Partial laser treatment is introduced to carbon-based microfibers to generate excellent photon sensing capability without bias. This treatment brings about a Seebeck coefficient distribution along the sample's length, out of which a photovoltage with no external bias is generated and sensed. Using a line-shaped laser spot, carbon microfiber (CMF), graphene microfiber (GMF), and graphene aerogel fiber (GAF) are investigated for their response to μm-scale photon irradiation. A higher sensitivity for the incident photon is found for the GAF with no position sensitivity. More Seebeck coefficient variation is also observed for the GAF considering the amount of laser power used for the laser treatment. A weaker Seebeck coefficient spatial variation is observed for the GMF compared with the GAF. However, its photovoltage shows an abrupt magnitude change from the laser-treated region to the non-treated one. Despite the low spatial variation of the Seebeck coefficient for the CMF, it features an excellent and accurate position-sensitive photoresponse with polarization change over a distance of ≈100 μm. Such unique capability prompts novel applications in using partially annealed CMF for sensing the position of optical beams at the microscale.

1. Introduction

Carbon-based materials have been widely investigated in recent years for their potential in optoelectronic applications, particularly to generate photocurrent.[1–4] Two main mechanisms have been identified as the origins of their photoresponse: the photovoltaic effect and the photo thermoelectric (PTE) effect.[5] In the photovoltaic effect, as the incident photons create electron-hole pairs, a forced separation between the electrons and holes in the presence of an existing electric field generates a photocurrent.[6] Carbon-based materials have been explored for their potential applications in photovoltaics, where their high surface area, good conductivity, and optical transparency make them promising candidates for photconversion.[7–9] In addition, the temperature difference created at different areas of the component as a result of photon energy absorption is known as the photo thermoelectric effect. This temperature difference is subsequently turned into an output voltage by the Seebeck effect.[10–13]

Xu et al. reported a surprising photovoltage during optical irradiation of suspended aligned carbon nanotube (CNT) bundles with neither bias voltage nor temperature difference from one end to the other.[5] They showed that this photoresponse is mainly related to the Seebeck coefficient rather than being a photovoltaic process. Under the irradiating power of 91 mW, where only a very small amount shining on the sample, a ≈120 μV photovoltage was generated. They also discovered a nonuniform local Seebeck coefficient along the bundle using localized heating and scanning.[5] A linear decrease in the Seebeck coefficient from 7 μV K−1 to ~7.5 μV K−1 was reported for the root to the tip of the CNT bundles. Xiong et al.[14] coated a reduced graphene oxide (rGO) film on a polydimethylsiloxane (PDMS) layer to create an effective photothermal film. This detector was able to detect laser emissions of 6.37 kW m−2 at 473, 532, and 808 nm with the corresponding responsivities of 15.6, 14.6, and 19.4 V W−1. PEDOT: PSS/graphene composite mid-infrared photodetectors as the self-powered ones working based on the photo-thermoelectric effect were investigated by Zhang et al.[15] The highest photo detectivity of 1.4 × 107 cm Hz0.5 W−1 was reported for 3 wt.% of graphene loading on PEDOT: PSS. Wang et al.[16] proposed a device architecture based on graphene to enhance its photo response. A set of split gates was used to create a p-n junction in graphene to increase the PTE current generation. A gap plasmon structure was used to absorb the majority of the incident light to trigger localized heating. Based on their
experiments, the generated photocurrent was 25 times greater than the unenhanced case. A suspended PTE detector based on the SWCNT/PEDOT:PSS composite was characterized by Wang et al.\cite{17} They attributed the obtained stable photoresponse to the strong $\pi-\pi$ interaction between SWCNTs and PEDOT: PSS. Without bias, a peak detectivity of 1.9×10^7 cm Hz$^{0.5}$ W$^{-1}$ was acquired. St-Antoine et al.\cite{18} investigated the local photovoltage sensitivity in CMFs, which is very unique and novel.

The transient electrothermal (TET) technique is also used in this study. In this technique developed in this work, we utilize a laser to induce permanent local structure change and nonuniformity in carbon microfiber (CMF), graphene microfiber (GMF), and graphene aerogel fiber (GAF), which leads to a nonuniform Seebeck coefficient through the structure. Subsequently, this structure is used to sense photons via the generated photovoltage without power input. We will show this photon sensing capability features extreme position sensitivity in CMFs, which is very unique and novel.

2. Carbon Microfiber: Structure Grading and Photon Sensing

Photon sensing technique, which is similar to the TET, is used to probe the photovoltage response of the microscale samples in this work. In this technique, a micro/nanoscale sample is suspended between two electrodes. Silver paste is applied to the ends of the sample to make the connection electrically and thermally secure. Then, a step-modulated continuous wave (CW) laser irradiates the sample locally. Subsequently, the sample’s resistance changes as its temperature rises, causing a transient shift in voltage through the sample. In order to measure the voltage change during the TET, a small DC current is also passed through the sample. However, in the photon sensing technique, no DC current is applied to the sample. The schematic of this technique is shown in Figure 1c. The transient electrothermal (TET) technique is also used in this study. In this technique developed in our lab in 2007,\cite{19} rather than a step laser, a step DC current is passed through the micro/nanoscale sample. Due to Joule heating, the resistance of the sample changes transiently until the temperature reaches a steady state. This transient behavior is obtained and analyzed to determine the thermal diffusivity of the sample. It is reasonable to assume that the heat conduction is one-dimensional along the sample, given the high length-to-thickness ratio of the microfibers. The equation below governs the 1D transient heat conduction through the microfiber (x) as:\cite{19}:

$$\frac{\partial(T \rho c_p)}{\partial t} = \frac{\partial}{\partial x} \left(x \frac{\partial T}{\partial x} \right) + \dot{q}$$

(1)

where ρ, c_p, and k are the sample’s density, specific heat, and thermal conductivity, respectively. Temperature is denoted as T, and \dot{q} in W m$^{-3}$ is the heating generated by the electrical current.

First, a CMF is held on a piece of glass to induce a permanent change in the structure. Half of the sample is then irradiated (annealed) by a CW 532 nm laser (DPSS Inc.) with a power of ≈ 2.0 W for 200 s (Figure 1a) while the sample is in a vacuum chamber (< 3 mTorr). A blade is used to shield the other half of the sample from irradiation. The laser spot size is measured to be 2 mm. Figure 1b,d shows the suspended half-treated CMF and its schematic on a trench with a length of 2.087 mm and diameter of 51.6 μm. For making the substrate, a glass slide with 1 mm thickness is cut into two parts. Then, both parts are attached to another full glass slide with a clearance of ≈ 2 mm to make the trench. In this way, a trench with ≈ 2 mm width and 1 mm depth is created. The microfiber is transferred to the trench via a tweezer.

The CMF investigated in this work is made using pyrolytic lignin (PL), and detailed information about the sample synthesis may be found in the work by Qu et al.\cite{20} Briefly, a twin-screw microcompounder is used to extrude ≈ 6 g of pyrolytic lignin at temperatures between 115 and 120 $^\circ$C. At speeds of up to 100 m min$^{-1}$, the fibers are coiled onto a roller. In a muffle furnace, the spun fibers are heated to 280 $^\circ$C at a rate of 0.3 $^\circ$C min$^{-1}$, kept for 1 h, and then subjected to oxidative stabilization. In an argon-filled tube furnace, carbonization is carried out. The stabilized fibers are then heated for 1 h at a rate of 3 $^\circ$C min$^{-1}$ up to 1000 $^\circ$C. To irradiate the sample to check its photoresponse, the laser beam is reshaped to a line-shape of 0.1 mm in width and 5.5 mm in length. The TET signal of the sample, along with the photovoltage signal of the sample under laser (photon) irradiation, are given in Figure 1e. The t, of the TET and the photovoltage signals (e.g., $x = 0.2$ mm) are calculated to be 0.788 s and 0.578 s. The similar timescale for the TET and photon sensing firmly proves the thermal origin of the obtained photovoltage.

Figure 2a depicts the obtained transient photovoltage for different locations of the laser irradiation on CMF with no external bias. Note the contact between the laser treated part and the...
Figure 1. a) The schematic of the laser treatment on half of the microfiber (e.g., CMF). b) Optical image of the suspended carbon microfiber of 2.087 mm length. c) Schematics of the TPET and TET techniques. d) Schematic of the suspended laser-treated microfiber: half of the sample is laser-treated, and the other half is not. e) The TET and the photovoltage signals for an arbitrary location \(x = 0.2 \text{ mm} \) of the CMF to compare their characteristic times.

electrode is taken as the “+” side during our voltage measurement. This is followed for other samples as well. The “On” and “Off” periods of the incident laser beam for the annealed (laser-treated) and unannealed (not-treated) locations of the CMF are shown in this figure. A laser power range of 150–220 mW is then used to irradiate the sample. As a result, a photovoltage between \(\approx 0.06 \text{ mV} \) and \(\approx 0.18 \text{ mV} \) is obtained from the CMF. The most important observation from this figure is that when the laser irradiates the laser-treated and non-treated regions, the voltage signs are opposite to each other, indicating that the sensor (i.e., the CMF) is very sensitive to the position of the laser (photon). This firmly confirms the position sensitivity of the sensor.

Since different laser powers are used to stimulate the sample in different locations, \(\Delta V_{PV} \) is defined as the photovoltage normalized to the lowest laser power (150 mW) used for obtaining the photovoltage signal from the sample. Figure 2b shows the \(\Delta V_{PV} \) variation with the location. It ranges between \(-247 \mu \text{V} \) and \(+179 \mu \text{V} \) from the annealed to unannealed regions. The characteristic time is also evaluated for different laser locations shown in Figure 2b. The \(t_c \) of various locations of the sample are quite different, with a sharp shift in the boundary between the laser-treated and non-treated regions. The difference between the characteristic times of different locations can be attributed to the variation in the structure and thermal properties (e.g., \(k, \rho_c, \text{and} \theta_T \): temperature coefficient of resistivity) through the CMF’s length. However, their similar \(t_c \) (\(\approx 0.1–0.5 \text{ s} \)) order indicates that the photovoltage for different locations arises from the thermal response of the CMF.

We showed that the photovoltage stems from the thermoelectric effect. So, the Seebeck coefficient \((S) \) should vary along the sample; otherwise, there would be no photovoltage out of the thermoelectric effect.\(^{(5)}\) The local Seebeck coefficient can be calculated as\(^{(5)}\):

\[
S_x = \frac{dV_{PV}}{dx} \left(\frac{Q_{abs}}{Ak} \right)
\]

where \(Q_{abs} \) is the portion of the laser energy absorbed by the sample, \(A \) is the sample’s cross-sectional area, and \(k \) is the thermal conductivity. The absorbed energy by the sample can be calculated as \(Q_{abs} = (D/L) \cdot Q_{Laser} \), where \(D \) is the microfiber’s diameter, \(L \) is the length of the line-shaped laser beam, and \(Q_{Laser} \) is the
Figure 2. a) Demonstration of the CMF’s photovoltage change with time upon step laser (photon) irradiation for different locations on the sample. The “On” and “Off” periods of the incident laser beam are shown for one step for $x = 0$ mm and $x = 1.4$ mm, for instance. b) Photovoltage variation for different locations of the CMF, which is normalized based on the lowest laser power (150 mW) used for obtaining the photosens. Also shown in this figure is the characteristic time of the photocessment for the CMF with the location. c) Local Seebeck coefficient variation of the CMF with the location. d) The bi-directional TET (voltage) signals (i.e., $ΔV_{A→B}$ and $ΔV_{B→A}$) for the CMF along with the embedded TE signal, which is calculated as $ΔV_{TE} = (ΔV_{A→B} - ΔV_{B→A})/2$.

laser power used. The k value is calculated as $k = \rho \cdot c \cdot \alpha_{eff}$, where ρ, of graphite ($1.552 \times 10^6 \text{ J m}^{-3} \text{ K}^{-1}$) is used for the CF and α_{eff} is the effective thermal diffusivity measured to be $1.16 \times 10^{-6} \text{ m}^2 \text{s}^{-1}$ using the TET technique. So, k of the CMF is found to be $2.48 \text{ W m}^{-1} \text{ K}^{-1}$. The variation of S_x with location is presented in Figure 2c. It ranges between $-0.85 \mu \text{V K}^{-1}$ and $+1.52 \mu \text{V K}^{-1}$.

In fact, this variation in S_x brings about the photovoltage sign change shown in Figure 2b. Although the values of S_x and its variation seem to be small; however, the position sensitivity with the laser spot location shown in Figure 2a is significantly high.

To further verify that the induced photovoltage is caused by the thermal effect, the TET method is utilized here. This thermal effect (if it exists) should show up as the thermoelectric (TE) voltage combined with the TET signal that is based on the Joule heating of the sample. However, this hypothetical TE effect is embedded in the TET signal, and for its determination, two different TET tests in terms of the current direction should be conducted. If the sample’s left and right ends are called A and B, respectively, $ΔV_{A→B}$ is the TET voltage for the case that the step current flows from the edge point of A to B. For the TET tests, a step current of 2 mA with a frequency of 0.2 Hz is used. The corresponding TET signals are shown in Figure 2d. During the TET measurement, the observed voltage change consists of two effects. The first one is induced due to the resistance change, and the other one is the TE effect. The first term is dependent on the direction of the current used in the TET. However, as mentioned earlier, the TE voltage is direction-independent. It should be noted that the absolute value of TE voltage remains constant for either current direction. So, based on these explanations, we can express the total TET voltage signal as $ΔV_{TET} = ΔR \cdot I_{0|AB} + ΔV_{TE}$ and $ΔV_{TET} = ΔR \cdot I_{0|AB} - ΔV_{TE}$, when the current is from A to B and vice versa, respectively. To extract the TE effect from these bi-directional TETs, the TE voltage can be calculated as $ΔV_{TE} = (ΔV_{A→B} - ΔV_{B→A})/2$. Based on Figure 2d, a $ΔV_{TE}$ of 84.3 µV is obtained from a TET voltage change of 8.64 µV. The t_c for this TE voltage is calculated to be 0.276 s, similar in scale to the t_c of the photon-sensing photovoltages, hence confirming the thermal origin for the photovoltages of the CMF. It is worth mentioning this effect can also be used for thermal sensing if a connected CMF is placed in a hot/cold environment and a temperature gradient is established in it.

Raman scanning is also conducted for the CMF to probe the structural change of the sample that has come about due to half laser annealing treatment. The sp² ring-breathing mode, typical of graphene-like materials, is indicated by the Raman D-band, which corresponds to the A₁₆ phonon mode. The E₂g in-plane vibrational mode relates to the Raman G-band. Figure 3a shows two prominent D (1354 cm⁻¹) and G (1589 cm⁻¹) peaks as the characteristic of carbon-based materials that are present in the Raman spectra. The normalized ratio of I_D/I_G is also used to assess the defect density of the sample. The intensity variation of C and G peaks (i.e., I_D and I_G) as well as their ratio (I_D/I_G), are shown in Figure 3b. Based on these results, no specific variation is seen in the structure through the CMF’s length, and they
remain quite consistent. The \(I_D/I_G\) is in a range of 0.85–0.95 through the sample’s length, showing a good quality for the CMF used in this work compared to the value of 2.53 reported by Qu et al.\cite{21}

The results of similar investigations will be discussed in the next sections for GMF and GAF samples. In short, our Raman spectroscopy study shows the laser treatment on half of the CMF makes little change in its structure. However, this treatment dramatically changes the Seebeck coefficient, leading to an intriguing and precise position-sensitive photoresponse of the microfiber.

3. Microfibers Composed of Graphene: Photon Sensing

3.1. Photon Sensing by Graded Graphene Microfibers (GMFs)

In this section, we apply the laser treatment mentioned above on GMFs. In this study, we synthesize graphene microfibers by using a hydrothermal procedure.\cite{21} To create the aqueous suspension of graphene oxide (GO), enough amount of 30 mg ml\(^{-1}\) GO and DI water are mixed. The suspension is next put in an ultrasonic bath for one hour to create a homogenous suspension. The suspension is then injected into a 10 cm long glass tube with an inner diameter of 1.0 mm. The pipes are sealed at both ends before being baked for 2 h at 230 °C. Finally, high-quality GMFs with a diameter of 88.6 μm are formed after extracting from the pipes. After conducting the laser annealing treatment on nearly half of the GMF with a laser power of \(\approx 2.0\) W and beam diameter of 2 mm for 200 s under vacuum condition (\(< 3\) mTorr), it is suspended on a trench.

The suspended sample is shown as the inset in Figure 4h after applying the silver paste on its ends. The length of the sample is measured to be 1.929 mm. The linear I–V curve for the GMF is shown in Figure 4c indicating a good-quality contact with ohmic behavior. The little nonlinear behavior at the left side (\(-0.8\) – \(-0.4\) V) is far beyond the testing range in our work. The range of laser power used for obtaining the photovoltage response of the sample is 17.5–120 mW. The width and the length of the line-shaped laser beam are 0.1 mm and 5.5 mm, respectively. As illustrated in Figure 4a,b, different levels of photovoltages are observed at different step laser (photons) irradiation locations using the laser with a wavelength of 532 nm and 405 nm, respectively. The step laser irradiation on the sample is indicated by “On” and “Off” marks in Figure 4a,b for one step, and it continues for the further time. Moreover, no considerable change in the photoreponse of the GMF is observed comparing the results by using the 532 nm and 405 nm lasers. However, one important point is that, unlike the CMF, it does not change sign through the length of the sample. Our below analysis will focus on the results using the 532 nm laser. This observation is also clearly shown in Figure 4d, where different laser locations’ \(\Delta V_{PV}\) are provided. Besides, the \(\Delta V_{PV}\) is the normalized photovoltage based on the lowest laser power (i.e., 17.5 mW). Based on these data, the photosensitivity becomes higher moving from \(x = 0.1\) mm to \(x = 0.8\) mm, jumping back to lower sensitivity from \(x = 0.9\) mm to the other end of the sample at \(x = 1.8\) mm. As far as the \(t_c\) is concerned, there is an overall decreasing trend from the laser-treated to not-treated locations from 0.5 s to 0.3 s, like the CMF, this slight difference can be related to the thermal properties’ variation (e.g., thermal conductivity and specific heat) through the GMF’s structure. The TET testing is also conducted on the GMF, and the \(t_c\) is found to be 0.33 s. The similar characteristic time for the photovoltage and the TET signal confirms the thermal effect origin of the GMF’s photoreponse. The \(S_x\) for the GMF is calculated based on Equation 3. The \(a_{eff}\) of the GMF is measured to be \(2.32 \times 10^{-6}\) m\(^2\) s\(^{-1}\) via TET, and its \(k\) is calculated to be 3.6 W m\(^{-1}\) K\(^{-1}\) considering the \(\rho_{c}\) to be 1.552 \(\times 10^6\) J m\(^{-1}\) K\(^{-1}\), the same as graphite. Despite the photovoltage and \(\Delta V_{PV}\) that do not change the sign through the sample, \(S_x\) changes the sign from the laser-treated to not-treated regions (Figure 4e). The Seebeck coefficient values for the GMF are much higher than that of CMF, ranging from \(-54.8\) μV K\(^{-1}\) to \(+121.5\) μV K\(^{-1}\). This makes the GMF more sensitive to the incoming photons. This higher sensitivity can be realized by comparing the laser powers (mentioned earlier) used to stimulate the samples.

Figure 3. a) Contour map for D and G peaks versus Raman wavenumber and location for the CMF. b) The D peak to G peak intensities (i.e., \(I_D\) and \(I_G\)) and their ratio \((I_D/I_G)\) variation for the half laser-treated CMF to show the structure variation along the sample.
Figure 4. The GMF's photovoltage changes with time under step laser irradiation for different locations of the sample using the laser with a wavelength of a) 532 nm and b) 405 nm. The “On” and “Off” status of the incident laser beam are also shown for one period on both graphs. c) I-V (current vs voltage) curve for the GMF to show the quality of the sample's contact with the silver paste. d) Photovoltage variation for different locations of the GMF based on the lowest laser power (17.5 mW) used for obtaining the photoresponse. The characteristic time of the photoresponse for the GMF with location is also given. e) Local Seebeck coefficient variation of the GMF with the location. f) Contour map for D and G peaks versus Raman wavenumber and location for the GMF. g) The D peak to G peak intensities (i.e., I_D and I_G) and h) their ratio (I_D/I_G) variation for the half laser-treated GMF to show the structure variation along the sample. The inset is the optical image of the suspended GMF with 1.929 mm length.
The Raman scanning for the GMF identifies two main peaks of D at round 1351 cm\(^{-1}\) and G at \(\approx 1590\) cm\(^{-1}\) for different locations (Figure 4f) with clear enhancement in G peak intensity for the laser-treated locations. 2D peak is not identified for the GMF, even using higher laser powers. The corresponding variation of the D and G peaks’ intensities is shown in Figure 4g. Figure 4h clearly shows structure improvement for the laser-treated region (i.e., \(x = 0.0\) mm to \(x = 0.8\) mm). The \(I_D/I_G\) is lower for the laser-annealed regions (< 0.9), after which it starts rising to higher values to nearly 1.3. As mentioned earlier, GO lower for the laser-annealed regions (< 0.9), after which it starts rising to higher values to nearly 1.3. As mentioned earlier, GO is the typical precursor substance used to synthesize graphene fibers and other graphene-based products.\(^{[24]}\) Moreover, carbonyl, carboxyl, epoxy, and hydroxyl are some of the hydrophilic oxygen-containing functional groups of GO that make it easier to disperse in aqueous conditions and promote uniform distribution in the manufactured composites.\(^{[25,26]}\) These functional groups, nevertheless, also degrade some of the exceptional electrical and thermal conductivity of graphene.\(^{[27]}\) So, the reason that laser treatment induces more obvious structural changes in the GMF than the CMF is that it has more impurities and functional groups. The laser treatment will remove some of them by thermal effect and photon-induced bond breaking.

To sum up, comparing the GMF’s photoresponse to that of CMF, it does not feature position sensitivity with sign change. However, its Seebeck coefficient distribution and magnitude are more than that of the CMF. Sign change aside, the laser-treated and not-treated regions can be distinguished to a good extent by the GMF as an abrupt change in photovoltage occurs. So, these two dissimilar regions might be used for featuring two distinct regions for having almost the same temperature rise (voltage drop), a higher laser power (heat) should be applied to the locations near the sample ends. The second one is using a distinct range of laser powers for each sample. The reason for this one is related to the distinct thermal resistance of these samples. This thermal resistance is related to the sample's thermal conductivity, length, and diameter. A sample of very high thermal resistance (e.g., GAF) will need a lower laser power. To have quite the same photoresponse (> 0.1–0.3 mV) from all three samples, we should use distinct levels of laser power. Otherwise, if we use the same laser power for all of them, either the signal will not be distinguishable for a sample, or another one will be damaged.

The Seebeck variation calculated using Equation 3 is shown in Figure 5c. Using TET, \(a_{eff}\) of the GAF is measured to be \(0.2 \times 10^{-4} \text{ m}^2\text{s}^{-1}\). The \(\rho_c\) of the GAF is considered to be \(8500 \, \text{J m}^{-1} \text{K}^{-1}\).\(^{[27]}\) So, the \(k\) of the GAF is calculated to be \(0.010 \, \text{W m}^{-1} \text{K}^{-1}\). The \(S_c\) change of the GAF in space, which is between \(-27.2 \, \mu\text{V K}^{-1}\) and \(+20.4 \, \mu\text{V K}^{-1}\), is not that much considerable, meaning that a higher level of thermal heating is needed to induce more Seebeck coefficient variation. It should be noted that the laser power used here for the GAF is nearly the maximum amount before damaging the sample. Similar to the \(t_c\), since GAF’s structure is not quite uniform, the Seebeck coefficient shows strong noise and a less visible trend. After laser treatment, Raman spectroscopy scanning is conducted on the GAF to explore its structure. As shown in Figure 5d, D, G, and 2D peaks are present in the Raman signal at \(\approx 1345 \, \text{cm}^{-1}\), \(\approx 1580 \, \text{cm}^{-1}\), and \(\approx 2682 \, \text{cm}^{-1}\), respectively.\(^{[27,33,34]}\) Moreover, no particular trend is seen in the intensity of these peaks. Based on Figure 5e,f, the \(I_D\), \(I_G\), and GAF is annealed under vacuum condition (< 3 mTorr) with a laser power of \(\approx 500\) mW for 200 s\(^{[27]}\) at a laser spot size of 2 mm. The suspended sample of 2245 \(\mu\text{m}\) in length is shown as the inset in Figure 5c.

After irradiating the GAF at different locations with the line-shaped laser beam of 0.1 mm width and 5.5 mm length, like the GMF, the photovoltage of the GAF does not change sign when the laser moves from the laser-treated to un-treated parts (Figure 5a,b). However, its sensitivity is much higher than that of GMF and CMF. In other words, the laser power range used to get the photovoltage signal is only 1.8–13 mW, which is much lower than that of GMF. Since graphene aerogel has a much lower thermal conductivity\(^{[27,31,32]}\) under the same laser heating, it will have a much higher temperature rise; therefore, the voltage change is stronger. Based on Figure 5b, an abrupt change in photovoltage is seen after \(x = 1.4\) mm where the laser-treated and un-treated regions are separated from each other. No meaningful trend is seen in \(t_c\) variation with the location on the sample. \(t_c\) has a range of 0.17 s to 1.26 s. This broad range most probably boils down to the nonuniform structure of the GAF, which will be explored more using Raman scanning. The range of \(t_c\), however, is still showing a thermal-based origin for the photovoltage, as the \(t_c\) of the TET signal for the GAF is calculated to be 0.74 s.

Before proceeding, it is worth discussing two things here. The first one is the reason for using a range of power (not constant) for irradiating different locations of each sample. This is because the total thermal resistance from the laser heating location to the electrodes is much higher when the laser irradiates the middle point than when irradiating the sample ends. Therefore, the temperature rise will be lower if a laser of the same power irradiates the sample’s ends. For having almost the same temperature rise (voltage drop), a higher laser power (heat) should be applied to the locations near the sample ends. The second one is using a distinct range of laser powers for each sample. The reason for this one is related to the distinct thermal resistance of these samples. This thermal resistance is related to the sample's thermal conductivity, length, and diameter. A sample of very high thermal resistance (e.g., GAF) will need a lower laser power. To have quite the same photoresponse (> 0.1–0.3 mV) from all three samples, we should use distinct levels of laser power. Otherwise, if we use the same laser power for all of them, either the signal will not be distinguishable for a sample, or another one will be damaged.

The Seebeck variation calculated using Equation 3 is shown in Figure 5c. Using TET, \(a_{eff}\) of the GAF is measured to be \(0.2 \times 10^{-4} \text{ m}^2\text{s}^{-1}\). The \(\rho_c\) of the GAF is considered to be \(8500 \, \text{J m}^{-1} \text{K}^{-1}\).\(^{[27]}\) So, the \(k\) of the GAF is calculated to be \(0.010 \, \text{W m}^{-1} \text{K}^{-1}\). The \(S_c\) change of the GAF in space, which is between \(-27.2 \, \mu\text{V K}^{-1}\) and \(+20.4 \, \mu\text{V K}^{-1}\), is not that much considerable, meaning that a higher level of thermal heating is needed to induce more Seebeck coefficient variation. It should be noted that the laser power used here for the GAF is nearly the maximum amount before damaging the sample. Similar to the \(t_c\), since GAF’s structure is not quite uniform, the Seebeck coefficient shows strong noise and a less visible trend. After laser treatment, Raman spectroscopy scanning is conducted on the GAF to explore its structure. As shown in Figure 5d, D, G, and 2D peaks are present in the Raman signal at \(\approx 1345 \, \text{cm}^{-1}\), \(\approx 1580 \, \text{cm}^{-1}\), and \(\approx 2682 \, \text{cm}^{-1}\), respectively.\(^{[27,33,34]}\) Moreover, no particular trend is seen in the intensity of these peaks. Based on Figure 5e,f, the \(I_D\), \(I_G\), and
Figure 5. a) The GAF’s photovoltage change with time under step laser irradiation for different locations of the sample. The “On” and “Off” status of the incident laser beam for one period is also shown. b) Photovoltage variation against locations of the GAF based on the lowest laser power (1.8 mW) used for obtaining the photoresponse. The characteristic time of the photoresponse for the GAF with location is also given. c) Local Seebeck coefficient variation of the GAF with the location. The inset is the optical image of the suspended GAF with 2.245 mmin length. d) Contour map for D, G, and 2D peaks versus Raman shift and location for the GAF. e) The D, G, and 2D peak intensities (i.e., I_D, I_G, and I_{2D}). f) D peak to G peak (I_D/I_G) and 2D peak to G peak (I_{2D}/I_G) variations for the half laser-treated GAF to show the structure variation along the sample.

I_D/I_G do not have a specific trend over the sample’s length, indicating that the laser treatment effect is not strongly reflected in the Raman signal. Hunter et al. also reported similar findings (I_D/I_G) when comparing the reduced (laser annealed) and the original GAF with a similar laser treatment in terms of power and time used in this work.

Having analyzed the GAF, it should be considered that GAFs are too fragile and delicate compared to the CMFs and GMFs, making them less attractive for such sensing and industrial applications before doing the chemical/photoreduction.\(^{15,36}\) This is because the key component of graphene aerogel–GO nanosheets might have some oxygen-containing functional groups on flawed sites and edges, allowing for weak contact between them.

As a result of the weak interaction between neighboring GO nanosheets, GO aerogel is very fragile.\(^{15}\)

4. Conclusion

In this work, we report photon sensitivity with no external bias for three carbon-based microfibers, namely CMF, GMF, and GAF, the length of which is \approx 2 mm. Nearly half of the sample’s length was laser-treated (annealed) for a certain amount of time. The laser power used to treat the CMF and the GMF was four times bigger than that of the GAF. The microfibers were then irradiated by a line-shaped laser beam of 0.1 mm width and 5.5 mm length to probe their photoresponse to the incoming
though. Ultimately, it seems that a CMF with a higher level of rise in the laser-treated one. The Seebeck coefficient distribution was observed for the unannealed region, while a photovoltage change in the generated photovoltage magnitude. However, only it capable of distinguishing the incident photon by a sharp structure was noticeably captured using Raman scanning, making it the CMF was significantly position sensitive for the incoming photons with signal polarization change. A photovoltage drop was observed for the unannealed region, while a photovoltage rise in the laser-treated one. The Seebeck coefficient distribution for the CMF was the least compared to the GMF and GAF, though. Ultimately, it seems that a CMF with a higher level of laser treatment (annealing) can be a promising microfiber in practical position-sensitive photon sensing applications to take advantage of its robust structure.

Acknowledgements
This work was partially supported by the US National Science Foundation (CBET 1930866 and CMMI 2032464 for X. W.).
Open access funding provided by the Iowa State University Library.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords
carbon microfibers, graphene aerogel fibers, graphene microfibers, position-sensitive photon sensing, Seebeck coefficient

Received: June 11, 2023
Revised: August 21, 2023
Published online: