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We numerically explore the nonlinear dynamics of the oscillating cantilever tip in tapping mode
atomic force microscopy. The cantilever dynamics are determined by complex force interactions
between the sample surface and the oscillating cantilever tip which are dominated by attractive,
adhesive, and repulsive contributions depending on the instantaneous position of the cantilever. We
use a model proposed by Zitzler et al that includes a capillary force interaction due to the thin
film of water that covers all surfaces as a result of ambient humidity. As the cantilever approaches
the surface a meniscus is formed and as the cantilever retracts this water layer forms a neck and
eventually breaks. This introduces hysteresis since the formation of the meniscus and the breaking
of the water neck occur at different spatial locations during an oscillation of the cantilever. Using
forward-time simulation with event handling techniques tailored for situations with rapid changes
in force interactions we find three classes of steady-state dynamics: (i) a branch of solutions with
periodic dynamics and large amplitude of oscillation; (ii) a branch of solutions with periodic dynam-
ics and small amplitude of oscillation; (iii) windows of irregular aperiodic dynamics. We quantify
the global basins of attraction for these solutions by performing a large set of numerical simulations
over a wide range of initial conditions. Our findings provide a useful framework for further studies
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interested in controlling these dynamics.

I. INTRODUCTION

Atomic force microscopy (AFM) has revolutionized
surface science with its ability to generate topographi-
cal mappings with atomic scale resolution [1–4]. Tapping
mode AFM offers advantages in surface topography when
compared to contact and non-contact modes. In tapping
mode the cantilever probe makes only intermittent con-
tact with the sample and, as a result, this can be used to
reduce sample destruction during measurement. Conse-
quently, the tapping mode has been widely employed to
study compliant materials and soft nanostructures [2, 4].
In typical operation the AFM cantilever oscillates near
its natural frequency in proximity to the sample while a
feedback control system keeps the oscillation amplitude
constant [5].

The interaction forces between the AFM tip and the
sample are discontinuous, nonlinear, and hysteretic. As
a result the cantilever dynamics are difficult to model,
analyze, and study. For example, for a given set of pa-
rameters there often exist multiple solutions [4–8]. As a
result, the oscillating AFM cantilever can switch between
solutions and it is often the case that one solution will
have a larger impact velocity which can be detrimental
to the sample [4].

The interaction forces between the tip and sample are
very complex and are described by a growing and sub-
stantial literature [5, 7, 9–13]. Earlier work has shown
that during the operation of a tapping mode AFM two
branches of stable oscillations are found as one varies the
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ive frequency [5, 7, 14, 15]. The bistable behavior is
e to the attractive and repulsive tip sample interac-
ns. Garcia and San Paulo [5] investigated the can-
ever dynamics as the equilibrium separation between
e probe and sample was varied. This permitted an
ploration of the attractive and repulsive regimes and
e transition between multiple stable solutions. Zitzler
al. [7] explored the role of capillary forces resulting
m a thin layer of water covering both the sample and
ntilever due to humidity in the surrounding air.
The objective of this research is to quantify the dy-
mics of AFM cantilevers in tapping-mode operation

ith the inclusion of capillary force interactions. We are
terested in determining all the possible steady state so-
tions and in approximating the basins of attraction of
ese attractors. Eventually we would like to build an
derstanding of how these attractors change as system
rameters are varied. Of particular interest is the vari-
ion of the equilibrium separation of the cantilever from
e surface during surface scanning.
We conduct this study by performing a large number
forward-time simulations using event handling tech-

ques tailored for use with discontinuous systems. Sim-
r studies have been performed in the absence of the
pillary force and have uncovered the coexistence of
ultiple steady state solutions with complex basins of
traction [4, 16]. It is not clear beforehand if these find-
gs remain with the inclusion of the capillary fluid layer
at is present in experiment.
The deterministic character of the equation of motion
Copyright © 2007 by ASME
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requires that when a steady state attractor is found, the
AFM cantilever oscillates there, independent of the ex-
tent of its basin of attraction. However in any experi-
ment or numerical simulation, small perturbations can
influence the dynamics significantly. For AFM experi-
ments, the perturbations can be due to the mechanical
and thermal noise [17] or due to the finite time response
of the feedback electronics [6]. For AFM simulations,
small perturbations exist due to the particulars of the
numerical scheme as well as round-off error. It is very
important that the numerical approach used is specifi-
cally tailored for systems with rapidly changing vector
fields as we discuss here.

II. MODELING THE TAPPING MODE ATOMIC
FORCE MICROSCOPE

To numerically simulate the dynamics of a tapping
mode atomic force microscope, we use a spatially lumped
model available in the literature [5, 7]. Figure 1 shows
a schematic of the AFM treated as a lumped mass os-
cillating near a sample located to the right. The shaded
region indicates the thin water layer that covers both tip
and sample.
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FIG. 1: A schematic of the point-mass model used to rep-
resent an AFM cantilever oscillating in tapping mode near a
sample located on the right. The cantilever is represented as
a mass m attached to a spring k and a damper c. The mass
is driven by an oscillating external force of magnitude Fd and
frequency ωd. In our notation, q is the amplitude of oscilla-
tion, d0 is the equilibrium tip-sample separation, doff is where
the capillary force turns off, don is where the the capillary
force turns on, and a0 is the intermolecular distance. The
interaction force between the cantilever and surface is Fint.
The shaded region represents the thin water layer absorbed
to both the cantilever and the sample surface.

The corresponding equation of motion is a nonlinear,
second order ordinary differential given by,

mq̈ + cq̇ + kq = Fd cosωdt + Fint, (1)

where q is the instantaneous position of the mass, m
is the effective mass, k is the spring constant, and c is
the damping coefficient. Excitation of the mass motion
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ough the imposition of a sinusoidally im-
h amplitude Fd and angular frequency ωd.
ample interaction force which depends on
of the tip relative to a reference level (at

rom the sample surface) and its past mo-
in Fig. 1. The interaction force includes
lsive, and capillary contributions.

ve forces are due to van der Walls interac-
e commonly estimated by considering the
s a sphere near an infinite flat surface [18].
here of radius R the attractive van der
dw is given by,

=
HR

6(d0 − q)2
, d0 − q > a0 (2)

Hamaker constant, d0− q is the instanta-
le separation, and a0 is the intermolecular
g the Derjaguin-Muller-Toporov (DMT)
[18] yields the following expression for the
distance, a0 = (H/24πγsv)1/2, where γsv

nergy of the tip and sample.
ntilever tip penetrates into the substrate
< a0, there arises a repulsive force. Again
eory this repulsion interaction is given

√
R(a0−d0 +q)3/2, d0−q ≤ a0, (3)

e effective Young’s modulus.
er tip and sample are often covered by a
ter of depth h due to ambient humidity [7,
tilever approaches the surface it will make
netrate into this water layer and continue
mple surface. The separation at which
g cantilever makes contact with the water
pon retracting away from the surface the
a meniscus and neck until this too breaks.
pon which the water layer releases from
cantilever is called doff. Throughout the
e cantilever is in contact with the water
force interaction that is called the capillary
s been modelled as [7],

Fcap =
4πγH2OR

1 + (d0 − q)/h
(4)

the surface energy of water. For separa-
a0, the capillary force is assumed to be
lacing the d0 − q with a0 in Eq. (4). The

is a hysteretic interaction force and as ex-
don. Furthermore, the capillary force is
represents the only nonconservative con-

dered.
the dynamics of the cantilever tip, we re-
an autonomous system of first order ordi-
l equations,

ẋ(t) = fi(x(t)) (5)
to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where x is a three-dimensional state vector given by,

x =




x1

x2

x3


 =




q
q̇

ωdtmod2π


 (6)

and q and q̇ are the instantaneous position and velocity
of the tip and φ = ωdtmod2π is the phase of the drive.
The vector field is given by,

fi (x) =




x2

m−1 (Fd cosx3 − cx2 − k1x1 + Fint (x1, i))
ωd


 ,

(7)
where i represents an index variable that indicates one of
three possible instantaneous states of the system. Since
the vector field exhibits discontinuous changes this is
called a hybrid dynamical system. The interaction force
Fint is indexed in the following manner: when only van
der Waals forces are acting i = 0; when van der Waals
and the capillary force is acting i = 1; and when van der
Waals, capillary, and repulsion forces are acting i = 2.

When the cantilever comes in contact with or releases
from the water layer there is a discontinuous jump in
the tip-sample interaction force. In contrast, when the
cantilever contacts or releases the surface the force inter-
action is continuous but the gradient of the interaction
force is discontinuous. In our forward-time numerical ap-
proach we use event handling techniques to solve for the
dynamics up until an event occurs where the vector field
changes index. The events of interest are: contact with
the water layer; contact with the surface; release from the
surface; and release from the water layer. After solving
the dynamics up to the precise moment of the event we
resume the forward-time simulation from this point with
the new expression for the vector field until the next event
and so on. All of our simulations have been performed
using algorithms that exploit the adaptive time-stepping
and event-handling capabilities available in Matlab [20].

III. RESULTS

We explore the AFM dynamics by numerically inte-
grating forward in time Eq. (5) using the event handling
just described. The system parameters are similar to
the commercially available AFM discussed in [7] and are
listed in Table I.

We first show the coexistence of two branches of stable
periodic solutions that oscillate at the drive frequency
and are distinguished by their amplitude of oscillation.
In addition, we also find the existence of windows of ir-
regular or high periodic motion. Using the following ex-
perimental protocol we performed a sweep over d0 to gen-
erate amplitude-distance and phase-distance plots which
are shown in the upper and lower panels of Fig. 2, respec-
tively. Initially, the cantilever is driven at its resonant
frequency far from the surface such that it undergoes
free oscillations. Then the separation distance between
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g constant kc 27.5 N/m

ity factor Q 400

nant frequency f0 280 KHz

lar resonance frequency ω0 2πf0 rad/s

litude of free oscillation A0 21 nm

aker constant H 6.0× 10−20 J

adius R 20 nm

ency of driving force ωd ω0 rad/s

tive Young’s modulus E∗ 65.93 GPa

ce energy γsv 75 mJ/m2

molecular distance a0 0.103 nm

ilever mass m kc/ω2
0 kg

ping coefficient c mω0/Q kg/s

ce energy of water γH2O 72 mJ/m2

r film thickness h 0.2 nm

llary force turns on don 0.4 nm

llary force turns off doff 2.32 nm

E I: Values of the system parameters used in the numer-
ulations to explore the dynamics of a tapping mode

uilibrium position of the cantilever and the sample
e, d0, is gradually decreased. After making a small
e we again let the cantilever reach steady oscilla-
in which all transients are allowed to decay. For the
uality oscillators of interest here this can require
l thousand oscillations. For the results presented
ach numerical simulation is allowed to continue for
oscillations of the driving force. This number is a
tic based on the experience gained from many nu-
al tests.

amplitude plotted in the upper panel of Fig. 2 is
plitude of the oscillating cantilever measured at

osest point to the surface and after all transients
anished. At each separation we plot the amplitude
illation corresponding to the last 200 periods to il-
te any deviations from purely periodic motion. For
ic motion oscillating at the drive frequency all 200
will fall right on top of one another and yield a sin-
int. For more complicated dynamics however, the
d points will show some variation in q resulting in
apparent scatter. For large separations, d0 À A0,
ntilever undergoes free oscillations represented by
rizontal line on the lower branch. This branch is
from a simulation that begins with a large sep-

n, goes to zero, and then retracts back to large
tion. Based upon prior work we expected there to
earby solution with a slightly larger amplitude. By
ing around in parameter space using different ini-
nditions, the upper branch solution was found and
ed.
would like to highlight that our numerical simula-
id not jump from one stable solution branch to an-
as we changed the equilibrium separation between
3 Copyright © 2007 by ASME
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the cantilever and surface. This is a result of our careful
use of event handling techniques which incur very little
numerical perturbation to the solution. This is not neces-
sarily the case if one uses a simple forward-time integra-
tion scheme with only an if-then type logical structure to
determine the choice of vector field at some time. This is
also true if one attempts to smooth the tip-surface force
over spatial discontinuities. In both cases the numerical
approach would introduce unnecessary errors which may
be large enough to cause the solution to jump from one
solution branch to another.
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FIG. 2: Numerical results using forward-time simulation to
explore the dynamics of a tapping mode AFM. (top) The vari-
ation of q at closest approach of the periodic solution with
separation. (bottom) The variation of the phase with separa-
tion (phase is measured at the time as q and is shown in units
of radians).

Figure 3 uses data from the same simulations to plot
the minimum distance between the mass and the surface
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IG. 3: Numerical results using forward-time simulation to
plore the dynamics of a tapping mode AFM. The variation

f d0 − qmax with separation. The dynamics are irregular or
igh periodic for windows 17.1 < d0 < 21.3 nm and 1.7 <

0 < 6.1 nm. For each value of the separation values from the
nal 200 oscillations are plotted.

hen the mass is fully extended toward the surface given
y d0−q. For the low amplitude oscillation there are two
indows of separation 17 . d0 . 21 nm and 1.5 . d0 . 6
m where the cantilever exhibits irregular dynamics.
From these simulations we have shown the existence

f three steady state solutions: periodic dynamics with
w amplitude, periodic dynamics with high amplitude,
nd irregular dynamics. The dynamics of these solutions
nd their relation to discontinuity induced bifurcations
ave been studied in detail elsewhere [21]. In order to
timate the general features of the basins of attraction
r these solutions we use forward-time simulations for
wide range of initial conditions for the three differ-
t equilibrium cantilever separations shown in Table II
hich we will refer to these as small, intermediate, and
rge separations.

Case d0 [nm] separation

(i) 8.5 small

(ii) 10.0 intermediate

(iii) 16.7 large

ABLE II: The three values of the equilibrium tip-sample
paration d0 used to explore the basin of attraction. The
lues are chosen to represent the range of separation over
hich it is expected that the dynamics will vary. For all
mulations we have used the parameters listed in Table I, for
ference A0 = 21nm.

We first calculate the steady-state solutions for a one-
imensional line of initial conditions in state space. The
4 Copyright © 2007 by ASME
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numerical results are shown in Fig. 4. The simula-
tions were performed for a large set of initial conditions
with finite displacement and zero velocity and phase,
x(t = 0) = (q0, 0, 0). A grid spacing of initial displace-
ments of ∆q0 = 0.019A0 was used and the simulations
were allowed to continue in time for 2500 oscillations of
the driving force. The steady state solutions are then an-
alyzed to determine the type of dynamics it represents.
To classify the dynamics into the three groups discussed
earlier we use the following convention in Fig.4: (1) rep-
resents periodic dynamics at the drive frequency with a
high amplitude, (2) represents periodic dynamics with
the drive frequency and low amplitude, and (3) repre-
sents irregular aperiodic dynamics which were not found
for these initial conditions. The dynamics become more
complicated as the separation between the sample and
surface decreases. This is indicated by the top panel of
Fig. 4 which shows the results for small separation and
yields high and low amplitude solutions in close proxim-
ity.
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FIG. 4: A one-dimensional slice of the basin of attraction for
steady state solutions for small separation d0 = 8.5nm (top),
intermediate separation d0 = 10.0nm (middle), and large sep-
aration d0 = 16.7nm (bottom). The initial conditions are
chosen to be x(t = 0) = (q0, 0, 0) with a grid spacing of
∆q0 = 0.019A0. In the figures the solutions are labeled on
the ordinate axis as: (1) periodic with high amplitude and
(2) periodic with low amplitude. Solutions with irregular
steady-state dynamics were not found for these initial con-
ditions. Each data point represents a separate simulations
begun from different initial conditions.

To get an estimate of the two-dimensional basin of at-
traction we have also performed simulations over a large
range of initial conditions in initial displacement and ve-
5
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locity, x(t = 0) = (q0, q̇0, 0). The results from these sim-
ulations are shown in the three panels of Fig. 5. Because
of the computational cost of these simulations they were
performed with a coarse grid of initial conditions. The
grid spacing in initial displacement is ∆q0 = 0.095A0 and
the grid spacing in initial velocity is ∆q̇0 = 0.095A0ωd.
The bottom left corner of each rectangle of Fig. 5 rep-
resents the value of the initial conditions used in the
simulation. After reaching steady-state the simulation
is analyzed to determine what category of dynamics it
represents. A dark (blue) rectangle indicates a periodic
solution with high amplitude and a light (green) rect-
angle represents a periodic solution with low amplitude.
The simulations show a complex array of high and low
amplitude periodic solutions over the range of initial con-
ditions. Overall, we find that the high amplitude solution
is more common.

The required wall-clock time for each forward-time
simulation to complete the required 2500 cycles used to
ensure a transient-free solution is about 30 minutes on a
standard workstation running our code. This is clearly
computationally prohibitive which would make a more
detailed study difficult. In order to compute basins of at-
traction with more resolution we plan to develop and use
a parallel cell-to-cell mapping approach which is much
more accessible computationally [22]. The results pre-
sented here will be very useful in validating any future
approaches and in quantifying any error in approxima-
tions used to speed up the calculations. For example, in
the the cell-to-cell mapping approach it is important to
find the required resolution in the initial condition grid
that is capable of reproducing the true behavior of the
hybrid dynamical system.

IV. CONCLUSIONS

We have explored the steady-state dynamics of atomic
force microscopy with the inclusion of capillary force in-
teractions. We have used forward-time simulation with
event handling to carefully treat the dynamics of this
hybrid dynamical system. Our numerics show the coex-
istence of three classes of solution: two periodic solutions
with different amplitude of oscillation and solutions with
irregular dynamics. We have also quantified the basins
of attraction for these solutions over a range of initial
conditions.
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FIG. 5: Two-dimensional basin of attraction for small separa-
tion d0 = 8.5nm (top), intermediate separation d0 = 10.0nm
(middle), and large separation d0 = 16.7nm (bottom). Dark
rectangles (blue, in color) represent initial conditions that
yield high amplitude periodic solutions and light rectangles
(green, in color) represent initial conditions that yield low
amplitude periodic solutions. For the separations considered
here there were no steady-state solutions with irregular dy-
namics.
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