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Molecular Dynamics Simulations of
Thermal Conductivity of Silicon Nanotubes
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We use nonequilibrium molecular dynamics simulations to calculate thermal conductivity of single-
walled silicon nanotubes (SWSNT). Using a Stillinger and Weber potential for interactions between
silicon, we first apply a heat bath—heat sink method on bulk silicon crystal and find that the result of
thermal conductivity at a temperature of 500 K that agrees with literature value. We then apply the
same method on SWSNT and find that thermal conductivities at temperatures of 400 and 600 K are
similar to the bulk case. The results indicate that the phonon transport properties of silicon are not

much affected by the nanotube structure.
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1. INTRODUCTION

Silicon and related semiconducting materials have been
widely used for the manufacturing of computer chips.
While advances in technology allow very small chips of
high computation power to be made, the efficiency of
removing energy from the high density semiconducting
materials becomes crucial to prevent overheating of the
materials.

To study the energy transport in a material, one can
measure the thermal conductivity, k, of the material by
Fourier’s law of heat flow, which is given by

J

S ()

where J, is the heat flux per unit area along the z direc-
tion and dT/dz is the temperature gradient in the same
direction.

A number of molecular dynamics simulations have been
carried out to study the thermal conductivities of various
materials like silicon carbide,' silicon crystal,>? silica,*
silicon nanowires,” carbon nanotubes,®® and model sys-
tems such as Lennard-Jones.®'?> Two methods are mainly
used to determine the thermal conductivity: the Green-
Kubo formula'? in equilibrium molecular dynamics (EMD)
and the non-equilibrium molecular dynamics (NEMD)
simulations with heat bath of different temperatures
applied onto the system."* Each method has its advantages
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and weakness. The Green-Kubo method calculates the
conductivity by means of the energy autocorrelation fu
tions. Since the autocorrelation function is obtained by Us(r):
energy fluctuation of the molecules, no external and
ficial forces are needed. However, a smooth autoco where A, |
tion function usually requires an extremely long compu tance betw
time. Moreover, the long-time region of the autocorres given by,
tion function is also difficult to obtain because its sa
values are interfered by the noise. The function is s Us(x
ally fitted with some exponential function in order 10
better results of thermal conductivity. Also, it is not &
to implement the Green-Kubo method in the calculas Rt
of thermal conductivity for a system with a quasi - etéd'
dimensional cylinder structure, like a carbon nanot iy. Whﬂll'l‘|
This is because there is a lot of empty space around
tube and the vibration frequency of atoms in radial = h(r...r
axial direction of the tube is not the same. Since the 5 |
der structure is not homogeneous in all three dimensie
it is not straightforward to apply the Green-Kubo meti
without major modification. wﬁherc_ A ar
The NEMD method is an experiment-like method. & Bsed in E
energy flux is generated by either imposing the heat
on selected slabs or by temperature rescaling. The met Table .
is feasible only when a lincar temperaturc gradient 1s g Symbol
erated. A large temperature gradient is usually needed
order 1o observe the gradient over the fluctuation of & ;
perature. This gradient is astronomical when applied i
a nanoscale system. Both EMD and NEMD methods € q
be affected by the material size. However, NEMD met a
normally requires a much larger system size than the E! A
b

method.? The values of thermal conductivity are redus
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when the size of simulated systems is comparable to the
mean free path of phonons.

Recently, single-walled silicon nanotubes have been
proposed by computer simulations.*™'7 Ap initio calcula-
tions of the silicon nanotubes show that they have zero
band gap and thus are metals rather than semiconducting
materials. Although the nanotubes have not been synthe-
sized in laboratories, theoretical studies of their thermal
conducting properties can lead to better understanding of
fundamental behavior of the silicon nanostructures. Also,
the studies can provide more information for the synthesis
as well as for potential application in future.

In this paper, we compare thermal conductivity of bulk
silicon in various temperatures and sizes using NEMD
simulations with previous literature results. Then, we
deploy the same technique to study the thermal conduc-
tivity of single-walled silicon nanotubes using equilibrium
configurations.

2. SIMULATION TECHNIQUES

Classical MD simulations were used in the study of ther-
mal conductivities of silicon materials. The silicon—silicon
interactions are described by the Siillinger and Weber
potential,’® with pair potential,

A(Br=? —r)exp[(r—a)™'], r<a
(=1 ! @

r=a

]

where A, B, p, a are positive parameters and r is the dis-

tance between two atoms. The three-body interactions are

given by,

Uy(r;, r.r) = h(rij‘ Faes 0j) + h(fjn Tiks ﬂijk)

Hh(r. s O) (3)

where 6, is the angle between r; and r; subtended at ver-

tex L, etc. The function & belongs to a two-parameter fam-

ily. When both r; and r;, are less than a, h has the form,

h(fq‘v Ties O) = ’\CXP[?’("” —a)'+ Y(ri *a)_]]

x(cos B, +1/3)* (4)

where A and y are constant. The value of the parameters
used in Egs. (2) to (4) are listed in Table 1. Both the

Table I.  Parameters in the Stllinger and Weber potential,
Symbol Reduced unit Real unit

A 7.049556277 1474.8 kImol ™!
B 0.6022245584 =i

r 4 =

q 0 =

a 1.80 0.37712 nm
A 21.0 4393.2 ki mol ™'
¥ 1.20 —
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reduced unit and the real unit (if any) of the parameters
arc listed and the absolute values for size and energy are:
o =2.0951 A
£ =209.2 kJ mol™!

2.1. Calculating Thermal Conductivities

We use NEMD simulations to calculate thermal conductiv-
ity in the way of imposing heat slabs of different tempera-
tures to the system. One of the common ways to calculate
thermal conductivity is by Jund’s method.* However, such
a method has been used on structures with periodic bound-
ary conditions only. As we are dealing with systems with
periodic boundary conditions as well as finite-size nano-
structures, we employed an alternate method originally
developed by Rapaport' with a modification in the way
the molecules are rescaled. There are two ways of doing
the simulation with the Rapaport’s method, depending
on the system. For a finite system, we apply heat bath on
the walls at both ends of one dimension of the simulation
box. In the Rapaport’s method, when a particle reaches the
wall, it is reflected and its velocity is rescaled to the tem-
perature of the heat wall.' This method generates a two-
dimensional environment in the simulation box (Fig. 1a).
The thermal conductivity Eq. (1) is rewritten as,

e AEheal s AEr;old (5)
2tA AT [0z

where AE,., and AE,,, are the changes of kinetic energy
of atoms after their velocities are rescaled, 7 is the time
step interval and A is area of cross scction. In our simula-
tion of a nanotube, the velocitics of atoms located within a
fixed distance from one end are rescaled while they are not
subject to the imaginary wall on both ends. In this way,
the nanotube length will be more flexible and its length
can be changed.

For a system with three-dimensional periodic bound-
ary conditions, the heat slabs of a certain thickness are
located at a distance of L/4 from each side of the sim-
ulation box (Fig. 1b).2" When molecules enter the slabs,
their velocities are rescaled according to the temperature
of the slabs. In this case, periodic boundary conditions are
applied on all three dimensions and symmetry of the sys-
tem is retained. The equation of thermal conductivity in
this case is wrilten as,

= AEheal i AEm:lhd (6)
4tA 3T )9z

where AE,., and AE,, are the changes of kinetic energy
of atoms after their velocities are rescaled with the heat
slabs. Note that the right hand of equation is divided by
a factor of 4 instead of 2 in Eq. (5) because the heat flux
goes to two directions (one via the periodic boundary)
from the hot plate to the cold plate.

In the simulations, the heat exchange between molecules
and the heat slabs are done by assigning new velocities
to the molecules involved. Using Boltzmann distribution
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L

heat slab

cold slab

Fig. 1. Ilustration of heat-bath and heat-sink method to calculate ther-
mal conductivity for: (a) Low-dimension system in nanotube and (b) 3D
system in bulk silicon phase. Note in case (), the ‘wall’ is not fixed in
dimension.

periodic boundary condition
molecule having velocity rescaled

function of kinetic energy,

1 N

b4
= E mu, =
2:’=I

where m, and v, are the mass and velocity of particle i, N
the number of molecules in the system, k the Boltzmann
constant, and T the temperature. The assigned constant
velocity, v, of molecules is,

3
“NkyT 7
e ™

T
m

where T, is the temperature of the heat plate. The change
of heat flux can be found by calculating the difference
of kinetic energy before and after velocity rescaling.
Moreland and co-workers suggested using Berendsen and
Andersen thermostats for velocity rescaling so that a
weak relaxation time can be chosen and interference
of the phonon behavior by the abrupt rescaling of veloc-
itics can be minimized.® We did not use Berendsen or
Andersen thermostat in our simulation. Instead, we rescale
the velocities of molecules every certain time interval.

(8)

v=
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We carried out simulations on bulk silicon crystal at a tem-
perature of 500 K and applied the temperature rescaling
in different time intervals from 0.5 fs to 400 fs, We found
that the thermal conductivity results are independent of the
rescaling time intervals if they are between 25 and 400 fs.
In the simulations, we applied the velocity rescaling eves
100 fs for all models and conditions.

3. RESULTS AND DISCUSSION

Tang ¢

en

Temperature (K)
o

3.1. Bulk Crystalline Silicon a4
The simulation of bulk silicon requires setup of a diamos
structure crystal lattice. We constructed several structures
with a uniform cross sectional dimension of 4 x4 c& 4
units. The z-dimension, in which the length between ihe
heat source and heat sink is measured, varies from 12
200 units. The values of the setup are shown in Table £ Fig. 2.
A special cell with a dimension of 20 x 20 x 20 and co
tains 64,000 atoms is constructed to compare with & Howew
EMD result done by Voltz et al.> Periodic boundary conds another
tions were applied on all three dimensions and the lame Systexnl
constant is 5.43 A. The simulations were run at a lempess of diffe
ture of 500 K. Nose-Hoover thermostat is used with a ity. The
order Gear’s predictor and corrector algorithm to maini Whmh .
the system at constant temperature at the beginning. time ste
NVT simulation lasts for at least 0.1 ns to assure we - apj
bration. Then the system was run in NVE ensemble for tain nm
additional short run (0.1 ns) before the temperature ress ﬁ"'x" As
ing and measurement of temperature gradient ook ph entails
The heat slab method (Fig. 1b) was used to find the 8 culated
mal conductivity. function
Figure 2 shows a temperature profile of bulk si the Jund
simulated at a temperature of 500 K. The temperature 2 calcula
dient was measured from the linear response region of -
temperature profile. Thermal conductivity was calcuk the pres
using Eq. (6). For the 4 x 4 x 96 system, the value of wardly ¢
mal conductivity, after running 2 ns, is 66.7 = 10 W (see the
while for the smallest (4 x 4 x 12) and largest system & -
4 % 200) considered, 5 ns and 1 ns were used to com
the thermal conductivity. The percentage error is a 8o
same as previous literature of NEMD results.’
Figure 3 shows the result of thermal conductivity for
ferent cell dimensions. The value of thermal conducts R &
of bulk silicon at 500 K becomes leveled when the %
of simulation cell is 50 nm or more. Our NEMD res 3
bulk silicon are consistent with previous ones ob w or
from a large-scale EMD simulation.” These results are
in reasonable agrcement with the experimental 5
Table IL.  Setup of bulk silicon crystals. !
Cell unit z dimension length (nm) No. of aloms .
4x4x12 6.516 1.536 0
4x4x%96 52.13 12,288
4 x4 %200 108.6 25,600
20 % 20 x 20 10.86 64,000 Fig. 3. The
source of re
J. Comput. Theor. Nanosci. 3, 824-828, J. Compui
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Fig. 2. Temperature profile along the cross section of silicon crystal.

However, our results are appreciably larger compared with
another NEMD results® with the same given length of the
system. This large discrepancy is likely due to the use
of different methodology in calculating thermal conductiv-
ity. The previous NEMD study® adopted Jund’s method?
which applies a fix amount of heat to the system in every
time step and then calculates temperature gradient, while
we applied the heat by rescaling the temperature at cer-
tain time intervals and then calculated the change of heat
flux. As pointed out by Schelling et al.? that Jund’s method
entails severe finite-size effects. In other words, the cal-
culated thermal conductivity converges very slowly as a
function of system size. The severe finite-size effects with
the Jund’s method may explain the large discrepancy in the
calculated thermal conductivity when compared with the
present one as the same given system size. Note also that
the present NEMD method can be extended straightfor-
wardly to finite-size systems, e.g., a finite-length nanotube
(see the section below).

T T T T T T
80 I~ experiment?’ T 1
A
sl i
E O
E il //,/'/' 4
z 0
o
. i —Hl— 4x4
20 + o] —O— NEMD literature®
—A— 20%x20x20
A A EMD literature?
0 1 1 - . : ! :

0 20 40 60 80 100 120 140 160
Length (nm)

Fig. 3. Thermal conductivity of bulk silicon at 500 K. Refer to the
source of references for the numbers in superscript.
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Finally, we find that thermal conductivity for the system
with a dimension of 20 x 20 x 20 is about 10% the value
calculated by EMD simulation.”> We thus conclude that
while calculation of thermal conductivity by Green-Kubo's
method depends on the size in all dimensions, the calcula-
tion by the present NEMD method depends on the length
of the side where temperature gradient is measured.

3.2. Silicon Nanotubes

The simulations of silicon nanotubes were technically
more difficult to do because the long nanotube structure of
silicon is less stable than other phases and the actual model
has not yet been discovered in real experiment. We per-
formed calculation on the pentagon cross section model,
which is found to be the most stable structure among the
single-walled silicon nanotubes in a previous study.”

The initial configuration of silicon nanotube was gener-
ated by repeating the unit cell structure in the axial direc-
tion. The length of the nanotube varies from 47.5 nm to
477 nm. For a silicon nanotube with a length of 47.5 nm,
it consists of 200 layers of silicon atoms arranged in a
pentagon cross-section.

The silicon nanotube was brought to equilibrium by
running MD simulations in NVT ensemble for 1 ns. Nose-
Hoover thermostat was used to maintain a constant tem-
perature. After that, the system was run in NVE for further
1 ns. Then a heat bath was introduced in one end of the
tube and a heat sink the other end. Temperature gradient
along the tube and change of heat flux were measured.
Thermal conductivity along the axial direction of the tube
was calculated using Eq. (5). Finite sizes of tubes are used
and no periodic boundary conditions were applied. It
allows the tubes to relax and dissipate heat resulted from
torsional motion.

The cross-sectional area is a pentagon ring and its def-
inition is illustrated in Figure 4. The definition is similar
to how the cross-section area is defined in a single-walled
carbon nanotube.® The thickness of the pentagon ring is
equal to the bond length between two silicon atoms and is

Fig. 4. Definition of cross-section area of a silicon nanotube. The value
of r sin(7/10) is equivalent to half the length of Si-Si bond forming
the pentagon. The shaded area is the cross section area in calculating
thermal flux.
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Table III.  Simulation details and results of thermal conductivity of sil-
icon nanotubes at 400 and 600 K. Data shown in the table are: Tem-
perature, T: Cross-sectional area. A: Length of nanotubes, I; Number of
atoms, N; Simulation time, r; and thermal conductivity, x.

T (K) A (nm?) { (nm) N t (ns) K (W/mK)
400 0.2398 475 1000 10 28.7+6.0
190.6 4000 10 264+8.6

476.7 10000 10 66.5+23

600 0.2412 415 1000 10 25.1+7.2
95.2 2000 19 244+5.1

190.6 4000 10 251482

476.7 10000 10 40.9+33

approximately the van der Waals thickness of silicon. The
tube radius, r, defined in the figure depends on the bond
length between two silicon atoms located on the same
pentagonal plane and it increases slightly with increasing
temperature.

Thermal conductivity of silicon nanotube at tempera-
tures of 400 and 600 K were shown in Table III. The
results were obtained from at least 10 ns of simulation.
Thermal conductivity increases with the length of the tube.
Conductivity decreases with temperature, which has the
same behavior as in the bulk phase, and the values are sim-
ilar to the bulk phase result. The result suggests that the
phonon behavior of silicon atoms in a nanotube structure 1s
similar to those in a bulk phase. The thermal conductivity
darta for the long tubes have a larger error. We anticipate
that much longer simulation time than 10 ns is required
for a long silicon nanotube due to the greater chance for a
twisting phenomenon as a result of torsional force, which
may contribute to the error in the measurement of temper-
ature along the tube.

Temperature profile along a silicon nanotube was shown
in Figure 5. Temperature increases generally along the
nanotube when the heat bath is applied. Figure 6 shows
thermal conductivity of silicon nanotube of different
lengths and at temperatures of 400 and 600 K. The result

410

405

400 —

Temperature (K)

395

-50 0 50 100
Length of tube (nm)

-100

Fig. 5. Temperature profile along a silicon nanotube at equilibrium tem-
perature of 400 K.

828

Tang et al. Tang
70 —— . , ' 4. (
O A |
We «
T i cond
walle
o sof _ condi
£ reaso
"g‘ cond
% d0r 1 400 |
phase
vibral
Ry 22 s i ture. |
b—p—F8 tion
20 i S S L and w
0 10 20 30 40 50 il
Length (nm)
. ‘ Ackn
Flg. 6. Tube length dependent of thermal co_nducuvny of smgle:walled Dr. K
silicon nanotube at temperatures of: 400 K (circle) and 600 K (triangle).
The value for bulk silicon at 500 K (solid triangle) is also shown. :;15}5’0
of bulk silicon at a temperature of 500 K is also shown in Guggt
a solid triangle symbol. The values of thermal conductiv- tives (
ity of silicon nanotube by molecular simulation are found and Ry
to be similar to those in corresponding bulk phase. This
suggests that silicon atoms in the silicon nanotube have Refel
similar phonon type heat transfer ability as when they are
arranged in crystalline structure. It looks as if the tube ; ;t
structure does not have special effect on the thermal trans- 3P ¥
port. However, if the comparison is based on the same 144
density assumption by bundling several silicon nanotubes.
so that they have a same density as in bulk silicon,
thermal conductivity could be very different. A prelimi-
nary simulation shows that silicon nanotube bundle show
a lower thermal conductivity than bulk silicon.
Since only classical simulations were carried out
this study, it is not surprising that the results of therm
conductivity cannot reveal the metallic properties of si
con nanotube and the contribution of thermal transport &
other media such as electrons. In order o calculate
amount of contribution by electrons to thermal condue
tivity, we need to perform a quantum or quasi-quanty
mechanies calculation which considers the distribution
clectrons. A tight-binding® or Car Parrinello™ molecula
dynamics simulation may do the trick, although the
racy of results are not ensured when a long time intel
simulation is performed.
The cross sectional area may also contribute to the
ilarity between values of thermal conductivity of silics
nanotube and silicon crystals. The definition of cross se
tional area is an estimate of the Lennard-Jones boundary
the atoms. Each atom in a silicon nanotube carries a by
ger cross sectional area and this makes energy flux
the tube lower. Also, a pentagon structure has a los
molecule density and a larger surface area than a b
crystalline structure. This may result in a heat loss duri
the measurement of heat flux and a decrease in the
of thermal conductivity.
J. Comput. Theor. Nanosci. 3, 824-829, J. Compt
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4. CONCLUSION

We carried out NEMD simulations to calculate thermal
conductivity for both bulk silicon crystals and single-
walled silicon nanotubes using the Fourier’s law. Thermal
conductivity of bulk silicon at a temperature of 500 K is in
reasonable agreement with experimental values. Thermal
conductivity of silicon nanotubes at temperatures between
400 K and 600 K show little discrepancies from the bulk
phase at similar temperature. It suggests that the phonon
vibrations in silicon are not much affected by atomic struc-
ture. Other forms of thermal conduction, such as conduc-
tion by electron, cannot be shown by classical simulation
and we must resort 1o computer simulations with quantum
mechanical factors.
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