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ABSTRACT 
 
A rapid, automated, multi-analyte Microflow Cytometer is being developed as a portable, field-deployable sensor for on-
site diagnosis of biothreat agent exposure and environmental monitoring. The technology relies on a unique method for 
ensheathing a sample stream in continuous flow past an interrogation region where optical fibers provide excitation and 
collect emission. This approach efficiently focuses particles in the interrogation region of the fluidic channel, avoids 
clogging and provides for subsequent separation of the core and sheath fluids in order to capture the target for 
confirmatory assays and recycling of the sheath fluid. Fluorescently coded microspheres provide the capability for highly 
multiplexed assays. Optical analysis at four different wavelengths identified six sets of the coded microspheres 
recognizing Escherichia coli, Listeria, and Salmonella as well as cholera toxin, staphylococcal enterotoxin B (SEB), and 
ricin, and assay results were compared with those of a commercial Luminex analysis system. 
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1. INTRODUCTION 
 
Flow cytometers have established applications in many areas of analysis, ranging from environmental diagnostics to 
biomedical science. As the applications expand, the market for portable systems increase. Microfluidics offer the 
potential to reduce system size significantly, and a variety of microfluidic cytometers have been reported in the literature, 
as reviewed in Ateya et al.1  In general, sheathing of the sample or “core” fluid is required to focus the particles 
uniformly in the laser beam. Because the power in the laser beam has a Gaussian distribution, particles distributed in 
different regions of the beam will be excited with varying efficiency; the more narrow the core stream, the more 
reproducible is the signal intensity. Since the nozzles typical of large flow cytometers are difficult to fabricate in 
microfluidic systems, we have developed an alternative method for sheathing the core stream that relies on grooves in 
the channel walls and only requires one or two sheath fluid inlets.2  This sheathing system is easy to fabricate and can be 
fabricated in a variety of materials, including polymethylsiloxane (PDMS), polymethylmethacrylate, and glass, using 
soft lithography, CNC and laser milling, hot embossing, and standard lithography.  
  
A feature of the microflow cytometer described here that sets it apart from most cytometer systems reported in the 
literature is the delivery of excitation light and collection of emissions using optical fibers embedded in the chip. Most 
investigators have used microscope objectives or other lenses, to deliver and collect light perpendicular to the substrate. 
We have simply placed the optical fibers in the substrate adjacent to the fluidic channel and rely on the fibers to focus the 
laser light on the core stream. Fluorescence and scattered light was collected by additional optical fibers placed at 
selected angles to the excitation fiber; the wavelengths measured were selected by using filters between the optical fibers 
and the photomultiplier tubes. While inserting the fibers into preformed alignment channels in the substrate does add an 
additional step to the fabrication, the resulting alignment is robust.   
 
 
 
 
*Address for correspondence:  joel.golden@nrl.navy.mil 
 
 

Frontiers in Pathogen Detection: From Nanosensors to Systems, edited by Philippe M. Fauchet, Benjamin L. Miller, 
Proc. of SPIE Vol. 7553, 755308 · © 2010 SPIE · CCC code: 1605-7422/10/$18 · doi: 10.1117/12.842623

Proc. of SPIE Vol. 7553  755308-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/08/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

 
2. METHODS 

 
 
2.1  Materials 
 
Streptavidin-conjugated phycoerythrin was supplied by Prozyme (San Leandro, CA, USA). Carboxy-functionalized 
microsphere sets 98, 81, 77, 56, 50, and 32 were purchased from Luminex Corporation (Austin, TX, USA). All 
microspheres were 5.6 µm diameter polystyrene microspheres coded with different amounts of two fluorescent indicator 
dyes. Llama IgG (anti-ricin) was purchased from Triple J Farms (Bellingham, WA, USA). Heat deactivated Escherichia 
Coli (E. coli), Salmonella, Listeria, goat anti-E. coli, goat anti-Listeria, and goat anti-Salmonella IgG were obtained from 
Kirkegaard & Perry Laboratories, Inc. (Gaithersburg, Maryland). Rabbit anti-staphylococcal enterotoxin B (SEB) was 
kindly provided by the Naval Medical Research Center (Silver Spring, MD, USA). Cholera toxin was from Calbiochem 
(San Diego, CA) and rabbit anti-cholera toxin was from Biogensis (Kinston, NH). Chlorotrimethylsilane was purchased 
from Sigma-Aldrich (St. Louis, MO, USA). SU-8 photoresist was purchased from Microchem (Newton, MA, USA). 
PDMS (Sylgard 184) was purchased from Dow-Corning (Corning, NY, USA) and used according to manufacturer’s 
instructions of 10:1 base to curing agent volume ratio. Polyetheretherketone (PEEK) tubing was purchased from 
Upchurch Scientific (Oak Harbor, WA, USA).  
 
2.2  Device fabrication 
 
The microflow cytometer channels were fabricated in polydimethylsiloxane (PDMS) using standard soft lithography 
procedures. Briefly, a master was created on a silicon wafer by sequentially spinning on layers of SU-8 photoresist and 
exposing with a photomask containing the desired channel geometries and features. After development, the master was 
treated with chlorotrimethylsilane vapor to prevent polymer adhesion. The master was placed into the bottom of a mold 
and PDMS was poured on top to make layers with a thickness of approximately 1 mm (bottom) or 10 mm (top). After 
curing, the PDMS was peeled from the master. Fluidic inlets were cored into the top layer of PDMS. Channels were 
located only in the top half of the device so that only the chevrons would need to be aligned before bonding. Channels 
were 130 µm high and 390 µm wide. The chevron-shaped grooves extended 65 µm into the top and bottom of the 
channels. The two PDMS pieces were then bonded together by oxygen plasma treatment. Optical fibers were cleaved 
and placed into their guide channels and carefully aligned with the channel walls. PEEK tubing sections (Upchurch 
Scientific, Oak Harbor, WA) with an internal diameter of 400 µm and a length of 13 mm were placed into the inlets. 
Finally, the optical fiber channels and PEEK inlets were sealed with PDMS cured at 50oC for 2 hours.  
 
Diode lasers at 532 nm (GM32-10H, 10 mW, Intelite, Inc. Minden NV) and 635 nm (LAS-200-635-15, 15 mW, 
Lasermax Inc, Rochester, NY) provided the excitation light. A multimode “dump fiber” was positioned opposite the 
excitation fiber to minimize scatter from the excitation beam off the PDMS. Two fibers equipped with beam splitters 
collected the light signals from microspheres passing through the laser beams. Scatter from the microspheres was 
collected at 635 nm. Fluorescence was collected at 665 +/- 10 nm and 700 nm longpass filters for microsphere 
identification (665DF20, Omega Optical, Inc., Brattleboro VT, LL700, 700 nm longpass filter, Corion Corp., Franklin 
MA), and a 565 +/- 10 nm filter for detection of phycoerythrin fluorescence (565WB20, Omega Optical, Inc., 
Brattleboro, VT). The output of the PMTs was recorded using an A/D converter (NI USB-6251 M, National Instruments, 
Austin, TX) and data acquisition and data analysis software was written in LabWindows/CVI (National Instruments, 
Austin, TX).  
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2.3  Assays 
 
Multiplexed assays were performed using Luminex© microspheres and analyzed using both the microflow cytometer and 
the commercial Luminex© system. Earlier studies3,6 confirmed that six microsphere sets could be distinguished in the 
microflow cytometer based on the amounts of fluorescence of the microspheres at 665 nm and >700 nm. For this study, 
antibodies were attached to carboxy-functionalized microspheres (13 microsphere sets) using the standard two-step 
carbodiimide coupling chemistry protocol provided by the manufacturer. After removal of unbound antibody, the 
microspheres were resuspended in phosphate buffered saline (PBS) with 0.05% Tween-20 (PBST) and then stored in the 
dark at 4ºC until used. For this experiment, the microsphere sets were coated with antibodies with the following 
specificities:  cholera toxin, Salmonella, Listeria, ricin, Escherichia coli, and Staphylococcal enterotoxin B (SEB). The 
mixture of microsphere sets was incubated with  concentrations of the analyte, washed, and then exposed to mixture of 
biotinylated tracer antibodies (5 μg/mL each). Excess tracer was removed by washing the microspheres over a filter 
plate. The microspheres were analyzed using the Luminex© flow cytometer or flowed through the microflow cytometer 
using a total sheath flow rate of 400 µL/min.  
 

3. RESULTS AND DISCUSSION 
 
Optical analysis at four different wavelengths identified the 13 sets of coded microspheres and could quantify target 
bound by the presence of phycoerythrin-bound tracer.  The fluorescence values for the microsphere ID wavelengths were 
normalized by the light scatter at 635 nm in order to control for variation in illumination intensity. These measurements 
provided excellent discrimination of the microsphere sets used in this experiment (Figure 3).  
 
The microcytometer detected targets such as Escheria coli, Listeria, Salmonella, cholera toxin, staphylococcal 
enterotoxin B (SEB), and ricin.  The microsphere mixture was used to perform multiplexed sandwich immunoassays on 
samples spiked with bacteria or toxin, generating dose-response curves such as those in Figure 3.   Assays with the 
microflow cytometer established limits of detection shown in Table 1.  

Figure 1.  Diagram of optics and fluidics for the 
Microflow cytometer.  
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Figure 2. Two colors of fluorescence are plotted to identify each microsphere. The fluorescence units for the 705 and 665 nm signals 
divided by the 635 nm scatter signal are plotted on the x and y axes, respectively. Values segregate the microspheres into distinct 
populations.  
 
 
 
 

 
 
Figure 3.  Dose response of E. coli comparing the microflow cytometer and the commercial system (Luminex); ♦ = Salmonella, × = 
Listeria, ▲= Cholera toxin, ▬ = Ricin, ■ = E. coli, ● = SEB).4 
 
 
 
 
 
 
 
 

Proc. of SPIE Vol. 7553  755308-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/08/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

 
Table 1.  Limits of detection for the three bacteria species and three toxins and their associated coefficients of variation were 
determined using the conventional benchtop cytometer (Luminex) and the Microflow Cytometer.  Limits of detection were designated 
as the tested concentration of the antigen that produced a mean signal greater than the average of the mean signals from the five other 
microsphere sets that did not specifically bind the tested antigen (negative controls) plus 3 times the standard error. The coefficients of 
variation (CV) were determined for the analyses at the LODs.4 
 

bacteria (cfu/mL)    toxins (ng/mL) 
cytometer   E. coli  Listeria  Salmonella  cholera  SEB      ricin 
Luminex (% CV)   103 (1.0)  106 (0.7)  105 (2.7)   1.6 (1.0)  0.064 (2.5)  8.0 (5.6) 
Microflow (% CV)   104 (11)  105 (14)  105 (28)   0.32 (22)  1.6 (7.7)      1.6 (6.7) 
 
 
3.1 Unsheathing and Recycling 
 
Hydrodynamic focusing of one laminar stream by another has inspired new approaches for separations, optical 
components, biosensors, and cell analysis [3,5-8].  In nearly all of these publications, laminar flow is used to alter a flow 
stream irreversibly or redistribute components within parallel flow streams.  The reversibility of these processes has 
received little attention.  Here we demonstrate the capacity of hydrodynamic focusing to completely encircle a sample 
stream with a sheath fluid, reduce the diameter of the sample stream (as for cytometry), and then reverse the process both 
to recapture sample components with minimal dilution and to recycle the sheath fluid. 
 
Using the reversibility in the laminar flow regime, we designed a microdevice that returns the sample stream to its 
original position with respect to the sheath streams. We quantified the reversibility by recapturing the beads as an 
indicator of particulates in a sample and a low molecular weight dye to visualize the exact position of the sample stream. 
We achieved 100% recapture of the sample stream and the recovered particles.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Images of the sheathing and unsheathing processes at 90% sheath fluid recycling.  a) Top view of the inlet, inlet chevrons, 
reverse chevrons, and outlet sections of the microchannel.  b) Confocal images of the sample fluid at the inlet and reverse chevrons.  
The sample height decreases upon passing through the inlet chevrons and increases by passing through each reverse chevron.  The 
sample flow rate is 10 µL/min and the sheath flow rate is 1100 µL/min. 

 

a. 
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4. CONCLUSIONS 
 
We have constructed a microflow cytometer using chevron-shaped grooves to ensheath the sample stream with sheath 
fluid and optical fibers for delivering the excitation light and collecting signal at four wavelengths. Using the four 
signals, coded microspheres can be used to perform multi-analyte assays. The microflow cytometer is relatively simple 
to fabricate, robust and resistant to clogging.  

 
The reversibility of the hydrodynamic focusing has application for automated processing of cells and particles, for long-
term unattended use of flow cytometers, and for improved cell recovery after sorting of tumor and stem cells.  For 
example, cells could be mixed with more rapidly diffusing dyes and then recaptured in their original volume.  
Cytometers with recycled sheath fluid could be used to monitor recycled drinking water for bacterial contamination on 
the space shuttle or to reduce the size and logistical burden of systems that monitor the air for release of biothreat agents. 
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