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Abstract
In this paper, a systematic study is carried out to investigate the thermal transport in Si/Ge
nanocomposites by using molecular dynamics simulation. Emphasis is placed on the effect of
nanowire size, heat flux, Si/Ge interface, atomic ratio and defects (voids). The results show
that the thermal conductivity of nanowire composites is much lower than that of alloy, which
accounts mainly for ZT enhancement and owes a great deal to the effect of interface thermal
resistance. A ‘reflecting effect’ in temperature distribution is observed at the Si/Ge interface,
which is largely due to the lack of right quantum temperature correction in the region adjacent
to the interface. The thermal conductivity of the nanocomposite is found to have weak
dependence on the bulk temperature (200–900 K) and the heat flux in the range
(0.5–3.5) × 1010 W m−2. Simulation results reveal that for a constant Si wire dimension, the
thermal conductivity of the Si1−xGex nanocomposites increases with x. Our study on the
influence of the defects (voids) has the same order of relative thermal conductivity reduction
with increasing void density in comparison with the experimental data. Due to the small size
(10 nm) of Si nanowires in our nanocomposites, the voids show less effect on thermal
conductivity reduction in comparison with the experimental data with 100 nm Si wires.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The efficiency and energy density of thermoelectric materials
and devices are determined by the figure of merit ZT =
S2σT/k, where S is the thermopower or the Seebeck
coefficient, σ is the electrical conductivity, k the thermal
conductivity and T the absolute temperature. The best
thermoelectric materials are described as ‘phonon-glass
electron-crystal’ (PGEC). This means that materials with
low lattice thermal conductivity such as glass and high
electrical conductivity as crystals are preferred [1]. Heavily
doped semiconductors are on top of the list [2] for efficient
thermoelectrical materials. In semiconductors, both electrons
and phonons contribute to thermal conductivity while the
phonons contribution is dominant. It has been a sound

4 Author to whom any correspondence should be addressed.

approach to reduce the phonon thermal conductivity of
semiconductors in order to improve ZT. The enormous
advance in nanoscience and nanotechnology has made it more
feasible to design better thermoelectrical materials based on
nanostructures including nanowire arrays, superlattices or
quantum dot superlattices and nanotubes or nanocapsules [3–
6]. Superlattices grown by thin film deposition techniques,
however, are not suitable for large scale applications. The
reduced thermal conductivity in superlattices is largely due
to the sequential interface scattering of phonons rather than
the coherent superposition of phonon waves [7, 8]. These
lead to the idea of using nanocomposites as a potential
economic alternative to superlattices in the search for high
ZT thermoelectric materials [7]. Such nanocomposites can
be fabricated by embedding nanoparticles or nanowires in
a host matrix material, or mixing two different kinds of
nanoparticles [8–10]. In practice, most crystalline materials
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are not perfect. The regular pattern of atomic arrangement
is interrupted by various types of crystal defects, including
point defects, line defects, planar defects and bulk defects.
These defects can strongly reduce the thermal conductivity
of crystalline materials [11–14]. The synthesis process of
nanocomposites usually will result in many defects (e.g. pores).
Defects contribute much to phonon thermal conductivity
reduction due to the enhancement of phonon scattering.
However, little research has been reported about the defect
effect on thermal conductivity reduction.

The molecular dynamics (MD) method has been applied
to the investigation of nanoscale heat transfer for a long
time. Stillinger and Weber [15] proposed a notable potential
model to describe the interactions among Si atoms in solid
or liquid phase. Lukes et al [16] used MD to investigate
the thermal conductivity of solid thin films in the thickness
direction. Chen’s group simulated the thermal conductivity of
Si crystals, Si nanowires and Si/Ge superlattice based on MD
simulations [17–19]. Furthermore, the thermal properties of
single or multi-wall carbon nanotubes have been investigated
by using MD widely [20, 21]. The MD method is suitable
for studying defects such as impurities, voids, pores and
grain boundaries in materials [22–25]. The thermal properties
of nanocomposites with and without defects, however, have
rarely been studied by using MD simulation. Most of the
previous studies on these materials are experimental work [26]
or theoretical investigation using the double Gauss–Legender
quadratures method [8] or the Monte Carlo (MC) method [9]
to solve the phonon Boltzmann transport equation (BTE).
Recently, a method called energy-conserving dissipative
particle dynamics (eDPD) was introduced to simulate the heat
conduction in nanocomposites [27]. In this method, a batch
of molecules are treated as a nanoparticle embedded in a host
matrix. The heat capacity of the particle and the particle–
matrix interfacial thermal resistance are based on other work,
and could not be directly calculated in eDPD. Additionally,
strong phonon scattering within and around the nanoparticles
can strongly reduce the thermal conductivity of particle and the
matrix. Such effect is also difficult to predict in eDPD. The
interfacial thermal resistance and phonon scattering effect is
just what we want to study in this work. Therefore, the eDPD
method is not suitable for our purpose.

In this paper, we use MD simulations to study the thermal
transport in Si/Ge nanocomposites with and without voids,
which are of great importance for developing high-efficiency
thermoelectric materials. Emphasis is placed on how and to
what extent the thermal conductivity of Si/Ge nanocomposites
is affected by temperature, atomic percentage, heat flux, wire
dimension and voids.

2. Theoretical model of simulation

2.1. Basis of MD simulation and thermal conductivity
calculation

From the statistical physics point of view, there are two MD
methods for studying the thermal conductivity of materials:
equilibrium molecular dynamics (EMD) and nonequilibrium

molecular dynamics (NEMD). The thermal conductivity in
a homogeneous material can be calculated using either
EMD with the Green–Kubo formula [17–19, 28] or NEMD
simulation [29, 30]. The main challenge in performing NEMD
simulations is to choose a suitable thickness or the total number
of atoms in sample sections in order to establish local thermal
equilibrium and calculate the local temperature. In quantum
mechanics systems, thermal equilibrium is established by the
anharmonic coupling of the vibrational normal modes, or
phonon–phonon scattering. The key relevant quantity is the
total number of phonon–phonon scattering events per section
during the entire simulation run. It is determined by the
relation [30]

Nscat = 3Ns
τsim

τph
, (1)

where Nscat is the total number of scattering events during the
total simulation time τsim in a section containing Ns atoms and
τph is the average interval between the scattering events of each
phonon. Previous work found that ∼30 atoms in one section
are adequate for equilibrium [30]. It is also found that in our
simulations the local thermal equilibrium is indeed established
in relatively thin sections in which the velocity distribution of
atoms follows the Maxwell–Boltzmann distribution.

In the past, periodic boundary conditions used in most
equilibrium MD simulations were not conveniently matched
in NEMD. After years of work by Evans and Morris [31],
Ciccotti and co-workers [32], Gillan [33], Ikeshoji and
Hafskjold [29] and Miller-Plathe [34], several algorithms of
periodic boundary conditions in a NEMD system have been
developed. In this work, we use the algorithm developed by
Ikeshoji and Hafskjold. In this method, a fixed amount of
energy is added into a hot slab by scaling each hot atom’s
thermal movement by the same factor R while keeping the
momentum conserved. The same amount of energy is removed
from a cold slab by using the similar procedure. This algorithm
has been used in the work by Jund and Jullien [35] and Lukes
et al [16].

In this work, the Stillinger–Weber (SW) potential [15] is
used for simulating Si and Ge. For Si, we choose the same
values for all parameters in reference [15]. For Ge, we employ
the parameters proposed by Ding and Anderson [36]. As for
the Si–Ge interaction, we follow the method of Volz et al [28]
by using the arithmetic mean coefficients.

In MD simulations, the temperature can be easily
calculated from the time average kinetic energy of atoms in
the sample section within the simulation time using the energy
equipartition theorem:

1

2

Ns∑
i=1

m〈v2
i 〉 = 3

2
NskBT , (2)

where 〈〉 denotes averaging over the total simulation time, and
kB is the Boltzmann’s constant. The above equation is only
valid at temperatures much higher than the Debye temperature.
In this work, the thermal conductivity of Si/Ge nanocomposites
at temperatures of 200–900 K is investigated. On the other
hand, the Debye temperature (�D) of Si and Ge is 645 K and
374 K, respectively [37]. In this work, the quantum definition
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(a) (b)

Figure 1. (a) Heat flux across a periodic 2D composite with Si nanowires embedded in Ge host matrix [8], (b) the unit cell of NEMD to
show the location of the hot slab (energy supplied) and cold slab (energy withdrawn).

of the temperature in the Debye model is used, which could be
calculated from the following equation [30]:

3

2
NskBTNEMD = 1

2

∫ ωD

0
D(ω)N(ω, T )h̄ω dω, (3)

where D = V ω2/(2π2v3) is the Debye density of states,
and N = 1/(eh̄ω/kBT − 1) is the phonon occupation number
given by the Bose–Einstein distribution corresponding to the
local equilibrium temperature T (the quantized temperature),
ω the phonon frequency, ωD the Debye cutoff frequency, V

the volume of lattice cell and v the group velocity. TNEMD

is the classic temperature in nonequilibrium MD programs
which represents the average kinetic energy of atoms. By
numerically integrating the right side of equation (3), a one-
to-one correspondence between TNEMD/�D and T/�D can
be obtained. Then the quantized temperature T could be
calculated.

The thermal conductivity k is defined by the Fourier’s law
J = −k∇T , where J is the heat flux. Our work focuses
on the thermal transport in nanowire-embedded composites
for the case where the heat flow direction is perpendicular to
the wire axis as shown in figure 1. Yang and Chen [8] have
investigated the same problem by solving the phonon BTE
using the double Gauss–Legendre quadratures method. Their
results are taken as an important reference to evaluate whether
our method is applicable to study the similar system. For the
simplicity of programming, the local temperature is defined as
the statistical temperature of a section, T (x), where x denotes
the midpoint of a section. The quantum correction will be done
in the post-process. Then the effective thermal conductivity k

can be calculated by,

k = − J

∂T /∂x
= kNEMD∂TNEMD/∂x

∂T /∂x

= JLGe

TNEMD(LGe) − TNEMD(0)

∂TNEMD

∂T
, (4)

where ∂TNEMD/∂T is obtained from equation (3). It is
a function of T/�D. Only the temperatures of Ge at
the two ends are used in the calculation, so the Debye
temperature �D of Ge 374 K is chosen. It is convenient for
experimentalists to calculate the thermal conductivity without
knowing the temperature profile within the sample. The
temperature profiles are studied in this work to get more
understanding about the heat transport near the interface of the

two components. According to equation (4), the temperatures
of the hot and cold ends are specified, then the heat flux can be
calculated, or a fixed heat flux is given, then the temperature
gradient can be obtained. After several simulations, it is found
that obtaining convergence of heat flux will take a longer time
than obtaining stable temperature under a given heat flux.
Thus, in this work the temperature profile is obtained under
a specified heat flux. In our work, the (effective) thermal
conductivity (k) is calculated by using the temperature at
the hot (Th) and cold ends (Tc), as well as the heat current
(q) between them: k = q�x/[2(Th − Tc)A], where A is
the cross sectional area of the sample in the y–z plane and
�x is the distance between the heating and cooling slabs.
The factor ‘2’ accounts for the symmetrical effect of the
computation.

2.2. Domain design for thermal conductivity calculation

The structure of Si/Ge nanocomposite, Si nanowires embedded
in Ge host matrix, is illustrated in figure 1(a). The physical
simulation domain is shown in figure 1(b). We divide the
simulation domain into several sections along the x direction.
The hot and cold slabs are the regions where we add and
remove energy to establish the heat flux. Four atomic layers
are specified in each hot and cold slab following the suggestion
by Kotake and Wakuri [38]. Periodic boundary conditions are
applied in all the three directions. Due to the two-dimensional
feature of the system, one lattice constant thickness along
the z direction is mainly used to reduce the computational
time significantly. A case of double lattice constant thickness
is also studied to observe the effect of the thickness. We
have investigated different systems with the total atom number
ranging from one thousand to ten thousand, in which we fix
the Si wire dimension as LSi = 5, 10, 20 and 50 nm. At these
scales, we can compare our results with the experimental and
numerical data of other groups. The characteristic length of
Ge, LGe, is varied to investigate the thermal conductivity at
different Si/Ge atom ratios. The region between the hot and
cold slabs is divided into several sections under the principle of
phonon scattering events that there are more than 30 atoms in
every section. Thin sections are used near interfaces to obtain
detailed effect of the interface and thick sections are used in
other regions to reduce the statistical error, as will be shown in
figure 2. In the y direction, the box is divided into three layers
at the Si/Ge interface for studying the temperature profiles at
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(a)

(b)

Figure 2. Nondimensional temperature T/Teq profile in two
composite structures: (a) Si0.4Ge0.6, LSi = 20 nm, Teq = 600 K,
J = 6 × 109 W m−2, (b) Si0.2Ge0.8, LSi = 10 nm, Teq = 200 K, layer
II. The temperature jumps at the interface are clearly shown in the
inset in figure (a). The temperature shown in this figure does not
include the quantum correction due to the fact that materials close to
the Si/Ge interface do not have the Debye temperature of the bulk
counterparts. The temperature profiles obtained by Yang and Chen
solving phonon BTE using the numerical method [8] are also shown
in the figure (a).

different y positions, as shown in figure 1(b). An optimal time
step was found to be �t = 0.5 fs. The velocity-Verlet [39]
algorithm is used for integrating the motion equations of
atoms.

In the calculation, first we put the Si and Ge atoms on
their own lattice nodes with the lattice constants 5.431 Å
and 5.658 Å, respectively. To obtain the appropriate initial
structure of the material, we calculate 200 000 time steps of
EMD at the desired temperature. Canonical ensemble NVT
is used at this stage. A great number of simulations show
that the sample sections need different time steps to reach
steady state at different heat flux and different characteristic
length. More time steps are needed for higher heat flux
and larger scale systems. Therefore, the computation time
of NEMD is varied under the guidance that the computation
continues at least 300 000 time steps after the convergence of
temperature gradient. Also in the simulation the temperature
gradient/profile in the system is checked to make sure it will not

change with time, which is an indication of the steady state.
The total number of time steps of NEMD is from 500 000
to 2000 000. Microcanonical ensemble NVE is used at this
stage. At final, the stable temperature profile is obtained by
statistical averaging. Due to the symmetry of the simulation
domain, the final temperature profile is given by averaging
the temperatures in corresponding sections of two symmetrical
slabs with respect to the central symmetrical line. The standard
deviation from statistical averaging is used to calculate the
uncertainty of the thermal conductivity by using the function
of error propagation. The computation time of each case varies
from a few hours to several days, depending on the total number
of atoms considered.

3. Results and discussion

With respect to nanocomposites, the thermal transport regime
in it is more complex than in bulk single crystals. There
are more factors that could affect the thermal conductivity
of nanocomposites. In this work, the effect of temperature,
heat flux, atomic percentage, wire dimension and voids are
considered.

3.1. Temperature profile

Figures 2(a) and (b) show the temperature profiles along
the direction of heat flux (x direction) in two composites:
(1) Si0.4Ge0.6, LSi = 20 nm, Teq = 600 K, (2) Si0.2Ge0.8,
LSi = 10 nm, Teq = 200 K. The thickness of different systems
is all one lattice constant unless other values are noticed.
Similar temperature profiles are also obtained for the case
of 450, 750 and 900 K and are not shown here. The x

position is normalized with respect to the characteristic length
LGe. The normalized temperature is calculated with respect
to the equilibrium temperature Teq. The temperature quantum
correction is not considered in figure 2 due to the fact that
materials close to the Si/Ge interface do not have the same
Debye temperature as the bulk counterparts. The statistical
error in figure 2 is obtained from the standard deviation
from statistical averaging of the temperature at different time
steps. The temperature in the case is recorded every 100 time
steps. It is clearly shown in figures 2(a) and (b) that after a
linear decrease an obvious upward deviation in temperature
distribution occurs to the left side of the Si/Ge interface, then
the temperature jumps down across the interface. This upward
deviation is more like a ‘reflecting effect’ and the downward
jumps are due to the Kapitza resistance [40, 41]. In layer III
(pure Ge), the downward jumps at the interfaces are not sharp,
but are still visible. It reveals that layer III is not thick enough to
ignore the effect of the interface from the neighbouring regions.
We do not do the quantum correction for the temperature
distribution because we cannot just use the same Debye
temperature everywhere for Si or Ge. The Debye model is
a predigested model and the Debye temperature is used for
bulk materials. However, when an interface exists, phonon
scattering happens and the dispersion relation is not as the one
in the bulk material. The influence of interface on dispersion
relation is not clear so far, thus the quantum correction cannot
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be exactly done. Actually, we have made an attempt to conduct
quantum correction for Si and Ge part with �D = 645 K and
374 K, respectively. The result shows that for layer II the Si
part temperature goes below that of Ge at the cold end, leading
to a negative Kapitza resistance. If using the average Debye
temperature of Si and Ge for materials in vicinity of the Si/Ge
interface, the temperature distribution across the interface is
smoother with a positive Kapitza resistance. Additionally, the
‘reflecting effect’ at the Si/Ge interface becomes weak. Thus,
a more precise model considering the influence of interface on
the dispersion relation is needed to do the quantum correction.
From the above discussion, it can be inferred that the ‘reflecting
effect’ is largely due to the lack of high-accuracy quantum
correction.

A comparison is done between our temperature
distribution with that obtained by Yang and Chen solving
phonon BTE using the numerical method [8]. Their sketch
curve is also shown in the figure. It needs to be pointed
out that the temperature definition in this work is different
from that in the work by Yang and Chen. The temperature
defined in this work characterizes the average kinetic energy
and the one defined by Yang and Chen characterizes the average
energy density. Their results indicate that when the nanowire
dimension is much smaller than the phonon mean free path
(MFP), say LSi = 10 nm, the temperature along the x direction
can increase before entering the interface (meaning ‘negative’
thermal conductivity) and after exiting the interface, as shown
in figure 2 in Ge. On the other hand, our results show that this
abnormal temperature distribution disappears. The ‘end effect’
first presented by Maiti et al [30], which is a large temperature
gradient at the two ends, also exists in our results. It is due
to the enhanced scattering of phonons arising from energy
fluctuation and local thermal nonequilibrium which is caused
by maintaining constant heat flux. With the periodic boundary
condition, this effect should not be counted in calculating the
thermal conductivity. Therefore linear fits on the temperature
at the sections away from the boundary are used, as shown in
figure 2(b). The slope of the linear fitting lines at both ends for
the three layers [I, II and III shown in figure 1(b)] are averaged
for calculating the thermal conductivity.

A structure of Si0.4Ge0.6 with LSi = 20 nm and double
lattice constant thickness in the z direction is also investigated.
It is found that the thermal conductivity of the nanocomposite
with double lattice constant thickness is about 14% larger
than the one with one lattice constant thickness. This
result illustrates that the dimension used in the simulation
also affects the phonon transport even under the periodic
boundary condition. The larger the dimension in the
simulation, the more the result represents the real situation.
However, the computation time will increase significantly
with the increasing computational domain. We find that the
temperature profile shown in figure 2 does not change much
for the case of two lattice constants in the z direction. The
only difference is that when the material is thicker in the z

direction, the statistical error is getting smaller due to the
increased number of atoms for temperature calculation in each
section.

Figure 3. Thermal conductivity of different nanocomposite systems
as a function of temperature. The thermal conductivity changes little
with the temperature except in the vicinity of 600 K (QC: quantum
correction).

3.2. Effect of temperature

Figure 3 shows the thermal conductivity of different Si/Ge
nanocomposites at different temperatures. In the figure, the
thermal conductivity is almost constant from 200 to 900 K
except at 600 K. From all our simulations, it is found that at
different system sizes the temperature of the sample reaches
the steady state faster at 600 K than at other temperatures, and
there is a smaller temperature difference between hot and cold
slabs, leading to a larger thermal conductivity at 600 K. When
the quantum correction is removed, the thermal conductivity
abnormal behaviour around 600 K still exists. There is a
difference (less than 15%) for the thermal conductivity with
and without quantum correction below 300 K. However, when
the temperature is at or above the Debye temperature, the
quantum correction has a negligible effect on the thermal
conductivity. Other numerical and experimental investigations
on nanoparticle composites and superlattice systems also
concluded that the thermal conductivity is weakly dependent
on temperature from 200 to 1200 K [7, 10, 19, 42] and the
thermal conductivity of superlattice at temperatures below
200 K is a little lower than that above 200 K [43, 44]. In this
work, the range of temperature is 200–900 K for the conclusion
that the thermal conductivity has a weak dependence on
temperature. It is possible that the thermal conductivity could
have a strong temperature dependence below 200 K and above
900 K, especially below 200 K. The heat capacity of Si and
Ge decreases sharply at low temperature, and the phonon MFP
is limited by the characteristic length. It is believed that the
thermal conductivity of nanocomposites consisting of the two
types of atoms will be heavily affected by temperature due to
the proportional relation between heat capacity and thermal
conductivity. For this reason, we did a case study at 100 K,
in which the thermal conductivity is much lower than that at
other temperatures as shown in figure 3. This agrees with
the experimental conclusion that the thermal conductivity of
superlattice at the temperature below 200 K is lower than that
above 200 K [43, 44].
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Figure 4. Thermal conductivity of Si0.6Ge0.4 composites as a
function of heat flux for wire dimension of LSi = 10 nm.

3.3. Effect of heat flux

Recently Guo et al [45] established a theory of heat conduction
based on the concept of heat-mass. It points out that in the
wide case the heat conduction has not only temporal inertia
effect of heat flux, but also spatial inertia effect of heat flux,
and temporal and spatial inertia effect of temperature. In
general, these effects could be negligible. However, when
the temperature gradient and the heat flux are high enough,
these effects become more important. This happens easily
in nanoscale heat conduction. The change in distribution of
phonon frequency may cause different phonon scatterings,
which is highly related to the thermal conductivity. We choose
a set of heat flux values to calculate the thermal conductivity
of the nanocomposite in which the characteristic length of Si
is 10 nm and the Ge atomic percentage is 40%, as shown in
figure 4. The equilibrium temperature of the system is 300 K.
Obviously, the thermal conductivity is almost constant under
different heat flux values, so the heat flux in the magnitude
of 1010 W m−2 does not influence the thermal conductivity so
much.

3.4. Effect of atomic percentage

Figure 5 shows how the thermal conductivity of Si1−xGex

composites changes with the atomic percentage of Ge(x) for
wire dimension of LSi = 10 nm. The equilibrium temperature
of the system is 300 K. The scale of Ge is changed in
the simulation for different atomic percentages. It shows
that for a constant Si wire dimension, the larger the atomic
percentage of Ge, the larger the thermal conductivity of the
Si/Ge nanocomposites. This is very different from macroscale
composites, in which the effective thermal conductivity
decreases with the increasing volumetric fraction of the lower
thermal conductivity component. This can be explained by
two reasons. One is the ballistic phonon transport in both
the host material and the nanowires due to the characteristic
length smaller than phonon MFP, which is called ‘size effect’.
The other is the interfacial thermal resistance between them,
which just causes the temperature jump at the interface. With

Figure 5. Thermal conductivity of Si1−xGex composites obtained
by the BTE [8] and MD method respectively as a function of atomic
percentage x of Ge for wire dimension of LSi = 10 nm.

increasing atomic percentage of Ge for a constant size Si
nanowire, the dimension of Ge increases and the interfaces per
volume decrease, so the size effect and the interface effect on
reducing thermal conductivity become weak and the thermal
conductivity increases. Additionally, these two reasons could
also explain why all the values of nanocomposites are much
lower than the values of bulk alloy with the similar chemical
composition. This exciting result illustrates that Si/Ge
nanocomposites are indeed a cheap alternative to superlattice
for high ZT. It should be noted that the thermal conductivity
obtained by MD simulation is lower than that obtained by
BTE numerical simulation. The possible reason for this
difference is that in the z direction only one lattice constant
is used in our model, which could give rise to more phonon
scattering. The experimental data from Lee [46], which will
be shown in section 3.6, indicates the MD results are still
reasonable.

3.5. Effect of wire dimension

Figure 6 shows the thermal conductivity of Si0.4Ge0.6

composites at 300 K as a function of the Si wire dimension.
It is shown clearly that at constant atomic percentage the
thermal conductivity increases with the wire dimension, and
among the selected dimensions this increase reveals a good
linear relation. This linear relation has a good agreement with
previous studies [8, 10, 16]. Through linear fitting of the data
points, a correlation is given as below:

k = 0.6 + 0.032LSi, (5)

where the unit of LSi is nm and the unit of k is W m−1 K−1. The
increase in thermal conductivity with dimension is due to the
fact that the phonon MFP will be less affected by the size and
will be longer. Another reason is the number of interfaces per
volume goes down when the wire dimension is getting larger.
As a result, the phonon scattering decreases and the influence
of interface thermal resistance becomes smaller. Considering
that the thermal conductivity of composites will reach the alloy
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Figure 6. The thermal conductivity of Si0.4Ge0.6 composites at
300 K as a function of the Si wire dimension. The solid points are
the results from MD simulation, and the solid line is the linear fitting
of the results.

value with the same atom ratio when the Si nanowire goes to a
large scale, the k−LSi correlation should deviate from linearity
at large LSi.

3.6. Effect of voids

A schematic of Si0.4Ge0.6 nanowire composites with 4.8%
density voids is shown in figure 7(a). In practice, the
composites are often obtained by hot pressing of two mixed
components. This usually produces a lot of voids especially at
the interface. Therefore, in the model the voids are placed at
the Si/Ge interface. In our work, each void is smaller than 3
unit cells, so there is little surface effect for special treatments
in the vicinity of the defects. In fact, we allow the defects to
evolve in the simulation to stablize before applying the heating
and cooling. The temperature profiles with different void
densities are shown in figure 7(b). Obviously, the temperature
jumps as well as interface thermal resistances at the interface
increase with the void density, and the temperature difference
between the hot slab and the cold slab also increases with
the void density under the same heat flux. The existence
of voids reduces the heat transfer and increases the interface
thermal resistance, so the thermal conductivity is reduced. The
thermal conductivity varies with the void density as shown
in figure 8. The experiment data from Lee [46] shown in
table 1, although for a different nanocomposites system, can
be used for comparison. The experimental data indicate that
the thermal conductivity of Si0.8Ge0.2 composites with 10%
void density for 100 nm Si nanowire decreases by 61% with
respect to that has 2% void. In our results, the corresponding
decrease ratio is 34% for Si0.4Ge0.6 composites for 10 nm
Si nanowire. It is less than the experiment value. The
reason is that the voids in larger scale composites have a more
significant effect in reducing the phonon MFP and enhancing
the phone scattering. Obviously, the Si0.8Ge0.2 composites
with 100 nm Si nanowire has longer phonon MFP than the
Si0.4Ge0.6 composites of 10 nm Si nanowire if there are no

Figure 7. (a) A snapshot of the physical domain design. The black
regions are the voids and (b) normalized temperature profile in layer
II of Si0.4Ge0.6 nanowire composites with different void density for
wire dimension of LSi = 10 nm at the equilibrium temperature of
300 K. In the 9.3% case the heat flux is 1 × 1010 W m−2, and in other
cases the heat flux is 1.8 × 1010 W m−2.

Figure 8. Thermal conductivity of Si0.4Ge0.6 nanowire composites
varies with the void density for wire dimension of LSi = 10 nm at
the temperature of 300 K.

void in the systems. Voids will reduce the phonon MFP.
The reduction is larger for longer phonon MFP. Therefore
the reduction ratio of thermal conductivity of composites with
thicker nanowires with respect to void density is larger than
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Table 1. The thermal conductivity of nanocomposites with LSi = 100 nm.

Si0.8Ge0.2 Si0.8Ge0.2 Si0.2Ge0.8

void density: 2% void density: 10% void density: 17%

Thermal conductivity (W m−1 K−1) 4.27 1.66 5.07

that consisting of thinner nanowires. A larger structure with
LSi = 50 nm for Si0.8Ge0.2 without void is also simulated in
order to compare with experimental data as closely as possible.
The thermal conductivity is 1.53 W m−1 K−1, which is much
smaller than the thermal conductivity of the experimental result
for the case of Si0.8Ge0.2 with 2% voids and 100 nm diameter Si
nanowires. It again indicates that the characteristic size of the
Si nanowire has a significant effect on the thermal conductivity
of the composite.

4. Conclusion

This work studied the thermal conductivity of two dimensional
nanocomposites with Si nanowires embedded in a Ge host
matrix using NEMD. The results showed that the thermal
conductivity of nanowire composites can be much lower than
that of the alloy, which can be explained by ballistic phonon
transport and interface thermal resistance. The simulation also
revealed a ‘reflecting effect’ for the temperature distribution
close to the interface of the two components. This phenomenon
is largely due to the lack of high-accuracy quantum correction
of the temperature. It was found that the thermal conductivity
of Si/Ge composite was weakly temperature dependent in the
range of selected system sizes and temperatures (200–900 K).
Our study indicated that for a constant Si wire dimension, the
thermal conductivity of the Si/Ge nanocomposites increased
with the atomic percentage of Ge, which is due to the decrease
in the ratio of interfaces to volume. An attempt to study the
influence of the voids on thermal conductivity showed that
the thermal conductivity decreased with the void density. The
relative thermal conductivity reduction versus the void density
is lower than the experimental results for nanocomposites
with LSi = 100 nm because the voids in nanocomposites of
thicker nanowires have a more significant effect in reducing
the phonon MFP and enhancing phone scattering.

Acknowledgments

The authors gratefully acknowledge the support of the National
Natural Science Foundation of China under Grant #50776087,
the Chinese National Key Foundation Research Subject under
Grant #2006AA05Z203. This work is also supported by
Supercomputering Center, the Computer Network Information
Center (CNIC), Chinese Academy of Sciences (CAS) and the
Institute of Engineering Thermophysics, CAS. Partial support
from the start-up fund of Iowa State University is gratefully
acknowledged.

References

[1] Slack G A 1995 CRC Handbook of Thermoelectrics
ed D M Rowe (Boca Raton, FL: CRC press)

[2] Ioffe A F 1957 Semiconductor Thermoelements and
Thermoelectric Cooling (London: Infosearch Limited)

[3] Prieto A L, Sander M S, Martı́n-González M S, Gronsky R,
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