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Abstract We provide an overview of the aerodynamic and
FSI analysis of wind turbines the first three authors’ teams
carried out in recent years with the ALE-VMS and ST-
VMS methods. The ALE-VMS method is the variational
multiscale version of the Arbitrary Lagrangian–Eulerian
(ALE) method. The VMS components are from the residual-
based VMS (RBVMS) method. The ST-VMS method is the
VMS version of the Deforming-Spatial-Domain/Stabilized
Space–Time (DSD/SST) method. The techniques comple-
menting these core methods include weak enforcement of
the essential boundary conditions, NURBS-based isogeo-
metric analysis, using NURBS basis functions in temporal
representation of the rotor motion, mesh motion and also
in remeshing, rotation representation with constant angular
velocity, Kirchhoff–Love shell modeling of the rotor-blade
structure, and full FSI coupling. The analysis cases include
the aerodynamics of standalone wind-turbine rotors, wind-
turbine rotor and tower, and the FSI that accounts for the
deformation of the rotor blades. The specific wind turbines
considered are NREL 5MW, NREL Phase VI and Micon
65/13M, all at full scale, and our analysis for NREL Phase
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1 Introduction

Countries around the world are putting substantial effort
into the development of wind energy technologies. The am-
bitious wind energy goals put pressure on the wind en-
ergy industry research and development to significantly en-
hance the current wind generation capabilities in a short
period of time and decrease the associated costs. This
calls for transformative concepts and designs (e.g., float-
ing offshore wind turbines) that must be created and ana-
lyzed with high-precision methods and tools. These include
complex-geometry, 3D, time-dependent, multi-physics pre-
dictive simulation methods and software that will play an
increasingly important role as the demand for wind energy
grows.

Currently most wind-turbine aerodynamics and aeroe-
lasticity simulations are performed using low-fidelity meth-
ods, such as the Blade Element Momentum (BEM) theory
for the rotor aerodynamics employed in conjunction with
simplified structural models of the wind-turbine blades and
tower (see, e.g., [1; 2]). These methods are very fast to im-
plement and execute. However, the cases involving unsteady
flow, turbulence, 3D details of the wind-turbine blade and
tower geometry, and other similarly-important features, are
beyond their range of applicability.

To obtain high-fidelity predictive simulation results for
wind turbines, 3D modeling is essential. However, simula-
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tion of wind turbines at full scale engenders a number of
challenges: the flow is fully turbulent, requiring highly ac-
curate methods and increased grid resolution. The presence
of fluid boundary layers, where turbulence is created, com-
plicates the situation further. Wind-turbine blades are long
and slender structures, with complex distribution of mate-
rial properties, for which the numerical approach must have
good approximation properties and avoid locking. Wind-
turbine simulations involve moving and stationary compo-
nents, and the fluid–structure coupling must be accurate, ef-
ficient and robust to preclude divergence of the computa-
tions. These explain the current, modest nature of the state-
of-the-art in wind-turbine simulations.

Fluid–structure interaction (FSI) simulations at full scale
are essential for accurate modeling of wind turbines. The
motion and deformation of the wind-turbine blades depend
on the wind speed and air flow, and the air flow patterns de-
pend on the motion and deformation of the blades. In order
to simulate the coupled problem, the equations governing
the air flow and the blade motions and deformations need
to be solved simultaneously, with proper kinematic and dy-
namic conditions coupling the two physical systems. With-
out that the modeling cannot be realistic: unsteady blade de-
formation affects aerodynamic efficiency and noise genera-
tion, and response to wind gusts. Flutter analysis of large
blades operating in offshore environments is of great impor-
tance and cannot be accomplished without FSI.

In recent years, several attempts were made to address
the above mentioned challenges and to raise the fidelity and
predictability levels of wind-turbine simulations. Standalone
aerodynamics simulations of wind-turbine configurations in
3D were reported in [3; 4; 5; 6; 7; 8], while standalone struc-
tural analyses of rotor blades of complex geometry and ma-
terial composition, but under assumed wind-load conditions
or wind-load conditions coming from separate aerodynamic
computations were reported in [9; 10; 11; 12; 13; 14]. In a
recent work [15] it was shown that coupled FSI modeling
and simulation of wind turbines is important for accurately
predicting their mechanical behavior at full scale.

We feel that in order to address the above mentioned
challenges one should employ a combination of numerical
techniques, which are general, accurate, robust and efficient
for the targeted class of problems. Such techniques are sum-
marized in what follows and are described in greater detail
in the body of this review paper.

Isogeometric Analysis (IGA), first introduced in [16] and
further expanded on in [17; 18; 19; 20; 21; 22; 23; 24;
25; 26; 27; 28], is adopted as the geometry modeling and
simulation framework for wind turbines in some of the ex-
amples presented in this paper. We use the IGA based on
NURBS (non-uniform rational B-splines), which are more
efficient than standard finite elements for representing com-
plex, smooth geometries, such as wind-turbine blades. The
IGA was successfully employed for computation of turbu-
lent flows [29; 30; 31; 32; 33; 34], nonlinear structures
[35; 36; 37; 38; 39; 13], and FSI [40; 41; 42; 43], and, in
most cases, gave a clear advantage over standard low-order

finite elements in terms of solution accuracy per-degree-
of-freedom. This is in part attributable to the higher-order
smoothness of the basis functions employed. Flows about
rotating components are naturally handled in an isogeomet-
ric framework because all conic sections, and in particular,
circular and cylindrical shapes, are represented exactly [44].

The blade structure is governed by the isogeometric
rotation-free shell formulation with the aid of the bending-
strip method [13]. The method is appropriate for thin-shell
structures comprised of multiple C1- or higher-order con-
tinuous surface patches that are joined or merged with con-
tinuity no greater than C0. The Kirchhoff–Love shell the-
ory that relies on higher-order continuity of the basis func-
tions is employed in the patch interior as in [39]. Although
NURBS-based IGA is employed in this work, other dis-
cretizations such as T-splines [24; 23] or subdivision sur-
faces [45; 46; 47], are perfectly suited for the proposed struc-
tural modeling method.

In addition, an isogeometric representation of the
analysis-suitable geometry can be used in generating tetra-
hedral and hexahedral meshes for computations with the
finite element method (FEM). In this paper, we use tetra-
hedral meshes generated that way in wind-turbine com-
putations with the ALE-VMS and ST-VMS methods. The
ALE-VMS method [42; 6] is the variational multiscale
(VMS) version of the Arbitrary Lagrangian–Eulerian (ALE)
method [48]. The VMS components are from the residual-
based VMS (RBVMS) method given in [49; 50; 29;
34]. The ST-VMS method [51; 52] is the VMS version
of the Deforming-Spatial-Domain/Stabilized Space–Time
(DSD/SST) method [53; 54; 55; 56; 57]. Earlier it was called
“DSD/SST-VMST” (i.e. the version with the VMS turbu-
lence model) in [51]. For comparison purposes, we also re-
port in this paper results from the original DSD/SST formu-
lation, which was was named “DSD/SST-SUPS” in [51] (i.e.
the version with the SUPG/PSPG stabilization), which was
also called “ST-SUPS” in [58].

The ALE-VMS method originated from the RBVMS
formulation of incompressible turbulent flows proposed
in [29] for stationary meshes, and may be thought of as
an extension of the RBVMS method to moving meshes. As
such, it was presented for the first time in [42] in the con-
text of FSI. Although ALE-VMS gave reasonably good re-
sults for several important turbulent flows, it was evident
in [29; 32] that to obtain accurate results for wall-bounded
turbulent flows the method required relatively fine resolu-
tion of the boundary layers. This fact makes ALE-VMS a
somewhat costly technology for full-scale wall-bounded tur-
bulent flows at high Reynolds numbers, which are charac-
teristic of the present application. For this reason, weakly-
enforced essential boundary condition formulation was in-
troduced in [59], which significantly improved the perfor-
mance of the ALE-VMS formulation in the presence of un-
resolved boundary layers [30; 31; 34]. The weak boundary
condition formulation may be thought of as an extension
of Nitsche’s method [60] to the Navier–Stokes equations
of incompressible flows. Another interpretation of the weak
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boundary condition formulation is that it is a discontinuous
Galerkin (DG) method (see, e.g., [61]), where the continuity
of the basis functions is enforced everywhere in the domain
interior, but not at the domain boundary.

The DSD/SST formulation was introduced in [53; 54;
55] as a general-purpose interface-tracking (moving-mesh)
technique for flows with moving boundaries and inter-
faces, including FSI and flows with moving objects. Its sta-
bilization components are the Streamline-Upwind/Petrov-
Galerkin (SUPG) [62] and Pressure-Stabilizing/Petrov-
Galerkin (PSPG) [53; 63] stabilizations. It also includes
the “LSIC” (least-squares on incompressibility constraint)
stabilization. Some of the earliest FSI computations with
the DSD/SST formulation were reported in [64] for vortex-
induced vibrations of a cylinder and in [65] for flow-induced
vibrations of a flexible, cantilevered pipe (1D structure with
3D flow). The DSD/SST formulation has been used ex-
tensively in 3D computations of parachute FSI, starting
with the 3D computations reported in [66] and evolving
to computations with direct coupling [67]. New versions
of the DSD/SST formulation introduced in [57] are the
core technologies of the Stabilized ST FSI (SSTFSI) tech-
nique, which was also introduced in [57]. The ST-VMS
method and SSTFSI technique, combined with a number
of special techniques (see [68; 69; 70; 71] and references
therein) have been used in some of the most challenging
parachute FSI computations (see [68; 72; 73; 74] and refer-
ences therein)), and also in a good number of patient-specific
cardiovascular FSI and fluid mechanics computations (see
[69; 70; 71; 75] and references therein). Computations with
the SSTFSI technique also received a substantial attention
in research related to iterative solution of large linear sys-
tems [76; 77].

In application of the DSD/SST formulation to flows with
moving objects, the Shear–Slip Mesh Update Method (SS-
MUM) [78; 79; 80] has been very instrumental. The SS-
MUM was first introduced for computation of flow around
two high-speed trains passing each other in a tunnel (see
[78]). The challenge was to accurately and efficiently update
the meshes used in computations based on the DSD/SST
formulation and involving two objects in fast, linear rela-
tive motion. The idea behind the SSMUM was to restrict
the mesh moving and remeshing to a thin layer of elements
between the objects in relative motion. The mesh update at
each time step can be accomplished by a “shear” deforma-
tion of the elements in this layer, followed by a “slip” in
node connectivities. The slip in the node connectivities, to
an extent, un-does the deformation of the elements and re-
sults in elements with better shapes than those that were
shear-deformed. Because the remeshing consists of simply
re-defining the node connectivities, both the projection er-
rors and the mesh generation cost are minimized. A few
years after the high-speed train computations, the SSMUM
was implemented for objects in fast, rotational relative mo-
tion and applied to computation of flow past a rotating pro-
peller [79] and flow around a helicopter with its rotor in mo-
tion [80].

The ST-VMS method was successfully tested on com-
putation of wind-turbine rotor aerodynamics in [7; 81; 82].
Those computations did not include a wind-turbine tower,
and therefore a mesh update method was not required. In
[83], the ST-VMS method was applied to computation of
wind-turbine rotor and tower aerodynamics. The presence
of a tower requires a mesh update method that can han-
dle the fast, rotational relative motion between the rotor and
tower. The SSMUM would have been an option, but we de-
cided to use a mesh update method that is more general. We
use NURBS basis functions for the temporal representation
of the rotor motion, mesh motion and also in remeshing.
This is essentially the same computational technology used
in the ST-VMS computations of flapping-wing aerodynam-
ics reported in [84; 85; 86; 87]. We named it “ST/NURBS
Mesh Update Method (STNMUM)” in [83]. The motion of
the rotor surface mesh created from the NURBS geometry
is represented by quadratic temporal NURBS basis func-
tions, with sufficient number of temporal patches for one
rotation. This enables us to represent the circular paths as-
sociated with the rotor motion exactly and, with a “sec-
ondary mapping” [51; 84; 52; 58], specify a constant an-
gular velocity corresponding to the invariant speeds along
those paths. Given the motion of the surface mesh, we com-
pute meshes that serve as temporal-control points. This is
done by creating with an automatic mesh generator a new
mesh at the central control point of the temporal patch, and
computing the meshes at the other two control points by us-
ing the mesh moving technique [88; 89; 90; 91; 57] devel-
oped earlier in conjunction with the DSD/SST method. The
STNMUM allows us to do mesh computations with longer
time in between, but get the mesh-related information for
each ST slab, such as the coordinates and their time deriva-
tives, from the temporal representation whenever we need.
This approach where the mesh-related information is com-
puted “directly” was called in [83] “Direct Temporal Repre-
sentation (DTR).” In an alternative approach, we can obtain
the mesh-related data after first computing the finite element
meshes associated with each ST slab by interpolation from
the temporal NURBS representation of the mesh. This ap-
proach was called “Interpolated-Mesh Temporal Represen-
tation (IMTR).” in [83]. For better mesh resolution, we use
layers of thin elements near the blade surfaces. These layers
of elements are created with a special mesh generation pro-
cess and are not part of what we create with the automatic
mesh generation process. They undergo rigid-body motion
with the rotor. Despite the fast, rotational relative motion be-
tween the rotor and tower, the computations reported in [83]
were carried out by using an automatic mesh generator only
a total of 6 times during an entire computation.

In Section 2, we review the methods for the aerodynam-
ics parts of this work, namely, the ALE-VMS and ST-VMS
methods. We also describe, for the ST-VMS computations,
a method with NURBS basis functions in temporal repre-
sentation of the rotor motion with constant angular veloc-
ity and a recently-developed element length definition for
the diffusion-dominated limits of the stabilization parame-
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ters. In addition, for the ALE-VMS computations, we de-
scribe the formulation for weakly-enforced essential bound-
ary conditions. In Section 3, we provide a description of
the wind-turbine rotor geometry modeling and summarize
the aerodynamics computations for the 5MW wind-turbine
rotor defined in [2]. The results presented are from refer-
ence [6] and include simulations using the FEM-based ST-
VMS method. In Section 4, we present the sliding-interface
formulation from [44; 92; 93], which enables the simula-
tion of rotor–tower interaction. The formulation was used
in [93] for ALE-VMS aerodynamic simulations of the Na-
tional Renewable Energy Lab (NREL) Phase VI wind tur-
bine (see [94]) for comparison to the extensive set of experi-
mental data available for this test case. We also present those
simulations in Section 4. In Section 5, we describe, from
[83], the FEM-based ST-VMS computations of the wind-
turbine rotor and tower aerodynamics. NURBS basis func-
tions are used in temporal representation of the rotor and
volume mesh motion and in remeshing. In Section 6, we re-
view the structural mechanics formulation, which is based
on the Kirchhoff–Love thin-shell theory and the bending-
strip method (see [39; 13; 15]). The FSI coupling is de-
scribed in Section 7, where we also provide a discussion
of the mesh motion procedures employed in the FSI sim-
ulations of the Micon 65/13M wind turbine reported in Sec-
tion 8, which was reported earlier in [95]. In Section 9, we
present a method for pre-bending of wind-turbine blades,
which was recently proposed in [14]. We end with conclud-
ing remarks in Section 10.

2 ALE-VMS and ST-VMS Formulations of the
Navier–Stokes Equations of Incompressible Flows

2.1 Continuous Problem

Let Ωt ∈ R
nsd , d = 2, 3, be the spatial domain of the aero-

dynamics problem with boundary Γt at time t ∈ (0,T ). The
subscript t indicates that the fluid mechanics spatial domain
is time-dependent. The Navier–Stokes equations of incom-
pressible flows 1 in the ALE frame may be written on Ωt and
∀t ∈ (0,T ) as

ρ

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u − f
)
−∇∇∇ ·σσσ = 0,

∇∇∇ · u = 0, (1)
where ρ, u, and f are the density, velocity and the external
force, respectively, and the stress tensor σσσ is defined as

σσσ (u, p) = −pI + 2µεεε (u) . (2)

Here p is the pressure, I is the identity tensor, µ is the dy-
namic viscosity, and εεε (u) is the strain-rate tensor given by

εεε (u) =
1
2

(
∇∇∇u +∇∇∇uT

)
. (3)

1 Although aerodynamic phenomena are generally described
using the Navier–Stokes equations of compressible flows, the
incompressible-flow assumption is valid for the present application.

In Eq. (1), the notation
∣∣∣∣
x̂

implies that the time derivative is
taken with respect to a fixed referential-domain spatial coor-
dinates x̂, and û is the velocity of the fluid domain Ωt. The
spatial gradients are taken with respect to the spatial coordi-
nates x of the current configuration.

2.2 ALE-VMS Method

The ALE-VMS formulation of the continuum aerodynamics
formulation is given as follows: find uh ∈ Sh

u and ph ∈ Sh
p,

such that ∀wh ∈ Vh
u and ∀qh ∈ Vh

p:∫
Ωt

wh · ρ

(
∂uh

∂t

∣∣∣∣∣∣
x̂

+
(
uh − ûh

)
· ∇∇∇uh − fh

)
dΩ

+

∫
Ωt

εεε
(
wh

)
: σσσ

(
uh, ph

)
dΩ −

∫
(Γt)h

wh · hh dΓ

+

∫
Ωt

qh∇∇∇ · uh dΩ

+

nel∑
e=1

∫
Ωe

t

τSUPS

((
uh − ûh

)
· ∇∇∇wh +

∇∇∇qh

ρ

)
· rM

(
uh, ph

)
dΩ

+

nel∑
e=1

∫
Ωe

t

ρνLSIC∇∇∇ · whrC(uh, ph) dΩ

−

nel∑
e=1

∫
Ωe

t

τSUPSwh ·
(
rM

(
uh, ph

)
· ∇∇∇uh

)
dΩ

−

nel∑
e=1

∫
Ωe

t

∇∇∇wh

ρ
:
(
τSUPSrM

(
uh, ph

))
⊗

(
τSUPSrM

(
uh, ph

))
dΩ = 0. (4)

Here Ωt is divided into nel spatial finite element subdomains
denoted by Ωe

t . The finite-dimensional trial function spaces
Sh

u for the velocity and Sh
p for the pressure, as well as the

corresponding test function spacesVh
u andVh

p are assumed
to be of equal order. In Eq. (4), h is the natural boundary
condition, (Γt)h is the part of the boundary where we specify
that natural boundary condition, ûh is the mesh velocity, and
rM and rC are the residuals of the momentum and continuity
(incompressibility constraint) equations, given as

rM(uh, ph) =

ρ

(
∂uh

∂t

∣∣∣∣∣∣
x̂

+
(
uh − ûh

)
· ∇∇∇uh − fh

)
−∇∇∇ ·σσσ

(
uh, ph

)
(5)

and
rC(uh, ph) = ∇∇∇ · uh. (6)

Also in Eq. (4), τSUPS and νLSIC are the stabilization param-
eters defined in [42] as

τSUPS =

(
4
∆t2 +

(
uh − ûh

)
·G

(
uh − ûh

)
+ CIν

2G : G
)−1/2

(7)
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and
νLSIC = (trG τSUPS)−1 , (8)

where

trG =

d∑
i=1

Gii (9)

is the trace of the element metric tensor G, ∆t is the time-
step size, and CI is a positive constant, independent of the
mesh size, derived from an appropriate element-wise inverse
estimate (see, e.g., [96; 97; 98]).

Remark 1 The stabilization parameters τSUPS and νLSIC in
the above equations originate from stabilized finite element
methods for fluid dynamics (see, e.g., [62; 99; 100; 101;
102; 56]). The notation “SUPS,” introduced in [51], indi-
cates that there is a single stabilization parameter for the
SUPG and PSPG stabilizations, instead of two separate pa-
rameters. The notation “LSIC”, introduced in [102], de-
notes the stabilization based on least-squares on the incom-
pressibility constraint. The stabilization parameters were
designed and studied extensively in the context of stabilized
finite element formulations of linear model problems of di-
rect relevance to fluid mechanics. These model problems in-
clude advection–diffusion and Stokes equations. The design
of τSUPS and νLSIC is such that optimal convergence with re-
spect to the mesh size and polynomial order of discretiza-
tion is attained for these cases. Furthermore, enhanced sta-
bility for advection-dominated flows and the ability to con-
veniently employ the same basis functions for velocity and
pressure variables for incompressible flow are some of the
attractive outcomes of this method. More recently, the stabi-
lization parameters were derived in the context of the vari-
ational multiscale methods [49; 103] and were interpreted
as the appropriate averages of the small-scale Green’s func-
tion, a key mathematical object in the theory of VMS meth-
ods (see [104] for an elaboration).

Remark 2 The ALE-VMS formulation is a moving-mesh
extension of the RBVMS turbulence modeling technique
proposed for stationary meshes in [29]. It was also pre-
sented in [42] for moving meshes in the context of FSI. Re-
cently, a VMS version of the DSD/SST formulation, which
is called both DSD/SST-VMST and ST-VMS, was introduced
in [51; 52] for computations with moving meshes (see next
subsection).

2.3 ST-VMS Method

In the DSD/SST method (see, e.g., [53; 54; 55; 56; 57; 51;
52]), the finite element formulation is written over a se-
quence of N ST slabs Qn, where Qn is the slice of the ST
domain between the time levels tn and tn+1 (see Figure 1).
At each time step, the integrations are performed over Qn.
The ST finite element interpolation functions are continu-
ous within a ST slab, but discontinuous from one ST slab to
another. The notation (·)−n and (·)+

n will denote the function
values at tn as approached from below and above. Each Qn

tn, Ωn

tn+1, Ωn+1

t

x

Qn Pn

(wh)−n

(wh)+n

(wh)−n+1

(uh)+n

(uh)−n

Qn−1

Qn

Qn+1

x1

x2

t

Fig. 1 ST slab in an abstract representation (top) and in a 2D context
(bottom).

is decomposed into elements Qe
n, where e = 1, 2, . . . , (nel)n.

The subscript n used with nel is for the general case where
the number of ST elements may change from one ST slab to
another. The essential and natural boundary conditions are
enforced over (Pn)g and (Pn)h, the complementary subsets of
the lateral boundary of the ST slab. The finite element trial
function spaces Sh

u for velocity and Sh
p for pressure, and the

test function spaces Vh
u and Vh

p = Sh
p are defined by using,

over Qn, first-order polynomials in space and time. 2

The conservative form of the ST-VMS method is written
as follows: given (uh)−n , find uh ∈ Sh

u and ph ∈ Sh
p, such that

2 Although the trial and test function spaces for the ALE and ST
formulations are different, to avoid introducing extra notation, we use
the same symbols to denote these objects in both cases.
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∀wh ∈ Vh
u and ∀qh ∈ Vh

p:∫
Qn

wh · ρ

(
∂uh

∂t
+∇∇∇ · (uhuh) − fh

)
dQ

+

∫
Qn

εεε(wh) : σσσ(uh, ph)dQ −
∫

(Pn)h

wh · hhdP

+

∫
Qn

qh∇∇∇ · uhdQ +

∫
Ωn

(wh)+
n · ρ

(
(uh)+

n − (uh)−n
)

dΩ

+

(nel)n∑
e=1

∫
Qe

n

τSUPS

ρ

[
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
+∇∇∇qh

]
· rMdQ

+

(nel)n∑
e=1

∫
Qe

n

ρνLSIC∇∇∇ · whrCdQ

+

(nel)n∑
e=1

∫
Qe

n

τSUPSrM ·
(
∇∇∇wh

)
uhdQ

−

(nel)n∑
e=1

∫
Qe

n

τ2
SUPS

ρ
rM ·

(
∇∇∇wh

)
rMdQ = 0. (10)

The stabilization parameters τSUPS and νLSIC can be cal-
culated using the definitions given by Eqs. (7)–(9). However,
the definitions that are commonly used with the DSD/SST
formulation are those given in [56]:

τSUPS =

(
1

τ2
SUGN12

+
1

τ2
SUGN3

)− 1
2

, (11)

τSUGN12 =

 nen∑
a=1

∣∣∣∣∣∂Na

∂t
+ uh · ∇∇∇Na

∣∣∣∣∣
−1

, (12)

τSUGN3 =
h2

RGN

4ν
, (13)

hRGN = 2

 nen∑
a=1

|r · ∇∇∇Na|

−1

, (14)

r =
∇∇∇‖uh‖

‖ ∇∇∇‖uh‖ ‖
, (15)

and in [57]:

νLSIC = τSUPS ‖uh − ûh‖
2
, (16)

where nen is the number of (ST) element nodes, and Na is the
ST shape function associated with the ST node a. As an al-
ternative to the construction of τSUPS as given by Eqs. (11)–
(15), another option was introduced in [57]. In that option,
τSUPS is constructed based on separate definitions for the
advection-dominated and transient-dominated limits:

τSUPS =

(
1

τ2
SUGN1

+
1

τ2
SUGN2

+
1

τ2
SUGN3

)− 1
2

, (17)

τSUGN1 =

 nen∑
a=1

∣∣∣∣(uh − ûh
)
· ∇∇∇Na

∣∣∣∣−1

, (18)

τSUGN2 =
∆t
2
. (19)

It was noted in [57] that separating τSUGN12 into its advection-
and transient-dominated components as given by Eqs. (18)–
(19) is equivalent to excluding the ∂Na

∂t

∣∣∣
ξξξ

part of ∂Na
∂t in

Eq. (12), making that the definition for τSUGN1, and accounting
for ∂Na

∂t

∣∣∣
ξξξ

in the definition for τSUGN2 given by Eq. (19). Here ξξξ

is the vector of element coordinates, and ∂
∂t

∣∣∣
ξξξ

is equivalent to
∂
∂t

∣∣∣
x̂. Both notations for the same partial derivative are kept

in the interest of backward compatibility with prior articles.
For more ways of calculating τSUPS and νLSIC, see [102; 56;
105; 106; 107; 108; 109; 110; 33; 111; 112; 113].

Remark 3 The 6th and 7th terms of the ST-VMS method,
given by Eq. (10), are the SUPG/PSPG and LSIC sta-
bilization terms, respectively. If we exclude the last two
terms in Eq. (10), the method reduces to the original
DSD/SST method (with the advection term retained in the
conservation-law form) under the condition τPSPG = τSUPG.
This original method is now called both DSD/SST-SUPS and
ST-SUPS.

For completeness, we also provide here the ST-SUPS
method (from [56]): given (uh)−n , find uh ∈ Sh

u and ph ∈ Sh
p,

such that ∀wh ∈ Vh
u and ∀qh ∈ Vh

p:∫
Qn

wh · ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ

+

∫
Qn

εεε(wh) : σσσ(uh, ph)dQ −
∫

(Pn)h

wh · hhdP

+

∫
Qn

qh∇∇∇ · uhdQ +

∫
Ωn

(wh)+
n · ρ

(
(uh)+

n − (uh)−n
)

dΩ

+

(nel)n∑
e=1

∫
Qe

n

1
ρ

[
τSUPGρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
+ τPSPG∇∇∇qh

]
· rMdQ

+

(nel)n∑
e=1

∫
Qe

n

ρνLSIC∇∇∇ · whrCdQ = 0. (20)

Remark 4 One of the main differences between the ALE
and ST forms of the VMS method is that the ST form re-
tains the fine-scale time derivative term ∂u′

∂t

∣∣∣
ξξξ
. Dropping this

term is called the “quasi-static” assumption (see [6] for the
terminology). This is the same as the “WTSE” option in the
DSD/SST formulation (see Remark 2 of [57]). We believe
that this makes a significant difference, especially when the
polynomial orders in space or time are higher (see [51]).

Remark 5 With the function spaces defined in the para-
graph preceding Eq. (10), for each ST slab velocity and pres-
sure assume double unknown values at each spatial node.
One value corresponds to the lower end of the slab, and the
other one the upper end. In [57], the option of using double
unknown values at a spatial node is called “DV” for velocity
and “DP” for pressure. In this case, as pointed out in [57],
we use two integration points over the time interval of the ST
slab, and this time-itegration option is called “TIP2”. This
version of the DSD/SST formulation, with the options set DV,
DP and TIP2, is called “DSD/SST-DP”.
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2.4 Rotation Representation with Constant Angular
Velocity

This subsection, which is related to the ST-VMS computa-
tions, is from [83]. We use quadratic NURBS functions, as
described in [51; 84; 52; 58], to represent a circular arc. We
discretize time and position as follows:

t =

nent∑
α=1

Tα(Θt(θ))tα, (21)

x =

nent∑
α=1

Tα(Θx(θ))xα. (22)

Here nent is the number of temporal element nodes, Tα is the
basis function, Θt(θ) and Θx(θ) are the secondary mappings
for time and position, and tα and xα are the time and posi-
tion values corresponding to the basis function Tα. The ba-
sis functions could be finite element or NURBS basis func-
tions. For the circular arc, nent = 3 and they are quadratic
NURBS. The secondary mapping concept above was intro-
duced in [51], and the velocity can be expressed as follows:

dx
dt

=

 nent∑
α=1

dTα

dΘx

dΘx

dθ
xα

  nent∑
α=1

dTα

dΘt

dΘt

dθ
tα
−1

, (23)

leading to

dx
dt

=

 nent∑
α=1

dTα

dΘx
xα

  nent∑
α=1

dTα

dΘt
tα
−1 (

dΘx

dθ
dθ

dΘt

)
. (24)

Thus, the speed along the path can be specified only by mod-
ifying the secondary mapping. For a circular arc, two meth-
ods were introduced in [84; 52] and also described in [58];
one is modifying the secondary mapping for position and
the other one is modifying both such that dt

dθ is constant. We
note that, in theory, the secondary mapping selections do not
make any difference as long as the relationship dΘx

dΘt
is the

same.
In our implementation, to keep the process general, we

search for the parametric coordinate θ by using an iterative
solution method [84; 52; 58]. We use the latter set of the
secondary mappings, having constant dt

dθ .

Remark 6 When we use a secondary mapping for dis-
cretization of unknowns, the selection of the mappings af-
fects the numerical integration accuracy in the physical do-
main.

For the IMTR, we find the parametric coordinate corre-
sponding to each time level and interpolate the position to
obtain the corresponding mesh. For the DTR, we first calcu-
late time corresponding to each integration point, including
the time step size because of the jump term, and then calcu-
late Θx and Θt to interpolate the position and velocity from
Eqs. (22) and (24).

2.5 Element Length Definition for the Diffusion-Dominated
Limit

This subsection, which is related to the ST-VMS com-
putations, is from [83]. The element length definition for
the diffusion-dominated limit is used in calculating the
diffusion-dominated limit of the stabilization parameters
τSUPG, τPSPG and τSUPS, and, directly or indirectly (through
τSUPS), in calculating all options of νLSIC except for the
“TGI” option, which is given by Eq. (8). That includes the
option that was defined in [81] as a component of the “LHC”
option, which was named in [58] “HRGN”:

νLSIC−HRGN =
h2

RGN

τSUPS
. (25)

In the expression for r given by Eq. (15),∇∇∇‖uh‖ is calculated
as

∇∇∇‖uh‖ = ∇∇∇

(∥∥∥uh
∥∥∥2

)
1
2

)
=

1
2‖uh‖

∇∇∇

(∥∥∥uh
∥∥∥2

)
, (26)

∇∇∇‖uh‖ = ∇∇∇uh ·
uh

‖uh‖
, (27)

resulting in

r =
∇∇∇uh · uh

‖∇∇∇uh · uh‖
. (28)

This expression becomes ill defined when ∇∇∇uh · uh = 0.
We introduce a new element length definition for the

diffusion-dominated limit:

hRGNT =

 n∑
i=1

w2
i

1
h2

i

−
1
2

, (29)

where hi > 0 is element length for the ith direction, wi ≥ 0 is
the weight for that direction, n is the number of directions,
and

n∑
i=1

wi = 1. (30)

Equation (29) is well defined if the element length for at least
one of the directions is nonzero.

We define the element length and weight for each of the
n directions based on an nsd×n tensor R:

hi = 2 ‖Ri‖

 nen∑
a=1

|Ri · ∇∇∇Na|

−1

, (31)

wi =
‖Ri‖

‖R‖
, (32)
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where Ri is the ith column vector of R, the vector norm is
L2, and the matrix norm is Frobenius. From Eqs. (29), (31)
and (32) we obtain

hRGNT = 2 ‖R‖

 n∑
i=1

 nen∑
a=1

|Ri · ∇∇∇Na|

2
− 1

2

, (33)

which is well defined if at least one of the column vectors is
nonzero. We propose to define the tensor R as

Ri = ∇∇∇ui, (34)

with n = nsd. If all column vectors are zero, which implies
uniformness in the flow field, to make the expression for
hRGNT well defined, we define R as

Ri = ∇∇∇Ni, (35)

with n = nen. The following is a brief justification for
Eq. (35). Suppose where there is uniformness in the flow
field we change only one coefficient, (ub)i, which means that
the solution gradient is in the ∇∇∇Nb direction. Therefore, it is
reasonable to assume that there is an equal chance of hav-
ing a solution gradient in all ∇∇∇Nb directions. Therefore we
use all those directions as the column vectors of R. As an
alternative to the definition given by Eq. (35), we propose

Ri = ∇∇∇Ni −

(
uh

‖uh‖
· ∇∇∇Ni

)
uh

‖uh‖
, (36)

and this is based on the assumption that there is an equal
chance of having a solution gradient in all ∇∇∇Nb directions
perpendicular to uh. In this alternative option, uh = 0 would
revert the definition back to the one given by Eq. (35).

With the new element length hRGNT for the diffusion-
dominated limit, the HRGN option of νLSIC becomes

νLSIC−HRGN =
h2

RGNT

τSUPS
. (37)

2.6 Weakly-Enforced Essential Boundary Conditions

In this section we state the formulation of the weakly-
enforced essential boundary conditions. This was first pro-
posed in [59] for the advection–diffusion equation and
Navier–Stokes equations of incompressible flows in an ef-
fort to improve the accuracy of stabilized and multiscale
formulations in the presence of unresolved boundary layers.
In [30; 31; 34], the method for the weakly-enforced bound-
ary condition was further refined and studied in a set of chal-
lenging wall-bounded turbulent flows. Here, we apply the
method to the aerodynamics of wind turbines at full spatial
scale.

To account for the weak enforcement of the essential
boundary conditions, we remove them from the trial and test

function sets Sh
u andVh

u, and add the following terms to the
left-hand-side of Eq. (4):

−

neb∑
b=1

∫
Γb

t
⋂

(Γt)g

wh ·σσσ
(
uh, ph

)
n dΓ

−

neb∑
b=1

∫
Γb

t
⋂

(Γt)g

(
2µεεε

(
wh

)
n + qhn

)
·
(
uh − gh

)
dΓ

−

neb∑
b=1

∫
Γb

t
⋂

(Γt)−g

wh · ρ
((

uh − ûh
)
· n

) (
uh − gh

)
dΓ

+

neb∑
b=1

∫
Γb

t
⋂

(Γt)g

τB
TAN

(
wh −

(
wh · n

)
n
)
·((

uh − gh
)
−

((
uh − gh

)
· n

)
n
)

dΓ

+

neb∑
b=1

∫
Γb

t
⋂

(Γt)g

τB
NOR

(
wh · n

) ((
uh − gh

)
· n

)
dΓ. (38)

Here (Γt)g is the part of the boundary where the velocity
boundary condition g is set and n is the unit normal vector.
The boundary (Γt)g is decomposed into neb surface elements
denoted by Γb

t , and (Γt)−g is defined as the “inflow” part of
(Γt)g:

(Γt)−g =

{
x

∣∣∣∣ (uh − ûh
)
· n < 0, ∀x ⊂ (Γt)g

}
. (39)

If (Γt)g coincides with the moving wall (rigid or flexible),
then g is the prescribed wall velocity.

The term in the first line is the so-called consistency
term. It is necessary to ensure that the discrete formulation
is identically satisfied by the exact solution of the Navier–
Stokes equations, which, in turn, has implications on the ac-
curacy of the discrete formulation. Also note that this term
cancels with the contributions coming from the integration-
by-parts of the stress terms in Eq. (4), thus correctly remov-
ing traction boundary conditions from the no-slip boundary.
The term in the second line is the so-called adjoint consis-
tency term. Its role is less intuitive, as it ensures that the an-
alytical solution of the adjoint equations, when introduced
in place of the linear momentum and continuity equation
test functions, also satisfies the discrete formulation. Adjoint
consistency is linked to optimal convergence of the discrete
solution in lower-order norms (see, e.g., [61]). The term in
the third line leads to better satisfaction of the inflow bound-
ary conditions. The last two terms are penalty-like, in that
they penalize the deviation of the discrete solution from its
prescribed value at the boundary. These terms are necessary
to ensure the stability (or coercivity) of the discrete formu-
lation, which may be lost due to the introduction of the con-
sistency and adjoint consistency terms.

The weak boundary condition formulation is numeri-
cally stable if

τB
TAN = τB

NOR =
CB

I µ

hn
, (40)
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where hn is the wall-normal element size, and CB
I is a suffi-

ciently large positive constant computed from an appropriate
element-level inverse estimate (see, e.g., [96; 97; 98]). The
constant CB

I depends on the space dimension d, the element
type (tetrahedron, hexahedron, etc.), and the polynomial or-
der of the finite element approximation. For a linear tetra-
hedron, it is sufficient to take 4.0 ≤ CB

I ≤ 8.0 to obtain a
stable discrete solution. The wall-normal element size may
be computed from the element metric tensor:

hn = (n ·Gn)1/2. (41)

Remark 7 Rather than setting the no-slip boundary condi-
tions exactly, the weak boundary condition formulation gives
the no-slip solution only in the limit as hn → 0. As a result,
coarse discretizations do not need to struggle to resolve the
boundary layers; the flow simply slips on the solid boundary.
Because of this added flexibility, the weak boundary condi-
tion enforcement tends to produce more accurate results on
meshes that are too coarse to capture the boundary layer so-
lution. However, as the mesh is refined to capture the bound-
ary layer, the weak and strong boundary condition formula-
tions produce nearly identical results (see [30]).

Remark 8 Although the weak boundary condition formula-
tion is also stable for very large values of CB

I , we do not
favor that. Large values of CB

I place a heavy penalization
on the no-slip condition, and the above mentioned flexibility
of the method is lost together with the associated accuracy
benefits. We favor using a CB

I that is just large enough to
guarantee the stability of the discrete formulation.

Remark 9 In reference [30], a connection was identified
between the weakly-enforced boundary conditions and wall
functions. The latter are commonly employed in conjunction
with RANS formulations of turbulent flows (see, e.g., [114;
115]). In the case of wall function formulation, a no-slip
boundary condition is replaced with a tangential traction
boundary condition, where the traction direction is given by
that of the local slip velocity, and the traction magnitude
is computed by invoking the “law-of-the-wall”. This is an
empirical relationship between the flow speed and the nor-
mal distance to the wall, both appropriately normalized (see,
e.g., [114]). The penalty parameter τB

TAN may be defined as

τB
TAN =

ρu∗2

‖uh
TAN‖

, (42)

where uh
TAN =

((
uh − gh

)
−

((
uh − gh

)
· n

)
n
)

is the tangen-
tial slip velocity, and u∗ is the so-called friction velocity,
which, among other factors, depends on the magnitude of the
slip velocity, and is computed from the law-of-the-wall for-
mula by nonlinear iterations. It was shown in [30], however,
that when the boundary layer mesh is fine enough, τB

TAN from
Eq. (42) is independent of the local flow solution, and re-
verts to the definition given by Eq. (40). This fact is remark-
able in that Eq. (40) is purely based on considerations of
numerical stability, while Eq. (42) derives from the physics

of wall-bounded turbulent flows. In our limited experience,
both the “numerics-based” and “physics-based” definitions
of the penalty parameter τB

TAN give very similar results.

3 Aerodynamic Simulations of a 5MW Wind-Turbine
Rotor

In this section we begin with a careful definition of the 5MW
wind-turbine rotor geometry. We then present the NURBS-
based and FEM-based simulations of the wind-turbine rotor.
In this section, we only present pure aerodynamic simula-
tions. Structural and FSI modeling and simulations will be
presented in the later sections.

3.1 5MW Wind-Turbine Rotor Geometry Definition

As a first step we construct a template for the structural
model of the rotor. Here, the structural model is limited to
a surface (shell) representation of the wind-turbine blade,
the hub, and their attachment zone. The blade surface is as-
sumed to be composed of a collection of airfoil shapes that
are lofted in the blade axis direction.

The geometry of the rotor blade is based on the NREL
5MW offshore baseline wind-turbine described in [2]. The
blade geometry data taken from the reference is summarized
in Table 1.

RNodes AeroTwst Chord AeroCent AeroOrig Airfoil
2.0000 0.000 3.542 0.2500 0.50 Cylinder
2.8667 0.000 3.542 0.2500 0.50 Cylinder
5.6000 0.000 3.854 0.2218 0.44 Cylinder
8.3333 0.000 4.167 0.1883 0.38 Cylinder

11.7500 13.308 4.557 0.1465 0.30 DU40
15.8500 11.480 4.652 0.1250 0.25 DU35
19.9500 10.162 4.458 0.1250 0.25 DU35
24.0500 9.011 4.249 0.1250 0.25 DU30
28.1500 7.795 4.007 0.1250 0.25 DU25
32.2500 6.544 3.748 0.1250 0.25 DU25
36.3500 5.361 3.502 0.1250 0.25 DU21
40.4500 4.188 3.256 0.1250 0.25 DU21
44.5500 3.125 3.010 0.1250 0.25 NACA64
48.6500 2.310 2.764 0.1250 0.25 NACA64
52.7500 1.526 2.518 0.1250 0.25 NACA64
56.1667 0.863 2.313 0.1250 0.25 NACA64
58.9000 0.370 2.086 0.1250 0.25 NACA64
61.6333 0.106 1.419 0.1250 0.25 NACA64
62.9000 0.000 0.700 0.1250 0.25 NACA64

Table 1 Wind-turbine rotor geometry definition with “RNodes” (m),
“AeroTwst” (◦), “Chord” (m), “AeroCent” (-), “AeroOrig”, and “Air-
foil” type.

A 61 m blade is attached to a hub with radius of 2 m,
which gives the total rotor radius of 63 m. The blade is com-
posed of several airfoil types provided in the rightmost col-
umn of the table. The first portion of the blade is a perfect
cylinder. Further away from the root the cylinder is smoothly
blended into a series of DU (Delft University) airfoils. At the
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44.55 m location away from the root the NACA64 profile is
used to define the blade all the way to the tip (see Figures 2
and 3). The remaining parameters from Table 1 are defined

Fig. 2 Illustration of quantities at a cross-section from Table 1.

in Figures 2 and 3: “RNodes” is the distance from the rotor
center to the airfoil cross-section in the blade axis direction.
“AeroTwst” is the twist angle for a given cross-section. The
blades are twisted to enhance the aerodynamic performance.
“Chord” is the chord length of the airfoil. “AeroOrig” is the
location of the aerodynamic center. For most of the blade air-
foil cross-sections, the aerodynamic center is taken at 25%
of the chord length from the leading edge. To accommodate
the cylindrical shape at the root, the aerodynamic center is
gradually moved to 50% of the chord length. This is not re-
ported in [2], but mentioned in [116].

Remark 10 There is some redundancy in the parameters
given in Table 1. The variable “AeroCent” is used as
an input to FAST [1], which is the aerodynamics mod-
eling software that is typically used for wind-turbine ro-
tor computations. FAST assumes that the blade-pitch axis
passes through each airfoil section at 25% chord length,
and defines AeroCent − 0.25 to be the fractional distance
to the aerodynamic center from the blade-pitch axis along
the chordline, positive toward the trailing edge. Therefore,
AeroOrig+ (0.25−AeroCent) gives the location of where the
blade-pitch axis passes through each airfoil cross-section.
Although for our purposes this added complexity is unnec-
essary, the same naming system is used for backward com-
patibility with the referenced reports.

For each blade cross-section, we use quadratic NURBS
to represent the 2D airfoil shape. The weights of the NURBS
functions are set to unity. The weights are adjusted near
the root to represent the circular cross-sections of the blade
exactly. The cross-sections are lofted in the blade axis di-
rection, also using quadratic NURBS and unity weights.
This geometry modeling procedure produces a smooth ro-
tor blade surface using a relatively small number of input
parameters, which is an advantage of the isogeometric rep-
resentation. Figure 4 shows a top view of the blade in which
the twisting of the cross-sections is evident.

To carry out the simulations, rotationally-periodic
boundary conditions must be imposed. Denoting by uh

l and
uh

r the discrete fluid velocities at the left and right boundary,

Fig. 3 Illustration of quantities on the blade surface from Table 1.

respectively (see Figure 5), and by ph
l and ph

r the correspond-
ing pressures, we set

ph
l = ph

r , (43)

uh
l = R(2/3π) uh

r , (44)

where R(2/3π) is the rotation matrix evaluated at α =
2/3π. That is, while the pressure degrees-of-freedom take
on the same values, the fluid velocity degrees-of-freedom
are related through a linear transformation corresponding
to a rotation by 2/3π radians. Note that the transforma-
tion matrix is independent of the current domain position.
Rotationally-periodic boundary conditions are implemented
through standard master-slave relationships. We note that
rotationally-periodic boundary conditions were employed
earlier in [117; 118; 119] for parachute simulations.
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Fig. 4 Top view of a subset of the airfoil cross-sections illustrating
blade twisting.

ul ur

pl pr 

Fig. 5 Rotationally-periodic boundary conditions.

We compute the aerodynamics of the wind-turbine rotor
with prescribed speed using a rotating mesh. The wind speed
is uniform at 9 m/s and the rotor speed is 1.08 rad/s, giving a
tip speed ratio of 7.55 (see [120] for wind-turbine terminol-
ogy). We use air properties at standard sea-level conditions.
The Reynolds number (based on the cord length at 3

4 R and
the relative velocity there) is approximately 12 million. At
the inflow boundary the velocity is set to the wind velocity,
at the outflow boundary the stress vector is set to zero, and
at the radial boundary the radial component of the velocity
is set to zero. We start from a flow field where the veloc-
ity is equal to the inflow velocity everywhere in the domain
except on the rotor surface, where the velocity matches the
rotor velocity.

The chosen wind velocity and rotor speed correspond to
one of the cases given in [2], where the aerodynamics simu-
lations were performed using FAST [1]. We note that FAST
is based on look-up tables for airfoil cross-sections, which
give planar, steady-state lift and drag data for a given wind
speed and angle of attack. The effects of trailing edge turbu-
lence, hub, and tip are incorporated through empirical mod-
els. It was reported in [2] that at these wind conditions and

rotor speed, no blade pitching takes place and the rotor de-
velops a favorable aerodynamic torque (i.e., torque in the di-
rection of the rotation) of 2500 kN m. Although this value is
used for comparison with our simulations, the exact match is
not expected, as our computational modeling is very differ-
ent than the one in [2]. Nevertheless, we feel that this value
of the aerodynamic torque is close to what is expected in re-
ality, given the vast experience of NREL with wind-turbine
rotor simulations employing FAST.

3.2 ST-VMS Computations with Finite Elements

This subsection is from [81]. We compute the problem with
the DSD/SST method and linear finite elements. To gener-
ate the triangular mesh on the rotor surface, we started with
a quadrilateral surface mesh generated by interpolating the
NURBS geometry of the rotor at each knot intersection. We
subdivided each quadrilateral element into triangles and then
made minor modifications to improve the mesh quality near
the hub. We use three different meshes: Mesh-2, Mesh-3 and
Mesh-4, with the surface mesh refined along the blade 2,
3 and 4 times, respectively, compared to the finite element
mesh used in [6]. The number of nodes and elements for
each blade surface mesh is shown in Table 2, and Figure 6
shows the surface mesh for Mesh-4. For computational ef-

Surface Volume
nn ne nn ne

Mesh-2 5,748 11,452 155,494 898,640
Mesh-3 7,552 15,060 205,855 1,195,452
Mesh-4 9,268 18,492 253,340 1,475,175

Table 2 Summary of the meshes. Here nn and ne are the number of
nodes and elements.

ficiency, rotational-periodicity [117; 119] is utilized so that
the domain includes only one of three blades, as shown in
Figure 7. The inflow, outflow and radial boundaries lie 0.5R,
2R and 1.43R from the hub center, respectively. This can be
more easily seen in Figure 8, where the inflow, outflow, and
radial boundaries are the left, right and top edges, respec-
tively, of the cut plane along the rotation axis. Each periodic
boundary contains 1,430 nodes and 2,697 triangles. Near the
rotor surface, we have 22 layers of refined mesh with first-
layer thickness of 1 cm and a progression factor of 1.1. The
boundary layer mesh at 3

4 R is shown in Figure 9. The num-
ber of nodes and elements for each volume mesh is shown
in Table 2.

We compute the problem with the ST-SUPS and ST-
VMS methods, which are labeled in some of the figures in
this section as “DSD/SST-DP-SUPS” and “DSD/SST-DP-
VMST” (see Remark 5). For τSUPG, τPSPG and τSUPS, we use
the definition given by Eq. (11). The ST-SUPS method is
used without the LSIC stabilization (νLSIC = 0), while for
the ST-VMS method we use the TGI option of νLSIC, given
by Eq. (8).
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Fig. 6 Rotor surface mesh (Mesh-4).

Fig. 7 Rotationally-periodic domain with wind-turbine blade shown in
blue.

In solving the linear equation systems involved at ev-
ery nonlinear iteration, the GMRES search technique [121]
is used with a diagonal preconditioner. The computation
is carried out in a parallel computing environment, using
PC clusters. The mesh is partitioned to enhance the par-
allel efficiency of the computations. Mesh partitioning is
based on the METIS algorithm [122]. The time-step size is
4.67×10−4 s. The number of nonlinear iterations per time
step is 3 with 30, 60 and 500 GMRES iterations for the first,
second and third nonlinear iterations, respectively.

Prior to the computations reported here, we performed
a series of brief computations with the ST-SUPS method,

Fig. 8 Cut plane of the fluid volume mesh along rotor axis (Mesh-4).

Fig. 9 Boundary layer mesh at 3
4 R.

starting from a lower Reynolds number and gradually reach-
ing the actual Reynolds number. This solution is used as the
initial condition also for the computations with the ST-VMS
method. The purpose is to generate a divergence-free and
reasonable flow field at this Reynolds number. We note that
it was especially difficult with the ST-VMS method to start
from non-physical conditions, such as setting all nodes ex-
cept those on the blade to the inflow velocity.

The blade is segmented into 18 spanwise “patches”
shown in Figure 10 to investigate how the aerodynamic
torque distribution varies along the blade span. Figures 11–

Fig. 10 Patches along the blade spanwise dimension.

13 show the time history of the aerodynamic torque and the
torque contribution from each patch for a single blade at t =
1.0 s. Figure 14 shows the pressure coefficient at t = 1.0 s
for Patch 16 (at 0.90R), which is a representative section of
the blade. For most of the patches, the angle of attack and
Reynolds number do not vary much from one patch to an-
other. For example, the angle of attack and Reynolds num-
ber are 7.4◦ and 9.9×106 at 0.65R for Patch 12 (at 0.65R)
and 7.6◦ and 9.6×106 for Patch 16 (at 0.90R).

Mesh refinement studies for both the ST-SUPS and ST-
VMS methods indicate good convergence in the quantities
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Fig. 11 The aerodynamic torque generated by a single blade. Compar-
ison between different meshes with the ST-SUPS method. Time history
(top). The torque contribution from each patch at t = 1.0 s (bottom).

of interest such as the aerodynamic torque and pressure co-
efficient. The ST-VMS method with the finest mesh gives
more or less the same value of the aerodynamic torque as
the ALE-VMS simulation from [6] using NURBS, which
is taken as a reference solution for this study. The results for
the ST-SUPS method are also very good, however the torque
is slightly under-predicted with respect to the ST-VMS and
NURBS-based ALE-VMS simulations. Figure 14 indicates
that smoother (i.e., more stable) pressure solution is obtained
with the ST-VMS method. We note that the main reason be-
hind the higher ST-VMS torque is the wider low-pressure
region on the upper surface of the NACA64 geometry, as
can be seen in the figure. The lower pressure indicates that
the flow is attached; thus, the ST-VMS method, for the level
of mesh refinement used, is able to better represent the tur-
bulent boundary layer solution than the ST-SUPS method.
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Fig. 12 The aerodynamic torque generated by a single blade. Compar-
ison between different meshes with the ST-VMS method. Time history
(top). The torque contribution from each patch at t = 1.0 s (bottom).
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Fig. 13 The aerodynamic torque generated by a single blade. Com-
puted with different methods using Mesh-4. Time history (top). The
torque contribution from each patch at t = 1.0 s (bottom). The curve la-
beled “ALE with NURBS” is from the ALE-VMS simulation from [6].



14
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(a) ST-SUPS (b) ST-VMS

Fig. 14 Pressure coefficient at t = 1.0 s for Patch 16 (at 0.90R). Top:
Mesh-2. Middle: Mesh-3. Bottom: Mesh-4.
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4 Sliding-Interface Formulation and Simulation of
Rotor–Tower Interaction

Fig. 15 Setup for the simulation of a full machine. The interior mov-
ing subdomain, which encloses the wind turbine rotor, and the exterior
stationary subdomain, which houses the nacelle and tower, are shown.

4.1 Sliding-Interface Formulation

In order to simulate the full wind turbine configuration and
investigate the rotor–tower interaction, we consider an ap-
proach that makes use of a moving subdomain, which en-
closes the entire wind turbine rotor, and a stationary sub-
domain that contains the rest of the wind turbine (see Fig-
ure 15). The two domains are in relative motion and share
a sliding cylindrical interface. The meshes on each side of
the interface are nonmatching because of the relative mo-
tion (see Figure 16). As a result, a numerical procedure is
needed to impose the continuity of the kinematics and trac-
tions at the stationary and rotating subdomain interface de-
spite the fact that the interface discretizations are incompat-
ible. Such a procedure was developed in [44] in the context
of IGA for computing flows about rotating components. The
advantage of IGA for rotating-component flows is that the
cylindrical sliding interfaces are represented exactly and no
geometry errors are incurred. In the case of standard FEM
employed here, the geometric compatibility is only approxi-
mate. The sliding-interface coupling was successfully tested
on the NREL Phase VI wind turbine in [93] and is presented
in what follows.

Let the subscripts S and M denote the quantities pertain-
ing to the fluid mechanics problem on the stationary and
moving subdomains, respectively. The subdomain that en-
closes the rotor rotates with it, and the interior of the rotating
subdomain is allowed to deflect to accommodate the motion
of the blades. However, the motion of the outer boundary of

Fig. 16 Nonmatching meshes at the sliding interface between the sta-
tionary and moving subdomains. Top: Full domain. Bottom: Zoom on
the sliding interface.

the rotor subdomain is restricted to a rigid rotation to main-
tain geometric compatibility with the stationary subdomain.
To enforce the compatibility of the flow kinematics and trac-
tions at the sliding interface, we add the following terms to
the ALE-VMS formulation, which is now assumed to hold
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in both the stationary and moving subdomains:

−

neb∑
b=1

∫
Γb

t
⋂

(Γt)SI

(
wh

S − wh
M

)
·

1
2

(σσσSnS −σσσMnM) dΓ

−

neb∑
b=1

∫
Γb

t
⋂

(Γt)SI

1
2

(δσσσSnS − δσσσMnM) ·
(
uh

S − uh
M

)
dΓ

−

neb∑
b=1

∫
Γb

t
⋂

(Γt)SI

wh
S · ρ

{(
uh

S − ûh
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where δσσσ is given by

δσσσ (w, q) n = 2µεεε(w)n + qn, (46)

(Γt)SI is the sliding interface, and {A}− denotes the nega-
tive part of A, that is, {A}− = A if A < 0 and {A}− = 0
if A ≥ 0. The sliding-interface formulation may be see as
a DG method, where the continuity of the basis function is
enforced everywhere in the interior of the two subdomains,
but not at the sliding interface between them. The struc-
ture of the terms on the sliding interface is similar to that
of the weak enforcement of essential boundary conditions.
The significance of each term is explained in detail in [44].
Note that, in the current application, ûh

S = 0, because the
subdomain S is stationary. However, the formulation is able
to handle situations where both subdomains are in motion.

Remark 11 Nonmatching interface discretizations in the
FSI and sliding-interface problems necessitate the use of
interpolation or projection of kinematic and traction data
between the nonmatching surface meshes (see, e.g., [51;
123; 52], where [52] is more comprehensive than [51]).
A computational procedure, which can simultaneously han-
dle the data transfer for IGA and FEM discretizations,
was proposed in [123]. The procedure also includes a ro-
bust approach in identifying “closest points” for arbitrary
shaped surfaces. While such interface projections are rather
straightforward for weakly-coupled FSI algorithms, they re-
quire special techniques [57; 68; 52] for strongly-coupled,
direct and quasi-direct methods [124; 67; 57; 68; 52] that
are monolithic-like (i.e. become monolithic for matching dis-
cretizations).

4.2 Aerodynamics Simulation of the NREL Phase VI Wind
Turbine

The computational results in this section make use of the
ALE-VMS technique and are taken from [93]. The sliding-
interface formulation is applied to the simulation of the full

NREL Phase VI wind turbine configuration, including the
rotor (blades and hub), nacelle and tower. The tower is com-
posed of two cylinders with diameters of 0.6096 m and
0.4064 m that are connected with a short conical section.
The tower height is 11.144 m above the wind tunnel floor.
The detailed geometry and configuration of the tower and
nacelle can be found in Hand et al. [94]. For this study,
wind speeds of 7 and 10 m/s were selected from the experi-
mental sequence S. The experimental sequence S setup con-
sists the wind turbine rotor in the upwind configuration, 0◦
yaw angle, 0◦ cone angle, rotational speed of 72 rpm, and
blade tip pitch angle of 3◦. The air density and viscosity are
1.23 kg/m3 and 1.78×10−5 kg/(m·s), respectively.

Fig. 17 Meshes used in the full-wind-turbine simulation. Top: 2D cut
at x = 0 to show the flow domain mesh quality. Bottom: Rotor, nacelle,
and tower surface mesh.

Figure 17 shows the mesh quality and resolution used
in the full-wind-turbine computation. The mesh is highly
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refined near the rotor, nacelle and tower, as well as down-
stream of the wind turbine to better capture the wake turbu-
lence. The mesh is comprised of 6,835,647 linear elements
and 1,603,377 nodes. The size of the first boundary-layer el-
ement in the wall-normal direction is 0.002 m, and 15 layers
of prismatic elements were generated with a growth ratio of
1.2. The time step size is set to 1.0×10−5 s.

Fig. 18 Air speed contours at a planar cut (top), and isosurfaces of air
speed (bottom) at an instant for the 7 m/s case.

Figures 18 and 19 show the flow visualization of the
full-wind-turbine simulations of the 7 and 10 m/s cases, re-
spectively. The flow structures are different between the two
cases. The tip vortex for the 7 m/s case decays very slowly
as it is convected downstream, while the tip vortex breaks

Fig. 19 Air speed contours at a planar cut (top), and isosurfaces of air
speed (bottom) at an instant for the 10 m/s case.

down quickly for the 10 m/s case. Note that no visible dis-
continuities are present in the flow field at the sliding inter-
face, which indicates that the method correctly handles the
kinematic compatibility conditions in this location.

To see the influence of the tower, the single-blade aero-
dynamic torque over a full revolution is plotted in Figure 20
for both 7 and 10 m/s cases. The results of the full-wind-
turbine computations are compared with the experimental
data, as well as with the results of the rotor-only compu-
tations. For the full-wind-turbine simulation of the 7 m/s
case, Figure 20(a) clearly shows the drop in the aerody-
namic torque at an instant when the blade passes in front
of the tower, which corresponds to the azimuthal angle of
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Fig. 20 Single-blade aerodynamic torque over a full revolution for
7 m/s (top) and 10 m/s (bottom) cases. The 180◦ azimuthal angle cor-
responds to the instant when the blade passes in front the tower. The
tower effect is clearly pronounced in the 7 m/s case. It is also present
in the 10 m/s case, but is not as significant. The results in both cases
are in very good agreement with the experimental data.

180◦. The drop in the torque is about 8% relative to its value
when the blade is away from the tower. These results are
in good agreement with the experimental data. The rotor-
only computation, which is also shown in the figure, is ob-
viously unable to predict this feature, which may be im-
portant for the transient structural response of the blades.
It should be noted, however, that the cycle-averaged aerody-
namic torque is nearly identical for the full-wind-turbine and
the rotor-only simulations. The picture is completely differ-
ent for the 10 m/s case, where the influence of the tower,
although clearly present, is a lot less pronounced.
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5 ST-VMS Computation of the Wind-Turbine Rotor
and Tower Aerodynamics

This section is from [83]. Starting from the rotor surface ge-
ometry given in Section 3, we generate a quadratic NURBS
surface with G2 and G1 continuity between the patches
around and along the blade, respectively. The tower geom-
etry was created based on the tower design specified for
the NREL 5MW offshore baseline wind turbine, which de-
scribes a circular tower with a height of 87.6 m, a base diam-
eter of 6 m, and a top diameter of 3 m. This geometry was
generated by lofting between NURBS curves for the top and
base of the tower. The rotor axis is 90◦ to the tower, and
there is no tilt or precone, since it is only a fluid mechanics
computation.

5.1 Problem Setup

We compute the aerodynamics of the rotor with and without
its tower for a given rotor shape and wind speed and a spec-
ified rotor speed. The rotor and tower geometries are shown
in Figure 21.

Fig. 21 Wind-turbine rotor and tower geometries.

The wind and rotor speeds are the same as those in Sec-
tion 3. At the inflow boundary the velocity is set to the wind

velocity, at the outflow boundary the stress vector is set to
zero, and at the top, side, and bottom boundaries slip condi-
tions are imposed.

5.2 Rotor Motion

The circular turbine rotation is represented with temporal
NURBS basis functions and secondary mapping, described
in Section 2.4. Because the 3 blades of the turbine are 120◦
apart, rotational geometric periodicity is used such that a
full 360◦ rotation is defined by 3 identical 120◦ segments.
Each 120◦ segment is divided into 6 patches to keep the
mesh distortion under control. Each patch is a 20◦ arc, with
3 temporal-control points. The 6 temporal patches and their
control points are illustrated in Figure 22 and Table 3.

Fig. 22 Path of a blade tip with temporal patches and control point
numbering local to each patch. A control point at the start of a patch
and colocated with a control point at the end of the previous patch is in
parentheses. For the color code, see Table 3.

Temporal patch Fig. 22 color
1 Blue
2 Orange
3 Purple
4 Green
5 Red
6 Teal

Table 3 Figure 22 color code for the temporal patches.

5.3 Surface Mesh

The rotor surface mesh is generated by discretizing the
NURBS surface geometry at each knot intersection, subdi-
viding the knot spans into quadrilateral finite elements in a
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structured way, and subdividing the quadrilateral elements
into two triangles. Small adjustments are made to improve
the mesh near the hub. The surface mesh position is calcu-
lated at each temporal-control point shown in Figure 22. Fig-
ure 23 shows the rotor surface at the three temporal-control
points of the first patch. We note that control points 1 and

Fig. 23 Rotor surface at the three temporal-control points of the first
patch.

3 lie on the path traveled by the points on the blades and
a portion of the hub at the start and end of the 20◦ rota-
tion, but control point 2 lies outside the circular arc. This
means that the temporal-control mesh 2 is deformed com-
pared to the temporal-control meshes 1 and 3. A temporal-
control mesh 2 has to be generated for the part of the surface
between the hub cross-sections rotating with the blades and
fixed to the tower. The tower surface mesh is generated from
the NURBS representation of the surface by using an un-
structured triangular mesh generator and matched with the
previously generated hub mesh at the intersection. The ro-
tor surface mesh has 34,087 nodes and 68,112 triangles. The
tower surface mesh has 6,952 nodes and 13,806 triangles.

5.4 Volume Mesh

5.4.1 Boundary-Layer Mesh

The layers of thin elements near the blades are generated by
extruding the NURBS surface geometry into NURBS vol-
ume representation, subdividing the knot spans into hexa-
hedral finite elements in a structured way, and subdividing
the hexahedral elements into six tetrahedral elements. The
resulting boundary-layer mesh for each blade consists of 4
layers with a first-layer thickness of about 2.85×10−2 m and

a total thickness of about 2.85×10−1 m, 52 nodes in the cir-
cumferential direction around the blade, and approximately
145 nodes in the longitudinal direction. The tower boundary-
layer mesh is generated by extruding the tower surface mesh
to layers of prismatic elements, which are then subdivided
into 3 tetrahedral elements each. It consists of 4 layers, with
a first-layer thickness of 2.85×10−2 m and a total thickness
of 3.0×10−1 m. The blade and tower boundary-layer meshes
do not undergo any mesh deformation. This maintains the
mesh quality in the boundary-layer regions. Figure 24 shows
the outer surface of the blade boundary-layer mesh and cut-
planes showing the tower and blade boundary-layer meshes.

5.4.2 Overall Mesh

Three different meshes are used in the computations: Mesh
1, Mesh 2, and Mesh 3. Mesh 2 has both the rotor and the
tower, with boundary-layer mesh only for the blades. Mesh 1
has only the rotor, and is identical to Mesh 2 except the tower
is filled with volume elements. Mesh 3 has both the rotor and
the tower, with boundary-layer mesh for both the blades and
the tower, and a mesh refinement region downstream of the
tower. All three meshes have an outer, coarser region, with
an inner cylindrical refinement region surrounding the rotor.
This inner refinement region includes most of the tower for
Mesh 2 and Mesh 3, and the mesh refinement region down-
stream of the tower for Mesh 3. Figure 25 illustrates, as an
example, cut planes of Mesh 3, and Figure 26 shows zoomed
longitudinal cut planes of all three meshes. The inflow and
outflow boundaries are at 3.79R and 10.35R from the hub
center, respectively. The side, top, and bottom boundaries
are at 2.29R, 3.17R, and 1.43R, respectively (see Figure 25).
The volume mesh is generated once per patch using an auto-
matic mesh generator (a total of 6 times). The mesh is gen-
erated at control point 2 of each patch to minimize mesh dis-
tortion between control points. We note that only the mesh
in the inner cylindrical refinement region surrounding the
rotor is generated for each patch. The outer, coarser mesh
is generated only once, and is kept the same when the inner
meshes are generated for each patch. The mesh moving tech-
nique [88; 89; 90; 91; 57] developed earlier in conjunction
with the DSD/SST method is used for computing the mesh
position for control points 1 and 3. The outer surfaces of the
boundary-layer meshes serve as the boundaries where we
specify the inner boundary conditions for the mesh motion.
The external boundaries of the computational domain serve
as the boundaries where we specify the outer boundary con-
ditions, with zero displacement. In the elasticity equations
of the mesh moving technique, a Young’s modulus of 1.0, a
Poisson’s ratio of -0.20, and a Jacobian-based stiffening ex-
ponent of 1.5 are used. We use 1,500 GMRES iterations for
each step of the mesh motion, with diagonal preconditioner.
Each 10◦ range of motion is computed over 40 steps. Num-
ber of nodes and elements for all 6 temporal patches of the
3 volume meshes are given in Table 4.
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Fig. 24 Top: Outer surface of blade and boundary-layer mesh. Middle:
Boundary-layer mesh at 3

4 R. Bottom: Tower boundary-layer mesh.

Fig. 25 Cut planes of temporal-control mesh 1 of patch 1 for Mesh 3.

Mesh Temporal patch nn ne
1 1 470,880 2,725,614
1 2 466,983 2,701,657
1 3 460,932 2,665,562
1 4 462,733 2,676,747
1 5 464,712 2,687,745
1 6 468,529 2,711,069
2 1 446,709 2,553,100
2 2 442,876 2,529,556
2 3 436,825 2,493,524
2 4 438,802 2,505,789
2 5 440,870 2,517,233
2 6 444,517 2,539,512
3 1 598,125 3,454,865
3 2 596,111 3,442,699
3 3 592,345 3,420,273
3 4 590,628 3,410,226
3 5 595,719 3,440,031
3 6 596,522 3,445,407

Table 4 Number of nodes (nn) and elements (ne) for the fluid mechan-
ics meshes used in each temporal patch.

5.5 Computational Conditions

For τSUPS, we use the definition given by Eq. (11), with
hRGN (= hRGNT) given by Eq. (33). For νLSIC, we use the
νLSIC−HRGN definition given by Eq. (37). The DTR and
IMTR approaches are used on all three meshes. Least-
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Fig. 26 Zoomed cut planes of temporal-control mesh 1 of patch 1 for
Mesh 1 (top), Mesh 2 (middle), and Mesh 3 (bottom).

squares projection is used to interpolate the velocity and
pressure between temporal patches. Because the boundary-
layer meshes and the tower and rotor surface meshes remain
identical between temporal patches, the velocity values are
transferred exactly for those nodes. The computations per-
formed are summarized in Table 5.

The time-step size is 2.23×10−3 s (145 time steps per
patch), with 4 nonlinear iterations per time-step. First we
develop the flow field for 500 time steps while the rotor is
static, ramping up the inflow velocity during the first 300

Mesh Tower Temporal representation
1 No DTR
2 Yes DTR
3 Yes DTR
1 No IMTR
2 Yes IMTR
3 Yes IMTR

Table 5 Summary of the computations.

steps from zero to the wind speed using a cosine ramp. Dur-
ing this flow-development stage of the computation, we use
150, 150, 200, and 400 GMRES iterations for the 4 non-
linear iterations. In computations with the rotor in motion,
we use 150, 150, 200, and 400 GMRES iterations for Mesh
1, and 150, 250, 350, and 500 GMRES iterations for Mesh
2 and Mesh 3. With the GMRES iterations in flow com-
putations, we use nodal-block-diagonal preconditioner. The
mesh is partitioned based on the METIS algorithm to im-
prove parallel efficiency in the computations.

5.6 Results

Figure 27 shows the torque for Mesh 1 with the DTR ap-
proach, for the last 360◦ rotation of a blade, with the rotation
amount measured from the orientation seen in Figure 22. For
reference purposes, Figure 27 includes the NREL data. The
torque is within 8% of the NREL data.
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Fig. 27 Torque for Mesh 1 with the DTR approach, compared with the
NREL data.

Figure 28 shows the torque for the last 80◦ rotation of a
single blade of Mesh 1 with the DTR approach, compared
with the torque from the single-blade ST-VMS computa-
tion with Mesh-4 from Section 3. The higher torque seen
for the single-blade computation may be due to the fact that
the computation was carried out for a much shorter duration,
only 80◦ of rotation versus 1,080◦ for the Mesh 1 computa-
tion. Therefore the current computation likely represents a
more settled torque value. The higher torque for the single-
blade computation may also be due the fact that the com-
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putation was carried out using a computational domain with
significantly nearer lateral boundaries.
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Fig. 28 Torque for a single blade of Mesh 1 with the DTR approach,
compared with the torque from the single-blade ST-VMS computation
with Mesh-4 from Section 3.

Figures 29 and 30 show the torque for all three meshes
with the DTR and IMTR approaches. As can be seen from
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Fig. 29 Torque for Mesh 1, Mesh 2 and Mesh 3 with the DTR ap-
proach.

these figures, Mesh 1 (no tower) has a very stable torque,
while Mesh 2 and Mesh 3 (with tower) exhibit a significant
but expected drop in torque each time a blade passes the
tower.

Figure 31 shows, for each of the three meshes, the torque
obtained with the DTR and IMTR approaches. The figure
illustrates that the DTR and IMTR approaches result in a
nearly identical torque magnitude for all 3 meshes.

Figure 32 shows the torque for Mesh 1 with the DTR
approach, using two different time-step sizes: 2.23×10−3 s
(145 time steps per patch) and 4.49×10−3 s (72 time steps per
patch). Doubling the time-step size still yields a comparable
torque value, within 10% of the value for the smaller time-
step size.

We also carried out a computation with the convective
form of the ST-VMS formulation (see Eq. (8.17) in [52]), but
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Fig. 30 Torque for Mesh 1, Mesh 2 and Mesh 3 with the IMTR ap-
proach.
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Fig. 31 Torque with the DTR and IMTR approaches for Mesh 1 (top),
Mesh 2 (middle), and Mesh 3 (bottom).
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Fig. 32 Torque for Mesh 1 with the DTR approach, using two dif-
ferent time-step sizes: 2.23×10−3 s (145 time steps per patch) and
4.49×10−3 s (72 time steps per patch).

with a smaller time-step size: 4.46×10−4 s (725 time steps
per patch). Figure 33 shows the torque for Mesh 2 with the
DTR approach and the conservative and convective forms of
the ST-VMS formulation. The conservative-form computa-
tion is with the standard time-step size: 2.23×10−3 s (145
time steps per patch).

70 80 90 100 110 120
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Degrees

To
rq

ue
(M

N
·m

)

Conservative ST-VMS Convective ST-VMS

Fig. 33 Torque for Mesh 2 with the DTR approach and the conserva-
tive and convective forms of the ST-VMS formulation. The time-step
sizes: 4.46×10−4 s (725 time steps per patch) for the convective form
and 2.23×10−3 s (145 time steps per patch) for the conservative form.
The torques shown are from the same period in a rotation cycle, but the
conservative-form torque is from the last 360◦ of the computation, and
the convective-form torque is from a recently-started, ongoing compu-
tation.

Figure 34 shows the torque for the individual blades of
Mesh 2 with the DTR approach. The figure clearly shows
the expected torque drop for each blade as it passes the
tower, while the other two blades maintain relatively con-
stant torque.

Figure 35 shows the torque for 10 equal-length span-
wise sections of a blade of Mesh 2 with the DTR approach.
Greatest amount of torque is generated in sections 6–9 of the
blade, while section 10 at the tip and the other lower sections
generate less torque.
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Fig. 34 Torque for the individual blades of Mesh 2 with the DTR ap-
proach.
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Fig. 35 Torque for 10 equal-length spanwise sections of a blade of
Mesh 2 with the DTR approach.

Figure 36 shows a volume rendering of the vorticity for
Mesh 2 with the DTR approach. The flow patterns vary con-
siderably along each blade length, illustrating the necessity
to carry out the computations in 3D.

Figure 37 shows the pressure coefficient at 0.90R for the
last 0◦ orientation of a blade of Mesh 2, with the DTR and
IMTR approaches, with the last 0◦ orientation being com-
mon between the two computations. There is very little dif-
ference in the pressure coefficient around the blades between
the DTR and IMTR approaches.

Figure 38 shows the pressure coefficient at 0.90R for the
last 180◦ orientation of a blade of Mesh 1, Mesh 2 and Mesh
3, with the DTR approach, with the last 180◦ orientation be-
ing common between Mesh 2 and Mesh 3 computations.

Table 6 provides the averaged torque for the last 360◦
rotation in all 6 computations. The values show that the dif-
ference in torque between the DTR and IMTR approaches,
and between Mesh 2 and Mesh 3, is rather small. The differ-
ence in torque between Mesh 1 and Mesh 2 and 3 illustrates
effect of the tower.
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0 4.5 9

Fig. 36 Volume rendering of the vorticity (in s−1) from the last 360◦
of the computation for Mesh 2 with the DTR approach.

−1.8 −0.4 1

Fig. 37 Pressure coefficient at 0.90R for the last 0◦ orientation of a
blade of Mesh 2, with the DTR (top) and IMTR (bottom) approaches.

−1.8 −0.4 1

Fig. 38 Pressure coefficient at 0.90R for the last 180◦ orientation of a
blade of Mesh 1 (top), Mesh 2 (middle), and Mesh 3 (bottom), with the
DTR approach.

Mesh DTR IMTR
1 2.31 2.32
2 2.34 2.34
3 2.39 2.35

Table 6 Averaged torque (MN·m) for the last 360◦ rotation in all 6
computations.

Figure 39 shows the vorticity around the tower for Mesh
2 and Mesh 3 with the DTR approach. Mesh 3 is able to
represent the wake behind the tower far more effectively, al-
though no vortex shedding is observed at this stage of the
computation, possibly due to insufficient computing dura-
tion or mesh refinement.
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0 4.5 9

Fig. 39 Vorticity (in s−1) around the tower at a cross-section 1.1R from
the hub center for Mesh 2 (top) and Mesh 3 (bottom) with the DTR
approach. The pictures are from the last time step of the computation.

6 Governing Equations of Structural Mechanics:
Isogeometric Kirchhoff–Love Composite Shell and the
Bending-Strip Method

6.1 Kirchhoff–Love Shell

In this section we follow the developments of [39; 13; 15]
and present the governing equations of the Kirchhoff–Love
shell theory. The theory is appropriate for thin-shell struc-
tures and requires no rotational degrees of freedom. The
variational formulation of a Kirchhoff–Love shell is based
on the principle of virtual work expressed as

δW = δWint + δWext = 0 , (47)

where W, Wint, and Wext denote the total, internal, and exter-
nal work, respectively, and δ denotes a variation with respect
to the virtual displacement variables δy, that is

δW =
∂W
∂y

δy . (48)

The internal virtual work is defined by (see, e.g., [125])

δWint = −

∫
Ωs

0

(δE : S) dΩ , (49)

where Ωs
0 is the shell volume in the reference configuration

(the total Lagrangian approach is adopted in this work), E
is the Green–Lagrange strain tensor, δE is its variation with
respect to virtual displacements δy, and S is the energetically
conjugate second Piola–Kirchhoff stress tensor.

In the case of shells, the 3D continuum description is
reduced to that of the shell midsurface, and the transverse
normal stress is neglected. Furthermore, the Kirchhoff–Love
theory assumes that the shell director remains normal to its
middle surface during the deformation, which implies that
the transverse shear strains are zero. As a result, only in-
plane stress and strain tensors are considered, and the in-
dices α = 1, 2 and β = 1, 2 are employed to denote their
components. We denote by Γs

0 the shell midsurface in the un-
deformed reference configuration, hth is the (variable) shell
thickness, and ξ3 ∈ [−0.5hth, 0.5hth] is the through-thickness
coordinate.

We introduce the following standard shell kinematic
quantities and relationships (see [126; 39] for more details):

Eαβ = εαβ + ξ3καβ, (50)

εαβ =
1
2

(
gα · gβ −Gα ·Gβ

)
, (51)

καβ = −
∂gα
∂ξβ
· g3 − (−

∂Gα

∂ξβ
·G3), (52)

gα =
∂x
∂ξα

, (53)

Gα =
∂X
∂ξα

, (54)

g3 =
g1 × g2

‖g1 × g2‖
, (55)

G3 =
G1 ×G2

‖G1 ×G2‖
, (56)

Gα = (Gα ·Gβ)−1Gβ. (57)

Here, Eαβ, εαβ, and καβ are the contravariant components of
the in-plane Green–Lagrange strain, membrane strain, and
curvature tensors, respectively. The spatial coordinates of
the shell midsurface in the current and reference configura-
tions are x = x(ξ1, ξ2) and X = X(ξ1, ξ2), parameterized by
ξ1 and ξ2. The covariant surface basis vectors in the current
and reference configurations are gα and Gα. The unit out-
ward normal vectors to the shell midsurface in the current
and reference configurations are g3 and G3. The contravari-
ant surface basis vectors in the reference configuration are
denoted by Gα.

We select the local Cartesian basis vectors as follows:

e1 =
G1

‖G1‖
, (58)

e2 =
G2 − (G2 · e1)e1

‖G2 − (G2 · e1)e1‖
, (59)
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that is, the first local basis vector is the normalized first co-
variant basis vector in the reference configuration. The local
Cartesian basis vectors eα are used in expressing a consti-
tutive relationship for the shell. Because the local basis is
orthonormal, we make no distinction between covariant and
contravariant quantities, which are expressed with respect to
it.

With the above definitions, we calculate the components
of the Green–Lagrange strain tensor and its variation in the
local coordinate system as

Eαβ = εαβ + ξ3καβ, (60)

δEαβ = δεαβ + ξ3δκαβ, (61)

εαβ = εγδ(Gγ · eα)(Gδ · eβ), (62)

καβ = κγδ(Gγ · eα)(Gδ · eβ), (63)

δεαβ = δεγδ(Gγ · eα)(Gδ · eβ), (64)

δκαβ = δκγδ(Gγ · eα)(Gδ · eβ). (65)

The variations δεγδ and δκγδ may be computed directly by
taking the variational derivatives of the expressions given by
Eqs. (51) and (52) with respect to the displacement vector.

We define the vectors of membrane strain and curvature
components in the local coordinate system as

εεε =

 ε11
ε22
ε12

 (66)

and

κκκ =

 κ11
κ22
κ12

 , (67)

together with a Green–Lagrange strain vector

E = εεε + ξ3κκκ. (68)

We assume St. Venant–Kirchhoff material law and write the
following stress–strain relationship in the local coordinate
system:

S = C E, (69)

where S is a vector of components of the second Piola–
Kirchhoff stress tensor in the local coordinate system, and C
is a constitutive material matrix, which is symmetric. Intro-
ducing Eqs. (68) and (69) into the expression for the internal
virtual work given by Eq. (49), we obtain

δWint = −

∫
Ωs

0

δE · S dΩ (70)

= −

∫
Γs

0

(∫
hth

δE · C E dξ3

)
dΓ (71)

= −

∫
Γs

0

δεεε ·

((∫
hth

C dξ3

)
εεε +

(∫
hth

ξ3C dξ3

)
κκκ

)
dΓ

−

∫
Γs

0

δκκκ ·

((∫
hth

ξ3C dξ3

)
εεε +

(∫
hth

ξ3
2C dξ3

)
κκκ

)
dΓ.

(72)

For a general orthotropic material,

Cort =



E1

(1 − ν12ν21)
ν21E1

(1 − ν12ν21)
0

ν12E2

(1 − ν12ν21)
E2

(1 − ν12ν21)
0

0 0 G12


. (73)

In Eq. (73), E1 and E2 are the Young’s moduli in the direc-
tions defined by the local basis vectors, ν12 and ν21 are the
Poisson ratios, G12 is the shear modulus, and ν21E1 = ν12E2
to ensure the symmetry of the constitutive material matrix
Cort. In the case of an isotropic material, E1 = E2 = E,
ν21 = ν12 = ν, and G12 = E/(2(1 + ν)).
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Fig. 40 Schematic of a composite laminate.

In the case of composite materials, which are used in
the manufacturing of modern wind-turbine blades, we as-
sume that the structure is composed of a set of plies, each
modeled as an orthotropic material. We use the classical
laminated-plate theory [127], and homogenize the material
through-thickness constitutive behavior for a given compos-
ite ply layout. Let k denotes the kth ply (or lamina) and let n
be the total number of plies (see Figure 40). We assume each
ply has the same thickness hth/n. Pre-integrating through the
shell thickness in Eq. (72), the extensional stiffness A, cou-
pling stiffness B, and bending stiffness D are given by

A =

∫
hth

C dξ3 =
hth

n

n∑
k=1

Ck, (74)

B =

∫
hth

ξ3C dξ3 =
h2

th

n2

n∑
k=1

Ck

(
k −

n
2
−

1
2

)
, (75)

D =

∫
hth

ξ3
2C dξ3 =

h3
th

n3

n∑
k=1

Ck

(k − n
2
−

1
2

)2

+
1

12

 ,
(76)
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where

Ck = TT (φk) Cort T(φk), (77)

T(φ) =

 cos2 φ sin2 φ sin φ cos φ
sin2 φ cos2 φ − sin φ cos φ

−2 sin φ cos φ 2 sin φ cos φ cos2 φ − sin2 φ

 . (78)

In the above equations, φ is the fiber orientation angle in
each ply, Eq. (77) transforms Cort from the principal material
coordinates to the laminate coordinates (defined by the local
Cartesian basis) for each ply, and Ck is constant within each
ply.

With the above definitions, the expression for the internal
virtual work for a composite shell may now be compactly
written as

δWint = −

∫
Γs

0

δεεε ·
(
Aεεε + Bκκκ

)
dΓ −

∫
Γs

0

δκκκ ·
(
Bεεε + Dκκκ

)
dΓ.

(79)

Remark 12 Setting n = 1 and Ck = Cort in Eqs. (74)–(76),
we get B = 0 and

A = hthCort, (80)

D =
h3

th

12
Cort, (81)

which are the classical membrane and bending stiffnesses
for an orthotropic shell.

6.2 The Bending-Strip Method and a Complete Variational
Statement of the Structural Mechanics Problem
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Fig. 41 Schematic of the bending-strip method.

The expression for of the internal virtual work given by
Eq. (79) is only meaningful when the shell midsurface is
described using a smooth geometrical mapping. In the case

when the regularity of the mapping reduces to the C0 level,
the terms involving the curvature tensors, which rely on the
second derivatives of the geometrical mapping, lead to non-
integrable singularities, and the formulation may not be used
as is. However, for complex structures, the geometry defi-
nition often requires that the continuity of the geometrical
mapping is reduced to the C0 level (think of a trailing edge
of an airfoil or an I-beam, the latter being a non-manifold
surface).

In [13], a method was prosed to handle complex multi-
patch shell structures in the context of the rotation-free
Kirchhoff–Love theory, called the “bending-strip method”
3. The main idea behind the method, illustrated in Figure 41,
consists of the following. It is assumed that the shell struc-
ture is comprised of smooth subdomains, such as NURBS
patches, that are joined with C0-continuity. In addition, thin
strips of fictitious material, also modeled as surface NURBS
patches, are placed at patch intersections. The triples of con-
trol points at the patch interface, consisting of a shared con-
trol point and one on each side, are extracted and used as a
control mesh for the bending strips. The parametric domain
of each bending strip consists of one quadratic element in
the direction transverse to the interface and, for simplicity
and computational efficiency, of as many linear elements as
necessary to accommodate all the control points along the
length of the strip. The material is assumed to have zero
mass, zero membrane stiffness, and non-zero bending stiff-
ness only in the direction transverse to the interface. The
transverse direction may be obtained using the local basis
construction given by Eqs. (58) and (59), however, other op-
tions may be explored.

Let Γs
0 and Γs

t denote the structure midsurface in the ref-
erence and deformed configurations, respectively, and let Γb

0
denote the bending-strip domain, where Γb

0 is a union of
the bending-strip patch subdomains. Let Sh

y and Vh
y denote

the discrete trial and test function spaces for the structural
problem. We seek the displacement of the shell midsurface
yh ∈ Sh

y , such that ∀ δyh ∈ Vh
y :∫

Γs
t

δyh · ρhth

(
∂2yh

∂t2

∣∣∣∣∣∣
X
− fh

)
dΓ

+

∫
Γs

0

δεεεh
·
(
Aεεεh

+ Bκκκh
)

dΓ

+

∫
Γs

0

δκκκh
·
(
Bεεεh

+ Dκκκh
)

dΓ

+

∫
Γb

0

δκκκh
· Dbκκκh dΓ −

∫
(Γs

t )h

δyh · hh dΓ = 0. (82)

In the above, the superscript h denotes all the discrete quan-
tities, ρ is the structural mass density in the deformed con-

3 The method in its current form was developed and implemented
at the University of California, San Diego, when J. Kiendl, at the time
a PhD student in the group of K.-U. Bletzinger at the Technical Uni-
versity of Munich, was visiting the research group of Y. Bazilevs. The
method has similarities with the concept of “continuity patches”, intro-
duced by K.-U. Bletzinger and collaborators in [128].



29

figuration, f is the body force (e.g. gravity), and h is the pre-
scribed surface traction on (Γs

t )h. The terms on the first line
of Eq. (82) represent the inertial and body forces. The terms
on the second and third lines were derived in the previous
section. The term

∫
Γb

0
δκκκh
· Dbκκκh dΓ is penalty-like, and rep-

resents the contribution of the bending strips to the structural
formulation given by Eq. (82). Here Db is the bending stiff-
ness of the strips:

Db =
h3

th

12
Cb, (83)

where

Cb =

 Es 0 0
0 0 0
0 0 0

 , (84)

and Es is the scalar bending-strip stiffness, typically chosen
as a multiple of the local Young’s modulus of the shell. This
design of the material constitutive matrix ensures that the
bending strips add no extra stiffness to the structure. They
only penalize the change in the angle during the deforma-
tion between the triples of control points at the patch inter-
face. The stiffness Es must be high enough so that the change
in angle is within an acceptable tolerance. However, if Es is
chosen too high, the global stiffness matrix becomes badly
conditioned, which may lead to divergence in the computa-
tions.

Remark 13 Because of the structure of the bending-strip
term in Eq. (82), the method may be interpreted as a
physically-motivated penalty formulation.

Remark 14 In IGA, the possibility to employ smooth sur-
face descriptions directly in analysis has led to the develop-
ment of new shell element formulations. Besides the refer-
ences cited in this section, the reader is referred to [45; 46;
47; 38; 129] for relevant work on shells. We would also like
to note that references [45; 46; 47] predate the development
of IGA.

6.3 Time Integration of the Structural Mechanics Equations

In the case of wind-turbine rotors, the structural motions are
dominated by the rotation of the blades around the hub axis.
In [15], the authors proposed to take advantage of this fact
and modify a class of standard time integration techniques
to exactly account for the rotational part of the structural
motion.

For this, as a first step, it is useful to decompose the
structural displacement y into its rotation and deflection
components as

y = yθ + yd. (85)

The rotational component of the displacement may be com-
puted as

yθ = (R(θ) − I) (X − X0) , (86)

where X are the coordinates of the structure reference con-
figuration, X0 is a fixed point, θ is the time-dependent angle
of rotation, R(θ) is the rotation matrix, and I is the identity
matrix. We specialize to the case of rotation about the z-axis,
which gives

R(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (87)

The total structural velocity and acceleration may be com-
puted as

∂yh

∂t

∣∣∣∣∣∣
X

= ẏ = ẏθ + ẏd = Ṙ(θ)(X − X0) + ẏd, (88)

∂2yh

∂t2

∣∣∣∣∣∣
X

= ÿ = ÿθ + ÿd = R̈(θ)(X − X0) + ÿd, (89)

where

Ṙ(θ) =

− sin θ − cos θ 0
cos θ − sin θ 0

0 0 0

 θ̇, (90)

R̈(θ) =

− cos θ sin θ 0
− sin θ − cos θ 0

0 0 0

 θ̇2 +

− sin θ − cos θ 0
cos θ − sin θ 0

0 0 0

 θ̈. (91)

We repeat this decomposition at the discrete level, where we
operate directly on the nodal or control-point displacement
degrees of freedom. For this, we let U, U̇, and Ü be the vec-
tors of nodal or control point displacements, velocities, and
accelerations, respectively. We set

U = Uθ + Ud, (92)

U̇ = U̇θ + U̇d, (93)

Ü = Üθ + Üd, (94)

where Uθ, U̇θ, and Üθ are given by

Uθ = (R(θ) − I) (X − X0), (95)

U̇θ = Ṙ(θ)(X − X0), (96)

Üθ = R̈(θ)(X − X0). (97)

The above Eqs. (95)–(97) present an exact relationship be-
tween the nodal or control point displacements, velocities,
and accelerations corresponding to the rotational motion. To
relate the deflection degrees of freedom between time levels
tn and tn+1, we make use of the standard Newmark formulas
(see e.g., [130]):

U̇n+1
d = U̇n

d + ∆t
(
(1 − γ)Ün

d + γÜn+1
d

)
, (98)

Un+1
d = Un

d + ∆tU̇n
d +

∆t2

2

(
(1 − 2β)Ün

d + 2βÜn+1
d

)
, (99)

where γ and β are the time integration parameters chosen to
maintain second-order accuracy and unconditional stability
of the method.



30

Combining exact rotations given by Eqs. (95)–(97) and
time-discrete deflections given by Eqs. (98)–(99), we obtain
the following modified Newmark formulas for the total dis-
crete solution:

U̇n+1 =∆Ṙn+1(X − X0)

+ U̇n + ∆t
(
(1 − γ)Ün + γÜn+1

)
, (100)

Un+1 =∆Rn+1(X − X0)

+ Un + ∆tU̇n +
∆t2

2

(
(1 − 2β)Ün + 2βÜn+1

)
, (101)

where

∆Ṙn+1 = Ṙn+1 −
[
Ṙn + ∆t

(
(1 − γ)R̈n + γR̈n+1

)]
, (102)

and

∆Rn+1 = Rn+1 −

[
Rn + ∆tṘn +

∆t2

2

(
(1 − 2β)R̈n + 2βR̈n+1

)]
.

(103)

We employ Eqs. (100)–(103) for the time integration of the
structure.

Remark 15 In the case of no rotation, for which R is an
identity, Eqs. (100)–(103) reduce to the standard Newmark
formulas. In the case of no deflection, pure rotation is like-
wise recovered.

7 FSI Coupling and Aerodynamics Mesh Update

In this section we briefly summarize our FSI coupling pro-
cedures for wind-turbine simulations. The fluid and struc-
tural equations are integrated in time using the generalized-
alpha method. In the case of the structure, the modified New-
mark formulas given by Eqs. (100)–(103) are employed to
enhance the accuracy of the time integration procedures in
the presence of large rotation. Within each time step, the
coupled equations are solved using an inexact Newton ap-
proach. For every Newton iteration the following steps are
performed. 1. We obtain the fluid solution increment hold-
ing the structure and mesh fixed. 2. We update the fluid so-
lution, compute the aerodynamic force on the structure and
compute the structural solution increment. The aerodynamic
force at control points or nodes is computed using the con-
servative definition (see, e.g., [131; 132] for the importance
of using the conservative definitions of fluxes near essen-
tial boundaries and in coupled problems). 3. We update the
structural solution and use elastic mesh motion to update
the fluid domain velocity and position. We note that only
the deflection part of the mesh motion is computed using
linear elastostatics, while the rotation part is computed ex-
actly. This three-step iteration is repeated until convergence
to an appropriately coupled discrete solution is achieved.
The proposed approach, also referred to as “block-iterative
coupling” (see [124; 67; 57] for the terminology), is stable
because the wind-turbine blades are relatively heavy struc-
tures.

Remark 16 For this coupling strategy the fluid and struc-
tural meshes may or may not be conforming. In the case of
conforming meshes, the conservative nodal or control-point
traction vector from the fluid side is applied directly at the
nodes or control points of the structure, while the structural
nodal or control-point kinematic data is applied directly to
the nodes or control points of the fluid. When the fluid and
structural meshes are non-conforming, additional projection
of the traction and kinematic data is necessary before they
are transferred to the neighboring subdomain. In this paper
we only present conforming mesh simulations.

We conclude this section with the discussion of a spe-
cial technique we devised in [15] to update the kinemat-
ics (position and velocity) of the fluid mesh. Typically, one
employes the equations of linear elastostatics subject to dy-
namic boundary conditions coming from the structural dis-
placement to update the position and velocity of the fluid
mesh (see, for example, the elasticity-based mesh-moving
method introduced in [88; 89]). In the case of wind turbines,
which are dominated by rotation, this may not be a preferred
procedure due to the fact that the linear elastostatics opera-
tor does not vanish on large rotational motions. This, in turn,
may lead to the loss of the fluid mesh quality if one plans
to simulate the FSI problem for many revolutions of the
wind-turbine rotor. As a result, for the present application,
we modify our fluid mesh motion strategy as follows. We
take advantage of the fact that the structural displacement
vector is already decomposed into the rotation and deflec-
tion parts. As a result, as the increment of the structural dis-
placement is computed, we extract the deflection part, apply
the elasticity-based mesh-moving method [88; 89] to com-
putation of just the deflection part of the mesh displacement,
rotate the (deformed) mesh from the previous time level to
the current time, and add the mesh deflection increment to
obtain its current position. For a precise mathematical for-
mulation of this procedure see [15].

Remark 17 For a variety of other mesh update strategies
the reader is referred to [90; 91; 84].

8 Simulation of the Micon 65/13M Wind Turbine with a
CX-100 Blade

This section is adapted from [95]. We simulate the Micon
65/13M wind turbine at field test conditions [133]. Micon
65/13M is a three-blade, horizontal-axis, fixed-pitch, up-
wind turbine with the total rotor diameter of 19.3 m and
rated power of 100 kW. The hub is located at the height
of 23 m. The wind turbine stands on a tubular steel tower,
with a base diameter of 1.9 m. The drive train genera-
tor operates at 1200 rpm, while the rotor spins at a nom-
inal speed of 55 rpm. The Micon 65/13M wind turbine
was used for the Long-Term Inflow and Structural Testing
(LIST) program [134] initiated by Sandia National Labo-
ratories in 2001 to explore the use of carbon fiber in wind
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turbine blades. Three experimental blade prototypes, GX-
100, CX-100 and TX-100, were developed specifically for
this project. We use the CX-100 conventional carbon-spar
blade design [133; 135]. The NREL S821, S819 and S820
airfoils are used to define the blade geometry. The details of
the blade geometry definition are provided in Table 7.

RNodes Chord AeroTwst Airfoil
0.200 0.356 29.6 Cylinder
0.600 0.338 24.8 Cylinder
1.000 0.569 20.8 Cylinder
1.400 0.860 17.5 NREL S821
1.800 1.033 14.7 NREL S821
2.200 0.969 12.4 NREL S821
3.200 0.833 8.3 NREL S821
4.200 0.705 5.8 NREL S819
5.200 0.582 4.0 NREL S819
6.200 0.463 2.7 NREL S819
7.200 0.346 1.4 NREL S819
8.200 0.232 0.4 NREL S819
9.000 0.120 0.0 NREL S820

Table 7 CX-100 blade geometry definition with “RNodes” (m),
“Chord” (m), “AeroTwst” (◦), and “Airfoil” type.

8.1 Eigenfrequency Analysis of the CX-100 Blade

Fig. 42 Left: Five primary sections of the CX-100 blade; Right: 32
distinct material zones of the CX-100 blade.

The blade structure is comprised of five primary sec-
tions: leading edge, trailing edge, root, spar cap, and shear
web. The sections are shown in Figure 42. Each section is
further subdivided into zones, each consisting of a multi-
layer composite layup. There is a total of 32 zones with con-
stant total thickness and unique laminate stacking. The effec-
tive material properties for each of the zones are computed
using the procedures described Section 6.1. All 32 zones are
identified on the blade surface and are shown in Figure 42.
For more details of the material composition of the CX-100
blade see [95].

Control points Elements
Mesh 1 3,469 1,846
Mesh 2 7,411 4,647
Mesh 3 25,896 18,611

Table 8 NURBS blade meshes used in the eigenfrequency analysis.

Mode 1 Mode 2 Mode 3
Mesh 1 8.28 15.92 19.26
Mesh 2 8.22 15.61 18.21
Mesh 3 8.22 15.6 18.01

Experiment 7.6–8.2 15.7–18.1 20.2–21.3
Table 9 Comparison of experimentally measured and computed nat-
ural frequencies (in Hz) for the free case. Mode 1 is the first flapwise
mode, Mode 2 is the first edgewise mode, and Mode 3 is the second
flapwise mode.

Mode 1 Mode 2 Mode 3
Mesh 1 4.33 11.82 19.69
Mesh 2 4.29 11.61 19.08
Mesh 3 4.27 11.54 18.98

Experiment 4.35 11.51 20.54
Table 10 Comparison of experimentally measured and computed nat-
ural frequencies (in Hz) for the clamped case. Modes 1-3 are the first
three flapwise bending modes.

Fig. 43 First flapwise bending mode (top) and second flapwise bend-
ing mode (bottom) for the clamped case.

We perform eigenfrequency calculations of the CX-100
blade using three quadratic NURBS meshes. The coarsest
mesh has 1,846 elements, while the finest mesh has 18,611
elements. The mesh statistics are summarized in Table 8.
The eigenfrequency results are compared with the experi-
mental data from [136; 137]. We compute the case with free
boundary conditions and the case when the blade is clamped
at the root. In both cases, the computed natural frequencies
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are in good agreement with the experimental data (see Ta-
bles 9 and 10). The medium mesh shows a good balance
between the computational cost and accuracy of the results.
For this reason, this mesh is chosen for the FSI computa-
tions presented in what follows. The mode shapes computed
using the medium mesh for the clamped case are shown in
Figure 43.

8.2 Aerodynamics and FSI Computations of the Micon
65/13M Wind Turbine

Fig. 44 Top: The computational domain and problem mesh with the
refined inner region for better flow resolution near the rotor; Bottom:
2D blade cross-section at r/R = 70% and the boundary-layer mesh.

In this section, we present aerodynamic and FSI sim-
ulations of the full Micon 65/13M wind turbine. For both
cases, a constant inflow wind speed of 10.5 m/s and fixed
rotor speed of 55 rpm are prescribed. These correspond
to the operating conditions reported for the field tests

in [133]. The air density and viscosity are 1.23 kg/m3 and
1.78×10−5 kg/(m·s), respectively. Zero traction boundary
conditions are prescribed at the outflow and no-penetration
boundary conditions are prescribed at the top, bottom, and
side surfaces of the outer (stationary) computational domain.
No-slip boundary conditions are prescribed at the rotor, na-
celle, and tower, and are imposed weakly.

Figure 44 shows the computational domain and mesh
used in this study. The mesh consists of 5,134,916 linear el-
ements, which are triangular prisms in the rotor boundary
layers and tetrahedra everywhere else in the domain. The
mesh is refined in the rotor and tower regions for better flow
resolution near the wind turbine. The size of the first ele-
ment in the wall-normal direction is 0.002 m, and 15 layers
of prismatic elements were generated with a growth ratio of
1.2. Figure 44 shows a 2D blade cross-section at 70% span-
wise station to illustrate the boundary-layer mesh used in the
computations. The time-step size is set to 3.0×10−5 s.
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Fig. 45 Aerodynamic torque history for the FSI and rigid-blade simu-
lations. The experimental range for the aerodynamic torque and its av-
erage value are provided for comparison and are plotted using dashed
lines.

In Figure 45 the time history of the aerodynamic torque
is plotted. As can be seen from the plot, using FSI, we cap-
ture the high frequency oscillations caused by the bend-
ing and torsional motions of the blades. In the case of the
rigid blade the only high-frequency oscillations in the torque
curve are due to the trailing-edge turbulence. For the rigid
blade case the effect of the tower on the aerodynamic torque
is more pronounced, while in the case of FSI it is not as visi-
ble due to the relatively high torque oscillations. The “dips”
in the aerodynamic torque can be seen at 60◦, 180◦, and 300◦
azimuthal angle, which is precisely when one of the three
blades is passing the tower.

The computed values of the aerodynamic torque are plot-
ted together with field test results from [133]. The upper and
lower dashed lines indicate the aerodynamic torque bounds,
while the middle dashed line gives its average value. Both
the aerodynamic and FSI results compare very well with the
field test data.

Figure 46 shows the relative wind speed at the 70% span-
wise station rotated to the reference configuration to illus-
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Fig. 46 Relative wind speed at the 70% spanwise station for the FSI
simulation at t = 0.86 s (top) and t = 1.06 s (bottom). The blade
deflection is clearly visible.

trate the blade deflection and complexity of boundary-layer
turbulent flow. Figure 47 shows the flow field as the blade
passes the tower.

Fig. 47 Wind speed contours at 80% spanwise station as the blade
passes the tower.
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9 Pre-Bending of the Wind-Turbine Blades

Wind No wind Wind No wind 

(a) Without pre-bending (b) With pre-bending 

Fig. 48 Using pre-bent blades to ensure tower clearance and rotor op-
eration in its design configuration.

The rotor blades of a wind turbine need to be designed
such that they do not strike the tower as the rotor turns in
strong winds. This may be accomplished with blade pre-
bending. In this case, the blades are manufactured to flex
toward the wind when the rotor is mounted on the tower.
Once the blades are exposed to the wind, and the rotor starts
turning, the blades are straightened to achieve their design
shape. This situation is graphically illustrated in Figure 48.
Besides tower clearance, pre-bending of the blades engen-
ders additional benefits. For example, the blades need not be
quite as rigid because the amount of allowable deflection is
greater. This makes it possible to use less material overall,
and fewer processed materials, resulting in lighter and more
economical blades. Pre-bending of the blades also results in
a more compact nacelle design. During operation, the pre-
bent blades straighten to their designed configuration, which
is typically optimized for best possible aerodynamic perfor-
mance.

Given the above advantages, it is important that one is
able to determine the correct pre-bent shape given the blade
structural and aerodynamic design, and the wind-turbine op-
erating conditions (i.e., wind and rotor speeds). In [14], we
proposed a method that makes use of standalone compu-
tational fluid and structural mechanics procedures to ob-
tain a pre-bent shape of the wind-turbine blades. The main
idea consists of performing an aerodynamics simulation of a
rigidly-rotating rotor to obtain the aerodynamic load acting
on the blade. Given the aerodynamic and inertial loads act-
ing in the design configuration, a stress-free pre-bent blade
configuration is found using a simple iterative procedure
that requires a sequence of structural mechanics simula-
tions. Note that in the proposed approach the aerodynamic
and structural computations are decoupled, which avoids the

challenges involved in solving the coupled FSI problem. In
this section, we summarize the method and show the sup-
porting computations. We follow the developments of [14].

9.1 Problem Statement and the Pre-bending Algorithm

We begin with the statement of virtual work for the structure
from Eq. (82), where only the stress terms are left on the
left-hand-side: find the displacement of the shell midsurface
yh ∈ Sh

y , such that for ∀ δyh ∈ Vh
y :∫

Γs
0

δεεεh
·
(
Aεεεh

+ Bκκκh
)

dΓ

+

∫
Γs

0

δκκκh
·
(
Bεεεh

+ Dκκκh
)

dΓ

+

∫
Γb

0

δκκκh
· Dbκκκh dΓ =

−

∫
Γs

t

δyh · ρhth

(
∂2yh

∂t2

∣∣∣∣∣∣
X
− fh

)
dΓ +

∫
(Γs

t )h

δyh · hh dΓ.

(104)

Although the virtual work equations hold true, the problem
setup is unusual in that the stress-free reference configura-
tion Γs

0 is unknown and the final configuration Γs
t is given.

The formulation given by Eq. (104) is a form of the in-
verse deformation problem, whose general formulation and
treatment was proposed in [138], and further analyzed and
studied computationally in [139]. In these references, the fo-
cus was placed on developing the right kinematic and stress
measures for the inverse deformation problem. Here we de-
velop a simple algorithm for the solution of the inverse de-
formation equations with application to wind-turbine blades.

We assume that the rotor spins around its axis at a con-
stant angular speed and that the inflow wind conditions do
not change. With this setup, the blade is subjected to a
constant-in-time centripetal force density (per unit volume)
given by

ρ
∂2yh

∂t2

∣∣∣∣∣∣
X

= ρωωω × (ωωω × (x − x0)) , (105)

where the coordinate system of the current configuration is
assumed to rotate with the blade, ωωω is the vector of angu-
lar velocities, and x0 is a fixed point. The centripetal force
density per unit volume may be directly computed as

ρωωω ×ωωω × (x − x0) =

−ρxθ̇2

−ρyθ̇2

0

 , (106)

where we assume that the coordinate system of the blade is
chosen such that the y-axis is aligned with the blade axis, and
the blade rotates around the z-axis with a constant angular
speed θ̇.

The time-averaged aerodynamics traction vector hh in
Eq. (104) may be obtained from a separate aerodynamics
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computation of a rigidly-spinning rotor using the methods
described in the earlier sections. (See [140] for the compu-
tation of time-averaged traction vector for moving boundary
simulations.)

In [14], we proposed the following two-stage iterative
approach to solve the variational equations (104) for the
shell midsurface displacement, which, in turn, gives the
stress-free reference configuration.

Initialization: We initialize the unknown reference
configuration to coincide with the current configuration,
that is,

Γs
0 = Γs

t , (107)

which implies

yh = 0. (108)

Step 1: Given the reference configuration Γs
0, we solve the

standard nonlinear structural problem: find the structural dis-
placement yh ∈ Sh

y relative to Γs
0, such that ∀ δyh ∈ Vh

y :∫
Γs

0

δεεεh
·
(
Aεεεh

+ Bκκκh
)

dΓ

+

∫
Γs

0

δκκκh
·
(
Bεεεh

+ Dκκκh
)

dΓ

+

∫
Γb

0

δκκκh
· Dbκκκh dΓ =

−

∫
Γs

t

δyh · (ρhthωωω × (ωωω × (x − x0))) dΓ +

∫
(Γs

t )h

δyh · hh dΓ.

(109)

Standard Newton–Raphson iteration is employed in this
work to compute the solution of the nonlinear structural
problem given by Eq. (109).

Step 2: Given the displacement solution yh from Step
1, we update the reference configuration as

Γs
0 = {X | X = x − yh, ∀x ∈ Γs

t }, (110)

and return to Step 1 using yh as the initial data.

Steps 1–2 are repeated until convergence, that is, until
yh satisfies Eq. (109).

The above algorithm is based on the idea of comput-
ing negative increments of the displacement, or increments
of the displacement away from the current configuration,
until the reference configuration is found. The mathemat-
ical justification for this approach may be found in the
appendix of [14]. In what follows, we will illustrate the
good performance of the proposed algorithm on a full-scale
wind-turbine blade subject to realistic wind and inertial
loads.

9.2 Pre-bending Results for the NREL 5MW Wind-Turbine
Blade
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Fig. 49 Blade tip displacement convergence as a function of the itera-
tion number.

The blade design and wind conditions for the pre-
bending computations presented here are taken from [15].
Figure 49 shows the tip displacement convergence of the it-
erative pre-bending algorithm. After a few (5–6) iterations of
the two-step pre-bending algorithm the tip exhibits no fur-
ther visible displacements, and the computation is stopped
after a total of 15 iterations. Figure 50 shows the initial and

Fig. 50 Rotor blade design and pre-bent configurations superposed.
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the final stress-free blade shapes. As expected, the blade
bends into the wind. The tip deflection is predicted to be
5.61 m.

We examine the stress distribution in the composite plies
of the blade skin. For each ply we compute the Cauchy stress
tensor components with respect to the local Cartesian basis
that is aligned with the material axes. The first basis vec-
tor points in the direction of the fiber and the second in the
direction of the matrix, which is orthogonal to the fiber di-
rection (see Eqs. (58) and (59)). The maximum values of the
tensile (σt), compressive (σc), and in-plane shear stresses
are computed for each ply. The highest ratio of the predicted
Cauchy stress and the composite strength, i.e, σt

2/σ
t,u
2 , oc-

curs for the tensile stress in the direction of the matrix mate-
rial. Although the ratio does not exceed 0.6, which means the
predicted stress is below the composite failure strength, we
feel this value is somewhat high. In the rest of the stress com-
ponents the ratios are significantly lower. Figure 51 shows

Fig. 51 Normal stress distribution in the direction of the matrix ma-
terial for the 0◦ ply number 14. Top: Pressure side. Bottom: Suction
side.

the distribution of σ2 in the 0◦ ply number 14, which has the
highest ratio of σt

2/σ
t,u
2 . The pressure side of the blade is in

tension, while the suction side of the blade is in compres-
sion as expected. However, the level of the tensile stress is
not very far from the tensile failure strength, which suggests
that stronger matrix material may be desirable for this blade
design.

10 Concluding Remarks

We provided an extensive overview of the aerodynamic and
FSI analysis of wind turbines carried out in recent years with
the ALE-VMS and ST-VMS methods. The techniques com-
plementing these core methods include weak enforcement
of the essential boundary conditions, NURBS-based isoge-
ometric analysis, using NURBS basis functions in tempo-
ral representation of the rotor motion, mesh motion and also
in remeshing, rotation representation with constant angular
velocity, Kirchhoff–Love shell modeling of the rotor-blade
structure, and full FSI coupling. These techniques were in-

cluded in our overview. The wind-turbine analysis cases pre-
sented include the aerodynamics of standalone wind-turbine
rotors, wind-turbine rotor and tower, and the FSI that ac-
counts for the deformation of the rotor blades. The specific
wind turbines considered were NREL 5MW, NREL Phase
VI and Micon 65/13M, all at full scale. In the case of NREL
Phase VI and Micon 65/13M we also presented a successful
comparison with the experimental data. Overall, this article
demonstrates that the ALE-VMS and ST-VMS methods, to-
gether with a number of new supporting techniques, have
brought the aerodynamic and FSI analysis of wind turbines
to a new level, where such analyses can contribute more to
simulation-based design and testing.
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103. T.J.R. Hughes, G.R. Feijóo, L. Mazzei, and J.-B. Quincy, “The
variational multiscale method–A paradigm for computational
mechanics”, Computer Methods in Applied Mechanics and En-
gineering, 166 (1998) 3–24.

104. T.J.R. Hughes and G. Sangalli, “Variational multiscale analysis:
the fine-scale Green’s function, projection, optimization, local-
ization, and stabilized methods”, SIAM Journal of Numerical
Analysis, 45 (2007) 539–557.

105. J.E. Akin, T. Tezduyar, M. Ungor, and S. Mittal, “Stabilization
parameters and Smagorinsky turbulence model”, Journal of Ap-
plied Mechanics, 70 (2003) 2–9, doi: 10.1115/1.1526569.

106. J.E. Akin and T.E. Tezduyar, “Calculation of the advective limit
of the SUPG stabilization parameter for linear and higher-order
elements”, Computer Methods in Applied Mechanics and Engi-
neering, 193 (2004) 1909–1922, doi: 10.1016/j.cma.2003.
12.050.

107. E. Onate, A. Valls, and J. Garcia, “FIC/FEM formulation with
matrix stabilizing terms for incompressible flows at low and high
Reynolds numbers”, Computational Mechanics, 38 (2006) 440–
455.

108. A. Corsini, F. Rispoli, A. Santoriello, and T.E. Tezdu-
yar, “Improved discontinuity-capturing finite element tech-
niques for reaction effects in turbulence computation”, Com-
putational Mechanics, 38 (2006) 356–364, doi: 10.1007/
s00466-006-0045-x.

109. F. Rispoli, A. Corsini, and T.E. Tezduyar, “Finite ele-
ment computation of turbulent flows with the discontinuity-
capturing directional dissipation (DCDD)”, Computers & Flu-
ids, 36 (2007) 121–126, doi: 10.1016/j.compfluid.2005.

http://dx.doi.org/10.1002/fld.2415
http://dx.doi.org/10.1007/s00466-011-0619-0
http://dx.doi.org/10.1007/s00466-011-0619-0
http://dx.doi.org/10.1007/BF00350249
http://dx.doi.org/10.1007/BF00350249
http://dx.doi.org/10.1016/S0045-7825(98)00299-0
http://dx.doi.org/10.1016/S0045-7825(98)00299-0
http://dx.doi.org/10.1016/S0045-7825(00)00388-1
http://dx.doi.org/10.1016/S0045-7825(00)00388-1
http://dx.doi.org/10.1007/s00466-011-0614-5
http://dx.doi.org/10.1007/s00466-011-0614-5
http://dx.doi.org/10.1142/S0218202512300025
http://dx.doi.org/10.1007/s00466-013-0888-x
http://dx.doi.org/10.1115/1.4005073
http://dx.doi.org/10.1007/s00466-012-0759-x
http://dx.doi.org/10.1007/s00466-012-0759-x
http://dx.doi.org/10.1007/s00466-012-0758-y
http://dx.doi.org/10.1007/s00466-012-0758-y
http://dx.doi.org/10.1016/j.compfluid.2012.11.008
http://dx.doi.org/10.1109/2.237441
http://dx.doi.org/10.1016/0045-7825(94)00077-8
http://dx.doi.org/10.1016/0045-7825(94)00077-8
http://dx.doi.org/10.1007/BF02897870
http://dx.doi.org/10.1007/BF02897870
http://dx.doi.org/10.1016/0045-7825(84)90157-9
http://dx.doi.org/10.1016/0045-7825(84)90157-9
http://dx.doi.org/10.1016/0045-7825(86)90003-4
http://dx.doi.org/10.1016/0045-7825(86)90003-4
http://dx.doi.org/10.1016/S0045-7825(00)00211-5
http://dx.doi.org/10.1016/S0045-7825(00)00211-5
http://dx.doi.org/10.1115/1.1526569
http://dx.doi.org/10.1016/j.cma.2003.12.050
http://dx.doi.org/10.1016/j.cma.2003.12.050
http://dx.doi.org/10.1007/s00466-006-0045-x
http://dx.doi.org/10.1007/s00466-006-0045-x
http://dx.doi.org/10.1016/j.compfluid.2005.07.004


40

07.004.
110. A. Corsini, C. Iossa, F. Rispoli, and T.E. Tezduyar, “A DRD

finite element formulation for computing turbulent reacting
flows in gas turbine combustors”, Computational Mechanics,
46 (2010) 159–167, doi: 10.1007/s00466-009-0441-0.

111. A. Corsini, F. Rispoli, and T.E. Tezduyar, “Stabilized finite el-
ement computation of NOx emission in aero-engine combus-
tors”, International Journal for Numerical Methods in Fluids,
65 (2011) 254–270, doi: 10.1002/fld.2451.

112. A. Corsini, F. Rispoli, and T.E. Tezduyar, “Computer modeling
of wave-energy air turbines with the SUPG/PSPG formulation
and discontinuity-capturing technique”, Journal of Applied Me-
chanics, 79 (2012) 010910, doi: 10.1115/1.4005060.

113. A. Corsini, F. Rispoli, A.G. Sheard, and T.E. Tezduyar, “Com-
putational analysis of noise reduction devices in axial fans with
stabilized finite element formulations”, Computational Mechan-
ics, 50 (2012) 695–705, doi: 10.1007/s00466-012-0789-4.

114. B.E. Launder and D.B. Spalding, “The numerical computation of
turbulent flows”, Computer Methods in Applied Mechanics and
Engineering, 3 (1974) 269–289.

115. D.C. Wilcox, Turbulence Modeling for CFD. DCW Industries,
La Canada, CA, 1998.

116. H.J.T. Kooijman, C. Lindenburg, D. Winkelaar, and E.L. van der
Hooft, “DOWEC 6 MW pre-design: Aero-elastic modelling of
the DOWEC 6 MW pre-design in PHATAS”, Technical Report
DOWEC-F1W2-HJK-01-046/9, 2003.

117. K. Takizawa, C. Moorman, S. Wright, T. Spielman, and T.E. Tez-
duyar, “Fluid–structure interaction modeling and performance
analysis of the Orion spacecraft parachutes”, International Jour-
nal for Numerical Methods in Fluids, 65 (2011) 271–285, doi:
10.1002/fld.2348.

118. K. Takizawa, C. Moorman, S. Wright, and T.E. Tezduyar, “Com-
puter modeling and analysis of the Orion spacecraft parachutes”,
in H.-J. Bungartz, M. Mehl, and M. Schafer, editors, Fluid–
Structure Interaction II – Modelling, Simulation, Optimization,
volume 73 of Lecture Notes in Computational Science and En-
gineering, Chapter 3, 53–81, Springer, 2010, ISBN 978-3-642-
14206-2.

119. K. Takizawa, S. Wright, C. Moorman, and T.E. Tezdu-
yar, “Fluid–structure interaction modeling of parachute clus-
ters”, International Journal for Numerical Methods in Fluids,
65 (2011) 286–307, doi: 10.1002/fld.2359.

120. D.A. Spera, “Introduction to modern wind turbines”, in
D.A. Spera, editor, Wind Turbine Technology: Fundamental Con-
cepts of Wind Turbine Engineering, 47–72, ASME Press, 1994.

121. Y. Saad and M. Schultz, “GMRES: A generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems”, SIAM
Journal of Scientific and Statistical Computing, 7 (1986) 856–
869.

122. G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs”, SIAM Journal of Sci-
entific Computing, 20 (1998) 359–392.

123. Y. Bazilevs, M.-C. Hsu, and M.A. Scott, “Isogeometric fluid–
structure interaction analysis with emphasis on non-matching
discretizations, and with application to wind turbines”, Com-
puter Methods in Applied Mechanics and Engineering, 249-
252 (2012) 28–41.

124. T.E. Tezduyar, S. Sathe, and K. Stein, “Solution techniques for
the fully-discretized equations in computation of fluid–structure
interactions with the space–time formulations”, Computer Meth-
ods in Applied Mechanics and Engineering, 195 (2006) 5743–
5753, doi: 10.1016/j.cma.2005.08.023.

125. T. Belytschko, W.K. Liu, and B. Moran, Nonlinear Finite Ele-
ments for Continua and Structures. Wiley, 2000.

126. M. Bischoff, W.A. Wall, K.-U. Bletzinger, and E. Ramm, “Mod-
els and finite elements for thin-walled structures”, in E. Stein,
R. de Borst, and T.J.R. Hughes, editors, Encyclopedia of Compu-
tational Mechanics, Vol. 2, Solids, Structures and Coupled Prob-
lems, Chapter 3, Wiley, 2004.

127. J.N. Reddy, Mechanics of Laminated Composite Plates and
Shells: Theory and Analysis, 2nd ed. CRC Press, Boca Raton,
FL, 2004.

128. K.-U. Bletzinger, S. Kimmich, and E. Ramm, “Efficient model-
ing in shape optimal design”, Computing Systems in Engineer-
ing, 2 (1991) 483–495.

129. D.J. Benson, Y. Bazilevs, M.-C. Hsu, and T.J.R. Hughes, “A large
deformation, rotation-free, isogeometric shell”, Computer Meth-
ods in Applied Mechanics and Engineering, 200 (2011) 1367–
1378.

130. T.J.R. Hughes, The finite element method: Linear static and dy-
namic finite element analysis. Prentice Hall, Englewood Cliffs,
NJ, 1987.

131. H. Melbø and T. Kvamsdal, “Goal oriented error estimators for
Stokes equations based on variationally consistent postprocess-
ing”, Computer Methods in Applied Mechanics and Engineering,
192 (2003) 613–633.

132. E.H. van Brummelen, V.V. Garg, S. Prudhomme, and
K.G. van der Zee, “Flux evaluation in primal and dual
boundary-coupled problems”, Journal of Applied Mechanics,
79 (2011) 010904.

133. J.R. Zayas and W.D. Johnson, “3X-100 blade field test”, Report
of the Sandia National Laboratories, Wind Energy Technology
Department, 2008.

134. J.H. Sutherland, P.L. Jones, and B.A. Neal, “The long-term
inflow and structural test program”, Proceedings of the 2001
ASME Wind Energy Symposium, p.162, 2001.

135. D. Berry and T. Ashwill, “Design of 9-meter carbon-fiberglass
prototype blades: CX-100 and TX-100”, Report of the Sandia
National Laboratories, 2007.

136. J.R. White, D.E. Adams, and M.A. Rumsey, “Modal analysis of
CX-100 rotor blade and Micon 65/13 wind turbine”, Structural
Dynamics and Renewable Energy, Volume 1, Conference Pro-
ceedings of the Society for Experimental Mechanics Series 10,
2011.

137. T. Marinone, B. LeBlanc, J. Harvie, C. Niezrecki, and
P. Avitabile, “Modal testing of a 9 m CX-100 turbine blade”, Top-
ics in Experimental Dynamics Substructuring and Wind Turbine
Dynamics, Volume 2, Conference Proceedings of the Society for
Experimental Mechanics Series 27, 2012.

138. R.T. Shield, “Inverse deformation results in finite elasticity”,
ZAMP, 18 (1967) 381–389.

139. S. Govindjee and P.A. Mihalic, “Computational methods for in-
verse finite elastostatics”, Computer Methods in Applied Me-
chanics and Engineering, 136 (1996) 47–57.

140. K. Takizawa, C. Moorman, S. Wright, J. Christopher, and
T.E. Tezduyar, “Wall shear stress calculations in space–time fi-
nite element computation of arterial fluid–structure interactions”,
Computational Mechanics, 46 (2010) 31–41, doi: 10.1007/
s00466-009-0425-0.

http://dx.doi.org/10.1016/j.compfluid.2005.07.004
http://dx.doi.org/10.1016/j.compfluid.2005.07.004
http://dx.doi.org/10.1007/s00466-009-0441-0
http://dx.doi.org/10.1002/fld.2451
http://dx.doi.org/10.1115/1.4005060
http://dx.doi.org/10.1007/s00466-012-0789-4
http://dx.doi.org/10.1002/fld.2348
http://dx.doi.org/10.1002/fld.2348
http://dx.doi.org/10.1002/fld.2359
http://dx.doi.org/10.1016/j.cma.2005.08.023
http://dx.doi.org/10.1007/s00466-009-0425-0
http://dx.doi.org/10.1007/s00466-009-0425-0

	Introduction
	ALE-VMS and ST-VMS Formulations of the Navier–Stokes Equations of Incompressible Flows
	Aerodynamic Simulations of a 5MW Wind-Turbine Rotor
	Sliding-Interface Formulation and Simulation of Rotor–Tower Interaction
	ST-VMS Computation of the Wind-Turbine Rotor and Tower Aerodynamics
	Governing Equations of Structural Mechanics: Isogeometric Kirchhoff–Love Composite Shell and the Bending-Strip Method
	FSI Coupling and Aerodynamics Mesh Update
	Simulation of the Micon 65/13M Wind Turbine with a CX-100 Blade
	Pre-Bending of the Wind-Turbine Blades
	Concluding Remarks

