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Abstract This paper builds on a recently developed immer-
sogeometric fluid–structure interaction (FSI) methodology
for bioprosthetic heart valve (BHV) modeling and simula-
tion. It enhances the proposed framework in the areas of
geometry design and constitutive modeling. With these en-
hancements, BHV FSI simulations may be performed with
greater levels of automation, robustness and physical real-
ism. In addition, the paper presents a comparison between
FSI analysis and standalone structural dynamics simulation
driven by prescribed transvalvular pressure, the latter being
a more common modeling choice for this class of prob-
lems. The FSI computation achieved better physiological
realism in predicting the valve leaflet deformation than its
standalone structural dynamics counterpart.
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1 Introduction

Heart valves serve to ensure unidirectional flow of blood
through the circulatory systems of humans and many ani-
mals. Heart valves consist of thin, flexible leaflets that open
and close passively, in response to blood flow and the move-
ments of the attached cardiac structures. Primarily in aortic
heart valves, the leaflets may become diseased and, in some
cases, valves must be replaced by prostheses. Hundreds of
thousands of such devices are implanted in patients every
year [1, 2].

The most popular class of prostheses are bioprosthetic
heart valves (BHVs). BHVs imitate the structure of the na-
tive valves, consisting of flexible leaflets fabricated from
chemically-treated soft tissues. BHVs do not induce blood
damage that can occur due to prostheses composed of rigid
mechanical parts [2–4]. However, BHVs are less durable
than their mechanical counterparts and require replacement,
typically after 10–15 years, due to calcification and struc-
tural damage [5]. In spite of this long-standing problem,
BHV material technologies have not changed since their in-
troduction more than 30 years ago.

Improved durability remains an important clinical goal
and represents a unique cardiovascular engineering chal-
lenge, resulting from the extreme valvular mechanical de-
mands. Yet, current BHV assessment relies exclusively on
device-level evaluations, which are confounded by simulta-
neous and highly coupled biomaterial mechanical fatigue,
valve design, hemodynamics, and calcification. Thus, de-
spite decades of clinical BHV usage and growing pop-
ularity, there exists no acceptable method for simulating
BHV durability in any design context. There is thus a pro-
found need for the development of novel simulation tech-
nologies that combine state-of-the-art fluid–structure inter-
action (FSI) analysis with novel constitutive models of BHV
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biomaterial responses, to simulate long-term cyclic load-
ing [6, 7].

Computational modeling of continuum mechanics has
proven tremendously beneficial to the design process of
many other products, but BHVs present unique challenges
for computational analysis, and cannot yet be conveniently
simulated using “off-the-shelf” software. The effect of hy-
drostatic forcing on a closed BHV may be modeled as a
prescribed pressure load and simulated using standard FEM
(see, e.g., [8–10]), but such models cannot capture the tran-
sient response of an opening valve or the so-called “water
hammer effect” in a closing valve. Both of these phenom-
ena likely contribute to long-term structural fatigue, but nei-
ther can be modeled without accounting for the surrounding
hemodynamics. A complete mechanical model of a BHV
must therefore include FSI.

In [11, 12], we developed a new numerical method that,
in the tradition of immersed boundary methods [13–16], al-
lows the structure discretization to move independently of
the background fluid mesh. In particular, we focused on di-
rectly capturing design geometries in the unfitted analysis
mesh and identified our technique with the concept of im-
mersogeometric analysis. The methods that we developed
in [11, 12] made beneficial use of isogeometric analysis
(IGA) [17,18] to discretize both the structural and fluid me-
chanics subproblems involved in the FSI analysis of BHVs.
In this paper, we further advance our immersogeometric FSI
methodology for BHVs by focusing on automating the IGA
model design and improving constitutive modeling of the
chemically-treated tissues forming the BHV leaflets.

Despite recent progress, several challenges remain in the
effective use of IGA to improve the engineering design pro-
cess. A major difficulty toward this end remains automatic
(or semi-automatic) construction of analysis-suitable IGA
models. In many cases, intimate familiarity with computer-
aided design (CAD) technology and advanced programming
skills are required to create high-quality IGA geometries and
meshes. In a recent work [19] the authors introduced an in-
teractive geometry modeling and parametric design platform
that streamlines the engineering design process by hiding
the complex CAD functions in the background through gen-
erative algorithms, and letting the user control the design
through key parameters. In the present work, we apply this
design-through-analysis framework to BHV analysis.

We further enhance the realism of the BHV FSI by ex-
tending the isogeometric rotation-free Kirchhoff–Love thin
shell formulation [20, 21] used in the prior work to include
the soft-tissue constitutive modeling framework developed
in [22]. An important feature of the framework in [22] is
that it can accommodate arbitrary hyperelastic constitutive
models, which adds a great deal of flexibility to the BHV
FSI methodology developed in this work.

The remainder of this paper is structured as follows.
Section 2 describes our BHV FSI modeling framework and
methods. In Section 3, we construct a discrete model of a
BHV immersed in the lumen of a flexible artery and apply
the methodology of Section 2 to perform a BHV FSI sim-
ulation. We compare the FSI results with the results of a
standalone structural dynamics BHV simulation driven by
prescribed transvalvular pressure, considered to be “state-
of-the-art” in the biomechanics community [9]. Section 4
draws conclusions.

2 BHV FSI modeling framework and methods

In this section we present the main constituents of the re-
cently developed FSI modeling framework for heart valves,
focusing on the novel contribution of the present article. We
begin by providing a discussion of the recently developed
parametric design-through-analysis platform for IGA [19]
and its use in the modeling of heart valve geometry. We then
summarize the shell formulation proposed in [22], which
we use to incorporate incompressible Fung-type hyperelas-
tic material behavior into our BHV simulations. We then
provide an overview of the immersogeometric FSI [11] pro-
cedures employed to simulate this challenging class of prob-
lems.

2.1 Parametric modeling of heart valve geometry

In [19], an interactive geometry modeling and parametric
design platform was proposed to help design engineers and
analysts make effective use of IGA. Several Rhinoceros
(Rhino) [23] “plug-ins”, with a user-friendly interface, were
created to take input design parameters, generate parame-
terized surface and/or volumetric models, perform compu-
tations, and visualize the solution fields, all within the same
CAD program. An important aspect of the proposed plat-
form is the use of generative algorithms for IGA model cre-
ation and visualization. In this work, we make use of the de-
veloped platform to automate the geometry design of BHV
models for use in FSI analysis.

The developments in [19] were based on Rhino CAD
software, which gives designers a variety of functions that
are required to build complex, multi-patch NURBS sur-
faces [25]. Recently, additional functionality was added in
Rhino to create and manipulate T-spline surfaces [24, 26].
This is an important enhancement that allows one to move
away from a fairly restrictive NURBS-patch-based geome-
try design to a completely unstructured, watertight surface
definition respecting all the constraints imposed by analy-
sis [27, 28]. Rhino also features a graphic programming in-
terface called Grasshopper [29] suitable for parametric de-
sign, and utilizes open-source software development kits
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Fig. 1: The trileaflet T-spline BHV model in Rhino. The
T-spline surfaces were generated using the in-house para-
metric modeling platform (see Fig. 2) and the Autodesk T-
Splines Plug-in for Rhino [24].

(SDK) [30] for plug-in development. Furthermore, Rhino is
relatively transparent as compared to other CAD software in
that it provides the user with the ability to interact with the
system through the plug-in commands. All of these features
are well aligned with the needs of analysis-suitable geome-
try design for BHVs, and are employed in the present work.

Fig. 1 shows a snapshot of the Rhino CAD modeling
software interface, with the T-spline BHV model used in
the computations of the present paper. This BHV leaflet
geometry is based on a 23-mm design by Edwards Life-
sciences [8, 31]. The NURBS version of this model was an-
alyzed earlier in [11, 12]. In the present case, the leaflets of
the BHV are modeled using three cubic T-spline surfaces, as
shown in Fig. 1. The use of unstructured T-splines enables
local refinement and coarsening [32] and avoids the small,
degenerated NURBS elements near the commissure points
used in [11, 12]. To improve the realism of the simulation,
we include the metal stent in the BHV model. Although this
complicates the geometry, it presents no difficulty for the
design platform employed in this work to generate a single
watertight surface.

Using Grasshopper as a visual programming tool, the
program that creates an analysis-suitable geometry design is
written in terms of “components” with pre-defined or user-
defined functionalities, and “wire connections” between the
components that serve as conduits of input and output
data. As a result, using an intuitive arrangement of compo-
nents and connections one can rapidly generate an analysis
model and establish parametric control over the design. A
Grasshopper program for the geometry design of the BHV
leaflet employed in this work is shown in Fig. 2. The vi-
sual program executes the following geometry construction

Fig. 2: The Grasshopper program for parametric BHV leaflet
geometry modeling. (This figure is intended for zoomed
viewing.) The major geometry construction steps are shown
in Fig. 3.

steps (see Fig. 3 for a visual illustration): Parametric input
is used to construct NURBS curves, which are the bound-
ing curves for the NURBS surface patches that define the
valve leaflet geometry. The resulting multi-patch NURBS
geometry is then re-parameterized to create a single T-spline
surface geometry. Following this workflow, new analysis-
suitable geometries can be easily and efficiently generated
using different sets of input design parameters.

Remark 1 Note that the stent can be generated using the
same parametric geometry modeling approach. It is not in-
cluded in Figs. 2 and 3 for the sake of clarity and simplicity
of presentation.

2.2 Shell structural formulation

The leaflet structure is modeled as a hyperelastic thin shell
with isogeometric discretization as presented in Kiendl et
al. [22]. Due to the Kirchhoff–Love hypothesis of normal
cross sections, a point x in the shell continuum can be de-
scribed by a point r on the midsurface and a normal vector
a3 to the midsurface as

x(ξ1, ξ2, ξ3) = r(ξ1, ξ2) + ξ3 a3(ξ1, ξ2) , (1)

where ξ1, ξ2 are the surface coordinates, ξ3 ∈ [−hth/2, hth/2]
is the thickness coordinate, and hth is the shell thickness.
Covariant base vectors and metric coefficients are defined
by gi = x,i and gi j = gi · g j, respectively, where the no-
tation (·),i = ∂(·)/∂ξi is used for partial derivatives. Further-
more, we adopt the convention that Latin indices take on val-
ues {1, 2, 3} while Greek indices take on values {1, 2}. Con-
travariant base vectors gi are defined by the Kronecker delta
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Fig. 3: Parametric BHV leaflet geometry modeling flowchart.

property gi ·g j = δi
j and contravariant metric coefficients can

be obtained by the inverse matrix [gi j] = [gi j]−1.
For the shell model, only in-plane components of gi j

are considered and terms that appear quadratic in ξ3 are ne-
glected, such that

gαβ = aαβ − 2 ξ3bαβ . (2)

In the above, aαβ and bαβ are the first and second funda-
mental form of the midsurface, respectively, obtained as
aαβ = aα · aβ and bαβ = aα,β · a3, where

aα = r,α, (3)

a3 =
a1 × a2

||a1 × a2||
, (4)

are the tangent base vectors and unit normal vector of the
midsurface, respectively.

The above equations are valid for both deformed and un-
deformed configurations, where variables of the latter will
be indicated by a symbol ˚(·), for example, x̊, g̊,i, g̊i j, etc. The
Jacobian determinant of the mapping from the undeformed
to the deformed configuration is given by

J =

√
|gi j|/|g̊i j| . (5)

Furthermore, we introduce the in-plane Jacobian determi-
nant Jo as

Jo =

√
|gαβ|/|g̊αβ| . (6)

The weak form of the shell structural formulation is
stated as follows:∫
Γt

w · ρhth
∂2y
∂t2

∣∣∣∣∣∣
X

dΓ +

∫
Γ0

∫
hth

δE : S dξ3dΓ

−

∫
Γt

w · ρhthf dΓ −
∫
Γt

w · hnet dΓ = 0 , (7)

where y is the displacement of the shell midsurface, ∂(·)/∂t|X
is the time derivative holding the material coordinates X
fixed, ρ is the density, S is the second Piola–Kirchhoff stress,

δE is the variation of the Green–Lagrange strain correspond-
ing to a displacement variation w, f is a prescribed body
force, hnet = h(ξ3 = −hth/2) + h(ξ3 = hth/2) is the total trac-
tion contribution from the two sides of the shell, and Γ0 and
Γt are the shell midsurface in the reference and deformed
configurations, respectively. The Green–Lagrange strain is
defined as

E =
1
2

(C − I) , (8)

where C is the left Cauchy–Green deformation tensor and
I the identity tensor. Only in-plane strains are computed,
which are obtained as

Eαβ =
1
2

(gαβ − g̊αβ) . (9)

The second Piola–Kirchhoff stress is obtained from a hyper-
elastic strain-energy density function ψ as

S =
∂ψ

∂E
= 2

∂ψ

∂C
. (10)

Linearizing Eq. (10), we obtain the tangent material tensor

C =
∂S
∂E

= 4
∂2ψ

∂C2 . (11)

In this paper, we assume an incompressible material,
where the elastic strain energy function ψel is classically
augmented by a constraint term enforcing incompressibil-
ity, i.e., J = 1, via a Lagrange multiplier p, which can be
identified as the hydrostatic pressure [33]:

ψ = ψel − p(J − 1) . (12)

For shell analysis, we can use the plane stress condition,
S 33 = 0, in order to analytically determine and eliminate
the Lagrangian multiplier p. Furthermore, we eliminate the
transverse normal strains E33 from the equations by static
condensation of the tangent material tensor. The detailed
derivations can be found in [22]. Eventually, we obtain the
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following equations for the shell’s stress and material tan-
gent tensors:

S αβ = 2
∂ψel

∂Cαβ
− 2

∂ψel

∂C33
J−2

o gαβ , (13)

Cαβγδ = 4
∂2ψel

∂Cαβ∂Cγδ
+ 4

∂2ψel

∂C2
33

J−4
o gαβgγδ

− 4
∂2ψel

∂C33∂Cαβ
J−2

o gγδ − 4
∂2ψel

∂C33∂Cγδ
J−2

o gαβ

+ 2
∂ψel

∂C33
J−2

o (2gαβgγδ + gαγgβδ + gαδgβγ) . (14)

With Eqs. (13) and (14), arbitrary 3D constitutive mod-
els can be used for shell analysis directly. Given the first
and second derivatives of the elastic strain energy function,
the incompressibility and plane stress constraints, as well
as static condensation of the thickness stretch, are all in-
cluded by the additional terms in Eqs. (13) and (14). Re-
calling Eq. (2), it can be seen that the whole formulation
can be completely described in terms of the first and second
fundamental forms of the shell midsurface, and using only
displacement degrees of freedom.

To discretize the shell equations we use IGA based on T-
splines, which have the necessary continuity properties. The
details of constructing smooth T-spline basis functions can
be hidden from the analysis code through the use of Bézier
extraction [34]. The extraction operators specifying the re-
lationship between the T-spline basis functions and Bern-
stein polynomial basis on each Bézier element can be gen-
erated automatically by the Autodesk T-Splines Plug-in for
Rhino [24,26]. The mesh of Bézier elements for our T-spline
BHV model is shown in Fig. 4.

2.3 Immersogeometric FSI

In this section we summarize the main constituents of our
framework for immersogeometric FSI, as it applies to the
simulation of BHVs. For mathematical and implementation
details the reader is referred to [11, 12, 35]. Our immerso-
geometric approach to BHV FSI analysis combines the fol-
lowing computational technologies into a single framework:

• The blood flow in a deforming artery is governed by the
Navier–Stokes equations of incompressible flows posed
on a moving domain. The domain motion is handled us-
ing the Arbitrary Lagrangian–Eulerian (ALE) formula-
tion [36, 37], which is a widely used approach for vas-
cular blood flow applications [38–44]. For an overview
of the ALE method in cardiovascular fluid mechan-
ics, see [45, 46]. These two references also include an
overview of the space–time approach to moving do-
mains [47–51], which has also been applied to a good
number of cardiovascular fluid mechanics computations,
with the most recent ones reported in [52–55].

Fig. 4: The Bézier elements defining the T-spline surface
used in the shell analysis. The clamped boundary condition
is applied to the leaflet attachment edge by fixing two rows
of T-spline control points highlighted in the figure. (The
points in the second row away from the edge are also called
tangency handles.)

• The blood flow domain follows the motion of the de-
formable artery wall, which is governed by equations
of large-deformation elastodynamics written in the La-
grangian frame [56]. In the present work, the discretiza-
tion between blood flow and artery wall is assumed to
be conforming, and is handled using a monolithic FSI
formulation described in detail in [57].

• The discretization of the Navier–Stokes equations makes
use of a combination of NURBS-based IGA and ALE–
VMS [58–60]. The ALE–VMS formulation may be in-
terpreted both as a stabilized method [47, 61, 62] and
as a large-eddy simulation (LES) turbulence model [47,
61–67]. The discretization of the solid arterial wall also
makes use of trivariate NURBS-based IGA.

• BHV leaflets are modeled as rotation-free hyperelastic
Kirchhoff–Love shell structures (see [22] and the previ-
ous section) and discretized using T-splines. In the FSI
framework, they are immersed into a moving blood-flow
domain. The immersed FSI problem is formulated using
an augmented Lagrangian approach for FSI, which was
originally proposed in [68] to handle boundary-fitted
mesh computations with nonmatching fluid–structure in-
terface discretizations. It was found in [11] that the aug-
mented Lagrangian framework naturally extends to non-
boundary-fitted (i.e., immersed) FSI problems, but with
the following modifications. The tangential component
of the Lagrange multiplier λλλ is formally eliminated from
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the formulation, resulting in weak enforcement of no-
slip conditions at the fluid–structure interface [68]. The
normal component of the Lagrange multiplier λ = λλλ · n
is retained in the formulation in order to achieve better
satisfaction of no-penetration boundary conditions at the
fluid–structure interface.

• The Lagrange multiplier field is discretized by collocat-
ing the normal-direction kinematic constraint at quadra-
ture points of the fluid–structure interface and involves
adding a scalar unknown at each one of these quadra-
ture points. In the evaluations of integrals involved in
the augmented Lagrangian formulation these multiplier
unknowns are treated as point values of a function de-
fined at the fluid–structure interface. In the computa-
tions, λ is treated in a semi-implicit fashion. Namely, the
penalty terms in the augmented Lagrangian formulation
are treated implicitly, while the resulting penalty force is
used to update λ explicitly in each time step.

• Contact between BHV leaflets is an essential feature
of a functioning heart valve. During the closing stage,
the BHV leaflets contact one another to prevent leak-
age of blood back into the left ventricle. In the context
of immersed FSI approaches, pre-existing contact meth-
ods and algorithms (see, e.g., [69, 70]) may be incorpo-
rated directly into the framework without any modifi-
cation or concern for fluid-mechanics mesh quality. In
the present work, we adopt a penalty-based approach for
sliding contact and impose contact conditions at quadra-
ture points of the shell structure. The use of smooth basis
functions improves the performance of contact between
valve leaflets (see, e.g., [71]).

• BHV simulations involve flow reversal at outflow
boundaries, which, unless handled appropriately, often
leads to divergence in the simulations. In order to pre-
clude this backflow divergence, an outflow stabilization
method originally proposed in [72] and further studied
in [73] is incorporated into the FSI framework.

• We use a novel semi-implicit time integration procedure:
1. Solve implicitly for the fluid, solid structure, mesh

displacement, and shell structure unknowns, holding
the Lagrange multiplier λ fixed at its current value.
Note that the fluid and shell structure are coupled in
this subproblem due to the presence of penalty terms
in the augmented Lagrangian framework. The im-
plicit system is formulated based on the Generalized-
α technique [57, 74, 75].

2. Update the Lagrange multiplier λ by adding the
normal component of penalty forces coming from
the fluid and structure solutions from Stage 1. In
this work, we stabilize this update following refer-
ence [35], scaling the updated multiplier by 1/(1+r),
where r is a nonnegative, dimensionless constant.

As detailed in [11], the above semi-implicit solution
procedure is algorithmically equivalent to fully implicit
integration of a “stiff” differential-equation system ap-
proximating the constrained differential–algebraic sys-
tem. The stiffness increases as the time step shrinks, but
the conditioning of Stage 1 remains unaffected. A recent
reference [35] showed that a stiff differential equation
system is energetically stable in a simplified model prob-
lem, even when r = 0. To solve the nonlinear coupled
problem in Stage 1, a combination of the quasi-direct
and block-iterative FSI coupling strategies is adopted
(see [76–79]). The complete algorithm is given in [12].

Remark 2 Our framework falls under the umbrella of the
Fluid–Solid Interface-Tracking/Interface-Capturing Tech-
nique (FSITICT) [80]. The FSITICT targets FSI problems
where interfaces that are possible to track are tracked, and
those too challenging to track are captured. The FSITICT
was introduced as an FSI version of the Mixed Interface-
Tracking/Interface-Capturing Technique (MITICT) [81].
The MITICT was successfully tested in 2D computations
with solid circles and free surfaces [82, 83], and in 3D com-
putation of ship hydrodynamics [84]. The FSITICT was re-
cently employed in [85] to compute several 2D FSI bench-
mark problems.

Remark 3 On the fluid mechanics domain interior, the mesh
motion is obtained by solving a sequence of linear elasto-
static problems subject to the displacement boundary con-
ditions coming from the artery wall. In the formulation
of the elastostatics problems, the Jacobian stiffening tech-
nique is employed to protect the boundary-layer mesh qual-
ity [86–89].

Remark 4 It was shown in [90–93] that imposing Dirich-
let boundary conditions weakly allows the flow to slip on
the solid surface, which, in turn, relaxes the boundary-
layer resolution requirements to achieve the desired so-
lution accuracy. In the non-boundary-fitted FSI, the fluid
mesh is arbitrarily cut by the structural boundary, leaving
a boundary-layer discretization of inferior quality compared
to the boundary-fitted case. As a result, weakly enforced no-
slip conditions, which naturally arise in the augmented La-
grangian framework, simultaneously lead to imposition of
the physical kinematic constraints at the fluid–structure in-
terface, and, as an added benefit, enhance the accuracy of
the fluid mechanics solution near the interface.

Remark 5 During the closing stage, the BHV leaflets con-
tact one another to block reversed flow to the left ventricle.
As a result, the contact formulation employed must be such
that no gap is allowed between the leaflets. This, in turn,
leads to a topology change in the problem, and presents
one of the main reasons in the literature for developing
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non-boundary-fitted FSI techniques for the present applica-
tion. Reference [53] recently demonstrated how space–time
FEM, in combination with appropriately defined master–
slave relationships between the mesh nodes in the fluid me-
chanics domain, can deliver solutions for cases with topol-
ogy change without resorting to immersed techniques. The
space–time with topology change (ST-TC) technique was
successfully applied in the CFD simulation of an artificial
heart valve with prescribed leaflet motion in [55].

3 BHV simulations

We compute pressure-driven structural dynamics and FSI
of the BHV shown in Fig. 4. In particular, we consider a
BHV replacing an aortic heart valve, which regulates flow
between the left ventricle of the heart and the aorta. During
systole, when the heart contracts, the valve permits ejection
of oxygenated blood from the left ventricle into the aorta,
and, during diastole, as the heart relaxes, a correctly func-
tioning aortic valve prohibits regurgitation of blood back
into the expanding ventricle. Sections 3.1 and 3.2 describe
the modeling of the BHV and the surrounding artery and
lumen, while Section 3.3 focuses on the comparison of the
structural dynamics and FSI simulation results.

3.1 BHV constitutive model and boundary conditions

Biological tissues are favored in the construction of BHVs
due to their unique mechanical properties. The most impor-
tant of these is that they remain compliant at low strains
but stiffen dramatically when stretched, allowing for ease of
motion without sacrificing durability. The underlying struc-
tural mechanism is the presence of collagen fibers which
are highly undulated in unloaded tissue. These fibers pro-
vide only small bending stiffnesses in unloaded tissue, but
their relatively larger tensile stiffness can be recruited when
they are straightened under strain. One of the earliest and
most widely used models uses an exponential function of
strain to describe the stiffening of tissues under tensile load-
ing [94–96]. It is widely referred to as Fung models. For
smaller bending strains, such as those in an open aortic BHV
during systole, the dominant contribution to material stiff-
ness is the extracellular matrix (ECM), which supports the
network of collagen fibers. Reference [97] advocates model-
ing ECM as an incompressible neo-Hookean contribution to
the strain-energy density functional. In this work, we com-
bine an isotropic Fung model of collagen fiber stiffness with
a neo-Hookean model of cross-linked ground matrix stiff-
ness to obtain the following strain-energy density functional:

ψel =
c0

2
(I1 − 3) +

c1

2

(
ec2(I1−3)2

− 1
)

, (15)

where c0, c1, and c2 are material parameters. This model
is combined with the incompressibility constraint as in
Eq. (12). Note that while Eq. (15) is a simplified isotropic
approximation to true anisotropic leaflet behaviors, it cap-
tures the important exponential nature of the BHV soft tis-
sue behavior.

The mass density of the leaflets is set to 1.0 g/cm3. The
material parameters are set to c0 = 1.0 × 106 dyn/cm2,
c1 = 2.0 × 105 dyn/cm2, and c2 = 100. The values of c1 and
c2 provide tensile stiffnesses that are generally comparable
to those of the more complicated pericardial BHV leaflet
model considered in [8]. The ECM modulus c0 is selected
to provide a small-strain bending stiffness similar to that of
glutaraldehyde-treated bovine pericardium, as measured by
the three-point bending tests reported in [98]. The hypere-
lastic thin shell analysis framework of Section 2.2 requires
the following derivatives of the strain energy functional in
Eqs. (13) and (14):

∂ψel

∂Ci j
=

1
2

(
c0 + 2c1c2(I1 − 3)ec2(I1−3)2)

g̊i j , (16)

∂2ψel

∂Ci j∂Ckl
= c1c2ec2(I1−3)2 (

1 + 2c2(I1 − 3)2
)

g̊i jg̊kl . (17)

The BHV model employs the T-spline geometry con-
structed in Section 2.1. The T-spline mesh comprises 484
and 882 Bézier elements for each leaflet and the stent, re-
spectively, and a total of 2,301 T-spline control points. The
stent is assumed rigid, and leaflet control points highlighted
in Fig. 4 are restrained from moving. This clamps the at-
tached edges of the leaflets to the rigid stent. (The stent is,
for all practical purposes, rigid since it is supported by a
metal frame, which is orders of magnitude stiffer than the
soft tissue of the BHV leaflets.) The leaflet thickness is set
to a uniform value of 0.0386 cm.

Remark 6 The use of pinned rather than clamped boundary
conditions is common in the structural analysis of BHVs
reported previously [9, 31, 99–101]. However, the leaflets
are, in fact, physically clamped at the attachment edge in
most stented BHVs (see, e.g., [102, 103]). As shown later
in the paper, using clamped boundary conditions, the com-
puted fully-open configuration of the leaflets is closer to the
experimental measurements of pericardial BHV deforma-
tions [104–106] than results computed using pinned bound-
ary conditions in [11, 12].

To elucidate the physical significance of the Fung-type
material model given by Eq. (15) in the context of BHV de-
sign, we compare its behavior to that of the classical St.
Venant–Kirchhoff material, which assumes a linear stress–
strain relationship and can not capture the exponential stiff-
ening behavior of soft tissues. Fig. 5 compares MIPE1 in

1 Maximum in-plane principal Green-Lagrange strain, the largest
eigenvalue of E.
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Fig. 5: Comparison between different isotropic material
models. The valve is loaded with a spatially-uniform pres-
sure of 100 mmHg. The maximum values of MIPE are 0.490
and 0.319 for St. Venant–Kirchhoff and Fung-type cases, re-
spectively.

pressure-loaded, fully-closed configurations of a valve mod-
eled using the Fung-type material described above and a
valve of the same geometry modeled using an isotropic
St. Venant–Kirchhoff material with Young’s modulus E =

1.1 × 107 dyn/cm2 and Poisson’s ratio ν = 0.495. The value
of E is chosen such that the overall deformations are visu-
ally similar. The results show that the peak strain in the St.
Venant–Kirchhoff material is much larger. The exponential
term in the Fung-type energy functional ensures that regions
of concentrated strain are energetically unfavorable, which
has the effect of distributing strains more evenly through the
leaflets.

3.2 Model of the artery and lumen

We model the artery as a 16 cm long elastic cylindrical tube
with a three-lobed dilation near the BHV, as shown in Fig. 6.
This dilation corresponds to the aortic sinus, which is known
to play an important role in heart valve dynamics [107]. The
cylindrical portion of the artery has an inside diameter of 2.6
cm and a wall thickness of 0.15 cm. The outflow boundary
is 11 cm downstream of the valve, located at the right end of
the channel, based on the orientation of Fig. 6. The inflow
is located 5 cm upstream, at the left end of the channel. The
designations of inflow and outflow are based on the prevail-
ing flow direction during systole. In general, fluid may move
in both directions and there is typically some regurgitation
during diastole.

The arterial geometry is constructed using trivariate
quadratic NURBS, allowing us to represent the circular por-
tions exactly. We use a multi-patch design to avoid having
a singularity at the center of the cylindrical sections (see
Fig. 7). Basis functions are made C0-continuous by repeated
knot insertion at the fluid–solid interface, to capture the con-
tinuous but non-smooth velocity field across this jump in
material type. The solid subdomain corresponds to the elas-

tic aortic wall, while the fluid subdomain is the enclosed
lumen. The mesh of the lumen and aortic wall consists of
102,960 and 12,480 elements, respectively. Mesh refinement
is focused near the valve and sinus, as shown in Fig. 6. Fig. 7
shows that the mesh is clustered toward the wall to better
capture the boundary layer solution in those regions.

The arterial wall is modeled as a neo-Hookean mate-
rial with dilatational penalty (see, e.g. [57, 108]), where the
shear and bulk modulii of the model are selected to produce
a Young’s modulus of 1.0 × 107 dyn/cm2 and Poisson’s ra-
tio of 0.45 in the small-strain limit. The density of the arte-
rial wall is 1.0 g/cm3. Mass-proportional damping is added
to model the interaction of the artery with surrounding tis-
sue and interstitial fluid, with the damping coefficient set to
1.0 × 104 s−1. The fluid density and viscosity in the lumen
are set to ρ1 = 1.0 g/cm3 and µ = 3.0 × 10−2 g/(cm s), re-
spectively, which model the physical properties of human
blood [109, 110].

The inlet and outlet of the artery are free to slide in their
cut planes, but constrained not to move in the orthogonal
direction (see [42] for details). The outer wall of the artery
has a zero-traction boundary condition. The BHV stent is
surgically sutured to the aortic annulus at the suture ring.
Since the stent is assumed not to move in this work, we apply
homogeneous Dirichlet conditions to any control point of
the solid portion of the artery mesh whose corresponding
basis function’s support intersects the stationary stent. Fig. 8
shows geometrically how the base ring intersects with the
solid wall. The size of the ring can influence the potential
space for blood flow and thus is important to be included in
the FSI simulation. The stent also properly seals the gap in
the fluid domain between the attached edges of the leaflets
and the aortic wall.

3.3 Computations and results

This section sets up and compares the results of simulations
of BHV function that are based on standalone structural dy-
namics and FSI.

3.3.1 Details of the structural dynamics simulation

In the structural dynamics computation, we model the
transvalvular pressure (i.e., pressure difference between left
ventricle and aorta) with the traction −P(t)n, where P(t) is
the pressure difference at time t shown in Fig. 9, and n is
the surface normal pointing from the aortic to the ventricular
side of each leaflet. The transvalvular pressure signal is peri-
odic with a period 0.86 s. As in the computations of [11,31],
we use damping to model the viscous and inertial resistance
of the surrounding fluid. We apply this damping as a trac-
tion −cdu, where u is the velocity of the shell midsurface
and cd = 80 g/(cm2 s). This value of cd ensures that the
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Fig. 6: A view of the arterial wall and lumen into which the valve is immersed.

Fig. 7: Cross-sections of the fluid and solid meshes, taken
from the cylindrical portion and the sinus.

Fig. 8: The sinus, magnified and shown in relation to the
valve leaflets and rigid stent. The suture ring of the stent
intersects with the arterial wall.

valve opens at a physiologically reasonable time scale when
the given pressure is applied. The time step size for the dy-
namic simulation is ∆t = 1.0 × 10−4 s.

3.3.2 Details of the FSI simulation

In the FSI simulation, we apply the physiologically-realistic
left ventricular pressure time history from [111] (also plot-
ted in Fig. 10) as a traction boundary condition at the in-
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Fig. 9: Transvalvular pressure applied to the leaflets as a
function of time. The profile is reproduced based on that
reported in Kim et al. [31]. The original data has a cardiac
cycle of 0.76 s. It is scaled to 0.86 s in our study to match
the single cardiac cycle duration of our FSI simulation.
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Fig. 10: Physiological left ventricular (LV) pressure profile
applied at the inlet of the fluid domain. The duration of a
single cardiac cycle is 0.86 s. The data is obtained from Yap
et al. [111].

flow. The applied pressure signal is periodic with a period
0.86 s. The traction −(p0 + RQ)n is applied at the outflow,
where p0 is a constant physiological pressure level, n is the
outward-facing normal of the fluid domain, R > 0 is a resis-
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t = 0.0 (t = 0.86) s t = 0.02 s t = 0.04 s

t = 0.07 s t = 0.225 s t = 0.235 s

t = 0.27 s t = 0.35 s t = 0.85 s

Fig. 11: Deformations of the valve from the structural dynamics computation, colored by the MIPE evaluated on the aortic
side of the leaflet. Note the different scale for each time. The time t is synchronized with Fig. 9 for the current cycle.

t = 0.0 (t = 0.86) s t = 0.02 s t = 0.06 s

t = 0.24 s t = 0.33 s t = 0.335 s

t = 0.34 s t = 0.53 s t = 0.78 s

Fig. 12: Deformations of the valve from the FSI computation, colored by the MIPE evaluated on the aortic side of the leaflet.
Note the different scale for each time. The time t is synchronized with Fig. 10 for the current cycle.

tance constant, and Q is the volumetric flow rate through
the outflow. In the present computation, we set p0 = 80
mmHg and R = 70 (dyn s)/cm5. These values ensure a real-
istic transvalvular pressure difference of 80 mmHg across
a closed valve, when Q = 0, while permitting a reason-
able flow rate during systole. We use backflow stabilization
from [73], with β = 0.5, at both inlet and outlet surfaces. The
normal and tangential velocity penalization parameters used
in our FSI formulation are τB

TAN = 2.0 × 103 g/(cm2 s) and

τB
NOR = 2.0×102 g/(cm2 s). As in our earlier studies [11,12],

we set the τM scaling factor to sshell = 106 to obtain ac-
ceptable mass conservation near the immersed structure. As
in the structural dynamics simulation, the time step size is
∆t = 1.0 × 10−4 s. The stabilization parameter of the semi-
implicit time integration scheme is r = 10−5. This follows
our recommendation from [35] to select r � 1.

Remark 7 As r → 0, the semi-implicit time integration
of the Lagrange multiplier field may be interpreted as
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t = 0.0 (t = 0.86) s t = 0.02 s t = 0.06 s t = 0.24 s t = 0.33 s

t = 0.335 s t = 0.34 s t = 0.38 s t = 0.53 s t = 0.78 s

Fig. 13: Volume rendering of the velocity field at several points during a cardiac cycle. The time t is synchronized with
Fig. 10 for the current cycle.

a fully-implicit fluid–structure displacement penalization
(cf. [11, Section 4.2.1]), with stiffness τB

NOR/∆t = 2.0 × 107

dyn/cm3. We may roughly estimate the physical signifi-
cance of the time step splitting error incurred through semi-
implicit integration by considering the fluid displacement
through the valve in static equilibrium. The fluid would
penetrate through the closed valve by a distance of only
∆P/(τNOR/∆t) = 0.005 cm for diastolic pressure differences
on the order of ∆P = 105 dyn/cm2. This is effectively within
modeling error, considering that the penetration is nearly an
order of magnitude smaller than the thickness of the leaflets.

3.3.3 Results and discussion

Fig. 11 illustrates the deformations and strain distributions
of the BHV model throughout a period of the prescribed
pressure loading. Fig. 12 shows the deformations and strains
from a period of the FSI simulation, while Fig. 13 depicts
the corresponding flow fields in the artery lumen. The volu-
metric flow rate through the top of the artery throughout the
cardiac cycle is shown in Fig. 14.

Several important qualitative differences between the
valve deformations in the dynamic and FSI computations are
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Fig. 14: Computed volumetric flow rate through the top of
the fluid domain, during a full cardiac cycle of 0.86 s.

observed. Firstly, the opening process is very different. We
can see from the snapshots at t = 0.02 s from Figs. 11 and 12
that the follower load in the dynamic computation drives the
free edges of the leaflets apart immediately, while, in the
FSI computation, the opening deformation initiates near the
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attached edge, then spreads toward the free edge. The open-
ing of the leaflets in the FSI computation closely resembles
the sequence of pericardial BHV leaflet deformations mea-
sured in vitro in [106], while the dynamic simulation ex-
hibits unrealistic features. It is clear from the deformation
cross-sections in Fig. 15 that a portion of the leaflet near
the free edge ends up with the top (aortic) side of the leaflet
facing downward. The follower load then pushes the free
edge downward, exaggerating this feature. A similar artifact
is apparent in the earlier dynamic computations of [31,101].

During the closing phase, the coaptation of the free
edges of the leaflets is significantly delayed in the FSI com-
putation; the free edges lean outward throughout the clos-
ing process, as is clear in Fig. 15. The follower load of the
dynamic simulation drives the leaflets closed in a more uni-
form manner. This delayed closing of the free edge occurs
in some pericardial bioprosthetic valve leaflets, and is evi-
dent in the photographic images taken and reported in [104].
This deformation is not observed in all valve leaflets, though
(cf. [106]), and we therefore suspect that it is highly sensi-
tive to valve geometry, leaflet material properties, and flow
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Fig. 15: Cross-sections of the time-dependent leaflet profile.

conditions. It seems unlikely that a uniform pressure fol-
lower load would cause this closing behavior, and it is not
seen in any of the earlier structural dynamics computations
of [9, 31, 101].

For the fully-closed configuration, the structural dynam-
ics and FSI simulation results are quite similar, as can be
seen in Fig. 15. Fig. 13 shows that at this configuration, the
flow is nearly hydrostatic. The BHV in the FSI computa-
tion is under hydrostatic pressure, which is at a similar level
to the prescribed pressure load applied in the structural dy-
namics simulation. This result shows the applicability of the
common modeling practice of approximating the influence
of the fluid on the fully-closed valve as a pressure follower
load, even though at other phases clear discrepancies were
observed between dynamic and FSI computations.

4 Conclusions and further work

In this work we combine the geometry modeling and para-
metric design platform introduced in [19], thin shell con-
stitutive modeling framework developed in [22], and im-
mersogeometric FSI methodology proposed in [11, 12] to
perform high-fidelity BHV FSI with a greater level of au-
tomation, robustness and realism than achieved previously.
We demonstrate the performance of our methods by apply-
ing them to a challenging problem of FSI analysis of BHVs
at full scale and with full physiological realism. We illus-
trate the added value of including realistic material models
of leaflet tissue and FSI coupling by comparing our results
with those that omit material nonlinearity, or approximate
the influence of the blood flow on the structure by means
of applying prescribed uniform pressure loads and damping
forces. The present effort represents the first step toward au-
tomated optimization of the leaflet design, to increase the
useful life of BHVs.
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