplified model problems in [11, Section 3], but energetic analysis in [9], carefully-constructed
numerical experiments, and common sense all indicate that such oscillations are potentially harm-
ful to overall solution quality. In the present study, we cure these oscillations while retaining
kinematic conservation by splitting the kinematic constraint into coarse and fine scale compo-
nents, then stabilizing only the fine scale component of the Lagrange multiplier. The concept of
applying projection-based stabilization to boundary and interface Lagrange multipliers was first
investigated by Burman [12], in the context of a scalar elliptic model problem; we investigate such
a model problem and compare our approach to that of [12] in Appendix A.

We spell out the details of our projection-based stabilization scheme in Section 2 and demon-
strate its effectiveness in Section 3, by applying it to FSI analysis, including a simulation of a
bioprosthetic heart valve. Section 4 draws conclusions and discusses potential future work on this
subject. Appendix A outlines a connection to residual-based stabilization that provides a route to
high-order accuracy (on easy problems) and may be of academic interest to some readers.
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2. Projection-based stabilization method

This section describes projection-based stabilization of fluid–structure interface Lagrange mul-
tipliers. We focus on the case of thin immersed structures, for which the loss of conservation due
to residual-based stabilized methods is exacerbated by cancellation of consistency terms (cf. [7,
Section 4.1]). Section 2.1 states the fluid–thin structure interaction problem, Section 2.2 describes
the projection-stabilized discretization in space, and Section 2.4 adapts the semi-implicit time in-
tegration scheme used in [7–11] to include projection-based stabilization.

2.1. Problem statement

This work is focused on the problem of fluid–thin structure interaction, i.e., the case in which
the structure is modeled geometrically as a surface of co-dimension one to the fluid subproblem
domain into which it is immersed. The ideas from Appendix A could be adapted to general FSI,
but that is beyond the scope of the present study.

2.1.1. Augmented Lagrangian formulation of FSI

We start with the augmented Lagrangian framework for FSI [2], specialized to thin immersed
structures. The region occupied by incompressible Newtonian fluid is denoted Ω1 ⊂ R

d, where d

is the number of spatial dimensions. The structure’s midsurface geometry at time t is modeled by
a surface Γt ⊂ Ω1, of dimension d − 1. The fields u1 and p are the fluid’s velocity and pressure,
while y is the structure’s displacement from some reference configuration, Γ0. u2 ≡ ẏ denotes the
velocity of the structure. The fluid–structure kinematic constraint, i.e. u1 = u2 on Γt, is enforced
by the augmented Lagrangian∫

Γt

λλλ · (u1 − u2) dΓ +
1
2

∫
Γt

β|u1 − u2|
2 dΓ , (2)

in which λλλ is a Lagrange multiplier field and β ≥ 0 is a penalization parameter. The resulting weak
problem is: Find u1 ∈ Su, p ∈ Sp, y ∈ Sd, and λλλ ∈ S` such that, for all test functions w1 ∈ Vu,
q ∈ Vp, w2 ∈ Vd, and δλλλ ∈ V`

B1({u1, p}, {w1, q}) − F1({w1, q}) +

∫
Γt

w1 · λλλ dΓ +

∫
Γt

w1 · β(u1 − u2) dΓ = 0 , (3)

B2(y,w2) − F2(w2) −
∫

Γt

w2 · λλλ dΓ −

∫
Γt

w2 · β(u1 − u2) dΓ = 0 , (4)∫
Γt

δλλλ · (u1 − u2) dΓ = 0 , (5)

where Su, Sp, Sd, and S` are trial solution spaces for the fluid velocity, fluid pressure, structural
displacement, and Lagrange multiplier fields and Vu, Vp, Vd, and V` are the corresponding test
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function spaces. B1, B2, F1, and F2 are semi-linear forms and linear functionals corresponding to
the (weak) fluid and structural dynamics problems.

Remark 1. One can easily see from (4) how λλλ acts as a traction on the structure.

2.1.2. Fluid subproblem

As mentioned above, the fluid is modeled as incompressible and Newtonian:

B1({u, p}, {w, q}) =

∫
Ω1

w · ρ1

(
∂u
∂t

∣∣∣∣∣
x

+ u · ∇∇∇u
)

dΩ +

∫
Ω1

εεε(w) : σσσ1 dΩ

+

∫
Ω1

q∇∇∇ · u dΩ + γ

∫
Γ1h

w · ρ1 〈−u · n1〉u dΓ , (6)

F1({w, q}) =

∫
Ω1

w · ρ1f1 dΩ +

∫
Γ1h

w · h1 dΓ , (7)

where ρ1 is the mass density of the fluid, εεε is the symmetric gradient, σσσ1 = −pI + 2µεεε(u) (where
µ is the fluid’s dynamic viscosity), f1 is the prescribed body force in the fluid subproblem, and h1

is the prescribed traction on Γ1h ⊂ ∂Ω1. ∂(·)/∂t|x indicates time differentiation holding x in Ω1

fixed. The last term of (6) is not typically considered part of the weak Navier–Stokes problem, but
it enhances stability in cases where flow enters through the Neumann boundary Γ1h [13]; 〈·〉 are
Macaulay brackets, n1 is the outward-facing normal to Ω1, and γ > 0 controls the strength of the
stabilization.

2.1.3. Thin structure subproblem

Assuming Kirchhoff–Love thin shell kinematic hypotheses (cf. [14–16]), we define the struc-
ture subproblem by

B2(y,w) =

∫
Γt

w · ρ2hth
∂2y
∂t

∣∣∣∣∣∣
X

dΓ +

∫
Γ0

∫ hth/2

−hth/2
DwE : S dξ3dΓ (8)

and
F2(w) =

∫
Γt

w · ρ2hthf2 dΓ +

∫
Γt

w · hnet dΓ , (9)

where ρ2 is the structure’s mass density, f2 is a prescribed body force, hth is the thickness of the
shell, ξ3 is a through-thickness coordinate, and we refer the elasticity term to a reference con-
figuration (cf. [1, (1.80)]). The tensor E is the Green–Lagrange strain corresponding to the dis-
placement y, DwE is its functional derivative in the direction of w, and S is the second Piola–
Kirchhoff stress tensor. The last term of F2 sums the prescribed tractions on the two sides of Γt:
hnet = h(ξ3 = −hth/2) + h(ξ3 = +hth/2). ∂(·)/∂t|X indicates time differentiation holding X ∈ Γ0

fixed. The strain E is simplified to depend only on the shell structure’s midsurface displacement,
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y, to reduce the dimension of the solid mechanics problem. Details of the formulation used in this
work are given in [11, Section 2.1.3]. For simplicity, we assume an incompressible neo-Hookean
constitutive model, with shear modulus µs.

2.2. Stabilized spatial discretization

The fluid and structure subproblems are discretized in space as described in [11]. The principal
novelty of the present work is a modification to how the fluid–structure coupling is discretized.
Following the general reasoning of [11, Section 2.5.1], we eliminate the tangential component of
the kinematic constraint and perturb the normal component to arrive at the problem: Find u1 ∈ Su,
p ∈ Sp, y ∈ Sd, and λ ∈ S` such that, for all test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd, and
δλ ∈ V`

B1({w1, q}, {u1, p}) − F1({w1, q}) + B2(w2, y) − F2(w2)

+

∫
Γt

(w1 − w2) · λn2 dΓ

+

∫
Γt

τB
NOR (w1 − w2)n (u1 − u2)n dΓ

+

∫
Γt

τB
TAN (w1 − w2)Γ · (u1 − u2)Γ dΓ

+

∫
Γt

δλ ·

(
(u1 − u2) · n2 −

rP⊥λ
τB

NOR

)
dΓ = 0 , (10)

where τB
TAN is the tangential penalty parameter, τB

NOR is the normal penalty parameter, r ≥ 0 controls
the strength of the perturbation introduced to stabilize the normal constraint enforcement, and (·)n

and (·)Γ isolate normal and tangential components of (·), i.e. (v)n = v · n2 and (v)Γ = v − (v)n.
The key difference between this problem and [11, (48)–(51)] is the introduction of the projection
operator P⊥, highlighted in red.

As suggested by notation, we define P⊥ in terms of another projection operator, P:

P⊥ = I − P , (11)

where I is the identity map. The projection P is an L2 projection from V` to ΛH ⊂ V`: For
arbitrary λ ∈ V`, (

Pλ, δλH
)

L2(Γt)
=

(
λ, δλH

)
L2(Γt)

∀δλH ∈ ΛH . (12)

It is helpful to think of ΛH as the coarse scales ofV` and P⊥V` as the fine scales. The stabilization
of the constraint, modulated by r, is applied only to the fine scales of the constraint equation. If
we suppose thatV` contains the fluid and structure normal velocity trace spaces on Γ, then we can
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directly solve for the multiplier fine scales:

P⊥λ =
τB

NOR

r
(u1 − u2) · n2 (13)

Taking the penalty augmentations of the Lagrangian into account, fine scale violation of the no-
penetration constraint by a velocity difference (u1 − u2) · n2 is therefore penalized by the counter-
acting force

(1 + r)τB
NOR

r
((u1 − u2) · n2) n2 . (14)

If the effective penalty coefficient (1 + r)τB
NOR/r is considered to be constant, then r ∈ (0,∞) is es-

sentially arbitrary, but allowing the lion’s share of the penalty to be applied indirectly through P⊥λ

(i.e. r → 0) may inspire numerical approaches that are better-conditioned than direct penalization
(i.e. r → ∞ ⇒ P⊥λ → 0). An example of such a numerical approach is detailed in Section
2.4 below. The quantity (1 + r)τB

NOR/r is related to the stabilizing penalty of Nitsche’s method (as
applied to the fine scales of the constraint) by the analysis of Appendix A.

Ideally, the coarse space ΛH would satisfy the inf–sup condition1

inf
λH∈ΛH

sup
zh∈Vh

u

H−1/2(Γ)

〈
λH, zh · n2

〉
H1/2(Γ)

‖zh‖H1(Ω1)‖λH‖H−1/2(Γt)
≥ C , (15)

where Vh
u is a discrete subspace of Vu and C is independent of the mesh element size. This

condition can be difficult in general to verify, but, given the effectiveness of the two extremes
ΛH = {0} (as demonstrated by the results of [9, 10]) and ΛH = V` (i.e. r = 0, as applied in
[7, 8, 11]), one clearly has, in practice, a great deal of freedom when selecting ΛH. To narrow
down the options, let us itemize several desiderata:

• The space ΛH should contain the space of constant functions on Γt. Ideally, it should contain
constants on smaller subsets of Γt. This ensures the kinematic conservation property identi-
fied in Section 1. Specializing (1) to the FSI problem at hand, a solution of the problem (10)
satisfies ∫

ΓE

(u1 − u2) · n2 dΓ = 0 (16)

(or, in physical terms, no leakage of fluid through ΓE) whenever the indicator function on
ΓE ⊂ Γt is in the space ΛH.

1One might argue that stability could follow from a similar condition involving structure velocities, but many FSI
problems of practical interest entail rigid structures and/or steady limits, in which only the stability characteristics of
the fluid and multiplier discrete spaces are relevant.
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• The space ΛH should be coarse and low-order. This improves the likelihood of satisfying
(15). Given that, as mentioned above, ΛH = {0} produces reasonable results, ΛH is mainly
introduced to satisfy (16). In other words, we are not concerned with the approximation
power of ΛH, only with the conservation properties that it provides. The stabilized fine
scales P⊥V` can fill in the detailed features of the Lagrange multiplier field. An extension of
this concept to high-order-accurate methods (for a simpler model problem) is proposed and
analyzed in Appendix A.

In light of the above considerations, the obvious choice is to define ΛH to be the space of constants
on macro-elements covering Γt. These macro-elements should have diameters on the order of some
length scale H, which is greater than the length scale h associated with the mesh on which Vh

u is
defined. Recalling that the extreme of ΛH = {0} works, it is clear that the length scale H need
not be refined beyond the point at which satisfactory conservation is obtained. Accuracy can be
attained by refining h alone.

2.3. A proposed ΛH for isogeometric fluid discretizations

In this section, we propose a candidate for ΛH that is specific to isogeometric fluid discretiza-
tions. Suppose that the fluid is discretized on a NURBS or B-spline patch. Then we propose to
set ΛH to the space of constant functions on intersections of Γt with groups of 2d Bézier elements
from the background mesh, as shown for d = 2 in Figure 1. In some computational frameworks, it
may prove convenient to define this space as the trace on Γt of a space of d-variate degree-zero B-
splines with knot multiplicities alternating between zero and one along each parametric direction.
We have not proven that this construction satisfies the condition (15), but we present numerical ev-
idence to support its stability. Our numerical inf–sup test draws on the ideas presented in [17, 18].
In summary, given an inf–sup condition of the form

inf
p∈Q

sup
u∈V

b(u, p)
‖u‖V‖p‖Q

≥ β , (17)

where b is bilinear, V and Q are finite-dimensional Hilbert spaces, and ‖ · ‖V and ‖ · ‖Q are norms
induced by inner products (·, ·)V and (·, ·)Q, the constant β can be bounded below by the absolute
value of the smallest (in magnitude) nonzero eigenvalue satisfying the problem: Find u ∈ V , p ∈ Q,
and eigenvalue λ ∈ R (not to be confused with the interface Lagrange multiplier) such that, for all
v ∈ V and q ∈ Q

b(u, q) + b(v, p) = λ
(
(u, v)V + (p, q)Q

)
. (18)

All eigenvalues are real, due to the symmetry of the problem.
To investigate the stability of our proposed ΛH, we test (17) with V ⊂ H1(Ω) a scalar uniform

8



Γ
ΓE

Figure 1: The definition of Lagrange multiplier coarse space macro-elements on a Bézier mesh. Knot lines are black,
the immersed surface is blue, and macro-elements are red. ΛH is the trace on Γ of a space of d-variate degree-zero
B-splines in which thick black lines have multiplicity one and thin black lines have multiplicity zero.

B-spline space of maximal continuity on Ω = (0, 1)2 ⊂ R2, Q = ΛH ⊂ H−1/2(Γ) with Γ = ∂Ω, and

b(u, λ) = H−1/2(Γ) 〈λ, γu〉H1/2(Γ) , (19)

where γ is a trace operator mapping from H1(Ω) to H1/2(Γ). Because (suppressing Riesz maps)
ΛH ⊂ L2(Γ) and H1/2(Γ) ⊂ L2(Γ), we can re-write b(u, λ) as simply (u, λ)L2(Γ) when restricting
to discrete spaces. Direct computation of the H−1/2(Γ) inner product (i.e. (·, ·)Q in (18)) is less
convenient and, following [5, Section 3], we replace it in the discrete setting with a mesh-dependent
inner product,2

(λ, µ)H−1/2(Γ) → (λ, µ)−1/2,h ≡ h(λ, µ)L2(Γ) , (20)

where h is a length scale associated with the element size in a (quasi-uniform) mesh (cf. [5,
(3.12)]). For h we simply use the element size of the background mesh defining V . We solve the
eigenproblem (18) with meshes of 2N × 2N Bézier elements for N = {3, 4, 5, 6} and maximally-
smooth3 B-spline spaces (with open knot vectors) of polynomial degree p =1, 2, 3, 4, and 5.
Integration over Γ is approximated with a numerical quadrature rule consisting of 100×2N evenly-

2This replacement weakens the inf–sup condition, but is sufficient for optimal convergence analysis; see Remark
10 in Appendix A.

3Lowering continuity by knot repetition would enrich V , causing the inf–sup constant to either increase or remain
the same.
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weighted points, evenly spaced along the arc length of Γ. The resulting lower bounds on β are
plotted as a function of log(h) in Figure 2. The fact that these bounds approach constant values as
h → 0 indicates that the proposed ΛH is stable in combination with B-spline spaces of arbitrary
degree and continuity. The apparent degree- and continuity-independence of this stability is espe-
cially helpful for stable enforcement of boundary conditions on fields discretized using B-splines
of mixed degree. Such spaces are used, e.g., to construct isogeometric discrete de Rham complexes
[19], to approximate electromagnetic fields [20] and incompressible flows [21, 22].
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Figure 2: Lower bounds on the inf–sup constant, for different mesh resolutions and polynomial orders, in the case of
Γ = ∂Ω.

For a general immersed boundary (with Γ , ∂Ω), the intersections of Γ with blocks of 2d

Bézier elements may have diameters much smaller than h, which is at odds with the assumptions
used to arrive at (20). (See [23].) We find that, when using the inner product (20) for discrete
inf–sup testing in the immersed setting, it is possible to choose boundary geometries that lead
to arbitrarily-small nonzero eigenvalues. However, (20) may not necessarily induce the weakest
norm on ΛH such that the corresponding discrete H+1/2(Γ) norm of the error in an H1(Ω)-optimal
interpolant of a regular function still converges at the optimal rate. We nevertheless find that the
proposed ΛH remains practically effective in the immersed setting, as evidenced by the numerical
examples in Section 3 and Appendix A.2.

Remark 2. It might be possible to devise a scheme for combining small multiplier macro-elements
with adjacent ones, to satisfy the condition (17) uniformly over the space of possible cut element
configurations, but we have not explored this possibility in detail.

Remark 3. The apparent degree-independence of the inf–sup constants shown in Figure 2 is a
surprising result for B-spline spaces of maximal continuity, since it suggests that kinematic con-
servation can be stably localized at a length scale of 2h, even when the supports of basis functions
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representing the constrained solution have diameter (p + 1)h, for (p + 1) possibly much larger than
2.

Remark 4. Attempting to devise similar constructions for unstructured fluid discretizations may
introduce unacceptable constraints on fluid mesh generation. In such cases, it may prove more
effective to define ΛH in a Lagrangian fashion that follows the structure, as depicted in Figure 3.
Stability of such a discretization (in the steady or rigid-structure limits) would be more difficult
to establish a priori, but preliminary numerical tests (omitted from this work for brevity) suggest
that it is a practical option, so long as the elements of ΛH are coarse enough relative to the fluid
discretization. An empirical comparison of Lagrangian and Eulerian constructions of Lagrange
multiplier discrete spaces for non-boundary-fitted numerical methods was performed in [24], with
the conclusion that the Eulerian (or, in the terminology of [24], “background”) construction was
much more stable, but the cited study did not consider the possibility of radically-coarsened La-
grangian (“foreground”) constructions, which are enabled without loss of accuracy by accounting
for (but stabilizing) fine scales of the Lagrange multiplier.

Γ
φ(Γ)t

Γ
φ(Γ )

E
Et

Figure 3: An alternate possibility for defining Lagrange multiplier coarse space macro-elements (cf. Figure 1), using
a Lagrangian mesh that deforms according to the fluid–structure interface motion φ. (This possibility is not studied in
the present paper.)

2.4. Semi-implicit time integration

We now alter the time integration scheme of [11, Section 2.5.2] to accommodate the projector
P⊥ in the Lagrange multiplier stabilization. Summarizing briefly, the semi-implicit time integrator
described in [11, Section 2.5.2] executes two phases within each time step:
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1. Solve (10) while holding λ fixed at its value from the previous time step.

2. Update λ explicitly, using the penalty forces from the solution to step 1.

Only the second phase of updating the Lagrange multiplier field needs to be modified. In [11], the
Lagrange multiplier was updated using the formula [11, (70)], namely

λn+1 = λn + τB
NORRn+α , (21)

where n is the index of a time step and Rn+α is the stabilized “α-level” constraint residual

Rn+α =

((
uh

1

)n+α f
−

(
uh

2

)n+α f
)
· nn+α f

2 −
rλn+1

τB
NOR

, (22)

in which n + α f indicates an intermediate time level at which the constraint equation is collocated
in the integration scheme.4 The appropriate modification of this update is clear: introduce the
projector P⊥ into the last term of (22), i.e.

Rn+α =

((
uh

1

)n+α f
−

(
uh

2

)n+α f
)
· nn+α f

2 −
rP⊥λn+1

τB
NOR

. (23)

The update (21) then becomes

λn+1 = λn + τB
NOR

{((
uh

1

)n+α f
−

(
uh

2

)n+α f
)
· nn+α f

2 −
rP⊥λn+1

τB
NOR

}
. (24)

Using the idempotence and orthogonality of P⊥ and P, we can recast (24) in the form

λn+1 =P
(
λn + τB

NOR

((
uh

1

)n+α f
−

(
uh

2

)n+α f
)
· nn+α f

2

)
+

(
1

1 + r

)
P⊥

(
λn + τB

NOR

((
uh

1

)n+α f
−

(
uh

2

)n+α f
)
· nn+α f

2

)
, (25)

which is analogous to [11, (71)]. For r > 0, this clearly leads to an exponential decay of the fine
scales in the absence of constraint violation, which prevents unchecked growth of spurious modes.
This obviously does not satisfy (16) for all t; we only recover (16) in the steady limit, but this is
typically sufficient to reap the qualitative benefits of kinematic conservation (as we demonstrate in
the sequel).

Remark 5. The update formula (25) does not depend in any way on what ΛH was in the past. This

4See [11, Section 2.5.2] for a detailed formulation and [9, Remark 3.1] for a discussion on the use of non-
intermediate indexes for λ.
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means that (25) naturally accommodates constructions wherein ΛH (and, consequently, P) change
as the structure deforms, such as the proposed ΛH illustrated in Figure 1.

Remark 6. In addition to reducing the complexity of the discrete problem to be solved at each
time step, the semi-implicit integration also permits stability (for transient problems) even when
the inf–sup condition (15) is not strictly satisfied by ΛH. For analysis of a model problem, see [11,
Section 3]. It is therefore safer than fully-implicit solution in discretizations for which (15) cannot
clearly be established.

Remark 7. If the inf–sup condition (15) holds, then the semi-implicit time integration could be
carried out in pseudo-time within each time step, to obtain a fully-implicit solution procedure.
This would be equivalent to the classical augmented Lagrangian iteration of Hestenes [25] and
Powell [26]. Using such an iteration may be useful for time-independent problems, as it avoids
the construction of non-sparse matrices when the coarse scale Lagrange multiplier is discretized
on elements very large relative to those used for the constrained solution variable.

Based on dimensional analysis and analogies to Nitsche’s method [11, (52)–(53)], we can
consider scaling penalty parameters like

τB
TAN ∼ µ/h and τB

NOR ∼ max
{
ρ1h
∆t

,
µ

h

}
. (26)

In previous work [9, Section 5], we suggested choosing r � 1 to ensure sufficient conserva-
tion. Given coarse-scale kinematic conservation, as provided by the methods of this paper, one
has considerably greater freedom in selecting r ∈ (0,∞). The steady-state solution (or pseudo-
time-converged implicit solution) recovers the penalty interpretation of P⊥λ derived in Section 2.2
(recall (13)–(14)), suggesting that we should select

(1 + r)τB
NOR

r
∼ max

{
ρ1h
∆t

,
µ

h

}
. (27)

In that case, r represents a trade-off between (pseudo-)time-accuracy (r → ∞) and ease of solving
the implicit step (r → 0, cf. [11, Section 4]) rather than a trade-off between conservation (r = 0)
and stability (r = ∞), as it did in [9], prior to the introduction of a coarse scale space. The scaling
expressed through (27) is also supported by the discussion of Appendix A.

3. Numerical examples

We now demonstrate the effects of the proposed projection-based stabilization by applying it
in fluid–thin structure interaction simulations.
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3.1. 2D valve

This section revisits the 2D test problem used to demonstrate convergence with mesh refine-
ment in [11, Section 5]. In brief, the problem (adapted from [27] and studied also in [7, 28–30])
consists of two cantilevered beams attached to the top and bottom of a horizontal channel, driven
by a time-periodic velocity boundary condition at the left end of the channel. The Reynolds num-
ber is approximately 100. To illustrate the stability of the method proposed in this paper, we rerun
the computation on the coarsest mesh, M1, of [11, Section 5.2], using the projection-based stabi-
lization as developed in the prequel. The fluid and structure solutions are essentially the same as
those computed in [11, Section 5.3]; readers unfamiliar with the problem are referred to the cited
paper for illustrative figures and additional discussion. The similarity of the structure displacement
solutions from projection-stabilized and non-stabilized computations (illustrated in Figure 4) in-
dicates that the projection-based stabilization does not interfere with the accuracy of our previous
methods, which we demonstrated through refinement studies in [7, 11] and supported with a priori

error analysis of model problems in [11, Section 3].
We visually illustrate the interface Lagrange multiplier field by plotting its contribution to the

traction jump across the thin structure, λn2. (The total traction jump includes penalty forces in
the normal and tangential directions, but these other contributions are omitted for clarity.) Figure
4 compares stabilized Lagrange multiplier fields computed at various times (with r = ∞ and ΛH

constructed following Section 2.3) and their non-stabilized counterparts (which can be viewed as
taking ΛH = L2(Γt), so that P⊥ = 0 and the value of r becomes irrelevant). The same values of τB

NOR

and τB
TAN (from [11, Section 5.2]) are used in both computations. The results in Figure 4 show that

the non-stabilized computations, while providing accurate fluid and structure solutions (with beam
tip displacements differing from their stabilized counterparts by much less than the size of the fluid
elements in the background mesh), produce multiplier fields that appear to diverge as t → ∞ and
are therefore not expected to have very-long-time accuracy. The stabilized computations, on the
other hand, have bounded multiplier fields that do not exhibit growing oscillations.

To demonstrate the conservation properties of the proposed method, we fill the gap between
the leaflets of the 2D valve, so that a single beam extends across the entire channel, blocking
it off. We then apply a pressure difference of 104 between the ends of the channel. Material and
discretization parameters are the same as those used for the previous computation. The equilibrium
configuration approached as t → ∞ is shown in Figure 5: the initially-straight beam, cantilevered
at both ends, deflects moderately to balance the external pressure difference with internal elastic
forces. The volumetric flow rate history is shown in Figure 6. The fact that the flow rate goes to
zero as t → ∞ indicates that the kinematic conservation property is satisfied. The high precision
with which the correct zero flow rate is recovered in the steady limit indicates that the approximate
surface quadrature on Γt (discussed in [11, Section 2.4]) is more than sufficient. The multiplier
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Stabilized Not stabilized

Figure 4: Left: the coarse scale Lagrange multiplier’s corresponding traction jump at times 0.6 (top), 2.6, and 4.6
(bottom). These snapshots are all taken at the same phase with respect to the time-periodic prescribed data, which has
a period of 1. Right: the non-stabilized Lagrange multiplier at the same times, for comparison.

field is shown to be stable in Figure 7, with no oscillations, or even perceptible differences between
adjacent macroelements, despite the relatively crude representation of the pressure jump across the
beam on a coarse unfitted mesh (as shown in Figure 5).
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Figure 5: The deformed barrier at t = 7 and the fluid pressure field, plotted on a scale from ≤-1000 (blue) to ≥11000
(red).
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Figure 6: The volumetric flow through the blocked channel. The decaying oscillatory transient can be understood
via the electronic–hydraulic analogy depicted in [7, Figure 30]. It is a consequence of the compliance (analogous to:
capacitance) of the elastic blockage. In this problem, dissipation is due to the relatively large viscosity.

3.2. Application to heart valve FSI

This section illustrates the practical efficacy of the projection-stabilized, semi-implicitly-
integrated Lagrange multiplier method developed in this paper, by applying it to a simulation of
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Figure 7: The traction jump corresponding to the Lagrange multiplier field at t = 7.

a heart valve subject to physiological pressure levels. The mathematical problem is the same one
used in [11, Section 6]. Briefly, a bioprosthetic heart valve (BHV: a type of prosthetic valve used
to replace diseased aortic valves) is subjected to an accelerated pressure pulse.5 The discretization
is similar to that used in [11, Section 6], with the following differences:

• The fluid mesh is deliberately coarsened to 30×30×32 elements, to exacerbate any potential
instabilities resulting from an overly-rich Lagrange multiplier space. As we found in [9],
coarser fluid meshes are more prone to multiplier oscillations and are therefore more useful
for evaluating performance of stabilization approaches. To be clear, we do not advocate
using such a coarse fluid mesh if accurate results are desired. For more refined computations
using these methods and insight into the relative magnitudes of errors due to modeling and
discretization, see [11, Section 7].

• The Lagrange multiplier is discretized in time using the semi-implicit integration method
described in Section 2.4 of the current paper, with r = ∞. This amounts to applying the
penalty method alone to enforce fine scales of the kinematic constraint.

5Accelerated pulse rates are typically used in industrial testing devices for heart valve prostheses [31].
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• The cylindrical fluid domain is narrowed to a radius of R = 1.16 cm, to reduce gaps in the
geometrical model and thus better demonstrate the conservation properties of the numerical
approach.

Since the fluid discretization is isogeometric, we employ the coarse multiplier space ΛH iden-
tified in Section 2.3. To demonstrate the effect of stabilization, we compare with a non-stabilized
computation (i.e. a computation with ΛH = L2(Γt)). Differences in the fluid and structure solutions
from the two computations are slight, especially relative to the enormous spatial discretization er-
ror inherent in using such a coarse fluid mesh to represent a complex flow field. Some snapshots
of the fluid and structure solutions are compared in Figure 8. Much larger differences are evident
in the multiplier solution: enormous oscillations develop in the non-stabilized multiplier field, as
shown in Figure 9. As explained in [9, Section 3.2], these multiplier oscillations can be viewed as
storing energy which, under certain circumstances, could be converted back into kinetic and elastic
potential energy in the physical subproblems. Allowing multiplier oscillations to grow unchecked
may therefore deteriorate very-long-time solution accuracy. Even if it is not always essential for
obtaining useful results, it is at least desirable, easily-implemented, and no more computation-
ally expensive to control these oscillations with projection-based stabilization. The conservation
properties of the method can be seen by examining the volumetric flow rate through the valve.
Figure 10 compares flow rates through the valves in stabilized and non-stabilized computations,
demonstrating that the stabilization does not affect the structure’s crucial ability to block flow.

4. Conclusions and future work

The methods developed in our previous work forced us to choose between stability (i.e. r >

0) and kinematic conservation (i.e. r � 1 or r = 0) when simulating FSI with thin immersed
structures. This paper introduces a simple modification, namely projecting the stabilization onto
fine scales of the constraint, that allows us to achieve both stability and conservation. We show
that, when the multiplier field is approximated using semi-implicit time integration, the projection
introduces no additional computational cost and is effective in the challenging setting of heart valve
FSI. Appendix A discusses connections between this projection-based stabilization and residual-
based stabilization approaches. This connection may indicate a way to generalize the approach to
thick structure FSI, but we have not yet fully investigated that possibility.
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Stabilized Not stabilized

Figure 8: Left: The structure deformation and a slice of fluid velocity magnitude at times t = 0.0145 s (top), t = 0.0235
s, and t = 0.077 s (bottom) with projection-based stabilization. Right: The solution at the same time points, from a
different computation without stabilization. Interpretation: Colors range from 0 (blue) to ≥ 200 cm/s (red). Stabilized
and non-stabilized fluid–structure solutions are nearly identical, at least within short (but still practically-relevant) time
scales.

through AFOSR Award FA9550-14-1-0113. This support is gratefully acknowledged. This work
made use of the open source linear algebra software PETSc [32–34], MUMPS [35], and SLEPc
[36–38].

19



Stabilized Not stabilized

Figure 9: Left: The Lagrange multiplier at times t = 0.0115 s (top), t = 0.021 s, and t = 0.038 s (bottom) with
projection-based stabilization. Right: The Lagrange multiplier at the same time points, from a different computation
without stabilization. Interpretation: Colors represent the value of the scalar multiplier field λ, using a scale from
≤ −4 × 104 Ba (blue) to ≥ 104 Ba (red). Note that the maximum and minimum of the non-stabilized multiplier fall
very far outside of this range, which is selected to illustrate the variation of the stabilized multiplier. Recall that λ is
represented in computations by samples at quadrature points on Γ, as detailed in [11, Sections 2.4 and 2.5]; these point
values are linearly interpolated between adjacent quadrature points, for plotting purposes.

Appendix A. Analysis and numerical experiments using a model problem

The idea of using projection-based stabilization for boundary Lagrange multipliers was inves-
tigated previously by Burman [12], but the details of the specific numerical methods proposed in
Appendix A.1 and [12] vary substantially. What we discuss in this appendix deviates from the
typical approach of projection-based stabilization, in that the stabilization of the fine scales re-
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Figure 10: Volumetric flow through the valve with and without stabilization.

mains strongly consistent, while the coarse scales exist solely to enforce conservation properties.
The resulting approach does not enjoy many of the typically-cited benefits of projection-based sta-
bilization (as itemized by Burman on [12, page 568]) and, in the thin structure limit, the strong
consistency is moot, and the resulting discrete problem could easily be obtained from more tradi-
tional projection-based stabilization. However, using consistently-stabilized fine scales eliminates
any requirement of approximation power for the coarse Lagrange multiplier space, leaving it with
the sole task of enforcing kinematic conservation; this view is more aligned with our interpretation
of the fluid–thin structure interaction method presented in the main body of the paper. This think-
ing bears some resemblance to the work of Chang and Nelson [39] and, later, Evans et al. [40]
and Ellis et al. [41], in that it adds low-order Lagrange multipliers on top of an already-convergent
numerical method, for the purpose of enforcing conservation or other desirable solution properties.
Appendix A.2 applies the numerical method of Appendix A.1 to problems discretized using both
conforming and unfitted meshes.

Appendix A.1. Analysis of a model problem

For analysis purposes, we reformulate our numerical method for a second-order linear elliptic
model problem. We then extend the arguments of Stenberg [5] to the case of projection-based
stabilization. Readers unfamiliar with stabilized Lagrange multiplier methods are encouraged to
review Stenberg’s analysis.
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Appendix A.1.1. Problem setting and notation

We consider an elliptic PDE with Dirichlet boundary conditions: Lu = −∆u + u = f in Ω,

u = g on Γ = ∂Ω,
(A.1)

For sufficiently regular u and v,

(Lu, v)L2(Ω) = a(u, v) = a(v, u) , (A.2)

where
a(u, v) = (∇u,∇v)L2(Ω) + (u, v)L2(Ω) , (A.3)

is bounded and coercive in H1(Ω).

Remark 8. This problem setting deviates from Stenberg’s presentation [5, (2.1)] by adding a
reaction term, following Barbosa and Hughes [4, Section 2]. This makes a fully coercive in H1(Ω)
and simplifies the analysis slightly. Numerical experiments in Appendix A.2 indicate that this
reaction term is not strictly necessary.

The weak version of (A.1), using Lagrange multipliers to enforce the Dirchlet boundary con-
dition, is: Find u ∈ H1(Ω) and λ ∈ H−1/2(Γ) such that, for all v ∈ H1(Ω) and µ ∈ H−1/2(Γ),

B({u, λ}, {v, µ}) = ( f , v)L2(Ω) − H−1/2(Γ) 〈µ, g〉H1/2(Γ) , (A.4)

where
B({u, λ}, {v, µ}) = a(u, v) + H−1/2(Γ) 〈λ, γv〉H1/2(Γ) − H−1/2(Γ) 〈µ, γu〉H1/2(Γ) . (A.5)

This problem is well-posed, and, for the choice of differential operator L stated above,

λ = −∇u · n , (A.6)

where n is the normal to ∂Ω. For other differential operators, λ may be equal to a different flux. In
the immersed setting, where Γ is an internal surface, ∇u would not be defined in the classical sense
and (A.6) would instead hold in the sense of distributions. However, for simplicity, we assume in
this section that Γ = ∂Ω. In continuum mechanics problems, for example, the interface Lagrange
multiplier will be the Cauchy traction (cf. [2, Section 2], for a derivation in the context of FSI).

To compute approximate solutions, let Vh be a conforming finite-dimensional subspace of
H1(Ω), defined on a mesh of finite elements of size ∼ h, and let Λh be a finite-dimensional subspace
of H−1/2(Γ) consisting of (inner products with) L2(Γ) functions. Assume that Λh is discontinuous
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between elements of its own discretization. The assumption of discontinuity can be weakened, but
it is easy enough to satisfy in practice, so we retain it here for simplicity.

Now define a coarse multiplier space, consisting of constants on macroelements of the mesh
defining Λh. The macroelements have diameters ∼ H, and the coarse space is denoted ΛH. Be-
cause Λh is discontinuous between elements, it is clearly the case that ΛH ⊂ Λh. The orthogonal
complement of ΛH in Λh (with respect to the L2(Γ) projector) is denoted Λ⊥ ⊂ Λh. As in Section
2.2, we denote the L2(Γ) projection from L2(Γ) to ΛH as P and define P⊥ = I − P (cf. (11) and
(12)). This implies the L2(Γ) orthogonality condition

(
P⊥λ, Pµ

)
L2(Γ) = 0 ∀λ, µ ∈ L2(Γ) . (A.7)

Because Λh is assumed to be discontinuous across macroelement boundaries, the conditions (12)
and (A.7) also hold when restricted to individual macroelements.

It is crucial to recognize that the coarse space’s approximation power is irrelevant to the
convergence of the numerical approach defined in the sequel. The coarse mesh parameter H

need not even be refined toward zero for the numerical method to converge. It merely indicates the
length scale at which the numerical method enforces kinematic conservation. In cases for which
global kinematic conservation is sufficient, a single macroelement might be chosen to cover the
entire boundary. The only restriction in choosing ΛH is that it must satisfy the inf–sup condi-
tion (A.16), although, given the ability to choose H significantly larger than h, without regard to
approximation power, the satisfaction of such conditions becomes quite easy. For instance, the
classical result that there exists (sans construction) some C, such that (A.16) holds uniformly for
H > Ch [3], implies that merely refining h faster than H (which need not be refined at all, from an
approximation standpoint) will provide uniform inf–sup stability. Choosing h � H may result in
poor sparsity patterns in matrix representations of the discrete bilinear form, but this is a non-issue
for the iterative and semi-implicit solution schemes discussed in Section 2.4.

Following [5], we define mesh-dependent norms of (traces of) functions in the finite element
spaces. The mesh dependent counterpart to ‖ · ‖H1/2(Γ) is

‖γv‖21/2,h =
∑

E

h−1
E ‖γv‖2L2(ΓE) , (A.8)

for all v ∈ H1(Ω), where E indexes macroelements {ΓE} of the coarse-scale mesh of Γ, and hE

asymptotically bounds, from above and below, the sizes of elements from the mesh defining Vh

that intersect ΓE. (The length scale hE is not, in general, proportional to the diameter of ΓE.) With
this assumption of quasi-uniformity within macroelements, (A.8) is equivalent (up to constants) to
the definition of ‖ · ‖1/2,h given by Stenberg [5, (3.11)]. The analog of the ‖ · ‖H−1/2(Γ) norm for finite
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element functions in Λh ⊂ L2(Γ) ⊂ H−1/2(Γ) is

‖z‖2−1/2,h =
∑

E

hE‖z‖2L2(ΓE) , (A.9)

for all z ∈ L2(Γ). This is, of course, also a norm on the coarse space ΛH ⊂ Λh. It follows that

H−1/2(Γ) 〈z, γv〉H1/2(Γ) ≤ ‖γv‖1/2,h‖z‖−1/2,h ∀{v, z} ∈ H1(Ω) × L2(Γ) . (A.10)

Recalling that, when arguments are in L2(Γ), H−1/2(Γ) 〈·, ·〉H1/2(Γ) is equivalent to (·, ·)L2(Γ), we define,
as a reminder,

〈u, v〉A = (u, v)L2(A) , (A.11)

for A ⊂ Γ and u, v ∈ L2(Γ). We then construct a norm on the product space Vh × Λh:

|||u, λ|||2 = ‖u‖2H1(Ω) + ‖λ‖2−1/2,h (A.12)

for all u ∈ H1(Ω) and λ ∈ L2(Γ). Given standard interpolation estimates [5, Lemma 2] and
assuming sufficient regularity of u and λ, we can then show optimal convergence if consistency,
stability, and boundedness of a discrete formulation are satisfied with respect to the |||·, ·||| norm.
To show stability of the discrete formulation discussed in the sequel, we need the trace-inverse
estimate [5, Lemma 3]:

CI

∥∥∥∇vh · n
∥∥∥
−1/2,h

≤ ‖vh‖H1(Ω) , (A.13)

for all vh ∈ Vh. For a different differential operator L in (A.1), a similar identity would be needed
for whatever the relevant boundary flux is.

Appendix A.1.2. Numerical method

The finite-dimensional approximation to (A.4) that we want to solve is: Find uh ∈ Vh and
λh ∈ Λh such that, for all vh ∈ Vh and µh ∈ Λh,

Bh({uh, λh}, {vh, µh}) = ( f , vh)L2(Ω) + H−1/2(Γ)

〈
µh,−g

〉
H1/2(Γ)

, (A.14)

where

Bh({uh, λh}, {vh, µh}) =B({uh, λh}, {vh, µh})

− α
∑

E

hE

〈
P⊥

(
λh + ∇uh · n

)
, P⊥

(
−µh + ∇vh · n

)〉
ΓE

. (A.15)
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α > 0 is a stabilization parameter. The sum
∑

E indicates summation over macroelements ΓE

indexed by E, containing fine scale elements of size ∼ hE.

Remark 9. Because the orthogonality condition (A.7) holds on each macroelement ΓE, we can
safely remove P⊥ from one side of the duality pairing in the stabilization term. This would not be
true if the sum were instead taken over fine scale elements with a different length scale he on each
element. The coarse mesh is the finest scale at which we have L2 orthogonality between Λh and
ΛH.

Assuming λ ∈ L2(Γ), the strong consistency of this formulation is clear. For optimal conver-
gence, we need a stability result. We begin by making a stability assumption about the coarse
space. Specifically, we assume that it satisfies

inf
λH∈ΛH

sup
zh∈Vh

H−1/2(Γ)

〈
λH, γzh

〉
H1/2(Γ)

‖zh‖H1(Ω)‖λH‖−1/2,h
≥ CBr , (A.16)

where CBr is independent of h. This implies [42, Section 5]

inf
(v,µ)∈Vh×ΛH

sup
(z,η)∈Vh×ΛH

Bh({v, µ}, {z, η})
|||z, η||||||v, µ|||

≥ CBa , (A.17)

under the condition that the bilinear form

aα(u, v) = a(u, v) − α
∑

E

hE
〈
P⊥∇u · n, P⊥∇v · n

〉
ΓE

(A.18)

is continuous and coercive in Vh [42, Section 5]. The continuity of aα is a consequence of the
trace-inverse estimate (A.13). The coercivity of aα follows from the standard condition on the
Barbosa–Hughes stabilization parameter:

α =
CICA

2
, (A.19)

where CA is the coercivity constant of a in H1(Ω). Defining α as above, recalling the coercivity of a

and the trace-inverse inequality (A.13), and noting that the induced L2(ΓE) norm of the orthogonal
projector P⊥ is ≤ 1,

aα(v, v) ≥ CA‖v‖2H1(Ω) − α ‖∇v · n‖2−1/2,h ≥

(
CA −

α

CI

)
‖v‖2H1(Ω) =

CA

2
. (A.20)

The inf–sup condition we want for optimal convergence replaces the space ΛH in (A.17) with the
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full multiplier space Λh:

inf
(v,µ)∈Vh×Λh

sup
(z,η)∈Vh×Λh

Bh({v, µ}, {z, η})
|||z, η||||||v, µ|||

♥

≥ Cinf–sup , (A.21)

where ♥ indicates a desired relation that remains to be established. However, we can use (A.17) to
obtain the desired inf–sup condition for the formulation (A.14). First, observe that having (A.17)
allows us to limit our testing of (A.21) to the fine scale multiplier discrete space, Λ⊥:

inf
(v,µ)∈Vh×Λh

sup
(z,η)∈Vh×Λh

Bh({v, µ}, {z, η})
|||z, η||||||v, µ|||

= min

 inf
(v,µ)∈Vh×ΛH

sup
(z,η)∈Vh×Λh

Bh({v, µ}, {z, η})
|||z, η||||||v, µ|||

, inf
(v,µ)∈Vh×Λ⊥

sup
(z,η)∈Vh×Λh

Bh({v, µ}, {z, η})
|||z, η||||||v, µ|||

 (A.22)

≥ min

 inf
(v,µ)∈Vh×ΛH

sup
(z,η)∈Vh×ΛH

Bh({v, µ}, {z, η})
|||z, η||||||v, µ|||

, inf
(v,µ)∈Vh×Λ⊥

sup
(z,η)∈Vh×Λh

Bh({v, µ}, {z, η})
|||z, η||||||v, µ|||

 (A.23)

≥ min

CBa , inf
(v,µ)∈Vh×Λ⊥

sup
(z,η)∈Vh×Λ⊥

Bh({v, µ}, {z, η})
|||z, η||||||v, µ|||

 . (A.24)

What we want to complete our argument is then

inf
(v,µ)∈Vh×Λ⊥

sup
(z,η)∈Vh×Λ⊥

Bh({v, µ}, {z, η})
|||z, η||||||v, µ|||

♥

≥ Cα , (A.25)

with Cα independent of h. This will secure the desired inequality (A.21), with Cinf–sup =

min{CBa,Cα}. The inequality (A.25) follows easily from standard analysis of Barbosa–Hughes
stabilization, using the definition of α given by (A.19) and recalling that, for all λ ∈ Λ⊥, P⊥λ = λ.
We can resort to the special case of coercivity of Bh when restricted to the space Vh × Λ⊥. For
arbitrary v ∈ Vh and µ ∈ Λ⊥,

Bh({v, µ}, {v, µ}) =a(v, v) − α
∑

E

hE
〈
P⊥ (µ + ∇v · n) , P⊥ (−µ + ∇v · n)

〉
ΓE

(A.26)

=aα(v, v) + α
∑

E

hE ‖µ‖
2
L2(ΓE) (Recall the definition (A.18) of aα.) (A.27)

≥
CA

2
‖v‖2H1(Ω) +

CACI

2
‖µ‖2−1/2,h (A.28)

≥min
{CA

2
,
CACI

2

}
|||v, µ|||2 . (A.29)
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Therefore, combining (A.24) and (A.29), we obtain our goal of (A.21), with

Cinf–sup ≥ min
{
CBa,

CA

2
,
CACI

2

}
. (A.30)

With an appropriate selection of the stabilization parameter, we therefore have optimal convergence
of the numerical method. Unlike the usual Barbosa–Hughes approach, though, we have some
degree of local conservation, on the macroelements of the coarse multiplier space.

Remark 10. A minor subtlety is that Bh is not uniformly bounded in the norm |||·|||, so deriving
optimal convergence from (A.21) follows a non-standard procedure. The use of inf–sup stability
and strong consistency follows in the usual way to give us

Cinf–sup

∣∣∣∣∣∣∣∣∣eh
u, e

h
λ

∣∣∣∣∣∣∣∣∣ ≤ sup
vh,µh

Bh({ηu, ηλ}, {vh, µh})∣∣∣∣∣∣∣∣∣vh, µh
∣∣∣∣∣∣∣∣∣ , (A.31)

in which the total error is given by e = η+eh, where eh is in the discrete space and η is the optimally-
small interpolation error. Boundedness of Bh in |||·||| would obviously complete the analysis, but
is not strictly necessary. The interpolation assumption [4, (H9)] easily implies the weaker-but-
sufficient condition ∣∣∣Bh({ηu, ηλ}, {vh, µh})

∣∣∣ ≤ (optimal in h)
∣∣∣∣∣∣∣∣∣vh, µh

∣∣∣∣∣∣∣∣∣ ∀vh, µh . (A.32)

Appendix A.1.3. Formal elimination of fine scales

Adapting the argument from [5, page 146], we can formally eliminate the fine scale component
of the Lagrange multipliers by first noting, from (A.14), that, on each macroelement ΓE and for
each test function µh ∈ Λh,

〈
P⊥λh, µh

〉
ΓE

=

〈
−P⊥

(
∇uh · n

)
+

1
αhE

P⊥
(
uh − g

)
, µh

〉
ΓE

. (A.33)

Then, if we set Λh = L2(Γ), set µh = µH ∈ ΛH in (A.14), insert the right-hand side of (A.33) in
lieu of P⊥λh, and denote Pλh as λH ∈ ΛH, we can obtain the following problem, which is devoid
of any explicit representation of multiplier fine scales: Find uh ∈ Vh and λH ∈ ΛH such that, for all
vh ∈ Vh and µH ∈ ΛH,

a(uh, vh) + H−1/2(Γ)

〈
λH, vh

〉
H1/2(Γ)

− H−1/2(Γ)

〈
µH, uh − g

〉
H1/2(Γ)

− H−1/2(Γ)

〈
P⊥

(
∇uh · n

)
, P⊥vh

〉
H1/2(Γ)

− H−1/2(Γ)

〈
P⊥

(
∇vh · n

)
, P⊥(uh − g)

〉
H1/2(Γ)

+
∑

E

(αhE)−1〈P⊥(uh − g), P⊥vh〉ΓE = ( f , vh)L2(Ω) . (A.34)
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The above is essentially using coarse multipliers to enforce conservation on macroelements and
Nitsche’s method to obtain fine scale accuracy in the constraint.

Appendix A.1.4. Formal elimination of the projection

Some formal manipulations simplify the implementation of (A.34). First, we can use orthogo-
nality to eliminate redundant projections:

a(uh, vh) + H−1/2(Γ)

〈
λH, vh

〉
H1/2(Γ)

− H−1/2(Γ)

〈
µH, uh − g

〉
H1/2(Γ)

− H−1/2(Γ)

〈
P⊥

(
∇uh · n

)
, vh

〉
H1/2(Γ)

− H−1/2(Γ)

〈
∇vh · n, uh − g

〉
H1/2(Γ)

+
∑

E

(αhE)−1〈uh − g, vh〉ΓE = ( f , vh)L2(Ω) . (A.35)

Then we can define a new variable

λH
0 =

(
λH + P

(
∇uh · n

))
∈ ΛH (A.36)

and rephrase the problem in terms of λH
0 : Find uh ∈ Vh and λH

0 ∈ ΛH such that, for all vh ∈ Vh and
µH ∈ ΛH,

a(uh, vh) + H−1/2(Γ)

〈
λH

0 , v
h
〉

H1/2(Γ)
− H−1/2(Γ)

〈
µH, uh − g

〉
H1/2(Γ)

− H−1/2(Γ)

〈
∇uh · n, vh

〉
H1/2(Γ)

− H−1/2(Γ)

〈
∇vh · n, uh − g

〉
H1/2(Γ)

+
∑

E

(αhE)−1〈uh − g, vh〉ΓE = ( f , vh)L2(Ω) . (A.37)

λH
0 should obviously converge to zero under refinement. However, its presence ensures conser-

vation on macroelements. Computationally, this is just Nitsche’s method for all scales of the
constraint, with an extra layer of coarse scale Lagrange multipliers ensuring conservation.

The original λH from the problem (A.37) can be extracted by post-processing via (A.36). How-
ever, the typical quantity of interest one would want to calculate would be the conservative flux
(cf. [43])

− λh = −(λH + P⊥λh) = −λH
0 + ∇uh · n − (αhE)−1(uh − g) , (A.38)

so the entire computation and typical post-processing tasks do not require the projector P.

Appendix A.2. Numerical examples

This section demonstrates the applicability of the preceding analysis to boundary-fitted and
immersed discretizations some elliptic model problems.
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Appendix A.2.1. Poisson problem on a fitted mesh

This section tests convergence to a manufactured solution of the Poisson problem on a square
domain. In particular, we approximate solutions to the problem:6 Find u such that −∆u = f on Ω

u = g on ∂Ω ,
(A.39)

with Ω = (0, 1) × S 1 (i.e., a unit square with periodicity in the x2 direction). We manufacture a
smooth exact solution

uexact(x) =
1
2

(1 − cos (2πx2)) sin
(
π

2

(
x1 −

1
2

))
, (A.40)

by setting f = −∆uexact and g = uexact|∂Ω and apply the discretization given in Appendix A.1.4. Vh

is a B-spline space of polynomial degree 4 and maximal continuity, with 2N × 2N Bézier elements,
for N = {3, . . . , 7}. ΛH is the space propsed in Section 2.3, which, although presented in the context
of immersed boundaries, can clearly also be used when Γ happens to coincide with the boundary of
a conforming mesh. The mesh size hE is set to the width of a single Bézier element and the constant
α is set to one. The convergence of approximate solutions in L2(Ω) and H1(Ω) is shown in Figure
A.11, exhibiting optimal rates, as expected. To show the effect of the conservation properties of
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Figure A.11: Convergence of L2(Ω) and H1(Ω) errors using a fitted mesh, showing optimal rates for p = 4.

6The differential operator of problem (A.39) differs from that analyzed in Appendix A.1, but adapting the nu-
merical methods developed for (A.1) to problem (A.39) is trivially straightforward. The efficacy of these numerical
methods on problem (A.39) indicates the non-necessity of the reaction term added to (A.1) for convenience.
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the numerical method, we compute the integral

E =

∫ 0.375

0.25

(
γuh (0, x2) − g(x2)

)
dx2 (A.41)

for all N. For N ≥ 4, the integration domain (0.25, 0.375) is a union of coarse scale multiplier
elements. Therefore, for N ≥ 4, we expect E to hover within machine precision of zero whereas,
for N < 4 the integration domain covers only part of a coarse scale multiplier element and, we
expect E to be influenced by discretization error (which is typically much larger than floating-
point round-off error). The results of this experiment are show in Table A.1

Table A.1: We expect E to be machine zero for N ≥ 4, due to the conservation properties of the numerical method.

N E
3 1.92 × 10−7

4 4.45 × 10−17

5 8.33 × 10−18

6 −1.19 × 10−17

7 −9.83 × 10−18

Appendix A.2.2. Poisson problem on an unfitted mesh

We now consider an unfitted discretization of the Poisson problem, in which some of the tacit
assumptions justifying the selection of discrete H±1/2(Γ) norms in Appendix A.1 may not hold.
The test problem is the same as that described in Appendix A.2.1, aside from the definition of Ω,
which is modified to be

Ω = (0, 1)2 \
{
x ∈ R2

∣∣∣ ‖x‖`2 ≤ 0.25
}

, (A.42)

again with periodicity in the x2-direction. A representative numerical solution is shown in Figure
A.12. We again discretize the field u using B-spline spaces defined on the rectangle (0, 1)2 (now
restricted to Ω ( (0, 1)2). To integrate the variational formulation of Appendix A.1.4 over a re-
gion that does not conform to element boundaries, we use a numerical approach called the finite
cell method, reviewed in [44]. The finite cell method makes use of a procedure termed “adaptive
quadrature” to resolve integrals over elements cut by the domain boundary: quadrature cells inter-
secting an immersed boundary are recursively subdivided until a sufficient degree of accuracy is
obtained. Implementation details are as specified in [7, Section 3.2]. In particular, we follow the
notation of [7, Section 3.2] and use the symbol l to denote the level of adaptive quadrature, i.e., the
maximum depth of recursion used to generate adaptive quadrature rules in elements intersected by
the immersed boundary. To test convergence, we discretize u in this problem with 2N ×2N-element
B-spline spaces of maximal continuity and polynomial degree p = 2, for N = {4, 5, 6, 7}. Inte-
grals on the immersed boundary are approximated using 100× 2N evenly-spaced, evenly-weighted
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quadrature points. The level of adaptive quadrature in the finite cell method used for volume in-
tegration is l = 7.7 The results are shown in Figure A.13, indicating that the optimal convergence
behavior of the formulation in Appendix A.1.4 can be retained on unfitted meshes, if sufficiently
accurate quadrature is applied.

Figure A.12: Representative numerical solution to the poisson problem on the modified domain (A.42).

Remark 11. It is important to keep in mind the distinction between bulky immersed objects and
immersed surfaces of co-dimension one to the domain. Although, in [7], we originally tried to
develop thin-structure immersogeometric FSI formulations by degenerating finite cell discretiza-
tions, the finite cell discretization used in this section, with coarse Lagrange multipliers in the
space proposed in Section 2.3, does not degenerate smoothly into the immersed surface formu-
lation presented in the main body of the paper. The difficulty is illustrated in Figure A.14; flow
entering the fluid domain through the portion of ΓE on one side of the immersed structure would
always be equal to flow exiting the other side, so the kinematic conservation property would be
trivially (and pathologically) satisfied in spite of a net leakage. One might attempt to modify the
definition of the space from Section 2.3 so that different constant multiplier values are permitted

7These choices of boundary and volume integration rules will eventually limit convergence rates, but are sufficient
for optimal behavior at moderate resolutions. See [45] and [46, Section 4] for systematic numerical experiments on
the influence of quadrature error in finite cell computations.
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Figure A.13: Convergence of L2(Ω) and H1(Ω) errors using an unfitted mesh, showing optimal rates for p = 2.

on distinct simply-connected intersections of Γ with each block of 2d Bézier elements, but then the
stability becomes questionable. For intricate geometries of Γ, this could lead overconstraint and,
for the degenerate case of a thin structure, there would be a nontrivial nullspace in the multiplier
field, as only the difference of the multipliers from the two sides of the structure would be uniquely
determined. The alternative “Lagrangian” definition of ΛH depicted in Figure 3 of Section 2.3
would avoid the problem shown in Figure A.14, but also has questionable stability.

Γ
ΓE

Figure A.14: For a nearly-degenerated structure, defining macroelements for ΛH with the background grid in a naive
way is ineffective for enforcing constraints on vector field components normal to an interface, because kinematic
conservation will always be trivially satisfied.
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[3] I. Babuška. The finite element method with Lagrangian multipliers. Numerische Mathematik,
20:179–192, 1972.

[4] H. J. C. Barbosa and T. J. R. Hughes. The finite element method with Lagrange multipliers on
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[30] C. Kadapa, W. G. Dettmer, and D. Perić. A fictitious domain/distributed Lagrange multiplier
based fluid–structure interaction scheme with hierarchical B-spline grids. Computer Methods

in Applied Mechanics and Engineering, 301:1–27, 2016.

[31] A. Campbell, T. Baldwin, G. Peterson, J. Bryant, and K. Ryder. Pitfalls and outcomes from
accelerated wear testing of mechanical heart valves. The Journal of Heart Valve Disease, 5
Suppl 1:S124–132, 1996.

[32] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Ei-
jkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith,
S. Zampini, and H. Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc, 2015.

[33] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Ei-
jkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith,
S. Zampini, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision
3.6, Argonne National Laboratory, 2015.

35

http://www.mcs.anl.gov/petsc


[34] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism
in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Lang-
tangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser
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