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ABSTRACT

Solving transient energy transport is crucial for accurately predicting the behavior of materials and devices during thermal cycling, pulsed
heating, and transient operational states where heat generation and dissipation rates vary over time. Traditional methods, like the finite dif-
ference and element methods, discretize space and time and update temperature values at each grid point iteratively over time steps. Its
straightforward implementation makes it popular for solving heat transfer problems. However, when high temporal and spatial resolutions
or prolonged heating durations are required, the computational demand rises significantly, leading to significantly greater resource con-
sumption. To address this, in this work we develop a new method termed Complex-modeling with Fourier Transform (CFT) that enables
rapid and efficient simulations of transient energy transport problems. The CFT method decomposes the periodical heating problem into a
complex-temperature energy transport problem with a single harmonic heat source. 1D and 3D transient heat conduction problems (conju-
gated with hot carrier transfer) are solved using the CFT method to demonstrate its effectiveness. The CFT method produces similar or
higher accuracy results compared with the finite difference method, while the computational speed is increased by more than two orders of
magnitude. We also developed a new method termed Complex-modeling with Fourier and Heaviside Transforms (CFHT) that can solve
any transient energy transport problems with orders of magnitude speed increase. The CFT and CFHT methods developed in this work are
applicable to linear problems that could involve mechanical, thermal, optical, and electrical responses.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0275419

I. INTRODUCTION

Transient energy transport phenomena are prevalent in
numerous engineering problems, e.g., transient response of com-
puter chips during the start-up stage or under sudden load change,
and rechargeable batteries during charge and discharge states. One
critical category of transient energy transport is a system’s response
under periodical thermal loading (e.g., laser heating or Joule
heating). Such periodical heating is commonly used in thermo-
physical properties characterization. One good example is the pho-
tothermal (PT) technique that involves heating the sample surface
with a periodically amplitude-modulated laser beam and probing
the periodical surface response via measuring surface laser

reflection, thermal radiation, or acoustic response of the adjacent
air.1–3 If the laser beam size is much larger than the thermal diffu-
sion length during one heating period, the heat transfer problem
can be treated as one-dimensional and an analytical solution has
been developed for the sample’s thermal response with consider-
ation of the laser volumetric absorption and interfacial thermal
resistance (R00

tc).
3–5 However, if the heat transfer diffusion length is

much longer than the laser beam size, 3D heat transfer has to be
considered. Analytical solution development for such scenarios
becomes much more challenging and difficult. Solutions can be
developed using Green’s function method6 with neglected physics
(e.g., interfacial thermal resistance and anisotropic thermal
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conductivity of materials). Still, the integral of the Green’s function
to obtain the temperature field is very time consuming.

For more complicated cases that involve periodical heating of
a heterogenous system, numerical modeling has to be used to solve
for the sample’s thermal response. For instance, in the frequency-
domain energy transport-state resolved Raman (FET-Raman) tech-
nique, a nm-thick 2D material is supported on a substrate. A
square-wave modulated laser beam is used to heat the sample, and
the Raman signal is collected at the same time.7,8 For this type of
situation, 3D numerical modeling has to be used to fully consider
the very fine thickness of the 2D material and the large size of the
substrate. Even using spatially varying meshes, the computation
itself is still very expensive since the modeling has to be conducted
for a long time until the sample’s surface reaches a quasi-steady
state when the temperature field changes with time periodically and
no further temperature accumulation is observed. Using a modern
lab PC, such computation usually takes about 10 h or more,
depending on the complexity of the problem itself.9 Also, this mod-
eling needs to be high-precision since it is used to fit the experi-
mental data to determine properties like thermal conductivity (κ),
R00
tc, and hot carrier diffusivity (D). This is especially time consum-

ing when scanning a 3D space of κ, R00
tc, and D to identify the right

combination if the three properties are determined simultaneously.
For instance, 10 values of each property will generate a scanning of
1000 property combinations for data fitting while keeping high
accuracy of modeling. This has implemented significant hurdles in
measuring the thermophysical properties of 2D materials.

In this work, first we present a novel 3D numerical modeling
method, termed Complex-modeling with Fourier Transform (CFT)
to tackle the above problem. The CFT method decomposes the
periodical heating problem into distinct problems with single-
frequency harmonic heating, solves them in the complex domain,
and reconstructs the solution in the physics field. Then, examples
of heat transfer in a supported nm-thick bundle of single-walled
carbon nanotubes (SWCNTs) and supported 2D materials are used
to demonstrate the effectiveness and accuracy of the new method.
Finally, a general and universal Complex-modeling with Fourier
and Heaviside Transform (CFHT) is presented for transient
thermal transport problems of arbitrary heating that still features
the same modeling effectiveness and accuracy.

II. THE CFT METHOD: PHYSICS AND PRINCIPLES

The CFT method developed in this work is applicable to all
linear heat transfer problems. Here, we take a general heat conduc-
tion problem with a periodical heating source described by the
below equation

ρcp
@T
@t

¼ ∇(κi∇T)þ g(~r) � _q(t), (1)

where ρ is density, cp specific heat, k thermal conductivity, T tem-
perature, and g(~r) � _q the heat source term. Here, g(~r) describes the
heat source distribution in space and _q(t) describes the temporal
variation of the heat source and is independent of location. Note to
make the equation linear, all the thermophysical properties are
assumed temperature independent. This is physically reasonable for

moderate temperature rise problems. Here, _q periodically varies
with time with a frequency f and is the same in the heating region,
but takes an arbitrary form. Here, we are interested in the tempera-
ture field when the system reaches the quasi-steady state: the tem-
perature varies with time periodically and no further temperature
accumulation occurs. For such a scenario, the temperature consists
of two components as T ¼ Ts þ Tt , where Ts is the steady-state
component which could have a distribution in space, but not
change with time, and Tt is the part varying with time periodically.

Traditional numerical modeling of this problem using the
finite difference or element method simulates the problem from
the initial condition step by step and continues until it reaches the
quasi-steady state. This usually needs to simulate a significantly
long time of heat transfer in the order of L2/α, where L is the
domain characteristic size, and α is the domain’s thermal diffusiv-
ity. Here, we decompose the problem to ones with single harmonic
periodical heating that can be solved in the complex space just one
time, and then the solution of the original problem can be con-
structed based on the solutions of these single harmonic periodical
heating problems. We term this method as Complex-modeling
with Fourier Transform (CFT), and it can be applied to all finite
numerical modeling methods. At present, the description and
examples are restricted to the situation that _q follows the same
form of variation with time in the heating region. Generalization of
this method will be discussed later.

The term _q(t) can be expressed using the Fourier transform as

_q ¼ a0 þ
X1
n¼1

[ancos(ωnt)þ bnsin(ωnt)], (2)

where ωn ¼ n2πf . Since the problem described by Eq. (1) is a
linear problem because the thermophysical properties are taken as
temperature independent, the temperature field induced by _q can
be expressed as a sum of the temperature rises caused by heating
sources of a0, ancos(ωnt), and bnsin(ωnt) as

Tt(~r, t) ¼ T0 þ
X1
n¼1

[Tn,a þ Tn,b]: (3)

The temperature rise (T0) caused by a0 represents a steady
problem and can be readily solved. To find the temperature rises Tn,a

and Tn,b, respectively, caused by ancos(ωnt) and bnsin(ωnt), we con-
sider a case of the problem under single-frequency harmonic periodi-
cal heating with the same spatial heat source distribution g(~r). The
governing equation is expressed in the complex domain as

ρcp
@Tn

@t
¼ ∇(κi∇Tn)þ g(~r)eiωnt : (4)

For this problem, the temperature can be expressed as
Tn ¼ θneiωnt . The situation of n = 0 is for the case of steady-state
temperature, and the solution θ0 will be Ts mentioned above. With
this form of Tn, the heat transfer governing equation is simplified as

ρcpiωnθn ¼ ∇(κi∇θn)þ g(~r): (5)
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This represents a 3D steady-state problem that can be solved
numerically using the finite difference or element method. Note this
problem needs to be solved in the complex space, meaning θn will be
a complex number. After θn is solved, it is readily realized that the
temperature field caused by ancos(ωnt) is Tn,a ¼ anRe[θn(~r)eiωnt],
the temperature field caused by Tn,b ¼ bnsin(ωnt) is bnIm[θn(~r)eiωnt],
and the temperature field caused by a0 is T0 ¼ a0θ0(~r). Finally, the
solution to the problem described by Eq. (1) can be reconstructed as

T(~r, t) ¼ a0θ0(~r)

þ
X1
n¼1

�
anRe

h
θn(~r)e

iωnt
i
þ bnIm

h
θn(~r)e

iωnt
i�

: (6)

Note for the Fourier transform of Eq. (2), the needed terms to
capture the _q variation with time depend on the complexity of its
form. However, as we will show later, generally speaking, 40 terms
will be sufficient with the help of Heaviside Transform. Since a
heat transfer problem can involve very different boundary condi-
tions, these should be carefully considered and implemented when
solving Eqs. (4) and (5). Here, we provide some discussions to illus-
trate, which should not be treated exclusive. For a constant temper-
ature boundary condition of Eq. (1), this should be implemented
in the case of n = 0 for Eq. (4), while for n � 1 the boundary
condition should be zero temperature rise. Adiabatic boundary
conditions of Eq. (1) should be applied to all situations of Eq. (4).

III. HEAT TRANSFER IN A SUPPORTED NM-THICK
SWCNT BUNDLE

The heat dissipation in microelectronics is often hindered by a
special type of resistance known as interfacial thermal resistance
(or thermal boundary resistance). Thermal interface materials
(TIMs) like carbon nanotubes (CNTs) are often used to enhance
heat dissipation due to their exceptional thermophysical and
mechanical properties.10 Therefore, studying the heat transfer when
CNTs are in contact with different substrates is essential for opti-
mizing future electronic performance and better understanding the
fundamental physics. Extensive research has focused on experimen-
tally investigating the thermal properties of CNTs and other
carbon-based materials.11 In any typical measurement, the goal is
to experimentally establish a relationship between various heat cur-
rents (electrical, optical, etc.) and the sample’s thermal response to
infer thermophysical properties. This is usually done by solving the
heat transfer equation numerically as analytical solutions are often
unavailable. The properties of interest can then be extracted from
the solution of the heat transfer equation by mapping out the
experimental findings. Therefore, developing ultrafast and accurate
numerical methods for transient energy transport is very critical.

Traditional methods, like the finite difference (FD) method
discretize space and time, updating temperature values at each grid
point iteratively over time steps. Its straightforward implementation
makes it popular for solving heat transfer problems. However,
when a fine temporal resolution or a long heating time is required,
the computational demand rises significantly, leading to a higher
resource usage. In this section, we resolve this issue using the CFT

method detailed above to demonstrate its great accuracy and
effectiveness.

In the following analysis, we use the FD and CFT methods to
simulate the energy transport in supported samples under periodic
laser heating and compare their results. This is a common problem
that mimics the heat transfer in nano-resolved Raman thermome-
try like the frequency-domain energy transport state-resolved
Raman (FET-Raman).8 The FET-Raman is commonly used to
measure thermal conductivity and interfacial thermal conductance
with high accuracy. Figure 1 illustrates a schematic of the heat
transfer problem under consideration in FET-Raman to measure a
supported SWCNT bundle. An amplitude-modulated laser beam
irradiates the SWCNT bundle to induce heating. At the same time,
this laser also excites Raman signals, which are collected and used
to probe the sample’s temperature response.

The one-dimensional heat transfer model for the problem
illustrated in Fig. 1 can be expressed as12–14

κ
@2T
@x2

� T � Ts

R0 � Ac
þ _q ¼ ρc

@T
@t

: (7)

Here, R0 is the interfacial thermal resistance (per unit length)
between the sample and substrate sustained by interfacial
phonons,15 Ts is the temperature of the substrate surface, and Ac is
the solid cross-sectional area of the bundle. The volumetric heat
source term ( _q) that mimics the laser heating is represented by a
Gaussian profile and defined as

_q(x, t) ¼ _q0exp �(x � x0)
2/r20

� � �Ψ, (8)

where _q0 is the peak heat source at the center of the laser
beam (x = 0), r0 is the radius of the laser beam which depends
on the objective lens used, x0 is the location of the laser
beam center, and Ψ(t) is the temporal modulation of the laser
beam to produce a square-wave function. The square wave with a
50% duty cycle can be expressed using a Fourier series as

Ψ(t) ¼ 0:5þ 4/π � P1
n¼1

sin[(2n� 1)ωt/(2n� 1)]. The series can be

truncated earlier to ensure computational efficiency while main-
taining high accuracy, as shown in Fig. 2(a).

For the SWCNT bundle studied here, since its length (10 μm)
is much longer than the laser heating area and thermal diffusion
length, its ends are assumed to maintain their initial temperature,
unaffected by the laser heating. In the following analysis, 40
Fourier terms are used by default in the CFT method, unless speci-
fied otherwise. In the FD method, the time step is set to 1 ps. For
both methods, the 10 μm spatial domain is divided into uniform
3000 grids. The laser spot radius (r0) is set to 0.8 μm, unless speci-
fied otherwise, and the simulations are carried out per 1 mW effec-
tive absorbed laser energy. The thermal conductivity of SWCNT is
highly dependent on the defect level within the sample and ranges
from 10s to 100s Wm−1 K−1 at room temperature as revealed by
various experimental and computational methods reported in
literatures.16–18 In our simulations, we pick an intermediate value
of 330Wm−1 K−1. The room-temperature interfacial thermal resis-
tance, on the other hand, has been measured to be from 100s to
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FIG. 1. Schematic of a supported SWCNT bundle under periodic laser heating. Heat is conducted along the SWCNT bundle through in-plane phonons and into the
substrate through interfacial phonons. The inset shows the spatial variation of laser intensity under a 50× objective.

FIG. 2. (a) Reconstruction of the square-wave laser using different numbers of Fourier terms. (b) The Raman intensity-weighted average temperature rise as a function of
the number of Fourier terms for different laser frequencies under 50× objective.
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1000 KmW−1.12,14,19 We emphasize that the specific choice of
input parameters will have no impact on the conclusions drawn
from this work, providing that the two simulation methods are
carried out under the same set of parameters. The input parameters
used in the following case study are summarized in Table I.

Figure 2(a) shows the reconstruction of the square wave laser
beam based on a different number of terms in Fourier transform. It
is evident that the least number of Fourier terms needed to effec-
tively reconstruct the square laser pulse is about 40. The oscillations
at the beginning and end of the duty will have a negligible effect on
the temperature field since the oscillations have a small amplitude,
existing for a very short time compared with the laser-on time, and
the oscillation itself has near-zero accumulation. Figure 2(b) shows
the impact of the number of Fourier terms on the Raman intensity-
weighted average temperature rise (ΔTavg) under the laser spot for
different laser modulation frequencies. The temperature rise is
weighted over the laser spot area as ΔTavg ¼

Ð x0
0 IΔT � dx/Ð x00 Idx,

where I is the intensity of the laser that varies spatially, as shown in
Fig. 1, and takes the form I ¼ I0exp[�(x � x0)

2/r20]. This averaging
is essential when interpreting the results of nano-resolved Raman
thermometry experiments like the FET-Raman simulated here. The
results in Fig. 2(b) firmly confirm that 40 terms are sufficient for
ΔTavg to converge to a quasi-steady-state value.

We find that the higher the modulation frequency, the lower
the quasi-steady-state temperature rise and the lower the number
of Fourier terms needed for the response to converge, as clearly
seen in Fig. 2(b). The observations can be explained by the fact that
under extremely high-frequency modulation, the temperature rise
during the excitation period and the temperature drop during the
thermal relaxation period are minimal and nearly negligible.
Consequently, the sample maintains an almost constant quasi-
steady-state temperature throughout the process. In the limit of
infinitely high frequency, this quasi-steady-state temperature equals
half of that under steady-state heating since the sample is subjected
to half of the continuous wave (CW) laser incident energy. This
result has been detailed in a former study.21 Therefore, at high fre-
quencies, the rise in temperature can be effectively captured by the

DC component (a0) to a large extent. Hence, a smaller number of
Fourier terms is enough. As the frequency gets lower, the
quasi-steady-state temperature starts to increase. For a sufficiently
low frequency, it eventually approaches the steady-state temperature
under a CW laser heating, which requires more Fourier terms to
capture the response. Nevertheless, even for the lower frequency
end (100 kHz) shown in Fig. 2(b), the temperature seems to have
very little more room to increase before convergence, and the dif-
ference between the temperature using 40 terms and the
quasi-steady-state temperature is less than 0.3%. This further con-
firms that using 40 terms in the Fourier transform suffices to
obtain reliable and accurate results. It is worth noting that the clas-
sification of frequencies as high or low is strongly influenced by the
thermophysical properties and the size of the sample under
consideration.

The temperature field in the entire SWCNT bundle is plotted
in Figs. 3(a) and 3(b). We find nearly identical results by the two
methods, despite the tremendous reduction in the computational
head by the CFT method. The largest temperature rise (157 K) is at
the center of the Gaussian beam where the intensity is maximum.
We further extract the temperature evolution at three different loca-
tions within the bundle marked in dashed/solid lines in Figs. 3(a)
and 3(b). The results as shown in Fig. 3(c) are very consistent
where both methods yield almost identical temperature rises. To
quantify the discrepancies between them, the relative difference
defined as (ΔTFD � ΔTCFT)/ΔTCFT is plotted in Fig. 3(d). The
results show a difference of less than 3% between the two
methods. The maximum difference is observed at the very begin-
ning of the heating cycle, which is attributed to the oscillation of
the reconstructed square-wave laser pulse at the beginning
[Fig. 2(a)]. However, this has a negligible effect on the tempera-
ture evolution of further time and quickly dies out and converges
to a value of less than 0.1%. The relative difference is observed to
be smaller for locations closer to the laser heating source. Hence,
for applications where the average temperature rise is desired,
such as the Raman-probed temperature rise under the laser spot,
the difference is further diminished as shown in Fig. 4(b) since
the differences are averaged out spatially over the heating region
and heating time.

The laser heating size is a crucial parameter that is often
used to construct different energy transport states and provides
the capability to conduct simultaneous measurement of different
physical properties such as thermal conductivity, interfacial
thermal conductance, and more.12 To study the heating size’s
impact on the thermal transport problem using the two
methods, the simulation is carried out for three different objec-
tive lens that are commonly used in nano-resolved Raman mea-
surements: 20×, 50×, and 100×, which correspond to a laser spot
radius (r0) of 1.8, 0.8, and 0.4 μm, respectively. The results for
the Raman intensity-weighted average temperature rise as a
function of the pulse period are shown in Fig. 4(a), where the
output is nearly identical. The temperature rise under the 100×
is shown to be the largest since the laser energy is confined to a
smaller area. As discussed earlier, lower frequencies which corre-
spond to longer pulse periods (1/f ) yield higher average temper-
ature rise as longer periods allow more thermal accumulation
and temperature build-up. The relative difference between the

TABLE I. Input parameters for the case study.

Parameter Value Units

Length of the SWCNT bundle 10 μm
Diameter of the SWCNT bundle 28.2 nm
Solid cross-sectional area of the
SWCNT bundle 624.6 nm2

Thermal conductivity16–18 330 Wm−1 K−1

Interfacial thermal resistance13 500 KmW−1

Volumetric heat capacity16,20 1.36 × 106 J m−3 K−1

Laser spot radius 0.4–1.8 μm
Frequency of the square-wave
modulated laser 0.1–10 MHz
Number of frequency components in
Fourier transform 40 …
Spatial grid size 3.33 nm
Time step in the FD method 1 ps
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FIG. 3. The temperature contour in the spatial and temporal domains using (a) the finite difference method and (b) the Complex-modeling with Fourier Transform (CFT)
method. The y coordinate is for the distance from the laser beam center. The horizontal dashed/solid lines correspond to the specific locations inspected for the tempera-
ture evolution. (c) Comparison of the temperature evolution using the two methods at different locations. (d) The relative difference between the two methods as a function
of time at different locations. The frequency of the laser modulation is set to 1 MHz.
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two methods is shown to be less than 0.2% for the studied range
of laser pulse periods, as illustrated in Fig. 4(b).

In the previous case study, both the FD and CFT methods
aim to predict temperature distribution and evolution in a sup-
ported SWCNT bundle subjected to localized periodic laser
heating. While both use similar spatial discretization, their compu-
tational costs scale differently based on temporal and frequency
considerations. The computational cost of the FD method primar-
ily depends on the total time required for the temperature to con-
verge to a quasi-steady-state value which itself depends on the
temporal resolution. Smaller pulse widths often demand finer reso-
lutions and require simulating multiple heating cycles for tempera-
ture convergence. To give a quantitative example, if the total time
needed for convergence is 1 μs with a 0.1 ns time step, the heat con-
duction equation must be solved 10 000 times in the FD method.
In contrast, the CFT method’s cost scales with the number of fre-
quency components used in the Fourier transform. As shown in
Fig. 2, only 40 Fourier terms are sufficient for the temperature to
converge to a quasi-steady-state value, meaning that the heat con-
duction equation is solved only 40 times. Therefore, the CFT
method is more than two orders of magnitude faster than the FD
method under these conditions. This reduction in computational
head can far exceed this as shown in Sec. IV. While the FD method
provides real temperature values directly as a function of space and
time, the CFT method produces complex values as a function of
space and frequency, requiring an additional transformation to the
time domain. Nevertheless, the CFT method’s efficiency and signif-
icantly reduced computational burden makes it superior,

particularly for scenarios demanding a high temporal resolution in
computation.

IV. CONJUGATED PHONON AND HOT CARRIER
TRANSPORT IN SUPPORTED 2D MATERIALS

In this section, we demonstrate solving conjugated heat con-
duction and hot carrier diffusion in 3D processes using the CFT
technique. These processes are involved in 2D materials under laser
heating that is involved in thermal characterization using Raman
spectroscopy. Raman spectroscopy has significantly advanced the
study of thermal properties of 2D materials.22 However, conven-
tional Raman methods face notable limitations in accuracy, particu-
larly when dealing with complex heat transfer scenarios.9 The
challenges stem from the assumptions in traditional physical
frameworks, which roughly evaluate critical factors such as laser
absorption23 and temperature coefficient of Raman parameters,
and neglect the heating area extension caused by hot carriers diffu-
sion.24 As a result, discrepancies between experimental results and
theoretical predictions often arise, hindering in-depth physics
understanding of energy transport in 2D materials.

To address these challenges, our FET-Raman methodology25

was developed for thermal properties measurement of 2D materials.
As shown in Fig. 5 for a 2D material supported on a substrate, two
energy transport states are constructed under laser heating: a steady
state from CW laser heating and a transient state from amplitude-
modulated laser heating. It should be noted that although the two
states have different optic field distribution in time domain, their

FIG. 4. (a) The Raman intensity-weighted average temperature rise under the laser spot using the two methods as a function of the heating pulse period under different
objective lens. (b) The relative difference between the two methods as a function of the heating pulse period and different objective lens.
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optical field distributions in space are the same as they share the
same laser source and optical configuration. Heated by different
laser power (P), a parameter called Raman shift power coefficient
(RSC: ψ) is measured (ψ ¼ @w/@P). It is proportional to the tem-
perature rise of the 2D material. The normalized RSC Ω = ψFET/
ψCW eliminates the factor of laser absorption and Raman tempera-
ture coefficient and can be used to determine R00

tc, D, and κ of the
2D material. This technique demonstrates superior accuracy over
conventional steady-state Raman approaches and provides a robust
platform for characterizing the thermal behaviors of 2D materials.

During data processing of the FET-Raman technique, the
computation needs to solve the heat transfer across the interface,
within the 2D material, in the substrate, and the hot carrier diffu-
sion in the 2D material. This demands very fine mesh settings and
long calculation cycles, which results in very time-consuming anal-
yses, and thus significantly impedes the pace of research and the
broader application of this technique. This section demonstrates
how this 3D modeling can be conducted using the CFT technique
with a dramatic speed increase (>200-fold) while maintaining the
same accuracy as the FD method.

In 2D materials, electrically and optically generated hot carri-
ers are crucial for thermal diffusion and heat dissipation.16 There
are three physical processes upon laser heating, which contribute to
2D material’s thermal response. As shown in Fig. 5, in the first
process, hot carriers are excited by photons. They experience a
quick thermalization process (∼ps) by releasing the excess energy
above the bandgap through non-radiative direct phonon emission
(for multi-layered 2D materials). Then, the hot carriers diffuse out
of the irradiation area and recombine with holes to release their
energy to optical and acoustic phonons. This diffusion process is

controlled by the hot carrier diffusivity (D). The second process is
the heat conduction in the 2D material, mainly in the in-plane
direction, and it is related to the thermal conductivity of 2D mate-
rials (κk). The third process is the heat conduction from the 2D
material to the substrate, which is controlled by the interfacial
thermal resistance (R00

tc) between them.7 The generation and diffu-
sion of hot carriers can be described by the following equation:26

@ΔN
@t

¼ D
1
r
@

@r
r
@ΔN
@r

� �
þ @n0

@T
ΔT
τ

� ΔN
τ

þΦα: (9)

Here, D, τ, and ΔT represent the hot carrier diffusivity, life-
time, and temperature increase, respectively. The first term on the
right shows the hot carrier diffusion effect. The term (∂n0/∂T)⋅ΔT/τ
is related to thermal activation that generates carriers due to tem-
perature increase. As has been analyzed in our previous research,27

this term can be neglected because of the moderate temperature
rise. n0 is the equilibrium free-carrier density at a certain tempera-
ture T. The term ΔN/τ is for the electron-hole recombination. The
term Φα denotes the hot carrier photo-generation source. α is laser
absorptivity. Φ =Q/(hν) (counts m−3 s−1) (h: Planck constant, v:
photon frequency) is the incident photon flux, and Q (Wm−3) is
the laser power density absorbed in the 2D material, which can be
described as

Q(r, z, t) ¼ I0
τL

exp �r2/r20
� 	

exp(�z/τL)Ψ: (10)

Here, I0 is the laser intensity in the center of the laser spot
without modulation. r0 is the radius of the laser spot and z is the

FIG. 5. Schematic of physical processes in FET-Raman measurement of a supported 2D material on a substrate.
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location of 2D materials in the thickness direction (shown in
Fig. 5). τL = λ/(4πk) is the laser absorption depth in the 2D mate-
rial. λ = 532 nm is the laser wavelength in our modeling. Ψ is the
square function modulating the laser with a 50% duty cycle. The
heat conduction in the 2D material is governed by phonons and
can be described as

ρcp
@ΔT
@t

¼ (hv � Eg)Φα þ κk
1
r
@

@r
r
@ΔT
@r

� �
þ κ?

@2ΔT
@z2

þ ΔN
τ

Eg: (11)

On the right side, the first term describes heat generation by
the fast hot carrier thermalization process. Eg refers to the bandgap
of the 2D material. The second and third terms on the right side
are for the in-plane and out-of-plane heat conduction in the 2D
material. κk and κ? refer to the in-plane and out-of-plane thermal
conductivity, which arise from the anisotropy of most 2D
materials.

In our modeling, a few-layered MoS2 sample is supported on a
Si or SiO2 substrate. A transmitted laser beam of 1 mW power and
523 nm wavelength is applied. It should be noted that in our mod-
eling, we do not consider the laser absorption characteristics of the
substrate since its absorption depth is very long and the heating in
the substrate is negligible. The overall computational domain is set
up in a cylindrical coordinate to reflect both the radial symmetry of
the laser spot and the stratified structure of the sample and sub-
strate. The thickness of the 2D sample (δs) is set as 15 nm, and the
substrate thickness extends to 30 μm, which serves as a thermal res-
ervoir. The radial domain size for calculation is chosen to be at
least 10 times the size of laser spot so that the thermal field near
the laser heating area is unaffected by the far-field boundary
conditions.

Within this geometry, careful attention is paid on setting the
mesh size. In the thickness direction, an extremely fine discretiza-
tion is required to resolve the sample and the interface region. The
smallest grid size in this direction is in the order of a fraction of the
2D sample’s thickness, ensuring that the steep temperature gradi-
ents across the layer are accurately captured. This fine vertical mesh
is also essential for correctly modeling the interfacial thermal resis-
tance, which can strongly influence how heat transfers from the 2D
material into the substrate. In the radial direction, the mesh size is
chosen to properly resolve the heating area of the Gaussian laser
profile, ensuring that the laser intensity distribution at the center of
the beam and the gradual decay outward are well represented. By
balancing mesh fineness with computational efficiency, the mesh
size in the thickness and radial directions are set as 5 and 70 nm,
respectively, in the laser spot region within the 2D material. Then,
the mesh sizes are gradually increased by a factor of 1.02 from grid
to grid in both the radial and thickness directions. Different mesh
sizes in the thickness and radial directions have been tested for
mesh sensitivity (e.g., 1 and 2 nm in the thickness direction and 30
and 50 nm in the radial direction). They yield very close results as
those based on the mesh sizes mentioned above. Since the FD and
CFT methods both involve solving the problem in the 3D domain
using the finite difference method, iterations are used to solve the

equations with a relative convergence criterion of 10−6. We have
tried different levels of convergence criterion (down to 10−8) and
conclude this one (10−6) is good enough while maintaining reason-
able computation cost.

Material properties used in the modeling are summarized in
Table II. It is for a MoS2 layer supported on a substrate (either Si
or SiO2).

To demonstrate the computational accuracy difference of
the CFT and FD methods in the spatiotemporal domain, Figs. 6(a)
and 6(b) compare the radius–time (r–t) temperature profiles
obtained from the FD method and the CFT approach. The calcula-
tion target is chosen to be a MoS2 layer on a SiO2 substrate. The
radius of the laser spot is 0.328 μm, and the modulation frequency
of the laser beam is 10MHz. Under the same radius and time, the
ΔT based on the FD method is very close to that of the CFT
method. Due to the limitation of time extension for calculation in
our FD method, it could not capture the very tiny temperature rise
as the heating time approaches infinity. To mediate this effect, we
use 5000 cycles of calculation to presume the quasi-steady-state
thermal condition can be satisfied. The new CFT method, however,
avoids the drawback of calculation time length, clearly captures
small increases in sample’s temperature rise, and demonstrates
superior capability in obtaining the thermal distribution under
quasi-steady state of the system.

To illustrate these differences in more specific detail,
Fig. 6(c) shows how the temperature of the 2D material surface

TABLE II. Parameters used in calculation.

Parameters Values Units

ρcp of 2D materials7 1.89 × 106 Jm−3K−1

Out-of-plane k of 2D
materials7

2 Wm−1K−1

In-plane k of 2D materials7 51 Wm−1K−1

ρcp of substrates
28 1.653 × 106 (Si),

1.659 × 106 (SiO2)
Jm−3K−1

k of substrates 1.38 (SiO2), 148 (Si)28 Wm−1K−1

Interfacial thermal
resistance27 0.5 × 10−6 Km2W−1

Mesh size
(thickness direction) 5 nm
Mesh size (radial direction) 70 nm
Thickness of the 2D layer 15 nm
Thickness of the substrate 30 μm
Modulation frequency 5–300 MHz
Duty cycle 50 %
Number of heating cycles to
calculate 5000 Counts
Electron-hole recombination
time27 1 × 10−9 s
The hot carrier’s diffusivity27 10.2 cm2/s
Raman laser wavelength 532 nm
The bandgap of the 2D
material29 1.32 eV
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changes over time at three selected radial positions (r = 35.7,
73.9, and 2004 nm). Using the FD method, the temperature at
these points appears slightly different at the very beginning of
the laser heating process when the heating time is smaller than
10 ns. This could be due to the oscillation in the reconstructed
square laser pulse using 40 Fourier terms. As the heating time

increases, the ΔT by the FD and CFT methods are highly aligned.
The comparison of temperature rise is further quantified in
Fig. 6(d). Here, the calculation difference σ between them is
defined as σ = (ΔTFD–ΔTCFT)/ΔTCFT. The difference is no more
than 1%, showing the CFT method is highly aligned with the
classical FD method.

FIG. 6. Radius–time temperature contour for comparison between the (a) CFT and (b) FD method. (c) Temperature changes with time at different radial locations. (d) The
relative difference between FD and CFT results.
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It is worth noting that the CFT method greatly improves com-
putational efficiency and accuracy. Here, we evaluated the calcula-
tion duration time of the two methods. All numerical simulations
and data processing are performed on a Dell Precision T1700 PC.
This system is equipped with an Intel Core i7-4790 CPU, with 16
GB of DDR3 RAM running at 1600MHz. Data storage and
program execution utilize a 256 GB solid-state drive. The simula-
tions are conducted under Windows 10. The FD approach requires
solving the heat conduction equation at every time step. In the FD
method, the time step is 5.57 × 10−14 s based on the very fine mesh
setting. The total time to calculate the heat transfer in the sample
to reach the quasi-steady state should be at least 50 ns. The number
of calculation steps to solve the heat conduction equation is about
50 × 10−9/5.57 × 10−14 = 897 666. However, our CFT approach can
achieve comparable accuracy with a significantly reduced number
of steps. For instance, the CFT method transforms the heat conduc-
tion equation into 40 steady-state ones in the complex domain,
which means that the heat conduction equation is solved only 40
times in total, rather than 897 666 times. This represents more than
four orders of magnitude reduction in computational time. On the
other hand, solving the transformed heat conduction equation in
the complex domain takes a little more time than the normal
steady-state heat conduction equation. Our real case computation
shows that using the FD method, it takes about 10 h or more for
computing the temperature evolution over 500 μs, while the CFT
method only takes about 3 min to finish. This firmly proves the
CFT method can reduce the computational time by 2–3 orders of
magnitude or more. For the FD computation, we also tried using
COMSOL on a computer equipped with an Intel(R) Xeon(R) Gold
6248R CPU at 3.00 GHz, NVIDIA Quadro RTX5000 16 GB, and
512 GB memory at 3200MHz. Under 25MHz laser heating, for a
heating time of 250 μs, it takes about 10 h to finish, while for such
case our lab-developed FD solver only takes about 5 h. It should be
noted the speed increase by the CFD method vs FD is based on the
same platform of FD solver and computer hardware. If a different
solver and computer hardware platform are used, the same speed
increase still holds true.

The modulation frequency (f) of the laser plays a crucial role
in shaping the sample’s thermal response. Here, the temperature
response of the sample is modeled using the CFT method under
different modulation frequencies when different objectives are used.
The laser spot under different objectives is given in Table III.
Table III also shows the calculated temperature rise of the sample
under CW laser irradiation. Note this temperature rise controls ψ
in FET-Raman and is a Raman intensity-weighted value. It is

calculated as

ΔTCW ¼
ðV
0
Ie�z/τLΔTdv/

ðV
0
Ie�z/τLdv, (12)

ΔTFET ¼
ðt
0

ðV
0
Ie�z/τLΔTdvdt/

ðt
0

ðV
0
Ie�z/τLdvdt, (13)

where I ¼ I0exp(�r2/r20)exp(z/τL). ΔT is the material temperature
rise. z is the distance from the 2D material’s upper surface (Fig. 5).

Figure 7 shows the temperature rise varies with 1/f for MoS2
supported on Si and SiO2. It is observed that the temperature rise
decreases with increased modulation frequency from 5 to 300MHz.
At lower frequencies, each pulse lasts longer, allowing more time
for heat to build up. So the temperature rise of the sample under
the transient state is closer to the temperature rise under CW laser
heating when f is very low. As the frequency increases, the sample
receives power in shorter bursts, leaving less time for the tempera-
ture to climb significantly within each cycle. The fluctuation of
temperature rises becomes smaller. In the limit of extremely high
frequencies, the variation of temperature in one heating period
approaches zero and ΔT converges to half of the CW case as shown
in Fig. 7. Considering the total heating power input (Ef ) in the
FET-Raman case is equal to half of CW case (Ecw), at very high f,
the heat transfer in 2D materials under FET cases is similar as a
CW case with half energy input (0.5 Ecw).

To comprehensively compare the difference between the CFT
and FD results, we calculate the difference of Raman intensity-
weighted temperature rise (ΔT) of the 15 nm-thick MoS2 supported
on the SiO2 substrate for various laser spot radii and laser modula-
tion frequencies. As shown in Fig. 8, the calculation difference
between the two methods is bigger under higher modulation fre-
quencies. However, this increase in discrepancy is due to the com-
putational time limit in the FD method, not the calculation
uncertainty of the CFT method. In all calculation cases using the
FD method, we use the same 5000 heating cycles. This leads to a
shorter calculation time for higher modulation frequency cases.
This means the sample is further from reaching the quasi-steady
state for these cases, so the temperature rise calculated using the
FD method is lower than the value by the CFT method. So here
the CFT method provides much more accurate modeling results.

V. EXTENSION TO HEAT TRANSFER WITH ARBITRARY
TRANSIENT HEAT SOURCE: HEAVISIDE TRANSFORM

For the heat transfer problem described by Eq. (1), the heat
source has a distribution in space, but follows the same manner of
variation with time ( _q). For a generalized situation where there are
several distributed heat sources, each one with a specific spatial dis-
tribution and time variation (but with the same frequency f ) as

ρcp
@T
@t

¼ κ∇2T þ
Xn
i¼1

gi(~r) � _qi: (14)

The temperature field Ti induced by each heat source gi(~r) � _qi
can be solved numerically using the CFT method described in

TABLE III. Steady-state temperature rise (ΔT) of the sample under CW laser
irradiation.

Object
lens

Laser spot radius
r0 (μm)

ΔT of MoS2 on
Si (K)

ΔT of MoS2 on
SiO2 (K)

20× 1.400 8.20 26.26
50× 0.526 24.43 49.29
100× 0.328 35.66 62.22
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Sec. II, and then the overall temperature can be expressed as

T ¼ Pn
i¼1

Ti.

For a transient heat transfer problem with a heat source of
arbitrary, non-periodical variation with time g(~r) � _q, we present a
method based on the CFT method above, termed

Complex-modeling with Fourier and Heaviside Transform
(CFHT). Here, g(~r) describes the heat source spatial distribution,
and _q varies with time following the same way for all locations, as
illustrated in Fig. 9. Mathematically, _q can be expressed as a sum of
Heaviside step functions as30

_q(t) ¼
X1
i¼1

[ _q(i � Δt)� _q((i� 1) � Δt)] � h(i � Δt, t): (15)

FIG. 7. Variation of temperature rise 1/f calculated using the CFT method on different substrates: (a) Si and (b) SiO2.

FIG. 8. Comparison between FD and CFT methods for different laser spot radii
and modulation frequencies.

FIG. 9. Schematic of the Heaviside transform to reconstruct the arbitrary time-
varying _q.
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Here, the Heaviside step function h(τ, t) is expressed as

h(τ, t) ¼ 0 (t , τ)
1 (t � τ):

�
(16)

Figure 9 shows the schematic of this Heaviside step function
transform, with

Δ _q � hjiΔt ¼ [ _q(i � Δt)� _q((i� 1) � Δt)] � h(i � Δt, t): (17)

For a heat transfer problem with a heat source of gi(~r) � h(0, t),
this represents a step function heat source problem. Traditionally,
this problem needs to be solved step by step using the finite differ-
ence or element method until it reaches the steady state.

Here, we show that it can also be solved using the CFT
method very efficiently. First, we reconstruct a heat transfer
problem with a periodical square-wave heat source g(~r) �Ψ
whose frequency is f. For this square wave Ψ, we set its duty time
[t0 = 1/(2f)] sufficiently long, so during one duty, the system will
reach the steady state. Ψ is 1 during the duty, and 0 out of duty.
The temperature field TΨ induced by g(~r) �Ψ can be readily solved
using the CFT method described in Sec. II. Then for a problem
with a heat source of gi(~r) � h(0, t), its solution is

Th(t) ¼ TΨ(t) (t � t0)
TΨ(t0) (t . t0):

�
(18)

Finally, the temperature field induced by a general arbitrary
time-varying heat source g(~r) � _q can be simply reconstructed as

T(t) ¼ PN
i¼1

[ _q(i � Δt)� _q((i� 1) � Δt)] � Th[(N � i)Δt],

(N ¼ t/Dt): (19)

For this transient problem, numerical modeling is only needed
to solve the temperature field TΨ that is induced by g(~r) �Ψ, and
this can be done one time using the CFT method. We expect the
computational time will be reduced by several orders of magnitude
compared with the classical step-forwarding finite methods.

To demonstrate the effectiveness and computational effi-
ciency of the proposed CFHT method, we study a transient heat
transfer case of the same configuration studied in the above
section. The laser spot radius is 0.328 μm, the 2D material is
15 nm thick MoS2, and the substrate is SiO2. The temporal varia-
tion of the laser is defined as a triangular wave of 500 μs duration
and a peak power of 1 mW at 250 μs. Within the heating time, the
heating intensity linearly increases from 0 to 1 mW over the first
250 μs, followed by a symmetric linear decrease back to 0 over the
next 250 μs. All the other parameters used in this simulation are
the same as listed in Table II. Using the CFHT method, this time-
dependent heat source is decomposed into a series of Heaviside
step functions with an interval of Δt = 10 μs, whose temperature
response is computed using the CFT method. In the CFT compu-
tation, only 40 Fourier terms are used, and a square-wave heating

source of 2000 Hz is used to construct the thermal response of a
Heaviside step function.

Figure 10(a) presents the contour map of the resulting tem-
perature of the 2D material surface calculated using the CFHT
method. The magnitude of the temperature diminishes with
increased radial distance, consistent with diffusive heat spreading
from the laser heating center. To further validate the accuracy of
the CFHT method, we compare the temperature profile at a certain
radius with that calculated using the FD method. Figure 10(b)
shows the temporal evolution of the temperature at a fixed radius
of 35.7 nm, as computed by both the CFHT and FD approaches.
Also, we evaluate the difference between the two methods
σ ¼ TCFHT � TFD: The results show high agreement between the
two methods, in which the maximum difference is less than 1 K,
confirming the high fidelity of the CFHT reconstruction.

Notably, the temperature response in Fig. 10(b) shows a trian-
gular shape that closely follows the temporal profile of the heat
source. This behavior can be physically explained by analyzing the
thermal response characteristics of each Heaviside step function
used in the CFHT method. For each incremental step in the
decomposition of the triangular heat source, the thermal response
can be considered the system’s reaction to a sudden onset of
localized heating. In our model, the thermal resistance of the
interface between the substrate and the 2D material (Rint), and the
thermal resistance of the substrate (Rsub) can be evaluated as
Rint ¼ R00

tc/(π � r20) andRsub ¼ 1/(4ksub � r0), where r0 is the laser spot
radius and ksub is the substrate’s thermal conductivity. The ratio of
temperature rise induced by Rint (Tint) to the total temperature rise
(Ttotal) and the buildup time of this part can be evaluated based on the
following relations Tint/Ttotal / Rint/(Rint þ Rsub)tint ¼ Δz � ρcp � R00

tc
(Δz is the 2D material thickness and ρcp is for the 2D material).
According to the used parameters, Rint is 1.48 × 106 K/W, Rsub is
5.44 × 105 K/W, Tint/Ttotal is 73%, and tint is 14 ns. Due to the small
laser spot radius, Rint dominates the total thermal resistance: Rint +Rsub.
As a result, in the first 14 ns in the heating step, the temperature rise at
the 2D material surface quickly reaches ∼73% of the total temperature
rise, primarily reflecting the rapid increase in the temperature differ-
ence between the 2D material and substrate. Following this rapid initial
rise, the temperature increases more gradually as the heat continues to
diffuse into the substrate. This two-step behavior makes the tempera-
ture response of each Heaviside step resembles a step-like function.
When these individual step responses are superimposed in time,
they reconstruct a triangular temperature rise. Thus, the triangular
shape observed in the temperature profile is not simply a direct
response to the triangular power input, but rather an emergent
feature resulting from the accumulation of multiple asymmetric,
step-like thermal responses weighted over time. However, if the
thermal response to each Heaviside step is more gradual, the
overall temperature profile would no longer be triangular, but
rather an asymmetric bell-like or trapezoidal profile. A good
example is the case with a thicker 2D material, where the temporal
evolution of temperature under each Heaviside step input would
exhibit a slower rise, possibly resembling an exponential or sigmoi-
dal curve. Therefore, the final temperature profile reconstructed by
the CFHT method is not only determined by the shape of the
power input alone, but rather by the combination of the input
waveform and the system’s thermal property, illustrating the critical
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role that material properties and interfacial effects play an impor-
tant role in determining the observed transient thermal behavior.

The CFHT method not only reproduces the spatiotemporal
temperature field with high accuracy but also achieves significant
computational acceleration. In this triangle heating case, the CFHT
method reduces the simulation time from 10 h (by FD) to under
3 min (by CFHT) on the PC platform mentioned before. It should
be noted that for simulations of longer time scales, the advantage
of the CFHT method will be further expanded. For example, for
the case studied here, if the arbitrary heating time is 1 ms, the com-
putation will take about 20 h based on the FD method. However, in
the CFHT method, we still only need to make 40 calculations in
CFT, which will consume the same 3min as the case shown, and
then reconstruct the thermal response under real heating that can
be finished in a very short time (seconds). What is more, we can
apply a smaller Δt at a cost of negligible computation cost increase
to effectively improve the time accuracy of the calculation results in
CFHT.

For the CFT and CFHT methods described in this work,
although they are presented for linear heat transfer problems, even-
tually they are applicable to all linear problems. Examples include
linear mechanics problems under various external excitation
(thermal, mechanical, laser, etc.).31 However, for nonlinear prob-
lems, for example, heat transfer problems involving strong
temperature-dependent thermophysical properties,32 both CFT and
CFHT methods cannot be used since the physics decomposition
described in Sec. II cannot be applied. Under such scenarios, the

traditional finite element methods are still applicable and more
effective. However, for such scenarios, averaged temperature-
dependent thermophysical properties can be assumed to provide
first-order estimation of the problem using the CFT and CFHT
methods. For problems of periodical external excitation (thermal,
mechanical, and photon), as we have demonstrated above, if the
excitation is square waves of 50% duty, 40 Fourier terms are suffi-
cient for the CFT method. However, if the duty is smaller, e.g.,
10%, more Fourier terms are needed to capture the fine system
response during the short excitation duration. The needed number
of Fourier terms should be chosen so that the reconstructed excita-
tion using Eq. (2) well reflects the real one.

VI. CONCLUSION

In this work, we developed the CFT technique that solves
quasi-steady-state energy transport problems with a periodically
time-varying heat source. The CFT method decomposes the tran-
sient energy transport problem into problems with a complex-
temperature response. These problems can be solved just one time,
and their resolutions are used to construct the resolution to the real
physical energy transport problem. The CFT method was demon-
strated by solving two typical problems. One is a supported
SWCNT bundle under periodical laser heating and the energy
transport inside involves heat conduction and interfacial energy
transport. The other one is a nm-thick 2D material supported on a
substrate. Its thermal behavior involves 3D phonon transport, hot

FIG. 10. (a) The contour map showing the relation between the temperature profile and the radius from heating center and heating time based on CFHT calculation.
(b) The temperature response at the radius of 35.7 nm by the CFHT and the FD methods and their difference.
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carrier diffusion, and interfacial energy transport. It was confirmed
that the CFT method yielded a similar level or higher accuracy
compared with the FD method, while the CFT method features a
speed of more than two orders of magnitude faster than the FD
method. Furthermore, a general method, termed CFHT, was devel-
oped that can solve any transient energy transport problems, with
orders of magnitude increase in computational speed. The devel-
oped CFT and CFHT techniques are applicable to linear problems
that involve transient heat sources.
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