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An EMD model for nanocolloidal dispersions considering the interaction between atoms within solid
particles is developed for viscosity calculation and studying the effect of the particle size and volume
fraction. Strong oscillations are observed in the pressure tensor autocorrelation function. Elimination
of this oscillation is achieved by adjusting the potential among atoms of nanoparticles to reduce
the acoustic mismatch between particles and liquid. The shear viscosity of nanocolloidal dispersion
is found strongly dependent on the particle size, which cannot be predicted by traditional effec-
tive medium theory. Through decomposing of the pressure tensor, the viscosity contribution from
interactions between liquid–solid atoms and solid–solid atoms are believed to dominate the vis-
cosity increase of colloidal systems. Our model reveals the shear viscosity increase mechanism at
the molecular-level and predicts that the shear viscosity of simple colloidal dispersions reaches a
plateau value when the particle size becomes large enough.

Keywords: Nanocolloid, Shear Viscosity, Molecular Dynamics, Stress Wave, Particle Size Effect.

1. INTRODUCTION

In recent years, attributed to the small size, large sur-
face area, and significantly modified physical properties
of nanoscale particles,1–3 nanocolloidal dispersions have
attracted considerable attention in applications related to
cooling,4 nanolubricant,5 drug delivery and diagnosis.6�7

In the aforementioned applications, the viscosity of
nanocolloidal dispersions plays a critical role in the
delivery system. For confined microfluids, the viscos-
ity can differ remarkably from those of the correspond-
ing bulk fluids.8 Quite a lot of experimental work has
been conducted to study the viscosity of nanocolloidal
dispersions9–13 and several expressions11 have been pro-
posed to express the effect of nanoparticle volume fraction
on the viscosity of hard particle suspensions. However,
various mechanisms of viscosity increase of nanocolloidal
dispersions are proposed and the size effect of nanoparticle
is not well revealed. The experimental work barely reveals
the physics behind the viscosity increase of nanocol-
loidal dispersions. This is probably due to the extremely
small size of particles and the difficulty in characteriz-
ing their dynamic rheological behavior. The interaction
between particles and liquid significantly increases the dif-
ficulty in analytical/theoretical analysis of the viscosity

∗Authors to whom correspondence should be addressed.

of nanocolloidal dispersions. Moreover, when the particle
moves in a complex structured environment such as blood,
the situation becomes even more complicated.14

Motivated to study the physics underlying the shear vis-
cosity of nanocolloidal dispersions, in this work a new
EMD model considering the interaction among atoms of
solid particles is developed and the viscosity contribution
from particle size and volume fraction are investigated.
Argon liquids consisting of nanoparticles of specially
designed materials are studied. The stress wave scatter-
ing/reflection at the particle–liquid interface is found to
give rise to the strong oscillation in the autocorrelation
function of the pressure tensor. Elimination of this oscil-
lation is achieved by reducing the acoustic mismatch
between particles and liquid. Through decomposing the
pressure tensor into potential and kinetic terms, the viscos-
ity increase for nanocolloidal dispersions is investigated in
detail.
Compared with experiments and theoretical analysis,

molecular dynamics (MD) simulation provides a com-
pelling way to evaluate/predict the macroscopic transport
properties of fluids, like self diffusivity and shear viscosity.
MD simulation directly tracks the movement of atoms and
is able to provide unprecedented detail/information about
the effect of particle size, volume fraction, particle shape,
and agglomeration of particles on the viscosity of nanocol-
loidal dispersions. The interaction between particles and
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liquid, including the information about the liquid layer
adhering to particles as well as the effect of this layer on
the viscosity, can also be revealed in great detail. There
are two main categories of MD simulation for calculating
shear viscosity: equilibrium MD (EMD) and nonequilib-
rium MD (NEMD). The NEMD techniques usually involve
measuring the macroscopic steady-state response of a sys-
tem to a perturbing field and relating the linear response to
a transport coefficient (e.g., Sllod algorithm).15�16 McPhie
et al.17 used NEMD to study shear rate dependence of vis-
cosity for solutions of model nanocolloidal particles. In
their study, detailed information on changes in the vis-
cosity of a nanocolloidal suspension was obtained as the
hydrodynamic limit is approached. The zero shear rate vis-
cosity was computed at different size ratios, mass ratios
and volume concentrations and the results were com-
pared with the theoretical relations based on the Einstein
relation18 � = �0�1+ �����, where � and �0 are the vis-
cosity of colloidal dispersion and solvent, � the volume
fraction of solute and ��� the intrinsic viscosity with the
value of 2.5 for spherical particles. Recently a new method
using momentum impulse relaxation was developed.19 In
this method, the shear viscosity is evaluated by fitting
the decaying coarse-grain Gaussian velocity profile. One
major drawback of NEMD is that the shear viscosity
is wavelength or box-size dependent.16 In our extensive
attempt to use the momentum impulse relaxation method
to calculate the shear viscosity of nanocolloidal disper-
sions, a very large system has to be used. This requires a
very long computational time, especially for low viscosity
systems whose velocity gradient decays very slowly.
EMD is a commonly used method by many researchers

to study the self-diffusion coefficient and viscosity of
nanocolloidal dispersions. The viscosity is determined
from pressure tensor (P�	� fluctuations by using the Green-
Kubo correlation.20�21 The advantage of EMD is its flex-
ibility in the sense that a mixed system can be readily
set up and more detail of transport coefficients or param-
eters, such as self-diffusion coefficient, shear viscosity or
pressure tensor and stress wave propagation in the sys-
tem can be studied. Nuevo et al.22 used EMD to study the
self-diffusion coefficient and shear viscosity of nanocol-
loidal dispersions. Their MD simulations were conducted
at very high packing fractions (0.1–0.4). They used an
empirical formula to interpret the concentration depen-
dence of the viscosity. The results suggested that the
volume fraction dependence of the Newtonian shear vis-
cosity observed for macrocolloidal particle systems may
extend largely unchanged down to simple liquid distance
scales.22 Bastea23 used EMD to calculate the viscosity of a
dilute colloidal suspension with colloidal particles roughly
one order of magnitude larger than the suspending liq-
uid molecules. The results showed the Einstein relation
remained well applicable for predicting the shear viscosity
when the mass of colloidal particles was much larger than
that of the liquid molecules.

In the MD studies reviewed above, the researchers
largely focused on the comparison between the simulated
results and traditional hydrodynamic theory values. There
are some basic differences between MD theory and hydro-
dynamic theory which make it difficult for conducting the
comparison. Since the two theories are based on differ-
ent assumptions and the studied objects are required to
be ideal, either of them cannot predict the realistic col-
loidal system accurately. In MD simulation, the potential
and motion of every molecule/atom are calculated accu-
rately. The Einstein’s equation is derived from hydrody-
namic calculation in which rigid spheres, dilute suspension
(no sphere–sphere interactions), no slip at the sphere-
fluid interface, and no Brownian motion were assumed.24

Although the Einstein’s equation can be extended to
higher volume fraction,24 non-spherical particles,25 and
slip boundary condition,26 it hardly deals with the strong
Brownian motion of nanoparticles and the special interac-
tion between solid particles and liquid molecules because
of the large surface area of particles. McPhie et al.17 tried
to conduct MD simulations in the hydrodynamic limit and
studied the agreement between the two theories. They sug-
gested that due to the model interaction between solute
and solvent particles in their MD system, the slip bound-
ary condition was most appropriate. In order to accurately
compare MD results with theoretical predictions under slip
boundary condition, they used the concept of hydrody-
namic volume fraction.
Although the comparisons are important and make a

bridge between molecular level simulation and macro-
scopic theory, the details and physics underlying the vis-
cosity increase of nanocolloidal dispersions are still not
well explored, like the stress wave propagation and attenu-
ation, as well as the stress wave scattering and diffraction
at the particle–liquid interface. In EMD, the viscosity is
determined from the autocorrelation function of pressure
tensor by using the Green-Kubo correlation. The detail of
pressure tensor and propagation of stress wave is important
for understanding the viscosity of a mixture system. In the
EMD simulations reviewed above, the Weeks-Chandler-
Andersen (WCA) potential17�22�23�27 is commonly used
between liquid atoms and solid particles, and no inter-
nal atom is configured in solid particles. One significant
problem of this model is that no internal atomic/molecular
interaction is considered within the colloid particles. This
makes it difficult to explore stress tensor details, especially
the stress wave propagation at the interface of solid–liquid
and propagation within the particles. Using this EMD
model, Nuevo et al.22 found that the shear viscosity was
subjected to great statistical uncertainty with increasing
packing fraction and colloidal particle size. Quite often it
was difficult to establish a plateau value in the integration
of time correlation function and the value of the viscosity
decreased with the increasing system size. In our EMD
work on the viscosity of nanocolloidal dispersions, strong
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oscillation in the autocorrelation function of the pressure
tensor is observed while such phenomenon does not exist
for pure fluids. The mechanisms of such oscillations need
to be explored. Another problem of the WCA potential is
that the interactions between the solvent and solute parti-
cles are purely repulsive and only slip boundary condition
can be studied.

2. METHODOLOGIES OF SIMULATION

2.1. Basis About MD Simulation of Viscosity

The Lennard-Jones (LJ) potential (�ij ) is applied in this
work to describe the interatomic interactions for atoms
inside solid particles, liquid atoms and the interaction
between solid and liquid atoms. The interaction energy
between atoms i and j , separated by a distance rij , is

�ij = 4
m���m/rij �
12− ��m/rij �

6�� m= s� l� sl (1)

where 
 and � are the LJ well depth parameter and equi-
librium separation parameter, respectively. The subscripts
s and l denote solid and liquid atoms. For the liquid
(solvent), the material takes argon. For the solid nanopar-
ticle (spherical) material, it will use the LJ potential, but
with varied atomic mass, well depth, and equilibrium sep-
aration (discussed later). The typical combining Berthelot
geometric mean rule


sl = �
s ·
l�
1/2 (2)

and Lorentz arithmetic mean combining rule

�sl = ��s+�l�/2 (3)

are applied for the potential between solid and liquid
atoms.28 The cutoff distance for MD simulation takes
2.5 �l for liquid–liquid interaction, and 2.5 Max��s��l�
for solid–solid and solid–liquid interactions. The half-step
leap-frog scheme is used21 in this work with a time step of
15 fs. Computation of the force between an atom and its
neighbors is arranged by the cell structure and linked-list
method.21

A MD program package developed by our group using
FORTRAN is employed to conduct the simulation. For a
dispersion system containing 27 nanoparticles with a diam-
eter of 7 nm, a computational domain with a volume of
161,879 nm3 and 3,526,656 atoms is needed if the volume
fraction of particles is 3%. To reduce the computational
time, parallel computation is employed through incorporat-
ing the programs with the message passing interface (MPI)
program. As a result, the computational time for each step
is about 5 second by using 4 CPUs, each of which has
4 cores. After initial configuration, the system is run for
equilibrium calculation, after which the particle positions
will change slightly due to Brownian motion.

In order to enhance the process of ‘melting’ for liq-
uid argon at the initial stage of simulation, initially each
argon atom is given a random Gaussian distribution veloc-
ity whose average is

v̄ = 2�kBT /m�1/2 (4)

where T is the expected equilibrium temperature. In this
work, we set the initial temperature as 143.4 K and the
initial lattice constant a of crystalline argon at 0.5414 nm.
After the argon melts, its density is 1.42 g · cm−3.

The equilibrium simulation is performed for 7000 steps
(∼100 ps) to make the system reach the expected temper-
ature. The velocity scaling is performed for the solid and
liquid separately and simultaneously. After the equilibrium
calculation, the pressure of the whole domain maintains
at 1.5∼1.6× 108 Pa. Periodical boundary conditions are
applied along the three directions of the computational
domain.
In EMD, the viscosity of liquid (�) is determined by the

Green-Kubo relation20�21

� = V /�KBT �
∫ �

0
�P�	�0�P�	�t��dt (5)

where V , KB and T are volume, Boltzmann’s constant and
temperature, respectively. P�	 is an off-diagonal (� �= 	)
element of the pressure tensor given by

P�	 =
( N∑

i=1

pi�pi	/mi+
N∑
i

N∑
j>i

rij�Fij	

)/
V (6)

where N , pi, rij and Fij are the sum over all atoms, momen-
tum vector for atom i, the vector connecting the centers of
atoms i and j , and the force between them, respectively.
In order to achieve acceptable uncertainty, the EMD

simulation for viscosity calculation needs to be performed
for 150,000 steps (∼2 ns) and the six pressure tensors Pxx,
Pyy , Pzz, Pxy , Pxz and Pyz are calculated at each time step.
In order to improve the statistical stability of the shear
viscosity result from the Green-Kubo relation, all the six
pressure tensors are used. Since the system is isotropic at
equilibrium, we have29

P�	 = P	� (7)

Daivis et al.30 have shown that the shear viscosity can then
be calculated from the integral

� = V /�10KBT � ·
∫ �

0
�Pos�0�� P os�t��dt (8)

where Pos is the symmetrical traceless pressure tensor with
components Pos

�	 given by

Pos
�	 = �P�	+P	��/2−�	

(∑
�

P��/3
)

(9)
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2.2. Model Material Design to Eliminate Stress
Wave Scattering at the Solid–Liquid Interface

Using the EMD model, Nuevo et al.22 and our previ-
ous study both found strong oscillation in the pressure
tensor autocorrelation function (PTACF). Figure 1 shows
the oscillation of the PTACF of a nanocolloidal disper-
sion with 27 spherical nanoparticles. For this case, the
diameter of particles is 7 nm and their volume fraction
is 3%. This oscillation will introduce an obvious statisti-
cal error in viscosity calculation. It is well known that at
the interface between dissimilar materials there will be an
acoustic mismatch for sound wave propagation. The acous-
tic impedance mismatch of the two materials will intro-
duce a weak transmission and strong reflection/scattering
of stress wave at the interface as shown in Figure 2. The
reflected or scattered stress wave from the interface will
be reflected/scattered by other particle/liquid interfaces and
forms oscillation in the liquid and solid. Model material of
nanoparticles can be designed by changing the parameters
of LJ potential to study the interaction between solid and
liquid, effect of the particle density, as well as to eliminate
the stress wave scattering at the solid–liquid interface. The
design of new model material of nanoparticle will make
the simulation more flexible to study the effect of inter-
molecular potential on viscosity without losing physical
generality. The conclusion is generic and can be applied
to a wide spectrum of materials.
The acoustic mismatch at the interface between dissim-

ilar materials is determined by the acoustic impedance

Z = � · c (10)

where � and c are the mass density and speed of sound,
respectively. For a stress wave/sound traveling to the inter-
face between materials A and B, the transmission coeffi-
cient is

�AB = 4ZAZB/�ZA+ZB�
2 (11)

In order to make the acoustic impedance match, one way
is to change the density of particles but not changing the
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Fig. 1. Oscillation in PTACF for nanocolloidal dispersion with particles
of 7 nm diameter and 3% volume fraction.

Stress wave

Backward scattering

Diffraction

Diffraction
Particle

Fig. 2. Schematic of the stress wave propagation at the particle–
liquid interface. The acoustic impedance mismatch will introduce strong
scattering.

sound speed inside. This can be realized by using different
lattice constants for the solid material (as), but keeping the
potential well depth and atomic mass constant. Such strat-
egy is feasible based on the non-dimensional analysis. For
a simple system governed by the LJ potential, the sound
velocity is only a function of 
 and m, and is proportional
to

√

/m. It is clear that the sound will travel at the same

speed in bulk solid materials of different lattice constants
if the well depth parameter e and atomic mass m are kept
constant. We have studied different systems of different
lattice constants with the same 
 and m. Indeed the sound
wave is found constant regardless of the lattice constant.
In order to estimate to what extent the lattice constant

should be adjusted, extensive additional NEMD simula-
tions have been carried out to study the sound speed in
bulk solid. Figures 3 and 4 show the stress wave propa-
gation in solid and liquid material when a sudden force
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Fig. 3. The stress wave propagation in a solid material at 143.4 K.
ms/ml takes 1 and the 
s takes 16
l .
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Fig. 4. The stress wave propagation in liquid argon at 143.4 K under
pressure of 1�5∼1�6×108 Pa.

applied at one end of the material in the [100] direc-
tion. The sound speed in bulk material can be calculated
from the wave peak positions at different times. The sim-
ulations indicate that for the colloidal solid material at
143.4 K, the stress wave travels at a speed of 6280 m · s−1

in the [100] direction when ms/ml takes 1 and the 
s

takes 16
l. For liquid argon at 143.4 K under pressure
of 1.5∼1.6×108 Pa, the stress wave travels at a speed of
1190 m · s−1. In order to make the acoustic impedance of
the two materials the same, the colloidal particle needs to
have a smaller density, corresponding to a lattice constant
of 1.7aAr . Figure 5 shows the effect of lattice constant on
the oscillation of PTACF. The volume fraction of colloidal
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Fig. 5. The PTACF of nanocolloidal dispersions with different lattice
constants for colloidal particles. The numbers shown in the figure is
as/aAr. The volume fraction of colloidal particles is 3%, ms/ml takes 1,
the particle radius is 2 nm, and 
s takes 16
l for all the cases.

particles is 3%, ms/ml takes 1, the particle radius is 2 nm,
and 
s takes 16
l for all the cases. In order to keep the sys-
tem stable, the equilibrium separation (�s) and the lattice
constant of the model solid material are extended with the
same coefficient. From Figure 5 it is observed as the lattice
constant of the solid particle is larger (less dense for the
particle), the negative peak of PTACF curves decays very
quickly with the decreasing density. When as/aAr is 1.35,
the PTACF curve is already quite smooth without visible
oscillation, meaning the reflection/scattering of the stress
wave at the solid–liquid interface is substantially weak.
This strategy of suppressing the stress wave scattering at
the solid–liquid interface and eliminating the oscillation
in the PTACF by adjusting the lattice constant of solid
material will be implemented in our viscosity studies. It
is worth noting that the acoustic impedance adjustment is
realistic. Although by now, we cannot change the lattice
constant of a crystal material, the acoustic impedance can
be adjusted by other experimental methods, like gradient
coating on the nanoparticle.

2.3. Contributions to Viscosity Increase of
Nanocolloids from Different Mechanisms

In hydrodynamic theories, the viscosity increase of col-
loids is contributed from volume fraction and shape of
solute particles. For an EMD system, one has the following
form in Eq. (12) which shows two terms, the kinetic (K)
and the potential (P ) that constitute the pressure tensor:

P�	 =
( N∑

i=1

pi�pi	/mi︸ ︷︷ ︸
K

+
N∑
i

N∑
j>i

rij�Fij	︸ ︷︷ ︸
P

)/
V (12)

Consequently, the viscosity can be expressed as a sum of
two terms which can be conveniently grouped together into
self correlations, KK, PP and two cross correlations KP,
PK. For convenient decomposition and comparison, only
pressure tensor in the x−y plane is analyzed, and Eqs. (5)
and (6) are employed in the following results and discus-
sions. Figure 6 illustrates the normalized press tensor auto-
correlation function (PTACF) for shear viscosity of pure
Ar liquid at 143.4 K and contributions from KK, PP and
cross terms. Figure 7 shows the time of integrals of the
shear viscosity for pure Ar liquid and contributions from
partial terms. The plateau in the running integral of vis-
cosity signifies that the corresponding PTACF has decayed
to zero and is fluctuating along the horizontal time axis.
Longer correlation times will have larger statistical uncer-
tainty because less data are available for its calculation. As
shown in Figure 6, the PTACF reaches zero at about 1.1 ps,
so we can determine the shear viscosity and contributions
from different terms using the values of their running inte-
grals at this time. It is clear that the kinetic–kinetic (KK)
and kinetic–potential (KP) functions contribute only in the
order of a few percentage (about 7%) to the total viscosity,

J. Nanosci. Nanotechnol. 11, 3141–3150, 2011 3145
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Fig. 6. The PTACF for pure Ar liquid (143.4 K and 1�5∼1�6×108 Pa)
and contributions from KK, PP and cross terms, which shows that the
PTACF decays to zero at about 1.1 ps (marked by the arrow). The inset
is an enlarged view between 0 ps and 0.4 ps.

while the potential–potential (PP) term dominantly con-
tributes to the total PTACF (about 93%). Figure 8 shows
the running integrals of the shear viscosity for one kind of
nanocolloidal dispersion and the contributions from par-
tial terms. The volume fraction of colloidal particles is
3%, ms/ml takes 1, the particle diameter is 4 nm, 
s takes
16
l, and the lattice constant is extended to 1.35 �Ar . The
viscosity can be determined at 0.75 ps. The viscosity of
colloidal dispersion also has a dominant contribution of
about 93% from PP. The KK and cross terms account for
the remaining 7%.
In Figure 8, the viscosity increase of colloidal

dispersion relative to the base fluid (Ar, 143.4 K,
� = 0�23×10−3 Pa · s) has a dominant contribution from
PP. Meanwhile, the total viscosity increase is significantly
higher than the prediction of the Einstein relation with ���
being 2.5 for spherical particles. For a colloidal system,
the potential term from the pressure tensor can be fur-
ther decomposed into three terms: the potential between
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Fig. 7. The viscosity of pure Ar liquid (143.4 K and 1�5∼1�6×108 Pa)
and contributions from KK, PP and cross terms.
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Fig. 8. The viscosity of nanocolloidal dispersion (4 nm diameter,
3 vol.%) and contributions from KK, PP and cross items. The solid line
is the viscosity value of base fluid (Ar, 143.4 K) and the dashed line is
the predicted value using the Einstein relation for colloidal dispersion.

liquid–liquid atoms (Pll�, the potential between solid–
solid atoms (Pss� and the potential between liquid–solid
atoms (Pls�

N∑
i

N∑
j>i

rij�Fij	︸ ︷︷ ︸
P

=
Nl∑
i

Nl∑
j>i

rij�Fij	︸ ︷︷ ︸
Pll

+
Ns∑
i

Ns∑
j>i

rij�Fij	︸ ︷︷ ︸
Pss

+
Nl∑
i

Ns∑
j

rij�Fij	︸ ︷︷ ︸
Pls

(13)

where Nl and Ns are the sum over all liquid atoms and all
solid atoms, respectively. Consequently, the contribution
from PP can be expressed as a sum of three terms which
can be grouped together into self correlations PPll, PPss,
PPls and six cross correlations PPl–s, PPl–ls, PPs–ls, PPs–l,
PPls–l, PPls–s. The decomposing results of PP from Figure 8
are shown in Figure 9. The viscosity value contributed by
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Fig. 9. The viscosity contributions from potential of nanocolloidal dis-
persion (4 nm diameter, 3 vol.%). The PP cross term includes all the
contribution from PPl–s, PPl–ls, PPs–ls, PPs–l, PPls–l, PPls–s.
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interaction between liquid atoms (PPll) has a reasonable
level close to that of pure Ar liquid. The primary viscos-
ity increase comes from the sum of PPss, PPls and cross
terms. The dominant contribution will be studied through
more detailed decomposing of potential terms in Section 3.
Since the interaction between liquid and solid atoms (PPls)
and interaction between solid atoms (PPss) are two impor-
tant components, the particle size and volume fraction will
be varied to study their contributions to viscosity increase.

3. RESULTS AND DISCUSSION

In this work, the simulation box consists of two sub-
domains. One sub-domain is the solid particles which are
dispersed in a box. The spherical nanoscale solid particles
are dispersed uniformly and the distance between particles
is set the same initially. Figure 10 shows the configuration
of dispersed nanoparticles at the beginning of simulation.
ms/ml takes 1, 
s takes 16
l and the lattice constant of
solid particle is extended to 1.35 �Ar for all the cases.

3.1. Effect of Particle Size on Viscosity

Figure 11 shows the particle size effect on viscosity of
nanocolloidal dispersions. The volume fraction of solid
particles is all kept at 3%. The viscosity values calculated
by MD and Einstein models are listed in Table I. Except
that the MD value at 4 nm is smaller than that at 3 nm
(probably due to statistical fluctuation), the trend of vis-
cosity increase with the increasing particle size is clear.
Table I also shows that the viscosity at 2 nm is already
higher than the Einstein value and the Einstein relation
cannot predict the size effect.
As discussed in part C of Section 2, the viscos-

ity increase of nanocolloidal dispersions primarily comes

y

z

x

Liquid
Solid particle

Computational domain

Fig. 10. Schematic of the computational domain and initial particle
configuration.
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Fig. 11. The decomposing result of PP at different particle diameters
(3% volume fraction).

from the increase in the PP correlation. For colloid sys-
tems, the interactions between atoms can be strongly
affected by the large surface area of nanoscale solid par-
ticles. At the same volume fraction, for smaller particles,
the number of interacting pairs of liquid–solid atoms will
increase and the number of interacting pairs of solid–solid
atoms will decrease, which can further change the viscos-
ity contributions from PPls and PPss. Figure 11 plots the
decomposing results of PP at different particle sizes and
the viscosity increase with respect to the Einstein relation.
The PPss increases with the increasing particle size. In
contrast, the PPll maintains at the level of pure base fluid
and the PPls and cross components are very small for all
particle sizes. One important feature of the decomposing
results is that the curve of PPss nearly overlaps with that
of the viscosity increase with respect to the Einstein pre-
diction, which explains the anomalous viscosity increase
with increasing particle size is probably due to the poten-
tial interaction between solid atoms. Another interesting
phenomenon is that there is a slight decrease of PPls with
increasing particle size, which could be due to the decreas-
ing specific surface area of particles. In order to further
study the mechanism of the anomalous viscosity change,
especially the contributions from interactions between dif-
ferent kinds of atoms, the effect of volume fraction on vis-
cosity is studied. Figure 11 indicates that with the decrease
of particle size, the viscosity of the nanocolloidal dis-
persion is decreasing. This is physically reasonable. One
extreme situation will be that when the particle only con-
sists of a single atom, it will be more like a mixture of two

Table I. Shear viscosity values at different particle size (3 vol.%).

Particle size (diameter) 2 nm 3 nm 4 nm 5 nm 6 nm 7 nm

Shear viscosity, 0.277 0.295 0.283 0.318 0.333 0.363
MD model (10−3 Pa · s)

Shear viscosity, 0.248 0.248 0.248 0.248 0.248 0.248
Einstein model (10−3 Pa · s)
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different liquids, and the viscosity increase will be very
much limited.

3.2. Effect of Volume Fraction on Viscosity

Table II shows the viscosity of nanocolloidal dispersions
at different volume fractions. The diameters of solid par-
ticles in different cases are all kept 4 nm. The viscos-
ity is determined at the time when PTACF reaches zero.
The shear viscosity calculated by our MD model increases
obviously with the increasing volume fraction, except the
case at 1% volume fraction due to statistical uncertainty.
The viscosity has a dominant contribution of more than
93% from PP. The viscosity value by the Einstein rela-
tion is also listed in Table II, which is significantly lower
than the corresponding MD result. Meanwhile, the aver-
age nearest distance between particle surfaces is calculated
and listed in Table II. The distance decreases quickly with
the increasing particle volume fraction. When the volume
fraction is larger than 5%, the nearest distance between
particle surfaces is already smaller than the particle diam-
eter. Considering the distance is still larger than the cutoff
distance (rcut = 2�5�), there would be no direct molecular
interaction between particles.
Figure 12 shows the decomposing results of PP at dif-

ferent volume fractions. The PPll still maintains at the level
of pure base fluid for different volume fractions. The PPss

increases quickly with the increasing volume fraction, and
for volume fraction more than 9%, the contribution from
PPss is even comparable to or larger than that from PPll.
The increase of PPss can be simply explained as this: with
volume fraction increasing, more particles are contained
in the system and more solid atoms which can interact
with each other are contained in the system. Different from
Figure 11, there is an obvious increase for viscosity con-
tribution from cross components with increasing volume
fraction. This is related with the strong volume fraction
effect of potential between solid atoms through Eq. (13).
Another feature different from Figure 11 is that the inter-
action between liquid and solid atoms increases slightly
with increasing volume fraction, which should be due to
the increasing total surface area of particles. This explains
the increase of PPls with the volume fraction as shown in

Table II. Shear viscosity values at different volume fractions (4 nm
diameter).

Volume fraction of particles 0.5% 1% 3% 5% 7% 9%

Shear viscosity, MD 0�252 0�251 0�283 0�347 0�367 0�456
model (10−3 Pa · s)

Shear viscosity, Einstein 0�233 0�236 0�247 0�259 0�270 0�282
model (10−3 Pa · s)

Viscosity contributed 0�237 0�232 0�263 0�328 0�350 0�438
by PP (10−3 Pa · s)

Average distance between 14�9 11�0 6�4 4�7 3�8 3�2
particle surfaces (nm)
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Fig. 12. The decomposing result of PP at different particle volume frac-
tions (4 nm diameter).

Figure 12. The most interesting phenomenon is that the
curve of PPss also nearly overlaps with that of the unex-
pected viscosity increase, as shown in Figure 12. This
again confirms that the anomalous viscosity increase with
increasing volume fraction should be due to the interac-
tions between solid atoms.

3.3. Mechanism of Viscosity Increase

The anomalous viscosity increase for nanocolloidal dis-
persions in comparison with the Einstein value shown in
the above MD simulation results is rarely studied in the
past. In the EMD simulation, the viscosity of nanocol-
loidal dispersion contributed by the potential term can be
expressed as:

��P�= ��Pll�+��Pls�+ ���Pss�+��cross�� (14)

In comparison with the Einstein equation, the viscosity
contribution [��Pss�+ ��cross�] by interactions between
solid atoms and the cross components are not considered
by the Einstein theory. Viscosity is a transport property
which reflects the capability of the system for transferring
momentum. In statistical mechanical theory of transport,
the stress tensor is contributed by the intermolecular force,
and the interactions between species should be considered
in the viscosity calculation. Another difference between
our EMD results and the Einstein theory is that the viscos-
ity is not only affected by the volume fraction of solute,
but also affected by the particle size. The special charac-
ters of nanoparticles, like the finite size and large fraction
of surface atoms are expected to play important roles in
the mechanism of viscosity increase.
In the above simulation results, ��Pss� dominates the

anomalous viscosity increase. From Eqs. (5) and (6) we
know that besides the surroundings, there are two fac-
tors which can affect the viscosity contribution from PPss:
parameters of LJ potential and number of interaction
atomic pairs per volume (NAPPV, ñ) for solid atoms. The
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potential parameters of nanoparticles are all kept the same
for our viscosity calculation reported above. Owing to the
finite size and large volume fraction of surface atoms in
nanoparticles, the number of interacting atom pairs per
particle volume can be expressed as a ratio of the number
of interaction pairs over the particle volume. The atomic
pair distribution function analysis can be applied to deter-
mine ñ. The pair distribution function is usually employed
to study the structure of material by calculating the proba-
bility of occurrence of an atom at a distance r from another
one. The number of pair atoms in a shell of thickness dr
at distance r from another one are obtained as g�r�dr ,
where g�r� is the radial distribution function and can be
expressed below for nanoparticles:31

g�r�D�=�r2�′
0�2�r/D�3−6�r/D�+4� �r≤D� (15)

where �′ is the atomic number density of the nanoparticle.
Since only atoms which have distance within the cutoff
distance (rcut) are considered in the potential calculation,
the total number of interacting atom pairs in a nanoparticle
is the integral result of g�r�D� with r varies from 0 to rcut:

N�D�= �N0/2�
∫ rcut

0
R�r�D�dr (16)

where N0 is the total atomic number in the nanoparticle,
and ñ=N�D�/Volume�D�. Combining Eqs. (15) and (16),
we have

ñ= ���′
0�

2�r6cut/6D
3−3r4cut/4D+2r3cut/3� (17)

It is clear ñ will increase with increasing diameter and
reach a plateau value when the diameter is large enough.
The normalized results of ñ from MD model and Eq. (17)
are shown in Figure 13, and the size effect is very obvi-
ous. There is a little difference between the two models
because the radial distribution function is a continuous
function in numerical calculation and discrete in MD sim-
ulation. This makes the interacting atomic pair number in
MD a little smaller than that of numerical calculation. But
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Fig. 13. The normalized NAPPV and its relation with viscosity increase
contributed from interaction between solid atoms.

the NAPPV results after normalization agrees well with
each other. In order to show the idea of NAPPV effect on
viscosity increase, the viscosity contribution from PPss is
also shown in Figure 13. It is evident that the PPss follows
the same trend as the NAPPV. It can be concluded that,
at nanoscales (less than 20 nm), the anomalous viscosity
increase from PPss is mainly due to the increasing number
of interacting atom pairs per particle volume. Although the
MD calculation can hardly process such a huge domain,
we can still project that the viscosity contribution from
PPss will reach a plateau value (about 0�135×10−3 Pa · s)
when the particle diameter is larger than 100 nm.
Besides PPss, other components also will be affected by

the NAPPV. The PPls is strongly related to the interac-
tion between liquid atoms and solid atoms. The NAPPV
of liquid–solid will decrease with the increasing particle
size because of the decreasing volume fraction of surface
atoms. The slight decrease of viscosity contributed from
PPls in Figure 11 confirms this projection. In traditional
effective medium theory, the viscosity increase from vol-
ume fraction of solid particles is related to the interac-
tion between liquid and solid, which can be regarded as
the contribution from PPls. MD simulations using modified
WCA potential17�22�23 all obtained results that the effective
medium theories remain well applicable for predicting the
shear viscosity under hydrodynamic conditions. Since in
those models no internal atomic/molecular interaction is
considered within the colloid particles, the viscosity con-
tributed from PPls is believed to dominate the viscosity
increase and be consistent with the Einstein relation for
dilute dispersion. In our MD model, not only the PPls is
related with the volume fraction, the viscosity contribution
from PPss increases linearly with increasing volume frac-
tion because of the increasing NAPPV (solid–solid). This
can be seen in Figure 12, and the viscosity contribution
from PPll will decrease with increasing volume fraction of
colloid particles.
Figure 13 reveals that the number of interacting atom

pairs per volume, which will be affected by volume frac-
tion and size of particles, is believed to be the mechanism
of viscosity increase. There is a characteristic size at which
the NAPPV will reach a plateau value. For nanoscale par-
ticles whose diameter is smaller than the characteristic
size, the viscosity contribution from interaction between
solid atoms will be strongly affected by the particle size.
Although extensive experimental results about nanocol-
loidal viscosity have been published9�11 and no obvious
size effect is revealed,32 the agglomerations of nanoparti-
cles in the dispersion can hardly be avoided and the inter-
actions between molecules/atoms will be affected a lot by
the structure of particle clusters, like the size, shape and
compactness. Our model also predicts that when the parti-
cle size approaches microscale or macroscale, the viscosity
increase will only be affected by the volume fraction of
particles, which is consistent with the traditional effective
medium theory.
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In this paper, the objective of lattice constant adjustment
for solid particles is to make the acoustic impedance match
at the solid–liquid interface, thereby eliminating the stress
wave oscillation. The lattice constant adjustment means
adjustment of lattice structure, and possibly it will influ-
ence the viscosity of the entire system. One extreme situa-
tion will be that with a certain weak potential, the particles
become so ‘soft’ that they cannot keep a stable shape in
the solution. The solution will be more like a liquid–liquid
mixture, and will have different viscosity compared to that
with hard particles. In this paper, the potential between
solid atoms is set and not changed with particle size or
volume fraction. The studied nanoparticles have the same
lattice constant (1.35�Ar�, the observed general trend about
the size effect on viscosity will not be influenced by the
lattice constant adjustment.

4. CONCLUSION

In summary, EMD simulations were conducted to explore
the mechanism of viscosity increase for nanocolloidal
dispersions. An EMD model with considering the inter-
action between atoms within solid particles was devel-
oped and the particle size and volume fraction effect
on viscosity increase was investigated. The stress wave
scattering/reflection at the particle–liquid interface was
found to give rise to the strong oscillation in the PTACF.
Elimination of this oscillation was achieved by adjust-
ing the potential among atoms within nanoparticles to
reduce the acoustic mismatch between particles and liq-
uid. The EMD calculation results showed that the shear
viscosity of nanocolloidal dispersions was strongly depen-
dent on the particle size, which cannot be predicted by
the traditional effective medium theory. Through decom-
posing of the pressure tensor, the potential interaction
between solid atoms was found to dominate the anoma-
lous viscosity increase. The atomic pair distribution func-
tion was employed to study the particle size effect on
the interaction between atoms. The number of interacting
atom pairs per volume was believed to be the mechanism
of viscosity increase. When the particle size is smaller
than a characteristic size, the viscosity will be affected
by particle size obviously and when the particle size
approaches microscale or macroscale, no size effect will be
observed.
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